
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

6-2014

3DFlow: Continuous Summarization of Mesh Editing Workflows 3DFlow: Continuous Summarization of Mesh Editing Workflows

Jonathan D. Denning
Dartmouth College

Fabio Pellacini
Sapienza University of Rome

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Denning, Jonathan D. and Pellacini, Fabio, "3DFlow: Continuous Summarization of Mesh Editing
Workflows" (2014). Computer Science Technical Report TR2014-757.
https://digitalcommons.dartmouth.edu/cs_tr/350

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/350?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

3DFlow: Continuous Summarization of Mesh Editing Workflows

Jonathan D. Denning Fabio Pellacini
Dartmouth College Sapienza University of Rome

June 2014, Dartmouth Computer Science Technical Report TR2014-757

initial mesh continuous levels of detail other datasets

final mesh hierarchical summarization of timeline

Figure 1: Continuous levels of details automatically constructed from a 30 minute digital sculpting session of a professional artist. The
artist sculpted the cube (top-left) into a monster (bottom-left) in 797 strokes using dynamic remeshing techniques. The center column shows
the sequence summarized in 4, 8, 16, and 32 steps (top) and the corresponding timeline (bottom). The mesh is colored green to indicate
created geometry and golden to indicate the strength of change from the previous mesh. Blue highlighting and vertical black lines indicate
the hierarchical summarization. Four additional sequences are shown at different levels of detail on the right.

Abstract

Mesh editing software is continually improving allowing more de-
tailed meshes to be create efficiently by skilled artists. Many of
these are interested in sharing not only the final mesh, but also their
whole workflows both for creating tutorials as well as for show-
casing the artist’s talent, style, and expertise. Unfortunately, while
creating meshes is improving quickly, sharing editing workflows
remains cumbersome since time-lapsed or sped-up videos remain
the most common medium. In this paper, we present 3DFlow, an
algorithm that computes continuous summarizations of mesh edit-
ing workflows. 3DFlow takes as input a sequence of meshes and
outputs a visualization of the workflow summarized at any level of
detail. The output is enhanced by highlighting edited regions and,
if provided, overlaying visual annotations to indicated the artist’s
work, e.g. summarizing brush strokes in sculpting. We tested
3DFlow with a large set of inputs using a variety of mesh editing
techniques, from digital sculpting to low-poly modeling, and found
3DFlow performed well for all. Furthermore, 3DFlow is indepen-
dent of the modeling software used since it requires only mesh
snapshots, using additional information only for optional overlays.
We open source 3DFlow for artists to showcase their work and re-
lease all our datasets so other researchers can improve upon our
work.

1 Introduction

Various methods are used for learning how talented artists create
polygonal meshes. Although document-based tutorials are an op-
tion, artists commonly showcase their workflows via a time-lapse
or sped-up video recording of their editing session, since these
videos are simple to create without interrupting their workflow.

Even for relatively simple models, though, mesh editing workflows
are long, ranging from tens of minutes to several hours of work,
involving thousands of operations. Time-lapses are not very effec-
tive for these lengths since the artist must make a trade-off between
presenting the details of their workflow and keeping the presenta-
tion as short as possible. Motivated by this concern, recent research
has explored ways to visualize and navigate lengthy recordings of
artists at work, for modeling as well as image editing. For example,
VisTrails [VisTrails 2010] helps in navigating non-linear undo his-
tories in 3D software, while Chen et al. [2011] present non-linear
navigation of edits in images. MeshFlow [Denning et al. 2011]
combines clustering of edits with annotations to get a summary of
a polygonal modeling session. Delta [Kong et al. 2012] helps in
comparing workflows in image editing. ZBrush [Pixologic 2013]
has a workflow playback feature just for creating time lapses.

In this paper, we focus on summarizing mesh editing workflows,
including digital sculpting and low-poly modeling. In sculpting,
artists alter the shape of a mesh as though they were sculpting a
block of clay using physical tools. The digital brushes can have dif-
ferent effects, such as creating new features, smoothing out uneven
areas, or reposing parts of the mesh. Sculpting is particularly well
suited for modeling organic shapes like characters. In low-poly
modeling, artists directly manipulate the surface representation of
the mesh by issuing commands such as extrude edge, split face,
add new cube, etc. This workflow is particularly well suited for
modeling hard-surface objects, meshes that will be animated or
base meshes for subdivision surfaces.

There are two major working phases with modeling workflows:
blocking and refinement. In blocking, the main shape of an object
is roughed out. Blocking edits have strong magnitude and are
applied over large regions usually relatively quickly. Finer details
are carefully added during refinement. These details are more

precise and are repeated many times over smaller areas. In a
sense, blocking and refinement edits work at different scales, both
spatially and temporally.

In this paper, we present 3DFlow, an algorithm for providing
continuous summarizations of mesh editing workflows. Figure 1
shows at different levels of detail the summaries of several
workflows, including low-poly modeling and sculpting sessions
using dynamic or subdivision remeshing. 3DFlow is inspired by
two prior works. As in Video Tapestries [Barnes et al. 2010], we
support continuous levels of summaries to allow arbitrary temporal
zooming of the editing sequence. As in MeshFlow [Denning et al.
2011], we add visual annotations to highlight important changes
and summarize the artist’s edits.

3DFlow takes as input a sequence of meshes with optional anno-
tations, such as brush strokes, and outputs a continuously summa-
rized mesh sequence with visual annotations. To do so, we first
compute mesh deltas, one for each input mesh, that describe the
changes performed in the current edit. A dependency graph, dep-
graph, is constructed with nodes for each delta and edges represent-
ing the spatial and temporal dependencies of the deltas. We then
repeatedly contract the edge of least weight, computed by a cost
function over the strength and distance of changes in the spatial and
temporal dimensions, and merge the corresponding deltas to pro-
duce continuously summarized dependency graphs. When only one
delta remains, we split the merged deltas in reverse contracting or-
der to produce continuous levels of detail. In the interactive viewer,
we highlight changes to the mesh to emphasize the magnitude of
the edit and, if supplied, overlay visual annotations to illustrate the
artist’s edits, such as summarized brush strokes for sculpting.

We tested 3DFlow using digital sculpting sessions by professional
artists obtained with a lightweight software instrumentation, the
polygonal modeling sessions from MeshFlow, and committed
snapshots from movie and tutorial production files [Goralczyk
2008; Vazquez 2009; Blender Foundation 2011]. The sculpting
artists modeled a variety of organic models, from detailed heads
to full bodies, with different workflows based on their personal
preference, and using uniform subdivision remeshing or adaptive,
dynamic remeshing. The length of sequences generated from
instrumented software varied from several hundred to a few
thousand individual edits, while those generated from production
repositories varied from about ten to a couple hundred. We found
that 3DFlow worked well across all the datasets tested. We refer
the reader to the supplemental video for a comparison between
3DFlow summaries and the fast-forwarded original sequence. We
release all workflow data as well as code for both 3DFlow and our
instrumentation as supplemental material, so that artists can take
advantage of our algorithm in their daily work and so that other
researchers have datasets readily available to test other approaches.

2 Related Work

Workflow Visualization. As software packages for image and
3D scene creation become more complicated, both developers and
users benefit from understanding common workflows. Developers
can optimize the user interface for particular usage scenarios, as
proposed by Terry et al. [2008] in the case of image editing. In
a similar context, Kong et al. [2012] presented to users a corpus
of workflows at three levels of granularity in order to understand
how the users compared the workflows and which granularity was
most preferred. Software users learn by studying the workflows
of others through tutorials and teaching tools. For example,
GamiCAD [Li et al. 2012] is an AutoCAD tutorial system for
teaching first time users commonly used tools and workflow
patterns. Matejka et al. [2009] proposes an algorithm and user

interface that present command recommendations to the user
based on history of command usage. Grossman et al. [2010] and
VisTrails [2010] present systems with which users can explore
the provenance of how images or 3D models were constructed.
Nakamura and Igarashi [2008] present a system for visualizing user
operation history with annotations. Nonlinear Revision Control
for Images [Chen et al. 2011] visualizes the workflow of artists
manipulating images with a focus on the non-linear relationships
between operations induced by their spatial and semantic overlap.
More recently, a few papers have shown complementary methods
of visualizing workflows. MeshGit [Denning and Pellacini 2013]
and 3D Timeline [Doboš et al. 2014] estimate and visualize mesh
construction provenance as a sequence of mesh diffs. Chen et
al. [2014] present a way to assist an artist in choosing viewpoints
to showcase their 3D editing workflow.

Video Summaries. Video Tapestries [Barnes et al. 2010] sum-
marizes a video sequence into a multiscale tapestry with the ability
to continuously zoom into the tapestry to expose fine temporal
detail. This feature allows the summary visualization to adapt
to the changes in the sequence as well as the user’s preference,
rather than forcing the summarized data to fit arbitrarily chosen
intervals which may produce unintuitive results. We adopt a similar
framework for summarizing workflows.

Polygonal Modeling Summaries. Most similar to our work,
MeshFlow [Denning et al. 2011] provides summaries of mesh con-
struction sequences by hierarchically clustering the steps in the se-
quence. Two types of visual annotations are used to indicate the
operations performed by the artist that were clustered: highlight-
ing changed elements and overlaying visual annotations to indicate
types of change. For example, when a face extrusion followed by
vertex movements are clustered together, the individual operations
are still visible to the user by highlighting the moved vertices, col-
oring the newly created face, and drawing an arrow to indicate di-
rection of extrusion. While we take inspiration from MeshFlow,
our work significantly differs in the approach to summarization and
addresses key limitations of their work. Specifically, our work pro-
vides continuous summarization of the workflows based on a cost
function over edit strength and distance, where MeshFlow uses a
fixed set of rules based on editing patterns. We performed n-gram
analyses on the digital sculpting workflows (available in supple-
mental materials), but the results did not yield a clear set of summa-
rization rules. We believe that MeshFlow-type summarization is not
possible on digital sculpting workflows due to the vastly different
editing patterns and that a single sculpting tool can produce widely
different effects. Moreover, because 3DFlow uses a cost function,
the input to the summarization algorithm does not require tightly-
instrumented editing software. As a final point of difference, Mesh-
Flow summarizes the workflow linearly with respect to time, but
3DFlow summarize over two dimensions (spatial and temporal) to
allow for temporal reordering, producing more succinct summaries.

Stroke Summaries. When viewing a summary of the sculpting
sequence, the artist’s strokes are helpful for understanding how the
artist worked. But for heavily summarized sequence, the presence
of all strokes obscures the object shape and remains too cluttered
to provide a high level intuition. Recent work has presented
ways to visualize large numbers of edges in a dense graph and
to cluster artist strokes in order to provide a high-level overview
of the underlying data. Holten and van Wijk [2009] show how
a force-based system can organize edges in a graph visualization
into bundles, which reduces the clutter and exposes underlying
connections that might otherwise be obscured. When applied to our
brush stroke data, we found that the artist’s strokes get organized
into patterns that suggest workflows not present in the original
sequence. More recently, Orbay and Kara [2011] propose a method

3DFlow Summarization Pipeline

INPUT
sequence
of meshes

CONSTRUCT
mesh deltas
(del, add),
depgraph
(temporal,
spatial)

1: 2: 3: 4: 5:

1

2

3

4

5

SUMMARIZE
by iteratively
contracting
least-weight
edge and
merging
mesh deltas

1

2

3

4

5

7.47

8.51

6.74

10.22

7.60

10.90

6.79

⇒ 1

2·4

3

5

8.34

7.51

7.55

6.60

11.61 ⇒ 1 2·4 3·5
7.14 7.81

⇒ 1·2·4 3·5
7.58

⇒ 1·2·4·3·5

2·4: 3·5: 1·2·4: 1·2·4·3·5:

OUTPUT
levels of detail
by splitting nodes
in reverse
contracting order

1·2·4·3·5

1·2·4 3·5

1 2·4 3·5

1 2·4 3 5

1 2 4 3 5

level 4

level 3

level 2

level 1

level 0

VISUALIZE
level 2
and
level 0

Figure 2: The input is a sequence of meshes. In this example, each mesh is a single component and was created by performing a series
of extrusions. Mesh deltas are constructed for each snapshot to find which faces are deleted (red) from and which are added (green) to the
previous snapshot. These deltas capture any modification to the mesh, including translating vertices, creating new geometry, and subdividing
the mesh. A dependency graph (depgraph) is created to capture temporal (blue) and spatial (orange) dependencies with a node for each
delta and a directed edge for each dependence. For example, delta 4 deletes a face that is created in delta 2, so the node corresponding to
delta 4 is spatially dependent on the node of delta 2. The node of delta 3 is temporally dependent on the node of delta 2, because delta 3
immediately follows delta 2 in the original sequence. Every edge is weighted by the cost of merging the mesh deltas corresponding to the two
nodes of the edge. We iteratively contract the least-weighted edge and merge the mesh deltas corresponding to the two nodes until no edges
remain. The final remaining node corresponds to the mesh delta that is equivalent to adding the final mesh of the input sequence. Finally, we
iteratively split the node(s) in reverse contracting order, creating continuous levels of details of the sequence as output.

of beautifying design sketches by first clustering them and then
fitting curves to the strokes. Their approach requires training of
the clustering method and assumes that each stroke contributes
directly to the final sketch. With our data, however, we found that
the sculpting strokes affect the final result indirectly. For example,
the smooth scultping tool, used to smooth out abrupt features in
the mesh, is typically used in a highly unstructured way, where the
artist simply paints over a region they wish to smooth. 3DFlow
de-clutters stroke display by providing continuous filtering of
strokes based on the strength of the underlying edit.

3 Sequence Summarization

The input to 3DFlow is a sequence of mesh snapshots along with
any associated software or edit information such as artist viewing
orientation or sculpting stroke data. A sequence can be created in
several ways by saving snapshots of the mesh

• after every change using instrumented software,
• periodically (e.g., every 5 minutes), or
• after every logical group of changes as is done during normal

creation workflows or with repository commits.

Note that the associated edit information is not required for sum-
marization, as it is only used to overlay optional visual annotations
to the sequence visualization.

The following subsections describe the summarization pipeline in
detail. Figure 2 presents an intuitive overview of this section using
a simple example input sequence.

3.1 Constructing Mesh Deltas

First we convert the spatially normalized sequence of mesh
snapshots into a sequence of mesh differences, which we call mesh
deltas. We normalize the spatial dimension of the sequence by
scaling all the meshes so the union of all bounding boxes fits in a
unit cube. Each delta tracks the spatial changes and the temporal
range the delta covers, which is initially a single snapshot of the
sequence. More specifically we store in each delta three sets: a
set of deleted faces, a set of added faces, and a set of the original
snapshot indices that the delta covers. Note that every mesh in the
original sequence can be perfectly reconstructed by successively
applying the sequence of deltas in the same temporal order and
then inversely rescaling by the normalization factor.

We use a simple rule to build a mesh delta between two subsequent
snapshots in a sequence: a face in the former snapshot that also
exists in exactly the same position in the latter is considered un-
changed; all other faces in former snapshot are deleted, and all other
faces in latter are added. Under this rule, a transformed face is rep-
resented as a deletion of the face in the old position and an addition
of the face in the new position. Despite its simplicity, this simple
mesh delta creation rule works surprisingly well. Furthermore,
faces do not need to be matched and tracked but only determined
to be left unchanged, deleted, or added, which is inexpensive to
compute and handles all types of mesh edits, including subdivision.

The changes of two mesh deltas can be merged into a single mesh
delta. The merged mesh delta is constructed by computing the
unions of corresponding sets from the two mesh deltas. Because
the former mesh delta can add a face that is deleted by the latter,
we subtract from both the union of added faces and the union
of deleted faces the faces that are in the intersection of the two
deltas. For example in Fig. 2, delta 4 deletes a face that is created
in delta 2. When constructing the merged delta 2·4, this face is
removed from both unions of faces.

Merging two mesh deltas effectively summarizes in one delta the ef-
fects of the two individual mesh deltas. We summarize the sequence
into continuous levels of details by iteratively merging mesh deltas.

3.2 Constructing a depgraph

A key observation is that two temporally subsequent mesh deltas
may not spatially overlap, where the intersection of the set of the
added faces in the former mesh delta and the set of deleted faces of
the latter is empty. This implies that although one mesh delta may
temporally follow another (having been performed by the artist
subsequently), it is not necessary that the deltas are merged in the
same temporal order. For example, Fig. 3 shows two summaries of
the construction of shark fins. The artist first creates the dorsal fin
and then begins working on the pectoral fins, but the pectoral fin
workflow is interrupted by a single, spatially disconnected edit on
the dorsal fin. The summary in the top row maintains the original
temporal order and therefore contains the single interrupting edit.
By temporally reordering the edits so the single, interruptive dorsal
fin edit is summarized with the other dorsal fin edits, the bottom
summary is much more intuitive and succinct.

While temporally reordering is useful, it is important to maintain
spatial dependence of the mesh deltas. For example, if delta B
deletes a face added by A, then temporally reordering B to be
before A should not be allowed.

We build a dependency graph, depgraph, that captures and enforces
the temporal dependence and spatial dependence of the mesh
deltas. A node exists for each mesh delta, and a directed edge
exists between a pair of nodes if one node depends on the other.
We color the edges by the type of dependence. In order to simplify
the depgraph and make summarization faster, we remove temporal
edges between nodes that are also spatially dependent, and we
remove any edge between two nodes that are also indirectly
spatially dependent. For an example of the latter, the depgraph
below shows that delta C depends both directly and indirectly on A.

A

B

C

We can remove the A → C edge and therefore simplify the
depgraph without changing the spatial dependencies.

It is important to note that although we maintain spatial depen-
dence, temporal dependence is still a critical data point to maintain.
This note becomes obvious with workflows that create spatially
disconnected meshes. Without temporal dependence, the depgraph
would contain disconnected subgraphs. Although two disconnected
meshes are spatially independent, one of the meshes may have
influence over the changes of the other. For example, in order to get
the shape and proportions correct when working on the eye socket
area of a face mesh, the artist may insert a sphere representing the
eye. Although this eye mesh is spatially independent from the rest
of the mesh, its addition heavily influences the shaping of the face.

3.3 Summarizing a depgraph

We summarize a depgraph by contracting one of the edges in the
graph and merging the mesh deltas corresponding to the nodes of
the edge. The choice of which edge to contract (or which deltas to
merge) affects the summary. For 3DFlow, we motivate our choice
with two intuitive and straightforward guidelines that apply to the
temporal and spatial dimensions of the sequence:

• A merged delta should not contain too much change.

same
temporal
ordering

with
temporal
reordering

Figure 3: Temporally reordering edits of shark sequence. The artist first created the dorsal fin and then worked on the pectoral fins. The
latter work was interrupted by a single change to dorsal fin. The top row shows a summary of the edits using the same temporal ordering of
the original input. The summary shown in bottom row is more succinct, because the sequence is allowed to be temporally reordered so the
single edit can be summarized with the other edits to the dorsal fin and not interrupt the pectoral fin edits.

• A merged delta should not contain edits that are too far apart.

Choosing to merge deltas with strong changes might lose too many
details in the summary. Choosing to merge distant deltas may
divide the focus of the summary.

From these guidelines, we derive a cost function C for merging a
pair of deltas A and B as a weighted sum of four terms, reflecting
the two guidelines for each dimension of the data (spatial and
temporal). We use the cost function to determine which edge to
contract in the depgraphin order to create a summary. Note that in
this notation, each delta may be the result of a previous merge of
deltas. The merging cost function is defined as:

C(A,B) = w0St + w1Dt︸ ︷︷ ︸
temporal

+w2Sx + w3Dx︸ ︷︷ ︸
spatial

(1)

where St, Dt are temporal strength and distance costs and Sx, Dx

are spatial strength and distance costs. Formally these individual
costs are defined as:

St =
|∆t(A)|+ |∆t(B)|

avg |∆t|
(2)

Dt = min
a,b∈∆t(A)×∆t(B)

|a− b| − 1

avg |∆t|
(3)

Sx =
| area[∆+

x (A·B)]− area[∆−x (A·B)]|
max(area[∆+

x (A·B)], area[∆−x (A·B)])
(4)

Dx = min
u,v∈∆x(A)×∆x(B)

min-dist(u, v) (5)

where ∆t(A) is the set of original delta indices covered by delta A,
∆+

x (A) is the set of faces added by A, ∆−x (A) the set of faces
deleted by A, ∆x(A) the set of faces either added or deleted by
A, the dot operator (·) indicates a merging of deltas, avg |∆t|
computes the average size of snapshot indices sets for the deltas in
the depgraph, area is a function that returns the total surface area
for a given set of faces, and min-dist is a function that returns the
minimum Euclidean distance between the given faces.

The temporal strength term, St, is the total number of original
snapshots covered by merging deltas A and B. The temporal
distance term, Dt, is defined as the minimum temporal distance
between the A and B. This term is computed as the minimum
absolute difference between all snapshot indices of A and of B
minus one. For example, if delta A covers snapshot 1 and B covers
snapshots 2 and 4, the temporal distance cost of merging A and
B is 0. Both of the temporal terms are regularized by the average
number of snapshots covered by the deltas to prevent the temporal
terms from dominating the cost function.

The spatial strength term, Sx, is the absolute net change in surface
area after merging both A and B regularized by dividing by
either the net added surface area or the net deleted surface area,
whichever is larger. The denominator regularizes spatial changes
to be relative to the size of region affected. In other words, spatial
changes that are small in the absolute sense are relatively large
if they affect a small region, and large spatial changes that affect
large regions may be relatively small. The spatial distance term,
Dx, is the minimum Euclidean distance between the added and
deleted faces of A and the added and deleted faces of B. Note that
the spatial distance term is already regularized when the input was
processed to fit in a unit cube.

The four terms of Equation 1 address the two guidelines mentioned
earlier across both dimensions of the data. Each of the terms are
linearly weighted to emphasize different types of clustering. For
example, setting w0 to 1 and the remaining weights to 0 will allow
for hierarchical uniform clustering. We experimentally found the
weights 2, 1, 4, and 14 (respectively) work well to give intuitive
results across all shown datasets, including the polygonal modeling
workflows of MeshFlow and MeshGit. All figures in this paper and
the supplemental materials use these weights.

We consecutively summarize the depgraph, recording the order
of edges we contract, until only one node remains. The delta
corresponding to the remaining node covers all of the original
deltas (possibly reordered) and adds all of the faces of the final
mesh. As a note, to help in presenting the most intuitive summaries
to the viewer at every level of detail, the initial mesh (e.g., cube,
bust, etc.) of the sculpting workflows is held out from being
merged until only two nodes remain.

3.4 Outputting Levels of Detail

We create the highest summary level as a single delta, the delta
corresponding to the single remaining node. This single node is
then split into two nodes according to the last edge contraction
performed during summarization. Note that the contracted edge
encoded the dependence of the nodes, and we maintain this
dependence by placing the dependent node temporally after the
other node. The corresponding deltas of these two nodes define the
second highest summary level. Now, we repeatedly split the nodes
in reversed order of edge contraction to produce continuous levels
of detail. Reconstructing the deltas in this manner produces linear,
but also hierarchical, levels of detail, similar to the levels produced
by MeshFlow.

Figure 4: User interface for 3DFlow. The mesh is shown at the top-
left for the selected delta and level of detail with surface changes
highlighted and sculpting stroke annotations visualized. The
timeline at the bottom-left visualizes the deltas at different levels of
detail, from every original delta (bottom) to the highest summary
(top). The blue highlight indicates the selected level of detail, se-
lected delta, and the deltas of lower levels of detail that are covered
by the selected delta. Visualization settings are shown on the right.

3.5 Discussion

We chose to define our cost function using surface area of deltas
to measure shape differences since, compared to other metrics (see
[Pottmann et al. 2009; Silva et al. 2009] for a review), it is efficient
to compute, it is well-defined even on non-manifold meshes or
meshes with holes, and it does not require a registration between
two meshes beyond finding which faces have been altered. Despite
the simplicity of the terms introduced above, we found that the
cost function worked well over a range of sculpting and polygonal
modeling datasets. Furthermore, we tested more expensive cost
functions (e.g., mean curvature, volume delta, hausdorff distance,
distance between corresponding points), and found that they did
not improve upon the results enough to warrant the additional
computation. We leave further investigations to future work.

Unlike MeshFlow, we do not consider the category or name of the
edit operation or even editing patterns when clustering. We did
perform n-gram analysis on the digital sculpting workflows (see
supplemental materials), but it is unclear how to construct cluster-
ing patterns that would produce intuitive results. Furthermore, by
only considering the edited region and not the name or category
of edit operation, 3DFlow can summarize more general workflows
such as those where instrumentation was not used. For an example
see the supplemental material where we used as input to 3DFlow
every version of the character Sintel from the Subversion repository
of the open movie Sintel [Blender Foundation 2011].

Limitations. While we believe that Equation 1 performs well in
regards to our guidelines, it does not capture the semantic of an
edit. For example, it might make sense to cluster together edits that
work on the eyes or those that add wrinkles across the face. The
formulation above does not infer any semantical meaning from the
edit itself or from the region being changed.

Finally, although the spatial distance computations are highly
parallelizable and many other computations can be cached, the
nature of greedily choosing a single edge to collapse in the dep-
graph imposes sequential constraint on the algorithm. We focused
on computing accurate values or highly-accurate approximations
when possible, and we leave further optimization for future work.

4 Visualizations

In this section, we describe some of the ways we visualize different
features of the data. We also discuss a few ways for a viewer to
interact with the data.

previous mesh delta current

− + =

absolute distance signed distance matcaps

Figure 5: Emphasizing surface changes in mesh delta. Applying
the mesh delta (top-middle) to the previous mesh (top-left) results
in the current mesh (top-right). The mesh delta covers 31 deltas in
the original sequence. The bottom row shows three different ways
to highlight and emphasize the magnitude and direction of changes
to the surface. See Sec. 4 for more details.

Basic User Interface. Figure 4 shows the user interface. To
maintain simplicity, we use a basic layout that is similar to a simple
video player. At the top-left is the main 3D view, where the mesh
is seen at the selected time and level of detail. Regions of the
mesh that are altered by the selected delta are highlighted. The
timeline at the bottom-right acts much like a scrub bar in a video
player. The vertical axis of the timeline is the level of detail, with
highest summary at the top and greatest details (deltas of original
sequence) at the bottom. Black vertical lines indicate where each
delta begins and ends. The blue vertical bar indicates the coverage
of the selected delta, and the blue horizontal bar indicates the
selected level of detail. The visualization options on the right allow
the viewer to control how the mesh is rendered.

While 3DFlow generates continuous levels of detail from every
delta down to a single delta, by default we simplify the user
interface to show only a subset of the levels. We choose the levels
that are at a log-scale of the original deltas (all, half, quarter, etc.),
and then we add the levels with 2–20 deltas and the levels with odd
number of deltas in the 20–50 range. This simplification can be
turned off.

Highlighting Changes. The changes in a mesh delta are
emphasized by highlighting the added faces, where the magnitude
of the change modulates the visual strength of the highlight. For
each delta, we approximate a magnitude of change for each vertex
of an added face as the minimum distance between the vertex to
the surface defined by the deleted faces. If in a delta no faces were
deleted, then all of the vertices of the added faces are marked as
added. This can happen, for example, whenever the artist creates
new disconnected geometry to the mesh. We visualize added
geometry in green and modified geometry by using it as a mixing
value. To adapt highlighting for edits that are globally large (e.g.,
creating a large appendage) and for edits that are globally small
but locally large (e.g., adding wrinkles), 3DFlow can individually
rescale the magnitudes by the local or global maximum.

3DFlow offers several highlighting options for the vertices.
Figure 5 demonstrates a few different possible visualizations
which are briefly explained below. One option is to linearly map
the magnitude to a color gradient, where unchanged vertices are
colored a neutral gray, moderately changed vertices are yellow, and
vertices with strong magnitude of change are white. A multi-color
gradient provides better resolution to help resolve strong changes
from minor changes. Another option is choosing different color
gradients based on the sign of change. Specifically, the vertex has

unfiltered

filtered

Figure 6: Spatial filtering on gorilla sequence. The mesh on the left is partially deemphasized to indicate the selected regions. The timelines
on the right show without (top) and with (bottom) filtering. The deltas that do not modify the selected region are darkened and are not viewable.

a positive change if it was moved ”outside” the deleted surface and
negative if moved ”inside”, where sidedness is determined by the
surface normal. Positive changes are colored blue, while negative
changes are colored orange. This option of highlighting visualizes
the approximate magnitude and direction the vertex was moved,
giving a sense of the change in volume. Lastly, rather than mapping
the magnitude to a color gradient, the magnitude can influence a
mixing value between two matcaps. Matcaps simulate complex
material and lighting setups and are often used to help sculpting
artists focus on certain characteristics of the mesh, such as the
contour and overall shape or the high-frequency details and creases.

Spatial Filtering. In order to help the viewer find deltas that
modify particular spatial regions, 3DFlow provides spatial filter-
ing. When the viewer clicks on the mesh, every face in the entire
sequence that is within a given radius of the point on the mesh
is selected. Unselected regions of the mesh are deemphasized in
the main 3D view by desaturation and brightening. All deltas that
do not affect a selected face is made unviewable and is darkened
in the timeline, indicating to the viewer when the selected region
was modified. Figure 6 show the timeline filtered to the deltas that
modify the face of the gorilla.

Visualizing Sculpting Annotations. While highlighting indi-
cates how much regions of the mesh have changed, it is not very
descriptive of which sculpting tool the artist used or how the tool
was used. When tool usage metadata is provided, 3DFlow can
visualize the artist’s tool usage by overlaying visual annotations. In
3DFlow, we visualize the artist’s sculpting strokes as lines drawn
over the mesh. Because the sculpting stroke may fall inside or
behind the mesh, we render the strokes in two passes: once with
a thick, transparent line without performing depth tests, and then
another with a thin, opaque line with depth testing. The first pass
allows the viewer to see strokes that are obscured by the mesh
but without adding too much clutter. Strokes are colored by brush
type: pulling in blue, smoothing in cyan, creasing in orange, and
grabbing or nudging in pink. Although we visualize only the
sculpting strokes, visualizing other types of edits, such as extrude
edge and merge vertices, can be trivially added in 3DFlow.

Filtering Annotations. As the number of covered deltas in-
creases, visualizing all of the tool annotations can obscure the view
of the mesh and may overwhelm the viewer. Similarly to providing
levels of detail and summary of mesh deltas, 3DFlow provides con-
tinuous levels of detail and summary for tool annotations through
filtering. Filtering removes the annotations that change the mesh
the least. The filtering can be continuously adjusted to show any
number of annotations from all down to none. Each edit annotation
is assigned a weight equal to Equation 4 of the corresponding delta.
The annotations are sorted by their weight, and 3DFlow visualizes
only the annotations with an order that is above a user-specified
threshold. Figure 7 shows the effect of filtering tool annotations at
varying levels, where 0% filtering shows all tool annotations, 50%
shows only half of the annotations, and 100% shows none.

We considered two clutter-reducing alternatives to sculpting stroke
annotation filtering: determine a representative through spatial

0% 50%

80% 100%

Figure 7: Filtering annotations at 0%, 50%, 80%, and 100%.
The mesh is heavily obscured when visualizing the sculpting stroke
annotations of all 343 merged deltas (top-left). With the annota-
tions sorted by a computed weight of change, 3DFlow provides
continuous filtering to show anywhere from all annotations (0%)
to none (100%).

clustering or performing edge-bundling [Holten and Van Wijk
2009]. Unfortunately we found that these alternatives were of little
help for uncorrelated tool usage or suggested tool usage patterns
that were not representative of the artist’s workflow, as in the case
of spatially-close sets of correlated edits.

Other Visualization Options. We refer the reader to the supple-
mental material for a demonstration of other visualization options.
These include: render the summarized workflow using external
software; render with a mirror effect to see edits on front- and
back-side of mesh at the same time; smoothly interpolate or warp
the surface to simulate the artist’s summarized work; and center-on
and zoom-into the region of the mesh that are edited.

5 Results

In this section we report about the input workflows and briefly
discuss the results.

Input Workflows. We tested 3DFlow on a variety of mesh editing
workflows, shown throughout the paper and in supplemental mate-
rial. Source code and all datasets are available in supplemental ma-
terial. Table 1 summarizes statistics for all of the input workflows.

Our sculpting data was obtained by two professional artists with
different working styles. One artist has a stronger tendency to
explore while editing, making strong changes often throughout the
sequence. The other artist prefers a more structured blocking fol-
lowed by refinement approach. Both artists sculpted using both sub-
division and dynamic remeshing to control mesh resolution. Work-
flow lengths in terms of the number of sculpting edits varies from
several hundreds to a few thousand. The initial meshes consisted
of a cube, a generic human bust, and a full-body human basemesh.
3DFlow was able to summarize well all sculpting scenarios for
both artists, essentially adapting to different workflow styles.

The sculpting artists used an instrumented version of Blender that

3D
Fl

ow
uniform

10 10

M
es

hF
lo

w

20

Figure 8: Comparing summaries produced by 3DFlow (top-left), uniform intervals (top-right), and MeshFlow (bottom). Changes are high-
lighted in black, and the timelines show the coverage of deltas for each summary. While MeshFlow can only summarize the biped sequence
down to 20 steps, 3DFlow and uniform intervals can provide continuous summarization (10). See Sec. 5 for detailed analysis of this figure.

model fig. mesh added record process
deltas faces type time

su
bd

iv
is

io
n

sc
ul

pt
in

g

ogre 4 1459 1,660,475 i 1:26
merman 9 2218 2,171,310 i 3:40
sage 9 1686 1,961,133 i 2:19
engineer 9 863 2,919,865 i 2:54
elder 2958 1,500,632 i 3:01
alien 1 2118 6,094,173 i 8:49
man 9 1459 1,953,859 i 3:03
fighter 9 1532 1,156,686 i 2:06

dy
na

m
ic

sc
ul

pt
in

g gargoyle 7 819 1,090,882 i 0:33
monster 1 797 1,389,906 i 0:47
elf 4125 4,791,845 i 2:46
gorilla 1 2482 4,241,528 i 3:32
explorer 1699 3,416,354 i 2:21

po
ly

go
na

l
m

od
el

in
g

helmet 1 1321 17,579 i 0:05
hydrant 5 691 49,892 i 0:04
robot 1810 139,527 i 0:15
shark 3 1457 19,177 i 0:06
biped 8 1267 18,162 i 0:05
durano 1 11 7,165 c 0:01
creature 123 280,338 c 0:14
sintel 210 2,948,611 c 2:11

Table 1: Statistics of input workflows. The first eight workflows
are digital sculpting sessions that used subdivision surface rules to
generate higher resolution meshes. The middle five workflows are
sculpting sessions that used dynamic remeshing techniques. The
last eight workflows were constructed using polygonal modeling
techniques. The added faces column reports the number of unique
faces added by the original deltas. The record type column reports
whether the workflow was created using instrumented software
(i) or by committing versions (c). The final column indicates
how much processing time (mm:ss) was needed to summarize the
workflow. All meshes are shown in supplemental materials.

saves a copy of the mesh along with any associated tool usage
information after each change. The summarization process is
performed off-line in order to keep the mesh editing interface fluid
for the artists.

The helmet, hydrant, robot, shark, and biped polygonal modeling
workflows were imported from the MeshFlow dataset, which is
publicly available online. The durano and creature workflows are
from two Blender Open Movie Workshop DVDs, Venom’s Lab!
[Vazquez 2009] and Creature Factory [Goralczyk 2008], respec-
tively. The sintel [Blender Foundation 2011] workflow is from the
Subversion repository of the open movie Sintel [Roosendaal 2011]
available online. The 3DFlow workflows for durano, creature,
and sintel were created directly from the committed files without
processing or manual filtering.

Discussion. We compare results of summarizing the biped
workflow using 3DFlow, uniform intervals (similar to a time-
lapse), and MeshFlow in Figure 8. Due to having continuous
summarization, 3DFlow and uniform intervals can summarize the
workflow anywhere down to a single step, while MeshFlow can
only summarize to discrete steps because of using fixed clustering
rules. In this example, we summarized the workflow to ten steps for
3DFlow and uniform intervals and twenty steps for MeshFlow (the
minimum possible number of steps for this data). The timelines
below the rows of meshes report the coverage of deltas for each
workflow summary. Notice that 3DFlow summarizes changes into
small, localized groups, such as blocked-out figure, face, upper
body, lower body, feet, and hands. On the other hand, uniform
intervals and MeshFlow summaries contain merged edits that are
spatially distant (e.g., mixing edits to feet and hands) or contain
many strong edits (e.g.,, the first step of uniform summary and
the tenth step of MeshFlow). Another important note is that in
the original sequence, the hands were created before the feet,
but the arms shortened last. With temporal reordering, 3DFlow
summarized together all of the edits to the forearm and hands.

Figure 9 show five sculpting workflows that started with a base
mesh and used subdivision remeshing. One artist created the
merman, engineer, and sage workflows, and the other artist created
the alien (also from cube with subdivision; see Fig. 1), fighter, and
man workflows.

We asked the professional artists who authored the sculpting work-
flows to provide feedback on the results of 3DFlow. They found
the summarizations captured their workflows and the workflows
of the other authors quite well, and both agreed that 3DFlow’s
interactive viewer with summarized workflow is a significant
improvement over time-lapsed videos. One artist commented,
“I’ve recently finished working on the materials for a sculpting

course I’m teaching. Having 3DFlow available would have made
it unnecessary to share both the final sculpture and the videos of
the process, allowing students to better visualize changes to the
mesh.” The other artist commented that it is astonishing to see how
3DFlow breaks down the workflow process.

Future Work. We tested 3DFlow with a large set of workflows
across a variety of techniques. There are several other common and
interesting mesh editing workflows that we did not try, including
retopologizing and sculpting using Boolean operations. We plan to
extend the techniques developed with 3DFlow to summarize these
types of workflows as well as workflows that change the properties
of the mesh, such as texturing or rigging, or workflows that modify
full-scene data. When summarizing workflows, 3DFlow does
not consider the type nor the technical complexity of the edit
operations performed. Further 3DFlow does not consider the
context of edits, e.g., adding wrinkles to forehead versus shaping
the eye socket. We plan to investigate these areas in the future.

6 Conclusion

We presented 3DFlow, an algorithm for providing continuous
summarizations of mesh editing workflows. 3DFlow summarizes
the input sequence of meshes by constructing a corresponding
dependency graph where nodes represent changes to the mesh and
edges the spatial and temporal dependence of the edits, iteratively
contracting the least-weighted edge according to a cost function
until only one node remains, and then splitting the nodes in reverse
order into levels of detail. The visualization of the workflow is
enhanced by highlighting the changed regions and (optionally)
overlaying visual annotations describing the artist’s edits. We
tested 3DFlow with a large set of mesh editing workflows from a
variety of sources and found 3DFlow performed well with all. All
source code and data is released as open source.

7 Acknowledgements

This section is left blank for the review process.

References

BARNES, C., GOLDMAN, D. B., SHECHTMAN, E., AND FINKEL-
STEIN, A. 2010. Video tapestries with continuous temporal
zoom. ACM Trans. Graph. 29 (July), 89:1–89:9.

BLENDER FOUNDATION, 2011. Sintel. www.sintel.org.

CHEN, H.-T., WEI, L.-Y., AND CHANG, C.-F. 2011. Nonlinear
revision control for images. ACM Transaction on Graphics 30,
4, 105:1–105:10.

CHEN, H.-T., GROSSMAN, T., WEI, L.-Y., SCHMIDT, R., HART-
MANN, B., FITZMAURICE, G., AND AGRAWALA, M. 2014.
History assisted view authoring for 3D models. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Sys-
tems, ACM, New York, NY, USA, CHI ’14.

DENNING, J. D., AND PELLACINI, F. 2013. MeshGit: Diffing and
merging meshes for polygonal modeling. ACM Transaction on
Graphics 32, 4.

DENNING, J. D., KERR, W. B., AND PELLACINI, F. 2011. Mesh-
Flow: interactive visualization of mesh construction sequences.
ACM Transaction on Graphics 30, 4, 66:1–66:8.

DOBOŠ, J., MITRA, N. J., AND STEED, A. 2014. 3D Timeline:
Reverse engineering of a part-based provenance from consecu-
tive 3d models. Eurographics Symposium on Rendering 33, 2.

GORALCZYK, A., 2008. Creature. Creature Factory Blender Open
Movie Workshop, vol. 2.

GROSSMAN, T., MATEJKA, J., AND FITZMAURICE, G. 2010.
Chronicle: capture, exploration, and playback of document
workflow histories. In Proceedings of the 23nd annual ACM
symposium on User interface software and technology, ACM,
New York, NY, USA, UIST ’10, 143–152.

HOLTEN, D., AND VAN WIJK, J. J. 2009. Force-directed edge
bundling for graph visualization. Computer Graphics Forum 28,
3, 983–990.

KONG, N., GROSSMAN, T., HARTMANN, B., AGRAWALA, M.,
AND FITZMAURICE, G. 2012. Delta: a tool for representing
and comparing workflows. In Proceedings of the 2012 ACM
annual conference on Human Factors in Computing Systems,
ACM, New York, NY, USA, CHI ’12, 1027–1036.

LI, W., GROSSMAN, T., AND FITZMAURICE, G. 2012. Gami-
CAD: a gamified tutorial system for first time autocad users. In
Proceedings of the 25th annual ACM symposium on User inter-
face software and technology, ACM, New York, NY, USA, UIST
’12, 103–112.

MATEJKA, J., LI, W., GROSSMAN, T., AND FITZMAURICE, G.
2009. CommunityCommands: command recommendations for
software applications. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology, ACM,
New York, NY, USA, UIST ’09, 193–202.

NAKAMURA, T., AND IGARASHI, T. 2008. An application-
independent system for visualizing user operation history. In
Proceedings of the 21st annual ACM symposium on User inter-
face software and technology, ACM, New York, NY, USA, UIST
’08, 23–32.

ORBAY, G., AND KARA, L. B. 2011. Beautification of de-
sign sketches using trainable stroke clustering and curve fitting.
IEEE Transactions on Visualization and Computer Graphics 17,
5 (May), 694–708.

PIXOLOGIC, 2013. ZBrush. http://www.pixologic.com/zbrush.

POTTMANN, H., WALLNER, J., HUANG, Q.-X., AND YANG, Y.-
L. 2009. Integral invariants for robust geometry processing.
Comput. Aided Geom. Des. 26, 1 (Jan.), 37–60.

ROOSENDAAL, T., 2011. Durian open movie project : Sintel full
studio SVN online. www.sintel.org/news/sintel-full-studio-svn-
online.

SILVA, S., MADEIRA, J., AND SANTOS, B. S. 2009. PolyMeCo—
an integrated environment for polygonal mesh analysis and com-
parison. Computers & Graphics 33, 2, 181 – 191.

TERRY, M., KAY, M., VAN VUGT, B., SLACK, B., AND PARK, T.
2008. Ingimp: introducing instrumentation to an end-user open
source application. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM, New York, NY,
USA, CHI ’08, 607–616.

VAZQUEZ, P., 2009. Durano model. Venom’s Lab Blender Open
Movie Workshop, vol. 4.

VISTRAILS, 2010. VisTrails provenance explorer for Maya.
www.vistrails.com/maya.html.

m
er

m
an

fig
ht

er
en

gi
ne

er
m

an
sa

ge

Figure 9: Five sculpting workflows summarized in 8 and 16 steps. These workflows started with a base mesh (left column) and used
subdivision remeshing. The initial and final meshes (right column) are shown without highlighting. The fighter and engineer workflows are
visualized with a mirror effect to show both sides of the mesh.

	3DFlow: Continuous Summarization of Mesh Editing Workflows
	Dartmouth Digital Commons Citation

	3DFlow: Continuous Summarization of Mesh Editing Workflows

