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Abstract

In this paper we address the problem of object-class re-
trieval in large image data sets: given a small set of train-
ing examples defining a visual category, the objective is to
efficiently retrieve images of the same class from a large
database. We propose two contrasting retrieval schemes
achieving good accuracy and high efficiency. The first
exploits sparse classification models expressed as linear
combinations of a small number of features. These sparse
models can be efficiently evaluated using inverted file in-
dexing. Furthermore, we introduce a novel ranking proce-
dure that provides a significant speedup over inverted file
indexing when the goal is restricted to finding the top-k
(i.e., thek highest ranked) images in the data set. We con-
trast these sparse retrieval models with a second scheme
based on approximate ranking using vector quantization.
Experimental results show that our algorithms for object-
class retrieval can search a 10 million database in just a
couple of seconds and produce categorization accuracy
comparable to the best known class-recognition systems.

1 Introduction

Over the last decade the accuracy of object categorization
systems has dramatically improved thanks to the develop-
ment of sophisticated low-level features [19, 17, 3] and

to the design of powerful nonlinear classification models
that can effectively combine multiple complementary de-
scriptors [7]. However, these categorization systems do
not scale well to recognition in large image collections
due to their large computational costs and high storage
requirements.

In a parallel line of research, the efficiency of image re-
trieval systems has rapidly progressed to the point of en-
abling real-time search in millions of images [11]. Scal-
ability to large data sets is typically achieved by cast-
ing image search as a text retrieval problem. The anal-
ogy with text-retrieval is made possible by representing
each image as a sparse histogram of quantized features,
known as visual words [24]. However, this representa-
tion is best suited to implement low-level notions of visual
similarity. As a result, these systems are primarily used
to detect near duplicates [2] or to find images contain-
ing the sameobject instanceas the one present in a given
query photo [21, 22]. Hashing methods have been used to
compute low-dimensional image signatures encoding the
overall global structure present in an image [26]. While
such representations can be used to efficiently find photos
matching the global layout of a query image, they have
not been shown to be able to produce good categorization
accuracy.

The objective of this work is to bridge these two in-
dependent lines of research. We borrow data structures
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and methods from image retrieval – such as sparse and
compact descriptors, inverted files, as well as algorithms
for approximate distance calculation – to develop a sys-
tem for accurate and efficientobject-classsearch in large
image collections: given a training set of examples defin-
ing an arbitrary object class (not know before query-time),
our algorithms can efficiently find images of this category
in a large database. We envision such system to be used
as a tool to interactively search in collections of unlabeled
images, such as community-provided pictures or albums
of personal photos.

Our approach uses the binary “classeme” descriptor of
Torresani et al. [27] as representation for images. The bi-
nary entries in this descriptor are the Boolean outputs of
a set of nonlinear object classifiers evaluated on the im-
age. These base classifiers are trained on an independent
data set obtained using text-based image search engines.
Intuitively, the classeme descriptor provides a high-level
description of the image in terms of similarity to the set of
base classes. The approach is analogous in spirit to image
representations based on attributes [6, 16, 15], which are
human-defined properties correlated to the classes to be
recognized. As classeme vectors provide a rich semantic
description, they have been shown to produce good cat-
egorization accuracy even with simple linear classifica-
tion models, which are efficient to evaluate. Furthermore,
these descriptors are compact in size (the dimensionality
of the binary vector is 2625, corresponding to only 329
bytes/image) and thus allow storage of large databases in
memory for efficient recognition.

In this work we investigate the benefits of using sparse
classification models with attribute features, i.e. classi-
fiers that are explicitly constrained to use only a small set
of attributes for the recognition of a new query category.
The sparsity of the models enables the advantageous use
of inverted files [20] for efficient retrieval. Furthermore,
we present a new ranking algorithm which exploits the
sparsity of the classifier to find the top-k images with
even lower computational cost. We show that this sim-
ple approach produces a 24-fold speedup over brute-force
evaluation.

We compare these sparsity-based retrieval models with
a system that uses vector quantization to efficiently ap-
proximate the ranking scores of images in the database.
We demonstrate that at the cost of a small drop in accu-
racy, this algorithm achieves similar efficiency and supe-

rior scalability in terms of memory usage.

2 Related Work

As already pointed out above, sparse retrieval models
have been extensively used in image search [24, 21, 22].
Among the methods in this genre, the min-hash technique
of Chum et al. [2] bears a close resemblance to our ap-
proach. It measures similarity between two images in the
form of an approximate weighted histogram intersection.
This measure can be efficiently calculated using inverted
lists over sketch hashes, which are tuples of randomly-
selected feature subsets. However, the weights of the his-
togram intersection must be defined a priori, before the
creation of the index, and therefore this approach can only
implement static similarity measures. Our task instead re-
quires tuning the similarity measure for every new query
category. The approach in [28] also uses inverted lists de-
fined over feature subsets, called visual phrases. The vi-
sual phrases are binary “same-class” classifiers trained to
recognize whether two given images belong to the same
class or to different classes, regardless of the category.
In principle this model could be adapted to be used for
class retrieval. However, the visual phrases output only a
Boolean value and thus cannot provide a ranking.

The idea of training sparse classification models on at-
tribute vectors is similar in spirit to the “Object Bank” ap-
proach of Li et al. [18]. The Object Bank is a high-level
image representation encoding the spatial responses of a
large set of object detectors applied to the image. How-
ever, the dimensionality of these representation is too high
to allow storage in memory for large collections (each de-
scriptor contains 44,604 real values), which is the problem
considered here. Li et al. have shown that the Object Bank
descriptor can be compressed down to compact sizes us-
ing regularization terms enforcing feature sparsity. How-
ever, the feature selection is optimized with respect to a
fixed set of classes, and the generalization performance of
the selected features has not been demonstrated on novel
classes. The focus of our work instead is on the design
of compact models and efficient methods that can support
search of arbitrary novel classes.

Our algorithm for approximate ranking shares simi-
larities with efficient techniques for approximate near-
est neighbor search. Most of these methods operate
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by embedding the original feature vectors into a low-
dimensional space via hashing functions or nonlinear pro-
jections such that the Hamming distance or the L2 dis-
tance in this space approximates a given metric distance
in the original high-dimensional space [8, 29, 23]. In par-
ticular, Jain et al. [10] have proposed an algorithm that
learns a Mahalanobis distance from similarity constraints
and encodes this learned distance metric into randomized
locality-sensitive hash functions. The resulting system
enables efficient and accurate class recognition in large
data sets. The work of Kulis and Grauman [14] has ex-
tended this approach to generate locality-sensitive hash-
ing functions that can approximate arbitrary kernel dis-
tances. However, these methods optimize the categoriza-
tion metric and the embedding space with respect to a
fixed set of classes during an offline training stage,be-
fore the search. Instead our problem statement requires to
efficiently learnat query timethe classification model for
a category that is not known in advance.

3 Object-Class Search

We now formally define our problem statement and intro-
duce the notation that will be used in the rest of the pa-
per. We assume we are given a database ofN unlabeled
images, from which binary vectors are extracted during
an offline stage. We indicate withxi ∈ {0, 1}D the bi-
nary classeme descriptor computed from thei-th image
in the database. These feature vectors are stored in an
index for subsequent efficient retrieval. At query time
we are given a set ofn+ training images belonging to
an arbitrary query category as well asn− negative ex-
amples. In a practical application the negative set could
be a fixed “background” collection containing examples
of many different categories (we consider such scenario
in one of the experiments). We indicate with̃D the la-
beled training set obtained by merging these two sets,
i.e.,D̃ = {(x̃1, ỹ1), . . . , (x̃n, ỹn)} wherex̃i is the binary
classeme vector of thei-th training example,̃yi ∈ {0, 1}
indicates its binary label andn = n+ + n− (note that
we use the˜ symbol to differentiate training example
x̃i from database examplexi). The objective of the sys-
tem is to efficiently retrieve relevant database images and
rank them according to the probability of belonging to the
query category. We evaluate the accuracy of the retrieval

system in terms of precision atk. Again, we want to em-
phasize that the object classes provided at query time are
not known in advance. Thus, the system must be able to
learn the retrieval model exclusively from the setD̃.

Since our objective is to retrieve images belonging
to the query class, we employ binary classifiers as re-
trieval models and use their classification output as rank-
ing score. We restrict our study to linear classifiers, since
they are efficient to learn as well as to evaluate. Thus,
the ranking score for database examplex is computed as
hθ(x) = θ · x, whereθ is aD-dimensional vector of pa-
rameters (we incorporate a bias term in the weight vector
by adding a constant entry set to 1 for all examples). Our
classifiers are learned by optimizing an objective function
of the form:

E(θ) = R(θ) +
C

m

m
∑

i=1

L(θ; x̃i, ỹi) (1)

whereR is a regularization function aimed at preventing
overfitting,L is the loss function penalizing misclassifica-
tion, andC is a hyper-parameter trading off the two terms.

4 Efficient class retrieval by sparse
retrieval models

Retrieval efficiency can be achieved by forcing the classi-
fier hθ to be sparse, i.e., by requiring the parameter vector
θ to have very few non-zero entries so that the evaluation
cost will be a small fraction ofD per image. To realize
this efficiency we can use aninverted filewith D entries,
each providing the list of database images containing one
of theD binary features.

4.1 Sparse classifiers

The literature on sparse linear classifiers is vast and re-
view of these methods is beyond the scope of this pa-
per. In our work, we restrict our attention to the following
sparse classification models due to their good balance of
feature sparsity and accuracy:

• L1-LR: this is a ℓ1-regularized logistic regression
classifier [5] obtained by definingR(θ) = ||θ||1 and
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L(θ; x̃i, ỹi) = log(1 + exp(−ỹiθ · x̃i)). The ℓ1-
regularization is known to produce sparser parameter
vectors than the more conventionalℓ2-regularization.

• FGM: this is the Feature Generating Machine de-
scribed in Tan et al. [25]. It minimizes a convex re-
laxation of the constrained optimization obtained by
settingR(θ) = ||θ||2, L(θ, d; x̃i, ỹi) = max(0, 1 −
ỹi(θ⊙d)·x̃i)

2 and by enforcing constraint1·d ≤ B
where⊙ denotes the elementwise product between
vectors,d ∈ {0, 1}D is a binary vector indicating the
active features, andB is a hyperparameter control-
ling the number of nonzero weights. A cutting plane
algorithm is employed to efficiently find the sparse
features defined by vectord. This method has been
shown to produce state-of-the-art results in terms of
sparsity and generalization performance.

We contrast these sparse classifiers with a traditional lin-
ear SVM using an L2 regularization term. We denote this
classifier withL2-SVM .

4.2 Top-k pruning

In this subsection we present an algorithm that exploits
sparsity to efficiently find the top-scoringk images in
the database using the linear retrieval functions described
above. This approach is well suited to our intended re-
trieval application since a user is typically interested in
only the top search results. The key-idea of this rank-
ing algorithm is to update lower and upper bounds on the
scores of the images to gradually prune the candidate set
without complete calculation of the classification outputs.
An upper boundu(i) and a lower boundl(i) is defined
for every imagei in the database. The upper boundu(i)
is first initialized to scoreu∗, which is the highest possible
score achievable given the weight vectorθ. Such score is
obtained when a binary feature vector contains nonzero
values precisely in the positions where the weight vector
θ has positive values and it contains 0 in the entry posi-
tions where the weights are negative. Analogously,l(i)
is initialized to the lowest possible scorel∗, which occurs
when the entries of the feature vector are 0 in positions
where the weights are positive and 1 where the weights
are negative. Then, these bounds are updated by con-
sidering one weight entry at a time. Letpd be the entry
considered in thed-th iteration. Let us assume thatθ(pd)

is positive (the case when this value is negative is analo-
gous). Then, if the binary vector of thei-th image con-
tains a1 in positionpd, the lower boundl(i) will be incre-
mented byθ(pd); if insteadxi(pd) is 0, the upper bound
u(i) will be decremented byθ(pd). Thus, we see that at
each iterationd the gap between the lower and the up-
per bound for each imagei is decreased by amountθ(pd).
In order to produce the fastest reduction of this gap, we
process the weights in descending order of absolute val-
ues. Furthermore, for efficiency in our implementation
we only store and update the lower bound for each im-
age, since the upper bound is trivially obtained by adding
an iteration-dependent value which is constant for all im-
ages. This derives trivially from observing that at any it-
erationd the gap between the bounds for every imagei is:
u(i) − l(i) = u∗ − l∗ −

∑d
d′=1

|θ(d′)|. At each iteration,
after updating the bounds, the algorithm identifies the set
A of k images having highest lower bounds (this can be
done in a linear scan over the vectorl). Then, in the prun-
ing step, the method eliminates from further considera-
tion the images having upper bound smaller than the min-
imum lower bound in the setA, since such images cannot
rank in the top-k. The pruning rate will obviously depend
on the distribution of the weights in the vectorθ and the
statistics of classemes. Intuitively, the pruning rate will
be high whenθ is sparse and when the weight magnitudes
decay rapidly when sorted in decreasing order. Indeed in
the experiment section we empirically demonstrate that
the algorithm runs faster when the weight vector has such
characteristics.

The pseudocode of the algorithm is given below.

5 Efficient approximate ranking

The algorithm presented above achieves high efficiency
by quickly removing from consideration images that can-
not rank in the top-k. Instead, in this subsection we
present an algorithm that performs fast retrieval byap-
proximating the ranking score with a measure that can
be computed efficiently. The exact score calculation is
approximated via vector quantization. However, our de-
scriptors are binary vectors, and as such they are not
suited to be quantized. Thus, we first apply PCA to trans-
form each binary-valued classeme vectorxi ∈ {0, 1}D

into a real-valued lower-dimensional vectorx̂i ∈ R
D′

,
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Algorithm 1 Top-k pruning method
Input: Database examplesx1, . . . , xN , weight vectorθ, sort-

ing indicesp1, . . . , pD s.t. |θ(p1)| ≥ |θ(p2)| ≥ . . . >

|θ(pD)|.
Output: Indices of top-k images:A ⊆ {1, . . . , N}.

1: Initialize candidate set:C := {1, . . . , N}
2: SetA to contain the indices ofk randomly chosen images.
3: l∗ :=

P

d s.t.θ(d)<0 θ(d)

4: u∗ :=
P

d s.t.θ(d)>0 θ(d)

5: ∀i : u(i) := u∗, l(i) := l∗

6: for d = 1 to D do
7: for all i ∈ C such thatxi(pd) == 1 do
8: if θ(pd) ≥ 0 then
9: l(i) := l(i) + θ(pd)

10: else{caseθ(pd) < 0}
11: u(i) := u(i) + θ(pd)
12: for all i ∈ C such thatxi(pd) == 0 do
13: if θ(pd) ≥ 0 then
14: u(i) := u(i) − θ(pd)
15: else{caseθ(pd) < 0}
16: l(i) := l(i) − θ(pd)
17: UpdateA to contain indices of top-k lower bounds
18: Prune candidate set:

C = C − {i s.t.u(i) < minj∈Al(j)}
19: if |C| == k then
20: break

whereD′ < D 1. Then, we quantize each vectorx̂i using
the product quantization method of Jégou et al. [13, 12].
This approach can provide very good vector approxima-
tion at low computational cost both during the learn-
ing of the cluster centroids as well as at quantization-
time. The method splits each vectorx̂ into v sub-vectors
x̂

1, . . . , x̂v, each of lengthD′/v. Then, each sub-vector
is quantized independently using a codebook ofw cluster
centroids learned from training data using k-means clus-
tering. Thus, the complete vectorx̂ is quantized asq(x̂)
by the following quantizer functionq(.):

q(x̂) =







q1(x̂
1)

...
qv(x̂v)






(2)

1We also tried to use real-valued classeme vectors and achieved sim-
ilar results. Here we prefer presenting the method based on binary
classemes in order to compare the different methods in a scenario where
they are all applied to the same input representation.

whereqj(x̂
j) ∈ R

D′/v is the nearest cluster centroid to
sub-vector̂xj in the dictionary learned for thej-th sub-
block of features. While quantizers are usually employed
to reduce the dimensionality of the data, we use them here
primarily to speed-up the calculation of the score. Given
the weight vector learned in theD′-dimensional space,
the idea is to approximate the exact ranking score calcu-
lation θ̂ · x̂i with θ̂ · q(x̂i). Note that this approximate
score can be computed as follows:

θ̂ · q(x̂i) =

v
∑

j=1

θ̂
j
· qj(x̂

j
i ) . (3)

The efficiency stems from the fact that the termsθ̂
j
·

qj(x̂
j
i ) can be read from a lookup table computed in a

preprocessing stage for allv centroids of each sub-block
j. The creation of this table for all sub-blocks will have
cost ofO(wD′). But then computing the approximate
score in eq.3 will amount to simply adding togetherv
values read from the look-up table. Thus, the overall
complexity of calculating the ranking scores for all im-
ages in the databases, including the preprocessing, will be
O(wD′ + vN).

As discussed in full detail in [13], choosing the num-
ber of PCA dimensionsD′ poses a challenging dilemma.
WhenD′ is large, the PCA projection error is small, but
there is a subsequent large quantization error. In princi-
ple this quantization error can be fought off by increas-
ing v andw at the expense of a larger code size and a
higher computational cost for quantization and learning.
On the other hand, choosing a smallD′, leads to a large
projection error followed by a small quantization error.
In our problem the choice ofD′ has an even greater im-
portance: since we are training our linear classifier in the
PCA subspace, the choice ofD′ will dictate the Vapnik-
Chervonenkis (VC) dimension, i.e., the capacity of our
classification model [9]. A linear classifier defined in a
D′-dimensional space has VC dimensionD′ + 1. Thus,
using a largeD′ will allow us to obtain more powerful
classifiers. In the experiment section we analyze empiri-
cally howD′, w, v affect the accuracy, the speed, as well
as the memory usage.

Another practical issue to consider is that the PCA
components, by construction, have different variance,
with the first few entries typically capturing most of the
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energy in the signal. A naı̈ve application of product
quantization would subdivide a vector according to the
order of components so that thej-th sub-block would
consist of the consecutive feature entries from position
(1 + (j − 1)D′/v) to (jD′/v). However, such strategy
would blindly allocate the same number of centroids for
the most informative components (the ones in the first
sub-block) as well as for the least informative. We ad-
dress this problem using the solution proposed in [13]:
we apply a random orthogonal transformation after PCA
so that the variances of the resulting components will be
more even. We then quantize the examples and train our
retrieval models in this space.

6 Experiments

In this section we empirically evaluate the proposed al-
gorithms and the several possible parameter options on
challenging data sets under the performance measures of
retrieval accuracy, speed and memory usage. We denote
the top-k pruning method withTkP and the approximate
ranking technique withAR.

Retrieval evaluation on ILSVRC2010 (150K images).
We first evaluate our methods using the data set of
the Large Scale Visual Recognition Challenge 2010
(ILSVRC2010) [1], which includes images of 1000 dif-
ferent categories. We use a subset of the ILSVRC2010
training set to learn the classifiers: for each of the 1000
classes, we train a classifier usingn+ = 50 positive ex-
amples (i.e., images belonging to the query category) and
n− = 999 negative examples obtained by sampling one
image from each of the other classes. To cope with the
largely unequal number of positive and negative exam-
ples (n− >> n+) we normalize the loss term for each
example in eq.1 by the size of its class. We evaluate
the learned retrieval models on the ILSVRC2010 test set,
which includes 150,000 images, with 150 examples per
category. Thus, the database containsn+

test = 150 true
positives andn−

test = 149, 850 distractors for each query.
Figure1 shows precision versus search time for AR and
TkP in combination with different classification models.
Since AR does not use sparsity to achieve efficiency, we
only paired it with the L2-SVM model. Thex-axis shows
average retrieval time per query, measured on a single-
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Figure 1: Class-retrieval precision versus search time for
the ILSVRC2010 data set:x-axis is search time;y-axis
shows percentage of true positives ranked in the top 10 us-
ing a database of 150,000 images (withn−

test = 149, 850
distractors andn+

test = 150 true positives for each query
class). The curve for each method is obtained by varying
parameters controlling the accuracy-speed tradeoff (see
details in the text).

core computer with 16GB of RAM and an Intel Core i7-
930 CPU @ 2.80GHz. They-axis reports precision at
10 which measures the proportion of true positives in the
top 10. The times reported for TkP were obtained using
k = 10. The curve for AR was generated by varying the
parameter choices forv andw, as discussed in further de-
tail later. The performance curves for “TkP L1-LR” and
“TkP L2-SVM” were produced by varying the regular-
ization hyperparameterC in eq.1. While C is tradition-
ally viewed as controlling the bias-variance tradeoff, in
our context it can be interpreted as a parameter balancing
generalization accuracy versus sparsity, and thus retrieval
speed. In the case of “TkP FGM” we have kept a con-
stantC (tuned by cross-validation), and instead varied the
sparsity of this classifier by acting on the separate param-
eter B. From this figure we see that AR is overall the
fastest method at the expense of search accuracy: a peak
precision of22.6% is obtained by TkP using L2-SVM but
AR with the same classification model achieves only a top
precision of17.5% due to a combination of fewer learn-
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Figure 2: (a) Distribution of weight absolute values for different classifiers (after sorting the weight magnitudes). TkP
runs faster with sparse, highly skewed weight values. (b) Pruning rate of TkP for various classification model and
different values ofk (k = 10, 3000).

ing parameters (in this experiment we usedD′ = 512),
PCA projection error and quantization error. As expected,
we note that TkP runs faster when used in combination
with L1-LR or FGM rather than L2-SVM, since it ben-
efits from sparsity in the parameter vectors to eliminate
images from consideration. However, we see that spar-
sity negatively affects accuracy, with L2-SVM providing
clearly much better precision compared to L1-LR.

In our experiments we found that TkP typically ex-
hibits faster retrieval in conjunction with L1-LR rather
than FGM. We can gain an intuition on the reasons by
inspecting the average distribution of weight absolute val-
ues in figure2(a). The average distribution for each classi-
fication model was obtained by first sorting the weight ab-
solute values for each query in descending order and then
normalizing by the largest absolute value. For this experi-
ment we choseB = 1000 for the FGM model. We can see
that although for this setting the weight vectors learned by
FGM are on average more sparse than those produced by
L1-LR, the normalized magnitude of the L1-LR weights
decays much faster. TkP benefits from the presence of
these highly skewed weight magnitudes to produce more
aggressive pruning. Figure2(b) shows the average pro-
portion of database pruned by the top-k method as a func-
tion of iteration number (d) for k = 10 andk = 3000.

As anticipated, a smaller value ofk allows the method to
eliminate more images from consideration at a very early
stage.

We now turn to study the effect of parametersD′, v, w
on the efficiency and accuracy of AR. Figure3 shows re-
trieval speed and precision obtained by varyingv andw
for D′ ∈ {128, 256, 512}. Increasing the dictionary size
(w) reduces the quantization error while raising the quan-
tization time: note the slightly better accuracy but higher
search time when we move from parameter setting(D′ =
512, v = 256, w = 26) to (D′ = 512, v = 256, w = 28).
The number of sub-blocks (v) critically affects the re-
trieval time: reducingv lowers a lot the search time but
causes a drop in accuracy. Finally, note howD′ impacts
the accuracy since it affects both the number of parame-
ters in the classifier as well as the projection error: using
a largeD′ is beneficial for accuracy whenv andw are
large; however, when there are few cluster centroids or
the number of sub-blocks is small, loweringD′ improves
precision since this mitigates the quantization error.

Finally, we also ran an experiment simulating real-
world usage of an object-class retrieval system where a
user may provide a positive training set but no negative
set. In such cases one could use a “background” set for
the negative examples. Thus, here we used as negative
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Figure 3: Effects of parametersD′, v, w on the accuracy
and search time of AR for the ILSVRC2010 data set. A
smallv implies faster retrieval at the expense of accuracy.
Using a larger value forw reduces the quantization error
at a small increase in search time. LoweringD′ decreases
the power of the classifier (VC-dimension) and increases
the PCA projection error, thus negatively impacting pre-
cision.

examples for each query,n− = 999 randomly chosen im-
ages from all 1000 categories, thus possibly containing
also some true positives (i.e., images of the query class).
As expected, we found the precisions of the L1-LR and
L2-SVM classifiers to be nearly unchanged by the few in-
correctly labeled examples: precisions at 10 in this case
are 18.75% and 22.55%, respectively.

Retrieval results on ImageNet (10M images). We now
present results on the 10-million ImageNet dataset [4]
which encompasses over 15,000 categories (in our ex-
periment we used 15203 classes). We used a subset of
950 categories as query classes. For each of these classes
we capped the number of true positives in the database
to ben+

test = 450. The total number of distractors for
each query isn−

test = 9, 671, 611. We trained classifiers
for each query category using a training set consisting of
n+ = 10 positive examples andn− = 15, 202 negative
images obtained by sampling one training image for each

of the negative classes. We omit from this experiment the
FGM model as its training time is over 300 times longer
than the time needed to learn the L1-LR or L2-SVM clas-
sifier and thus its use on such a large scale benchmark is
difficult (as a reference, learning a L1-LR or an L2-SVM
classifier for a query category in this experiment takes
around 2 seconds). The results are summarized in fig-
ure4, once again in the form of retrieval time versus pre-
cision at 10. We can see that on this data set, TkP provides
clearly the best accuracy-speed tradeoff with near peak-
precision achieved for an average retrieval time of just a
couple of seconds. The plot reports time fork = 10, but
we found that when settingk = 3000 the retrieval time of
TkP increases by only roughly 35% compared to the case
k = 10. AR is once again very fast but it provided lower
precision due to the issues pointed out above. In this fig-
ure we are also including the retrieval times obtained with
a simple architecture of inverted lists, with each list enu-
merating the images containing one particular classeme.
Retrieval with inverted files obviously yields the same ac-
curacy as TkP but it is more than 7 times slower. Overall,
TkP with L1-LR provides a 24-fold speed-up compared
to brute-force evaluation.

We would like also to comment on the memory usage.
The inverted file architecture requires the most space. We
represented the image IDs in inverted files using one byte
per image: we achieve this by storing only ID displace-
ments (which in our experiment happened to be always
smaller than 255) between consecutive images in the list.
Despite this clever encoding the total storage requirement
for the 10M data set was roughly 9GB. TkP was imple-
mented using a bit map of all classemes for all images
which takes a space of(2659/8)×N bytes for a database
containingN images, which in this case amounts to about
3GB. AR is the most space-efficient: it requires only
v log2 w bits to represent each image using vector quan-
tization and the cluster centroids are stored in onlyD′w
real values. Thus on the 10M data set, the memory usage
of AR was only 1.8GB. This is clearly the most scalable
approach in term of memory usage.

Object-class retrieval accuracy on Caltech256. Our
choice of retrieval models and features was primarily mo-
tivated by computational complexity constraints. Thus, a
natural, legitimate question is: how much accuracy have
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Figure 4: Search time versus retrieval precision at 10 for
the 10-million ImageNet dataset. For each query class,
there existn+

test = 450 positive images andn−

test =
9, 671, 611 distractors in the database.

we sacrificed for the sake of this efficiency? We answer
this question by comparing the retrieval accuracy of our
approaches with the state-of-the-art class-recognition sys-
tem of Gehler and Nowozin [7], which has been shown to
produce the best categorization results to date on several
recognition benchmarks. This classifier combines non-
linear kernel distances computed from multiple feature
descriptors. Its high computational complexity and large
feature storage requirements makes it impossible to use in
large image databases such a those considered in this pa-
per. Thus, we carry out our this accuracy comparison on
the small Caltech256 data set. We use as low-level fea-
tures for LP-β the same 13 descriptors that were used to
learn the classemes [27], so as to have a comparison be-
tween methods on common ground. We train the retrieval
models on each Caltech256 class separately by choosing
n+ = 50 positive examples of the query category and
n− = 255 negative examples obtained by sampling one
image from each of the other categories. We report the
precision on ranking a database of 6,400 images includ-
ing n+

test = 25 true positives andn−

test = 6, 375 distrac-
tors obtained by choosing 25 examples from each of the
other 255 classes. Table1 shows that our simple retrieval
models applied to binary classeme vectors achieve accu-

L1-LR L2-SVM FGM LP-β

precision@25 28.2% 30.2% 29.6%32.8%
training time (seconds)0.044 0.028 11.04 253.7

Table 1: Caltech256 evaluation: precision at 25 and train-
ing time for the state-of-the-art LP-β classifier as well
as for linear classifiers trained on binary classemes. The
training set sizes aren+ = 50 andn− = 255. The num-
ber of true positives in the database isn+

test = 25 and the
number of distractors aren− = 6400. The precisions of
these simple linear models approach the accuracy of the
LP-β classifier which is recognized as one of the best ob-
ject classification systems to date.

racy comparable to that of the much more computation-
ally expensive LP-β classifier and are several orders of
magnitude more efficient to train as well as test.

7 Discussion

We have presented models and algorithms that enable
near-instantaneous novel class recognition and search in
databases containing several million images with accu-
racy approaching that of the best known categorization
systems. Such scalability is achieved by borrowing tools
from information retrieval such as small (but highly-
informative) binary codes to represent documents, sparse
retrieval models, and algorithms for approximate distance
calculation. While such tools had already been exploited
for near-duplicate image detection and for search of object
instances we believe we are the first to adapt them to the
problem of object class recognition in large collections.
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