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Abstract to the design of powerful nonlinear classification models
that can effectively combine multiple complementary de-

In this paper we address the problem of object-class ggriptors []. However, these categorization systems do

trieval in large image data sets: given a small set of traifot scale well to recognition in large image collections

ing examples defining a visual category, the objective isd@e to their large computational costs and high storage

efficiently retrieve images of the same class from a larggyuirements.

database. We propose two contrasting retrieval schemeﬁ] a parallel line of research, the efficiency of image re-

aChieYi”g good accuracy _and high efficiency. The f,irﬂeval systems has rapidly progressed to the point of en-
exploits sparse classification models expressed as "ngfi’ﬁng real-time search in millions of imagesi]. Scal-

combinations of a small number of features. These SPaL$Sity to large data sets is typically achieved by cast-

models can be efficiently evaluated using inverted file iﬂig image search as a text retrieval problem. The anal-

dexing. Furthe_rmore, we _|r_1tr0duceanove| ran_klng procg-y with text-retrieval is made possible by representing
plure t.hat provides a S|gn_|f|cant _speedup.ov.er inverted fg ch image as a sparse histogram of quantized features,
indexing when the goal is restricted to finding the DY own as visual words []. However, this representa-

(i.e., thek highest ranked) images in the data set. We “%fbn is best suited to implement low-level notions of visual

trast these sparse retrieval models with a second SChPsrﬁ)rﬁlarity. As a result, these systems are primarily used

based on approximate ranking using vector quantizati(&g.detect near duplicates][or to find images contain-

Experimental results show that our algorithms for objeqﬁl%the samebject instances the one present in a given

class retrieval can search a 10 million database in jus ry photo 2.1, 27]. Hashing methods have been used to

couple of seconds and produce categonzgtllon accur@Banute low-dimensional image signatures encoding the
comparable to the best known class-recognition systemgerall global structure present in an image][ While

such representations can be used to efficiently find photos
1 Introduction matching the global layout of a query image, they have
not been shown to be able to produce good categorization

Over the last decade the accuracy of object categorizat@$guracy.
systems has dramatically improved thanks to the developThe objective of this work is to bridge these two in-
ment of sophisticated low-level features9] 17, 3] and dependent lines of research. We borrow data structures



and methods from image retrieval — such as sparse aiod scalability in terms of memory usage.
compact descriptors, inverted files, as well as algorithms
for approximate distance calculation — to develop a sys-
tem for accurate and efficienbject-classearch in large 2 Related Work
image collections: given a training set of examples defin-
ing an arbitrary object class (not know before query-timé)s already pointed out above, sparse retrieval models
our algorithms can efficiently find images of this categohave been extensively used in image search {1, 27].
in a large database. We envision such system to be u8eabng the methods in this genre, the min-hash technique
as a tool to interactively search in collections of unlatelef Chum et al. P] bears a close resemblance to our ap-
images, such as community-provided pictures or albugroach. It measures similarity between two images in the
of personal photos. form of an approximate weighted histogram intersection.
Our approach uses the binary “classeme” descriptoridfis measure can be efficiently calculated using inverted
Torresani et al.f7] as representation for images. The biists over sketch hashes, which are tuples of randomly-
nary entries in this descriptor are the Boolean outputsssflected feature subsets. However, the weights of the his-
a set of nonlinear object classifiers evaluated on the itpgram intersection must be defined a priori, before the
age. These base classifiers are trained on an independeggtion of the index, and therefore this approach can only
data set obtained using text-based image search engiimglement static similarity measures. Our task instead re-
Intuitively, the classeme descriptor provides a highdlevguires tuning the similarity measure for every new query
description of the image in terms of similarity to the set gfategory. The approach ifif] also uses inverted lists de-
base classes. The approach is analogous in spirit to imfiged over feature subsets, called visual phrases. The vi-
representations based on attributesi[s, 15], which are sual phrases are binary “same-class” classifiers trained to
human-defined properties correlated to the classes toreognize whether two given images belong to the same
recognized. As classeme vectors provide a rich semamiiss or to different classes, regardless of the category.
description, they have been shown to produce good dat{rinciple this model could be adapted to be used for
egorization accuracy even with simple linear classificalass retrieval. However, the visual phrases output only a
tion models, which are efficient to evaluate. Furthermo@polean value and thus cannot provide a ranking.
these descriptors are compact in size (the dimensionalityrhe idea of training sparse classification models on at-
of the binary vector is 2625, corresponding to only 32gibute vectors is similar in spirit to the “Object Bank” ap-
bytes/image) and thus allow storage of large databaseprioach of Li et al. {&]. The Object Bank is a high-level
memory for efficient recognition. image representation encoding the spatial responses of a
In this work we investigate the benefits of using spark@ge set of object detectors applied to the image. How-
classification models with attribute features, i.e. classiver, the dimensionality of these representation is tob hig
fiers that are explicitly constrained to use only a small detallow storage in memory for large collections (each de-
of attributes for the recognition of a new query categorscriptor contains 44,604 real values), which is the problem
The sparsity of the models enables the advantageousemasidered here. Lietal. have shown that the Object Bank
of inverted files P(] for efficient retrieval. Furthermore,descriptor can be compressed down to compact sizes us-
we present a new ranking algorithm which exploits thieg regularization terms enforcing feature sparsity. How-
sparsity of the classifier to find the tdpimages with ever, the feature selection is optimized with respect to a
even lower computational cost. We show that this sirfixed set of classes, and the generalization performance of
ple approach produces a 24-fold speedup over brute-fotfve selected features has not been demonstrated on novel
evaluation. classes. The focus of our work instead is on the design
We compare these sparsity-based retrieval models wiftcompact models and efficient methods that can support
a system that uses vector quantization to efficiently agearch of arbitrary novel classes.
proximate the ranking scores of images in the databaseOur algorithm for approximate ranking shares simi-
We demonstrate that at the cost of a small drop in acdarities with efficient techniques for approximate near-
racy, this algorithm achieves similar efficiency and supest neighbor search. Most of these methods operate



by embedding the original feature vectors into a lovgystem in terms of precision &t Again, we want to em-
dimensional space via hashing functions or nonlinear ppiasize that the object classes provided at query time are
jections such that the Hamming distance or the L2 diget known in advance. Thus, the system must be able to
tance in this space approximates a given metric distahearn the retrieval model exclusively from the gt

in the original high-dimensional spacg P9, 23. In par- Since our objective is to retrieve images belonging
ticular, Jain et al. J(] have proposed an algorithm thato the query class, we employ binary classifiers as re-
learns a Mahalanobis distance from similarity constrairttfeval models and use their classification output as rank-
and encodes this learned distance metric into randomiieglscore. We restrict our study to linear classifiers, since
locality-sensitive hash functions. The resulting systethey are efficient to learn as well as to evaluate. Thus,
enables efficient and accurate class recognition in latje ranking score for database examplis computed as
data sets. The work of Kulis and Graumanf[has ex- hy(x) = 0 - x, wheref is a D-dimensional vector of pa-
tended this approach to generate locality-sensitive haghmeters (we incorporate a bias term in the weight vector
ing functions that can approximate arbitrary kernel disy adding a constant entry set to 1 for all examples). Our
tances. However, these methods optimize the categoriglassifiers are learned by optimizing an objective function
tion metric and the embedding space with respect tm#the form:

fixed set of classes during an offline training stalge; .

forethe search. Instead our problem statement requires to c .

efficiently learnat query timethe classification model for E(0) = R(6) + m Z L(6; i, 5:) @)

a category that is not known in advance. =1

whereR is a regularization function aimed at preventing
. overfitting, L is the loss function penalizing misclassifica-
3 Object-CIass Search tion, andC is a hyper-parameter trading off the two terms.

We now formally define our problem statement and intro-
duce the notation that Wlll_be used in the rest of the p4-  Efficient class retrieval by sparse
per. We assume we are given a databas¥ aflabeled .

images, from which binary vectors are extracted during retrieval models

an offline stage. We indicate with; € {0,1}” the bi- _ o _ _ _
in the database. These feature vectors are stored irfighs to be sparse, i.e., by requiring the parameter vector
we are given a set of* training images belonging toCOSt will be a small fraction o per image. To realize

an arbitrary query category as well as negative ex- this efficiency we can use anverted filewith D entries,
amples. In a practical application the negative set coich providing the list of database images containing one
be a fixed “background” collection containing example¥ the D binary features.

of many different categories (we consider such scenario

in one of the experiments). We indicate withthe la- o

beled training set obtained by merging these two se‘tls',l Sparse classifiers

ie.,D={(Z1,51),...,(&n, yn)} Where; is the binary The literature on sparse linear classifiers is vast and re-
classeme vector of theth training exampley; € {0,1} view of these methods is beyond the scope of this pa-
indicates its binary label and = n* + n~ (note that per. In our work, we restrict our attention to the following

we use the™ symbol to differentiate training examplesparse classification models due to their good balance of
z; from database example;). The objective of the sys-feature sparsity and accuracy:

tem is to efficiently retrieve relevant database images and
rank them according to the probability of belonging to the ¢ L1-LR: this is a/;-regularized logistic regression
query category. We evaluate the accuracy of the retrieval classifier p] obtained by definindz(0) = ||0||; and



L(0;&;,7;) = log(1 + exp(—:0 - ;)). Thet;- is positive (the case when this value is negative is analo-
regularization is known to produce sparser parametgus). Then, if the binary vector of theth image con-
vectors than the more conventiodégiregularization. tains al in positionp,, the lower bound(s) will be incre-
e . . mented byd(py); if insteadx;(pq) is 0, the upper bound

e FGM: this is the Feature Generating Machine d%-(i) will be decremented by(p,). Thus, we see that at

f;;;i;lgf-[gg s;r?;tr[a]i'n (Iatdrglgtlimn:izzzstigncggzlgﬁéz-b&am iterationd the gap between the lower and the up-
. er bound for each imagés decreased by amo .
settingR(0) = [|0]|2, L(6, d; &:, ;) = max(0, 1 — g y amoubitp)

- (06d).42 and by enforci intd < B In order to produce the fastest reduction of this gap, we
5i(0©d)-x;)” and by enforcing qonstra| ba < rocess the weights in descending order of absolute val-
where® denotes the elementwise product betwe

: . RS s. Furthermore, for efficiency in our implementation
vectorsd € {0, 1}? is a binary vector indicating the y P

tive feat & is ah ; ‘ Iwe only store and update the lower bound for each im-
active features, and 1S a hyperparameter contro ‘age, since the upper bound is trivially obtained by adding
ling the number of nonzero weights. A cutting plan

lqorithm i loved diciantly find th &n iteration-dependent value which is constant for all im-
algorithm Is employed to efficiently find the SparSSQes. This derives trivially from observing that at any it-

features defined by vectat. This method has beener{ationd the gap between the bounds for every iméige
7

shown to produce state-of-the-art results in termsu )= 1(6) = u* — 1" — 23/21 10(d')|. At each iteration,

sparsity and generalization performance. after updating the bounds, the algorithm identifies the set
We contrast these sparse classifiers with a traditional lid-of & images having highest lower bounds (this can be
ear SVM using an L2 regularization term. We denote thikone in a linear scan over the vecthrThen, in the prun-

classifier withL2-SVM. ing step, the method eliminates from further considera-
tion the images having upper bound smaller than the min-
42 Top+ pruning imum lower bound in the set, since such images cannot

rank in the topk. The pruning rate will obviously depend
In this subsection we present an algorithm that explogf the distribution of the weights in the vec®mand the
sparsity to efficiently find the top-scoring images in statistics of classemes. Intuitively, the pruning ratel wil
the database using the linear retrieval functions desgrilie high wher@ is sparse and when the weight magnitudes
above. This approach is well suited to our intended reecay rapidly when sorted in decreasing order. Indeed in
trieval application since a user is typically interested the experiment section we empirically demonstrate that
only the top search results. The key-idea of this ranike algorithm runs faster when the weight vector has such
ing algorithm is to update lower and upper bounds on tBRaracteristics.
scores of the images to gradually prune the candidate sefhe pseudocode of the algorithm is given below.
without complete calculation of the classification outputs
An upper bound.(i) and a lower bound(:) is defined o ] ]
for every imagei in the database. The upper bound) 5  Efficient approximate ranking
is first initialized to score.*, which is the highest possible
score achievable given the weight veaforSuch score is The algorithm presented above achieves high efficiency
obtained when a binary feature vector contains nonzdxpquickly removing from consideration images that can-
values precisely in the positions where the weight vectoot rank in the tops. Instead, in this subsection we
6 has positive values and it contains 0 in the entry pogiresent an algorithm that performs fast retrievaldpy
tions where the weights are negative. Analogouls), proximatingthe ranking score with a measure that can
is initialized to the lowest possible scdre which occurs be computed efficiently. The exact score calculation is
when the entries of the feature vector are 0 in positioapproximated via vector quantization. However, our de-
where the weights are positive and 1 where the weiglstsiptors are binary vectors, and as such they are not
are negative. Then, these bounds are updated by csuited to be quantized. Thus, we first apply PCA to trans-
sidering one weight entry at a time. Lgj be the entry form each binary-valued classeme vecigre {0,1}7
considered in the-th iteration. Let us assume thilp,;) into a real-valued lower-dimensional vectdy € RD,



Algorithm 1 Top-k pruning method whereqj(:ﬁj) € RP'/v is the nearest cluster centroid to
Input: Database examples,, ..., z, weight vectorg, sort-  sub-vectorz’ in the dictionary learned for thg-th sub-
ing indicespi,...,pp st [0(p1)| > 0(p2)| > ... > Dblock of features. While quantizers are usually employed
10(pp)|- to reduce the dimensionality of the data, we use them here
Output: Indices of topk images:A C {1,..., N}. primarily to speed-up the calculation of the score. Given
1 Initialize candidate set”’ := {1,..., N} _ the weight vector learned in the’-dimensional space,
2: SetA to contain the indices of randomly chosen images. he idea is to approximate the exact rankina score calcu-
31" = st.t.e(d)<00(d) t inf .4 e 23 <9 i
lation @ - &; with 6 - ¢(&;). Note that this approximate

4t =3 s aay=0 0(d) )
5: Vi : i) e " 1) = I score can be computed as follows:

6: ford =1to D do

7.  forall i € C suchthatr;(ps) == 1 do 0. () — o) . (4

o e e Y 6 q(d;) = go a;(&]) - 3)

o: 1(i) := 1(3) + 0(pa)

10: else{casef(ps) < 0} . i

11: w(d) := u(i) + 0(pa) The efficiency stems from the fact that the ter#is-

12:  forall i € C such thatr;(ps) == 0 do ¢;(z!) can be read from a lookup table computed in a
13: if 9(pa) > 0then preprocessing stage for allcentroids of each sub-block
14: u(i) := u(i) — 0(pa) j. The creation of this table for all sub-blocks will have
15: else{casef(pa) < 0} cost of O(wD’). But then computing the approximate
16: 1(2) = 1(i) — O(pa) score in eq3 will amount to simply adding together

17: UpdateA to contain indices of tog lower bounds
18: Prune candidate set:
C=C—{istu(i) <minjeal(j)}
19:  if |C| == k then
20: break

values read from the look-up table. Thus, the overall
complexity of calculating the ranking scores for all im-
ages in the databases, including the preprocessing, will be
O(wD' + vN).

As discussed in full detail in1[3], choosing the num-
ber of PCA dimension®’ poses a challenging dilemma.

whereD’ < D . Then, we quantize each vectoyusing When D' is large, the PCA projection error is small, but
the product quantization method of Jegou et ak, 7). there .is a sub;eq_uent large quantization error. !n princi-
This approach can provide very good vector approxim_%ie this quantization error can be fought off by_ increas-
tion at low computational cost both during the leardlg v andw at the expense of a larger code size and a
ing of the cluster centroids as well as at quantizatioRlgher computational cost for quantization and learning.
time. The method splits each vectinto v sub-vectors ON the other hand, choosing a smal, leads to a large
&',...,&", each of lengthD’ /v. Then, each sub-vectorProjection error followed by a small quantization error.
is quantized independently using a codeboolvaluster !N our problem the choice ab’ has an even greater im-
centroids learned from training data using k-means clirtance: since we are training our linear classifier in the
tering. Thus, the complete vectaris quantized ag(i) PCA subspace, the choice Bf will dictate the Vapnik-

by the following quantizer function(.): Chervonenkis (VC) dimension, i.e., the capacity of our
classification model9]. A linear classifier defined in a
@ (&) D’-dimensional space has VC dimensibh + 1. Thus,

(@) = . @ using a largeD’ will allow us to obtain more powerful
ax) = : classifiers. In the experiment section we analyze empiri-
AU
0 (2") cally how D’ w, v affect the accuracy, the speed, as well
- _ ~ asthe memory usage.

_ We also tried to use real-valued clgsseme vectors and m:tmm Another practical issue to consider is that the PCA
ilar results. Here we prefer presenting the method basediraryb . . .
classemes in order to compare the different methods in @scenhere cc_)mpone_nts, by con_structlt_)n, have d“_cferem variance,
they are all applied to the same input representation. with the first few entries typically capturing most of the




energy in the signal. A naive application of produr 25
guantization would subdivide a vector according to tt
order of components so that theth sub-block would
consist of the consecutive feature entries from positi _
(1+ (j —1)D'/v) to (jD'/v). However, such strategy &
would blindly allocate the same number of centroids fiS 15
the most informative components (the ones in the fil®
sub-block) as well as for the least informative. We ar §
dress this problem using the solution proposedlifi:[
we apply a random orthogonal transformation after PC
so that the variances of the resulting components will
more even. We then quantize the examples and train
retrieval models in this space.

Precisi

© AR L2-SVM
8- TkP L1-LR
== TkP L2-SVM

- TkP FGM

i i i i [

0 0.5 1 15 2 2.5
Search time per query (seconds)

6 Experiments

In this section we empiricallv evaluate the proposed Figure 1. Class-retrieval precision versus search time for
P y prop e ILSVRC2010 data setr-axis is search timey-axis

gorithms and the several possible parameter optionss%n s percentage of true positives ranked in the top 10 us-
challenging data sets under the performance measures GHvs P 9 b . P
a database of 150,000 images (wiff),, = 149, 850

. in
:ﬁglt% vaJL aiﬁzirgcyr’nzlt)::éjVtirtﬁ_lge;nncg%hueszge'ro\)/(\ilﬁlgteendcf%ractors anah” ., = 150 true positives for each query
P% P 9 PP class). The curve for each method is obtained by varying

tes
ranking technique withR . parameters controlling the accuracy-speed tradeoff (see

: . ) details in the text).
Retrieval evaluation on ILSVRC2010 (150K images).

We first evaluate our methods using the data set of

the Large Scale Visual Recognition Challenge 201@re computer with 16GB of RAM and an Intel Core i7-
(ILSVRC2010) [1], which includes images of 1000 dif-930 CPU @ 2.80GHz. Thg-axis reports precision at
ferent categories. We use a subset of the ILSVRC2010 which measures the proportion of true positives in the
training set to learn the classifiers: for each of the 10@@p 10. The times reported for TkP were obtained using
classes, we train a classifier using = 50 positive ex- k& = 10. The curve for AR was generated by varying the
amples (i.e., images belonging to the query category) gratameter choices ferandw, as discussed in further de-
n~ = 999 negative examples obtained by sampling onail later. The performance curves for “TkP L1-LR” and
image from each of the other classes. To cope with thEkP L2-SVM” were produced by varying the regular-
largely unequal number of positive and negative examation hyperparameter in eq.1. While C is tradition-
ples &~ >> n™) we normalize the loss term for eaclally viewed as controlling the bias-variance tradeoff, in
example in eql by the size of its class. We evaluateur context it can be interpreted as a parameter balancing
the learned retrieval models on the ILSVRC2010 test sgéneralization accuracy versus sparsity, and thus ratriev
which includes 150,000 images, with 150 examples pggeed. In the case of “TkP FGM” we have kept a con-
category. Thus, the database contaifls, = 150 true stantC (tuned by cross-validation), and instead varied the
positives and:;_,, = 149, 850 distractors for each query.sparsity of this classifier by acting on the separate param-
Figure 1 shows precision versus search time for AR areler B. From this figure we see that AR is overall the
TkP in combination with different classification modeldastest method at the expense of search accuracy: a peak
Since AR does not use sparsity to achieve efficiency, weecision 0f22.6% is obtained by TkP using L2-SVM but
only paired it with the L2-SVM model. The-axis shows AR with the same classification model achieves only a top
average retrieval time per query, measured on a singeecision of17.5% due to a combination of fewer learn-
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Figure 2: (a) Distribution of weight absolute values forfelient classifiers (after sorting the weight magnitudekR T
runs faster with sparse, highly skewed weight values. (bjpirg rate of TkP for various classification model and
different values ok (k = 10, 3000).

ing parameters (in this experiment we ugetl = 512), As anticipated, a smaller value bfallows the method to
PCA projection error and quantization error. As expectegliminate more images from consideration at a very early
we note that TKP runs faster when used in combinatistage.
with L1-LR or FGM rather than L2-SVM, since it ben- \We now turn to study the effect of paramet@s v, w
efits from sparsity in the parameter vectors to eliminagg the efficiency and accuracy of AR. Figushows re-
images from consideration. However, we see that spgleval speed and precision obtained by varyingndw
sity negatively affects accuracy, with L2-SVM providingor D’ € {128,256, 512}. Increasing the dictionary size
clearly much better precision compared to L1-LR. (w) reduces the quantization error while raising the quan-
In our experiments we found that TkP typically extization time: note the slightly better accuracy but higher
hibits faster retrieval in conjunction with L1-LR rathegearch time when we move from parameter setting=
than FGM. We can gain an intuition on the reasons By2, v = 256, w = 2°) to (D’ = 512,v = 256, w = 2°).
inspecting the average distribution of weight absolute vdine number of sub-blocks) critically affects the re-
ues in figure2(a). The average distribution for each classitieval time: reducing lowers a lot the search time but
fication model was obtained by first sorting the weight apauses a drop in accuracy. Finally, note hbimpacts
solute values for each query in descending order and tfie@ accuracy since it affects both the number of parame-
normalizing by the largest absolute value. For this expel@'s in the classifier as well as the projection error: using
ment we chos@® = 1000 for the FGM model. We can seed largeD’ is beneficial for accuracy whem andw are
that although for this setting the weight vectors learned I#fge; however, when there are few cluster centroids or
FGM are on average more sparse than those producedig/number of sub-blocks is small, lowerify improves
L1-LR, the normalized magnitude of the L1-LR weightBrecision since this mitigates the quantization error.
decays much faster. TkP benefits from the presence oFinally, we also ran an experiment simulating real-
these highly skewed weight magnitudes to produce maverld usage of an object-class retrieval system where a
aggressive pruning. Figur&b) shows the average prouser may provide a positive training set but no negative
portion of database pruned by the tbpaethod as a func- set. In such cases one could use a “background” set for
tion of iteration numberd) for £ = 10 andk = 3000. the negative examples. Thus, here we used as negative



of the negative classes. We omit from this experiment the
FGM model as its training time is over 300 times longer
than the time needed to learn the L1-LR or L2-SVM clas-
sifier and thus its use on such a large scale benchmark is

20

& 157 difficult (as a reference, learning a L1-LR or an L2-SVM
eo, classifier for a query category in this experiment takes
= : around 2 seconds). The results are summarized in fig-
® ©-D'=512 L . .

< 10¢ O D=256 | ure4, once again in the form of retrieval time versus pre-
o - . . . .

@ X-D'=128 cision at 10. We can see that on this data set, TKP provides
o clearly the best accuracy-speed tradeoff with near peak-
o

1 precision achieved for an average retrieval time of just a
couple of seconds. The plot reports time fo&= 10, but
=16 w=2° we found that when settinig= 3000 the retrieval time of
‘ i i ‘ ‘ TkP increases by only roughly 35% compared to the case
0 005 01 015 02 025 03 4 _ 10, AR is once again very fast but it provided lower
Search time per query (seconds) . . . L
precision due to the issues pointed out above. In this fig-
ure we are also including the retrieval times obtained with

Figure 3: Effects of parametei8', v, w on the accuracy simple architecture of inverted lists, with each list enu-
and search time of AR for the ILSVRC2010 data set. %\ p . . ’ .
merating the images containing one particular classeme.

smallv implies faster retrieval at the expense of accura% . o . > .
. o etrieval with inverted files obviously yields the same ac-
Using a larger value fow reduces the quantization error

. . . curacy as TkP but it is more than 7 times slower. Overall,
at a small increase in search time. Loweribgdecreases

the power of the classifier (VC-dimension) and increaspsy With L1-LR provides a 24-fold speed-up compared
— . ' . 10 brute-force evaluation.
the PCA projection error, thus negatively impacting pre-

cision.

o

We would like also to comment on the memory usage.
The inverted file architecture requires the most space. We
represented the image IDs in inverted files using one byte
examples for each queny,” = 999 randomly chosen im- per image: we achieve this by storing only ID displace-
ages from all 1000 categories, thus possibly containinggnts (which in our experiment happened to be always
also some true positives (i.e., images of the query clasghaller than 255) between consecutive images in the list.
As expected, we found the precisions of the L1-LR arigespite this clever encoding the total storage requirement
L2-SVM classifiers to be nearly unchanged by the few ifer the 10M data set was roughly 9GB. TkP was imple-
correctly labeled examples: precisions at 10 in this casented using a bit map of all classemes for all images
are 18.75% and 22.55%, respectively. which takes a space ¢2659/8) x N bytes for a database

containingN images, which in this case amounts to about
3GB. AR is the most space-efficient: it requires only
Retrieval results on ImageNet (10M images). We now 4 1log, w bits to represent each image using vector quan-
present results on the 10-million ImageNet datasgt fization and the cluster centroids are stored in aBlyy
which encompasses over 15,000 categories (in our @xal values. Thus on the 10M data set, the memory usage
periment we used 15203 classes). We used a subsedfohAR was only 1.8GB. This is clearly the most scalable
950 categories as query classes. For each of these clagggsoach in term of memory usage.
we capped the number of true positives in the database
to ben;t,, = 450. The total number of distractors for
each query isi,.,, = 9,671,611. We trained classifiers Object-class retrieval accuracy on Caltech256. Our
for each query category using a training set consistingafoice of retrieval models and features was primarily mo-
nT = 10 positive examples and~ = 15,202 negative tivated by computational complexity constraints. Thus, a
images obtained by sampling one training image for eactural, legitimate question is: how much accuracy have



35 \ | [L1-LR|L2-SVM| FGM | LP-3 |
M‘ r/. precision@25 |/28.2% 30.2% |29.69432.8%
30y : : ] fraining time (secondk)0.044| 0.028 | 11.04| 253.7
_ : | “©=AR L2-SVM
& 257 : i/ B TkP L1-LR
é 20r : . zm;';jd i\ggx L1-LR _Tablc_e 1: Caltech256 evaluation: precision_gt 25 and train-
c A : %7 Inverted index L2-svM| N9 time for the state-of-the-art LP-classifier as well
3 157 . . as for linear classifiers trained on binary classemes. The
) . Y training set sizes aret = 50 andn~ = 255. The num-
o 10 & : | ber of true positives in the databasejs,, = 25 and the
5 . v | number of distractors ane~ = 6400. The precisions of
. these simple linear models approach the accuracy of the
A w w LP-3 classifier which is recognized as one of the best ob-
0 50 100 150

Search time per query (seconds) ject classification systems to date.

Figure 4. Search time versus retrieval precision at 10 fr%rcy comparable to that of the much more computation-

the 10-million ImageNet dataset. For each query clas?1 : o
" A _ ally expensive LP3 classifier and are several orders of
there existn;,,, = 450 positive images and,;_,, =

9,671,611 distractors in the database. magnitude more efficient to train as well as test.

" o 7 Discussion
we sacrificed for the sake of this efficiency? We answer
this question k_’y comparing the retrieval accuracy_of We have presented models and algorithms that enable
approfachif with (tjhe state_—of-thi-_arr]tﬁlasz-reco%nlysn Snear-instantaneous novel class recognition and search in
temdo Geh eLan Nowozin], whic las egns OWN 0y atabases containing several million images with accu-
pro uc.e.t e best categorlzatpn resu.t_s to date on Sev?é@!/ approaching that of the best known categorization
r_ecogmtlon ber_10hmarks. This classifier comblnes NOYstems. Such scalability is achieved by borrowing tools
linear kernel distances computed from multiple featu]r m information retrieval such as small (but highly-

descriptors. Its high computational complexity and largs,rmative) binary codes to represent documents, sparse

tween methods on common ground. We train the retrieval

models on each Caltech256 class separately by choos'igéferences

nt = 50 positive examples of the query category and

n~ = 255 negative examples obtained by sampling ONP1 A. Berg, J. Deng, and L. Fei-Fei. Large scale vi-
image from each of the other categories. We report the' g5/ recognition challenge, 2010.  http:/www.image-
precision on ranking a database of 6,400 images includ- net.org/challenges/LSVRC/201G.

ing n;,, = 25 true positives and,, = 6,375 distrac- 2] o, Chum, J. Philbin, and A. Zisserman. Near duplicate
tors obtained by choosing 25 examples from each of the  image detection: min-hash and tf-idf weighting. Fno-
other 255 classes. Tahleshows that our simple retrieval ceedings of the British Machine Vision Conferer2@08.
models applied to binary classeme vectors achieve accu- 1,2
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