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Abstract

All binaries compiled by recent versions of GCC from C++ programs include
complex data and dedicated code for exception handling support. The data
structures describe the call stack frame layout in the DWARF format byte-
code. The dedicated code includes an interpreter of this bytecode and logic
to implement the call stack unwinding.

Despite being present in a large class of programs – and therefore poten-
tially providing a huge attack surface – this mechanism is not widely known
or studied. Of particular interest to us is that the exception handling mech-
anism provides the means for fundamentally altering the flow of a program.
DWARF is designed specifically for calculating call frame addresses and reg-
ister values. DWARF expressions are Turing-complete and may calculate
register values based on any readable data in the address space of the pro-
cess. The exception handling data is in effect an embedded program residing
within every C++ process. This paper explores what can be accomplished
with control of the debugging information without modifying the program’s
text or data. We also examine the exception handling mechanism and argue
that it is rife for vulnerability finding, not least because the error states of
a program are often those least well tested. We demonstrate the capabilities
of this DWARF virtual machine and its suitableness for building a new type
of backdoor as well as other implications it has on security.
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Chapter 1

Introduction and Background

1.1 Introduction

This chapter offers a general overview of the ELF structure, its history of
use in exploitation, and an overview of our contributions. Those who wish to
jump into the technical details may wish to skip to Chapter 2. Historically,
exploitation mostly focused on the “main” computation performed by the
code of the target program and the libraries loaded into its process context
(for the sake of the argument, let us define this computation as the flow
described by the target program’s call graph). In ELF1 terms, it was the
contents of .text sections of executable and shared object files that received
the most attention (such as being scanned for vulnerabilities, trojan logic, or
“gadgets” to aid exploits).

However, a typical ELF process context is also constructed and main-
tained by a number of what we would call auxiliary computations, driven by
data and/or code from other, non-.text ELF sections. These computations
handle the special stages of the target process’ lifecycle, from creation and
initization, loading and relocation, to dynamic loading and linking in of re-
quired libraries and library functions (thus actually connecting the function-
level call graph), to exception handling (the focus of this paper) and process
dismantling. The sections involved include relocations sections *.rel*, dy-
namic symbol tables and other resources pointed to the directory that is the
.dynamic segment, the pairwise related .init, .fini and .ctors, .dtors

1Executable and Linkable Format
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sections, and so on.2

Whereas most of these auxiliary computations seem trivial, e.g., .init
and .fini merely iterate over the function pointer tables in .ctors and
.dtors, they may already present convenient interfaces for exploitation (e.g., [26,
17]). More complex auxiliary computation subsystems such as those respon-
sible for dynamic linking present much richer targets [7, 33, 22], allowing for
advanced techniques that co-opt the entire subsystem’s functionality, such as
the pioneering PaX non-executable memory emulation and address load ran-
domization bypass techniques [21], which, among other contributions, had
co-opted the dynamic linker itself for resolution of load-time randomized ad-
dresses!

Thus exploiting auxiliary computations — those not driven by the tar-
get’s .text sections — has a history, on which we will comment further in
Section 1.5.

We view expoitation uses of the auxiliary computations as facets of a sin-
gle general phenomenon, that of programming automata responsible for these
computations with data contained in the appropriate ELF sections. These
sections are interpreted by their respective automata, and, when filled with
crafted “program”, can leverage their computational power to accomplish a
lot more that intended by their original designers and programmers, all the
the while not necessarily breaking the intended semantics of the automaton’s
interpretation of the crafted section contents. Instead, the crafted program
is abusing the additonal flexibility that designers put into the automaton.

In this paper we continue this vein by demonstrating the use of the
DWARF-based exception handling mechanism — the most flexible such mech-
anism by design, ubiquitous in modern GCC-build environments — to host
a Turning-complete Trojan computation. Our Trojan “program” for the
DWARF exception handling “machine” is composed entirely of valid DWARF
virtual opcodes and contains no native x86 or other platform code.

One of these auxiliary computation mechanisms is the exception handling
mechanism. There are several reasons why attacking exception handling is
attractive. If a backdoor triggered only by exception handling is placed it
may be difficult to detect. Aside from being unexpected (since this novelty
will of course eventually wear off), it runs a very low risk of disrupting normal
program flow. If one chooses an exception which is triggered very rarely in

2Besides the classic .text, .data, .rodata, .bss and others, a modern ELF file may
include over 30 interrelated sections with semantically distinct functionality.
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normal program operation (and indeed, in a well-engineered program any
exception will fit that criterion), then there is very low risk of the backdoor
being triggered/revealed unintentionally. The triggering mechanism is also
already built in. When coming from the other side (i.e. not a backdoor but
a direct attack on running software) exception handling is attractive because
it is often not well tested. While good testing always tests the error states of
a program as well as the operational states, in actual practice the error states
are often tested only cursorily if at all since functionality is viewed as most
important and because unlike operational states, error states are not tested
upon every trial run of the software. Therefore, the likelihood of finding bugs
(some of them constituting vulnerabilities) within these regions of a program
is increased.

1.2 Contributions

We present a further step in the direction of utilizing the “auxiliary com-
putations” to accomplish unintended, potentially malicious goals, using the
arguably most powerful (in fact, Turing-complete) ubiquitous auxiliary en-
vironment to date, the DWARF exception handling mechanism.

In particular, we present a way of programming the DWARF exception-
handling virtual machine environment that comes with every modern GCC-
compiled exception-aware executable or shared objects files by way of pro-
viding it with crafted contents of the .eh frame and .gcc except table.

We show that these contents, originally meant to flexibly and extensibly
accommodate present and future stack unwinding and saved register restora-
tion logic, should be understood as powerful bytecode that allows execution
of generic computations that, among other things, can read the main pro-
cess memory, and in doing so make full use of the target’s dynamic symbol
information.

Moreover, the bytecode is in fact very efficient at representing such sym-
bolic memory operations, and allows us to pack much functionality into short
snippets of bytecode. For example, we can package our own self-contained
dynamic linker into less than 200 bytes, which easily fits within the typical
.eh frame section length, sparing us the effort of rebasing or relocating any
other sections.

We note that this mechanism

1. involves no native executable binary code, and therefore is easily portable

6



between systems using the same or binary compatible versions of the
standard exception handling libraries;

2. for the same reason, is unlikely to be checked by any current signature-
based HIDS systems;

3. is ubiquitous, since it occurs where ever GCC-compiled C/C++ code
or other exception-throwing code is supported;

4. can easily adapt to different versions of standard libraries, since the
prevalence of a few standard GNU/Linux distributions means that
there are only a handful of common builds, and the existing ones can
be tested by universally supported code prior to deploying the attack
payloads;

5. bypasses ASLR by using the system’s own facilities;

6. if combined with an appropriate memory corruption bug, can most
likely be made into a non-traditional exploit payload such as a shellcode
or better;

7. is unconstrained by the technical limitations of return-oriented-programming
(ROP) and similar techniques that depend on a careful chaining of mul-
tiple borrowed native code gadgets: once control is given to the crafted
DWARF “program” as a result of an exception, any values can be pre-
pared and any computation can be done entirely from the DWARF
virtual machine itself.

We have modified Katana, our existing academic ELF-manipulation tool
to allow us to demonstrate the techniques we discuss.

1.3 History and Prior Work

This section sketches the history of the native binary code’s changing role
in exploit programming, from straight shellcoding to “return-oriented” and
other code-borrowing techniques. It then describes the alternative approaches
that, unlike the latter, do not fragment the semantics of the target’s code
units but rather make use of computations afforded by these units in their
entirety, in effect acting as “programs” for the automata implemented by
these units, not far from the implementor’s original semantics.

7



For example, while ROP “gadgets” are selected from the target’s loaded
code — .text of a library, the target process, or OS kernel — without any
regard for the containing unit’s semantics other techniques like [21] or [28]
use original developer-intended granularity components of a loaded process
image specifically for the kind of computations they were meant to provide
(although not in the contexts they were meant for).

The readers already intimately familiar with these techniques are encour-
aged to skip to Section 2.

1.4 Exploitation at native binary code gran-

ularity

Historically, the prevailing notions of computer system exploitation tended to
revolve around its platform’s native binary code, at the granularity of single
binary or assembly instructions.

The hacker research community has long followed the paradigm of ap-
proaching exploitation as a kind of (macro) assembly programming [25, 10,
21, 24, 9] based on co-opting the binary code of the target through its (ex-
ploitable) bugs such as memory corruptions [19].

Whereas other kinds of exploitable bugs such as integer overflows, es-
cape character (mis)interpretation, Unicode parsing ambiguities, internal
command language injection (shell commands into CGI scripts, SQL injec-
tions, etc) are also recognized as valuable, the popular judgment of technical
supremacy is clearly given to exploits that deliver full programmatic control
of the target.

This degree of control tended to circle back to the ability to execute
the binary code of attacker’s choice. Intially, this binary code existed as
shellcode, an executable binary blob snuck into the target process’ address
space by means of crafted input, and placed in the path of the CPU’s control
flow in the context of the target process.3

Following the introduction of early non-executable memory countermea-
sures [32, 23] (i.e., prior to the adoption of the MMU-supported non-executable
(NX) bit page-level tagging by the CPU/MMU vendors), the focus of ex-

3Kernel exploits, such as network link layer driver exploits [2], display the same basic
approach, even though they must build on the kernel’s internal API or DDK when defined,
rather than on the well-specified system call or standard library APIs.
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ploitation research shifted to “borrowing” necessary executable code snip-
pets from the target’s own address space [29, 37], finally achieving academic
recognition as a general, Turing-complete technique through [27, 6, 14] and
subsequent developments.

Still, the emphasis of this direction is on programming with native binary
code at instruction granularity, whether injected or borrowed. In particular,
successful exploitation required knowledge of, access to, and building on long
chains of exact binary or assembly snippets. In contrast, if DWARF data
can be injected it can directly perform computation. Instead of a target
program being supplied with data to chain snippets of code painfully found
in the original program, only the environment to throw an exception must
be found in the target program once data injection is achieved.

1.5 Exploiting the auxiliary computations

However, side-by-side with instruction-granular techniques, another approach
has been developing. It recognized that large units of code — spanning mul-
tiple functions and/or system calls — already present in the target by the
original software engineering design could be used to perform computations
of interest to the attacker by merely manipulating the input data structures
to these units.4

This approach yielded rich results when applied to the omnipresent stan-
dard code that performed the auxiliary computations in the target process’
lifecycle. As those computations necessary to create, load, link, debug, han-
dle exceptions, and finally dismantle a process got progressively more com-
plicated with the progress of operating systems, compilers, and programming
environments — the number of ELF sections typically present in a binary
nearly doubled in the last decade — the subsystems that perfomed them got
both more powerful and better defined.

As a result, many of these subsystems, for example the relocation sub-
system mentioned below and the exception handling subsystem that is the
subject of this paper, developed into well-defined automata with the input

4Arguably, this description could apply to individual system calls as used by a classical
shellcode or to library calls chained by a sequence of crafted stack frames in the style
of [21], if one takes into account their decomposition into internal sub-units. However,
we attach significance to their authors’ idea of what constituted a natural functionality
decompositon and made these units “elementary” as opposed to larger “subsystems”.

9



data formats what amounted to their own distinct sets of virtual instructions.
These excellent software engineering developments have been noticed and

co-opted by the exploit developers. The target’s code functionality of these
automata could now be borrowed not just as a matter of opportunity or con-
venience orthogonal to their original purpose, but rather for their original,
intended function. This was in stark contrast to “return-into-lib” exploit
“gadgets” and other pieces of borrowed logic that accomplished a task con-
ducive to the exploitation such as a memory overwrite — say, as the mal-
loc implemmentation’s doubly-linked list patching code that manages the
allocated block list is commandeered to perform a memory overwrite in a
“double-free” exploitation scenario [4] — and offered superior reliability of
exploits and even the power to bypass protections like ASLR (e.g., [21, 10]).

1.6 LOCREATE: a case study in program-

ming the standard relocator.

A great – and pedagogically perfect in its clarity — example of using a
load-time auxiliary computation for a task traditionally performed by native
binary code is provided by the LOCREATE unpacker [28]. LOCREATE
uses the ELF process context’s own relocation mechanism as the unpacker,
driving it with crafted relocation sections. In effect, it treats the relocation
subsystem as a distinct memory-transforming automaton that happens to be
present in the target’s context, and drives the code transformation with a
crafted “program” for this automaton.

This method is in striking contrast to the traditional unpacking of in-
jected code (packed for inconspicuous transport to avoid NIDS and HIDS
signature detection), which has been traditionally handled by custom snip-
pets of native code (themselves prone to detection). Advanced target process
instrumentation techniques such as Ollybone [30] arose to catch the unpacked
code just after the unpacker was done with it, right at the point when the
unpacked code started executing.5 LOCREATE’s proof-of-concept unpack-
ing performed by the relocation subsystem following the supplied “relocation

5We regard Ollybone’s manipulation of the x86 hardware memory translation features
as a first example and a harbinger of smarter memory trapping to catch composite events,
in particular “page just written to was used to fetch executable code from”, expressing a
two-step trappable memory event composed from a temporal, sequential relationship of
elementary memory events “read, write, execute”.
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program” requires no injection of native executable code whatsoever to ac-
complish the task.
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Chapter 2

Technical Background

In order to understand both how the exception-handling process may be
controlled to engineer an exploit and the functionality of our tool Katana
it is necessary to understand how the C++ exception handling process as
implemented by GCC and as partially standardized by the Linux Standards
Base [1] and the x86 64 ABI [20]. All technical details are discussed with
regards to C++, GCC and Linux and with specific attention paid to the
x86 64 architecture. The concepts (and most of the details) apply equally
well to other processor architectures and to the BSDs, Solaris, and most
other Unix/Unix-like systems where GCC is used. In addition, the Clang
C++ compiler is known to be (nearly) fully binary compatible with GCC in-
cluding with largely undocumented GCC language/implementation-specific
exception handler tables, as can be seen in the LLVM source [16]. Further,
the exception-handling data formats and processes are not C++-specific.
All study in this work has been in the context of C++ but the same general
method is used for other gcc-compiled languages supporting exceptions.

2.1 Call Frame Information

One of the key tasks which must be undertaken during the exception han-
dling process is that of unwinding the stack so that the exception may be
handled by a handler higher up on the stack. Obviously one may walk the
call stack following return address pointers to find all call frames. This is
not sufficient for restoring execution, however, as it does not respect regis-
ter state. Callee-saved registers will not be restored in their normal manner

12



when the execution path of a procedure is interrupted by an exception. It is
therefore necessary that the information necessary to restore registers at the
time of an unexpected procedure termination (when an exception is thrown
from within the procedure) be somehow present at the time of exception
throwing/handling.

This is a problem already solved for debugging, as a debugger must do a
very similar task when displaying backtraces, allowing the operator to exam-
ine the local variables at various levels in the call stack, and son. Therefore,
the Call-Frame Information section of the DWARF (Debugging with At-
tributed Records Format) standard [11] has been adopted for encoding the
unwinding information necessary for exception handling with some minor
differences, particularly in the area of pointer encoding, which are for the
most part documented [20] [1]. It should be noted that the current version
of the DWARF standard at the time of this writing is version 4 and most
of the information in this paper is drawn from that version. GCC does not
in general check which version of DWARF a program was compiled against
unless necessary for resolving the layout of a structure or behaviour which
conflicts across standards. No checks are made when newer features are used.

Conceptually, what this unwinding information describes is a large table
which for every machine instruction in the program text (the rows) describes
how to restore the machine state at the previous call frame as if control were
to return up the stack from that instruction. The machine state (the columns
of this table) is comprised of registers and a Canonical Frame Address (CFA).
DWARF allows for an arbitrary number of registers, identified merely by
number. It is up to individual ABIs to define a mapping between DWARF
register numbers and the hardware registers. The DWARF registers are
not required to map to actual hardware registers, for example the return
address is encoded as a DWARF register but will not generally correspond
to a hardware register. Each cell of this table holds a rule detailing how the
contents of the register will be restored for the previous call frame. DWARF
allows for several types of rules and the curious reader is invited to find them
in the DWARF standard [11]. Most registers are restored either from another
register or from a memory location accessed at some offset from the CFA.
The CFA is an artificial construct (i.e. internal to the DWARF encoding and
interpretation) which expresses a canonical address for the call frame on the
stack. Most values relevant to the execution of a procedure can therefore be
found at some small offset from the CFA. An example (not taken directly
from a real program, but modeled after what may be found) of a portion of

13



this table is given in Figure 2.1.

PC (eip) CFA ebp ebx eax return addr.
0xf000f000 rsp+16 *(cfa-16) *(cfa-8)
0xf000f001 rsp+16 *(cfa-16) *(cfa-8)
0xf000f002 rbp+16 *(cfa-16) eax=edi *(cfa-8)

...
...

...
...

...
...

0xf000f00a rbp+16 *(cfa-16) *(cfa-24) eax=edi *(cfa-8)

Figure 2.1: Example Conceptual Unwinding Table

We note that this table if constructed in its entirety would be absurdly
large. It would be considerably larger than the text of the program it-
self. There are, however, many empty cells and many duplicated entries in
columns. Much of the DWARF call frame information standard is essentially
a compression technique so that sufficient information may be provided to,
at runtime, build parts of the table as needed without the full, prohibitively
large, table ever being built or stored. This compression is performed by
introducing the concept of Frame Description Entities (FDEs) and DWARF
instructions. An FDE corresponds to a logical block of program text (often
a procedure although there is no requirement on this) and describes how
unwinding may be done from within that procedure. To conserve space, in-
formation common to many FDE’s is separated into a Common Information
Entity (CIE) which holds many of the bookkeeping details. The precise de-
tails of the CIE and FDE structures may be found in the DWARF standard.
The version of the CIE structure used for .eh frame derives from DWARF
versions 2 and 3 and does not include new fields added to the structure in
DWARF version 4. A diagrammatic view of CIE and FDE structure is shown
in Appendix A. Each FDE contains a series of DWARF instructions. There
are two major types of instructions. The first specifies one of the column
rules (registers) as from our table above. This rule applies to all cells in that
column from the current location to the end of the procedure unless a differ-
ent rule is specified for the same column/register later in the sequence. The
current location on which these instructions acts begins at the first program
text location described by the FDE. The second type of DWARF instruction,
location instructions, advances or moves the current location to which the
rule instructions apply. In this manner the entire table can be specified in a
much smaller form.

14



2.2 DWARF Expressions

As noted earlier, most of the register rules specify the restoration of a register
from another register or from a location on the stack (relative to the CFA).
DWARF was not designed for any particular hardware or software platform,
however, and there was a very conscious effort to be as flexible as possible.
Its designers could not anticipate all ways in which the values of registers
were to be restored. Therefore, DWARF version 3 introduced the concept of
DWARF expressions (they were present to a much lesser degree in DWARF
version 2) which have their own set of instructions. A register may be re-
stored as the result of a DWARF expression. A DWARF expression consists
of DWARF expression operations (instructions). These operations are eval-
uated on a stack-machine Most instructions operate on the top items on the
stack. While the DWARF standard does not specify the data format of stack
items, GCC implements them as architecture word-sized objects. All of the
basic operations necessary for numerical computation are provided: push-
ing constant values onto the stack, arithmetic operations, bitwise operations,
and stack manipulation. In addition, DWARF expressions provide instruc-
tions for dereferencing memory addresses and obtaining the values held in
registers (DWARF registers calculated as part of the unwind process so far,
not necessarily machine registers). This allows registers to be restored from
memory locations and registers with additional arithmetic applied. This is a
fairly straightforward extension of the simpler register rules provided (with
the important difference that memory dereferences may be done on abso-
lute rather than stack-relative addresses). To truly allow register restoration
from arbitrarily computed values, however, DWARF expressions include con-
ditional operations and a conditional branch instruction. Due to this extreme
flexibility, there is a complete mostly unseen machine capable of arbitrary
computation residing in the address space of every GCC-compiled C++ pro-
gram or program linking C++ code. As an example, if a char* string may
be found on the stack as the first local variable below the base pointer, the
DWARF expression given in Listing 2.1 finds the length of that string and
returns it as the result of the expression. A complete explanation of all of
the instructions used can be found in the DWARF standard [11].
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Listing 2.1: DWARF strlen expression

#value at -0x8(%rbp) on stack

DW_OP_breg6 -8

DW_OP_lit0 #initial strlen

DW_OP_swap

DW_OP_dup

#loop begins here

DW_OP_deref_size 1

#branch if top of stack nonzero

DW_OP_bra 3 #forward 3 bytes

DW_OP_skip 8 #skip to the end

#increment the counted length

DW_OP_swap

DW_OP_lit1

DW_OP_plus

DW_OP_over

#add length to char pointer

DW_OP_plus

DW_OP_skip -16 #back 16 bytes

#finally put the character

#count on the top of the stack

#as return value

DW_OP_swap

2.3 Exception Handlers

We have observed how the unwinding of stack frames and the accompanying
register restoration is performed. It is also necessary to understand how ex-
ception handler (catch blocks in C++ terminology) information is encoded.
DWARF is designed as a debugging format where the debugger will be in
control of how far to unwind the stack. It therefore does not provide any
mechanism for encoding what sort of conditions stop the unwinding process.
What it does provide is the means for augmentation. Every CIE includes
an augmentation string, the contents of which are implementation defined.
It is designed to allow a DWARF producer (software creating the DWARF
information) to communicate to a DWARF consumer (software reading the
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DWARF information) which of a set of previously agreed upon augmenta-
tions to the CIE and FDE structures are being used. The augmentations to
be used on Linux and x86 64 are well-defined by the respective standards [1]
[20]. The defined augmentations allow a language-specific data area (LSDA)
and personality routine to be associated with every FDE. Both of these pieces
of information are specified as pointers (which may be relative or absolute).
When unwinding an FDE, the exception handling process is required to call
the personality routine associated with the FDE. The personality routine will
interpret the LSDA and determine if a handler for the exception has been
found. The actual contents of the LSDA are not defined by any standard.
Standardization is viewed as not necessary because the structure that is stan-
dardized allows portions of a program written in two different languages with
different information that needs to be encoded about exception handlers to
coexist and to even pass exceptions between each-other (to a certain degree).
The language-specific portions are handled be separate personality routines
for the two modules.

The result of this is that the encoding of where exception handlers are
located and what type of exceptions they handle is mostly non-standardized
and non-documented. What scanty documentation there is not codified in
official sources but is only to be found on the gcc mailing lists in posts such
as these [36],[31]. These link to an old Hewlett-Packard document [13] which
describes the format in fair detail, except it is either wrong or outdated as
practical experimentation will show. The best known source of information
on the format used by GCC is the assembly code generated by GCC with the
flags -fverbose-asm -dA. In an ELF binary, the section .gcc except table

contains an array of LSDAs (not ordered in any particular manner, as they are
reached from the LSDA pointers in augmented FDEs). Essentially, an LSDA
breaks the text region described by the corresponding FDE into call sites.
Call sites corresponding to code within a try block (to use C++ terminology)
each have a pointer to a chain of C++ typeinfo descriptors. These objects are
used by the personality routine to determine whether the thrown exception
can be handled by the handler in the current frame. A diagram of LSDA
structure can be found in Appendix B.
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2.4 Exception Process

Finally, once an understanding of the data driving the exception handling
process has been gained, it is important to understand the code path taken
during the throwing of an exception. This path is shown in Figure 2.2

User Code throws

__cxa_allocate_exception
in libstdc++

__cxa_throw
in libstdc++

User Code 
 catch block

bookkeeping

handler body

bookkeeping

execution continues

__cxa_begin_catch
in libstdc++

__cxa_end_catch
in libstdc++

_Unwind_RaiseException
in libgcc

unwind one frame

call personality routine

if no handler, loop

return into handler

__gxx_personality_v0
in libstdc++

read language specific data

Figure 2.2: C++ Exception Code Flow

The most important facet is that libgcc computes the machine state as
a result of the unwinding, directly restores the necessary registers, and then
returns into the handler code. We note that at least in current (4.5.2) GCC
implementations, this means that at the time execution is first returned to
the handler code, the data from which the registers were restored will still
be present below the stack pointer until it is overwritten. The handler code
is known as the landing-pad

With this knowledge, the only barrier to building something interesting
with DWARF is the lack of tools to work with it.
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Chapter 3

Katana and Dwarfscript

DWARF is chiefly the province of compiler and debugger authors. There
are several tools which allow one to examine the DWARF frame information
contained within an ELF binary. Known to the authors are readelf, objdump
(which uses the same libbfd used by gdb), and dwarfdump [3]. There are,
however, no known tools which allow manipulation of DWARF structures at
a high level. The author of dwarfdump and libdwarf is known to be working
on a DWARF generation tool which will support, among others, a text input
mode, but as of this writing he has not made available any code supporting
creating DWARF objects from a textual representation. A high-level way
of manipulating call frame and exception handler information is essential
to examining the security implications of DWARF and demonstrating the
consequences of an adversary gaining control of this information.

To bridge this gap, we present katana, a tool for ELF and DWARF ma-
nipulation, and Dwarfscript, a language for expressing call frame unwinding
information and the corresponding exception handler information. Katana as
an ELF and DWARF manipulation tool was first developed at Dartmouth
College for hotpatching research [5]. The underlying binary manipulation
framework was flexible enough that we were able to readily add additional
exception-handling related features to it and improve its existing handling
of DWARF. Katana provides an easy-to-use tool with a shell-like interface
capable of emitting the Dwarfscript representation of an ELF binary. A user
may modify the Dwarfscript and then use Katana to assemble it into its
binary form which can be reinserted into the executable by Katana. This al-
lows sufficient power to experiment with the consequences of carefully crafted
DWARF instructions.
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Katana is built on libelf[8] and libdwarf[3]. libelf was chosen instead
of the GNU BFD because while the latter offers more features libelf allows
very simple, bare, access to the underlying ELF structures and thus its use
did not constrain the design of Katana, it merely saved labor. libdwarf

is used when parsing binary DWARF sections. The generation of binary
DWARF data is implemented natively in Katana to allow the necessary level
of control and because libdwarf is more intended for dealing with debugging
information and not designed to cope well with generating .eh frame.

3.1 Katana Shell

Programming any automaton such as the DWARF virtual machine requires a
reasonable toolchain. To aid our experimentation, it was necessary to develop
two languages. The first of these is the Katana shellscript. This turns Katana
into a command interpreter/shell in the spirit of Elfsh [18]. The Katana shell
has not been designed to be full-featured. It is expanded as necessary for the
authors research efforts, and feature requests or suggestions are welcome. It
is a simple command interpreter and does not currently support any form
of control flow. It supports dynamically typed variables and a small set of
commands. The types of variables are as follows:

• strings

• integers

• raw data

• ELF objects

• ELF sections

• arrays

The current command-set is as follows. Some commands have return
values which can be assigned to variables by the code $VARNAME=CMD

• load FILENAME

Loads data from FILENAME. If it can be interpreted as an ELF object
it is. Otherwise it is interpreted as a raw data object. The return value
of the command is this object.
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• save OBJECT FILENAME

If OBJECT is an ELF object, it is finalized (necessary section headers
computed, etc) and saved to FILENAME on disk. If the object is raw
data it is simply written byte-for-byte to FILENAME

• info eh OBJECT

Prints information about the low-level exception handling structures
for the ELF object OBJECT.

• hash elf STRING

Prints the elf hash (as defined in [34]) for the given STRING.

• dwarfscript emit [SECTION NAME] ELF FILENAME Prints the Dwarf-
script representation of the .eh frame section from the given ELF ob-
ject and saves it to FILENAME. Optionally, a different SECTION NAME
can be used instead of .eh frame.

• dwarfscript compile FILENAME Compiles the Dwarfscript file referred
to by FILENAME into raw ELF binary sections. Returns an ar-
ray containing ELF sections for, in order, .eh frame, .eh frame hdr,
.gcc except table.

3.2 Dwarfscript

The goal of Dwarfscript is to provide a reasonably easy means for a human to
quickly make sense of the exception handling data in an ELF binary and to
modify it without having to painstakingly rearrange the underlying binary
structure with a hex editor. Dwarfscript attempts to encode all informa-
tion found in the ELF sections .eh frame/.eh frame hdr, which contain
the DWARF unwinding information, and in .gcc except table, which con-
tains the exception handler information. While it should be perfectly capable
of representing DWARF-standard compliant debugging information as well,
its focus is on supporting all exception handling information used by GCC.

Dwarfscript is to assembly as binary exception handling data is to ma-
chine code. Dwarfscript does not attempt to provide any high-level abstrac-
tions over the exception handling data but rather to present it in a form faith-
ful to its binary structure but allowing easy readability and modification. It
is a cross between a data-description language (representing the CIE, FDE,
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and LSDA structures in a textual form) and an assembly language (repre-
senting DWARF instructions and expressions as an ASCII-based language).
In all cases, care has been taken to follow the structure of the DWARF data
as specified in the DWARF standard [11]. The lack of any high-level con-
structs is deliberate. Dwarfscript allows the manipulator direct control over
the data structures involved. The sample of a DWARF expression shown in
Listing 2.1 is a valid part of a Dwarfscript file. It is beyond the scope here
to show a complete Dwarfscript file but samples may be found in the distri-
bution of Katana and formal grammar is given in Appendix C. Familiarity
with the DWARF standard should allow one to understand Dwarfscript, as
the goal is to provide a textual representation of what would otherwise be
encoded in a compact binary format.

To work with Dwarfscript, one is expected to use Katana to emit the
Dwarfscript for the binary which is being modified. One can then edit this
Dwarfscript with the changes necessary to fulfill the goal. Katana can then
be used to compile the modified Dwarfscript into binary form (the standard
DWARF representation) and insert it into the executable binary. To facil-
itate editing, the Katana distribution contains an Emacs major-mode for
Dwarfscript.

The ability to extract information from a binary executable, modify the
information, and insert it back into the binary is not a common one and it
makes Katana quite powerful for experimenting with binary-level changes to
a program.

22



Chapter 4

Anatomy of a DWARF Trojan

What might an adversary be able to do with control of the exception handling
information? In the most näıve case even without complicated DWARF
expressions we could redirect the flow to skip a frame when unwinding (if
we know the size of the frame on the stack). One of the simplest-possible
DWARF expressions allows us to simply set a register to a constant address.
Using this means we can redirect any function in our target binary to “return”
to any other function in our binary. By manipulating .gcc except table

we can ensure that there is always a landing pad where we would like it.
To demonstrate the power of controlling the exception handling informa-

tion, we discuss how the ELF binary for a simple program can be modified
to yield a shell when an exception is thrown. Our example program merely
takes input from stdin and prints a response based on the user input. The
function of the program is not relevant to our purposes. What is relevant is
that if the program receives an input string it is not expecting it throws an
exception (the type of the exception is irrelevant here). This program, while
perhaps not very interesting, certainly does nothing that would be considered
dangerous. An examination of its symbol table reveals that it does not link
any of the exec family of functions.

We modify the ELF binary for this program in such a way that it will
yield a bash shell. An examination of the modified binary will not show any
differences in the text or any other section which is interpreted as machine
instructions or directly affects the linking of machine instructions. Especially,
we do not modify the sections .text, .plt, .got, .dtors, .dynamic. These
sections have long been known as reasonably easy ways to insert backdoors.
Modifications are made only to the following ELF sections: .eh frame,
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.eh frame hdr, .gcc except table.
A dynamic linker is built as a DWARF expression which locates the sym-

bol execvpe in libc. An offset is added to this address so that control will
be transferred to specific suitable instructions within the function because
of the difficulty of controlling parameter passing on x86 64 as discussed in
Section 5.1. The specific point that code will be transferred to in the version
and build of libc targeted (Arch Linux glibc 2.13-1) is shown in Listing 4.1.

Listing 4.1: Gadget in libc

mov %r12 ,%rdx

mov %rbx ,%rsi

mov %r14 ,%rdi

callq a4eb0 <execve >

The FDE for the function in which the exception is thrown is modified so
that one of the registers is set to the result of the dynamic-linking DWARF
expression. As seen in Listing 4.1 we are setting up arguments and then call-
ing execve. The call we want to effectively make is execve("/bin/bash",

"/bin/bash","-p",NULL,NULL). For alignment reasons, GCC typically leaves
extra padding space after .gcc except table both in-memory and in the
ELF file. Therefore, we have a little extra room to insert some data (which we
will know the address of) after the actual LSDA data in .gcc except table.
We therefore insert the data for these execve parameters here. We then set
up the appropriate registers in Dwarfscript as shown in Listing 4.2. Obvi-
ously all addresses are specific to where the parameter data was inserted.
The DWARF register number of rbx on x86 64 is 3.

There is one significant problem remaining to be solved: we must some-
how transfer execution to the place in libc we have picked. We can modify the
LSDA data in .gcc except table to control where libgcc/libstdc++ thinks
handlers are located, but we cannot trivially pretend a handler exists in libc
since we do not even know where the library will be loaded (assuming some
form of library load ASLR). The solution is to use a classic return-to-libc
attack. We take advantage of the fact that the values computed by DWARF
will be temporarily placed on the stack in order to be transferred to registers
immediately upon return to the handler. We therefore set the stack pointer
to just below the location of the computed address in libc on the stack. This
does introduce a dependency on particular libgcc/libstdc++ versions for the
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Listing 4.2: Dwarfscript execve argument setup

DW_CFA_val_expression r14

begin EXPRESSION

#set to address of /bin/bash

DW_OP_constu 0x400f2c

end EXPRESSION

DW_CFA_val_expression r3

begin EXPRESSION

#set to address of address of string

#array {"/bin/bash","-p",NULL}

DW_OP_constu 0x400f3a

end EXPRESSION

DW_CFA_val_expression r12

begin EXPRESSION

#set to NULL pointer

DW_OP_constu 0

end EXPRESSION

amount of stack space used in handling the exception to be known. One mit-
igation to this dependency would be to use a DWARF expression to search
a small area of the stack for known values which could be used to determine
an offset. We set the stack pointer (DWARF register 7 on x86 64) to be a
constant offset from the base pointer (DWARF register 6) at the time the
exception is thrown as shown in Listing 4.3. We then simply modify the
landing pad in the LSDA to point to a return instruction anywhere in the
binary being modified. libgcc will transfer control to that return instruction
which will return to libc and the process will become a shell.

Listing 4.3: Dwarfscript stack pointer setup

DW_CFA_val_expression r7

begin EXPRESSION

DW_OP_breg6 -96

end EXPRESSION
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4.1 Building a Dynamic Linker in DWARF

Given the general-purpose computational abilities of DWARF expressions
it should not be startling that we were able to build a dynamic linker in
DWARF. It demonstrates the power of DWARF used in exploits, however and
shows another way that address-space layout randomization (ASLR) can be
defeated. The only assumptions made are that the .dynamic section will not
be moved by the loader and that the order that shared libraries are loaded will
be the order that they are listed in .dynamic. This second assumption is not
crucial and the dynamic linker code could easily have been slightly expanded
to search for the libc linkmap entry. It is important to note that our DWARF
dynamic linker does not simply call the standard linker in ld.so. It traverses
the linkmap, hash-table and chain structures directly and thus is not affected
by any protections built into the standard linker, such as protection against
calling dlsym from arbitrary locations. It serves no purpose do discuss the
precise details of a dynamic linker here: it is well documented elsewhere [34,
15], and ours is not substantially different in structure. Writing a dynamic
linker in DWARF is similar to writing a dynamic linker in assembly except
that there are no registers available: there is only a stack instead. A brief
outline of the procedure is shown in Listing 4.4 to highlight what sorts of
operations DWARF expressions are capable of. Those interested in the actual
DWARF code are invited to contact the authors directly, and it will soon be
made available in the Katana distribution.

4.2 Combining with Traditional Exploits

What we have concretely demonstrated so far is a trojan technique. The
potential of DWARF-based exploits extends beyond this, however. If we
have a means of overwriting exception handling data or otherwise making
data we control to be interpreted as exception handling data, DWARF can
be used in the construction of an exploit delivered at runtime (rather than a
trojan).

Hypothetically, a data-injection exploit which may be unable to insert
directly executable code could be used to inject DWARF bytecode which
will be executed when an exception is thrown. If done, this would aid in
circumventing non-executable stacks and heaps and may be an alternative
to return-oriented programming requiring less careful piecework construc-
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Listing 4.4: Dwarfscript Dynamic Linker Pseudocode

dereference DT_PLTGOT +8

top of stack contains a link_map*

while top of stack is not libc linkmap

top of stack=linkmap ->l_next

top of stack=linkmap ->l_addr

find DT_HASH , DT_STRTAB , DT_SYMTAB

index into hashtable by "execvpe" hash

while execvpe symbol not found

compare symbol name and "execvpe"

if not equal

symbol found=next in chain

get st_value from symbol

add offset to desired entry point

tion and with fewer known detection/mitigation techniques. If this is to be
achieved, however, there must be some way to either overwrite .eh frame or
to fool the exception handling mechanism into reading data supplied by an
attacker instead of the original .eh frame.

There exist many C++ libraries in the wild with .eh frame sections
which are loaded read-write. Until 2002 all .eh frame sections were read-
write. In 2002 GCC began emitting read-only .eh frame sections unless
relocations were necessary for .eh frame [12]. This meant that most PIC
code (i.e. libraries) still required writable .eh frame. Modern versions of
GCC are now capable of emitting .eh frame sections that do not require re-
location even in PIC code, but on up-to-date distributions it is still possible to
find libraries with writable .eh frame sections, notably several distributions
of the JVM. This is an avenue down which our future work will travel.

It would be even more beneficial to insert an alternate .eh frame, since as
time progresses finding binaries with writable exception handling information
will become increasingly uncommon, and even at present only a fairly small
set of programs will be vulnerable to .eh frame overwriting. libgcc locates
the .eh frame section through use of the GNU EH FRAME program header,
which points to .eh frame hdr, which in turn points to .eh frame. There-
fore, this program header controls where the DWARF data is read from.
Overwriting program headers at runtime is not generally feasible. libgcc

27



obtains this program header through the function dl iterate phdr which is
located in libld. Again, not an easy target. libgcc caches program headers,
however, in the variable frame hdr cache, which is static to its compilation
unit. As this is a static variable its symbol is not exported, and thus its
precise location will depend on the build. While libgcc exports no symbols,
after an exception returns there will be text addresses within libgcc on the
invalid portion of the stack, some up to nearly 1k below the stack pointer.
It is likely possible to correlate these addresses with the data address of the
header cache. We have confirmed that overwriting this header cache can
allow the interpretation of arbitrary data as .eh frame. Fully weaponizing
this into a workable exploit remains as future work.
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Chapter 5

Limitations and Workarounds

There are several limits which anyone attempting to use the DWARF virtual
machine for arbitrary computation will encounter.

5.1 Registers and Parameter Passing

First, it is important to note that not all machine registers may be restored
during stack unwinding. The hardware ABI will define some set of regis-
ters which are callee-saved and some set which are not guaranteed to be
saved. It is reasonable to assume that the unwinding implementation will
restore all callee-saved registers as specified in the DWARF instructions. We
have determined, both empirically and through examination of the GCC
source code, that at least on the x86 64 platform, the values assigned to cer-
tain registers through DWARF will be ignored when restoring the call frame
to return into. Some of the non callee-saved registers are used for specific
exception-handling purposes (i.e. on x86 64 , rdx is used to store an iden-
tifier for the type of exception thrown) and some appear simply not to be
restored to any value. This presents a problem on architectures like x86 64
where registers are used for passing function parameters. The authors of a
backdoor would like to be able to return execution to the beginning of some
interesting function (such as execv in libc) and pass it crafted arguments.
The x86 64 registers used for argument passing (rdi, rsi, rdx, rcx, r8, r9)
cannot be restored, however, making this impossible. It therefore becomes
necessary to return to a point inside the target function which makes use of
registers that can be controlled. If the target function resides in a library this
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can make it difficult for an exploit to be portable across multiple versions
or even builds of the library. This problem can be mitigated to some degree
if it is possible to find a suitable landing pad in the binary being modified
which calls a function pointer. If the address of the library function can be
called as the function pointer then dependence on the precise build of library
functions will be reduced. This problem is also lessened on architectures such
as 32-bit x86 which primarily use the stack rather than registers for argu-
ment passing. Another workaround for this difficulty is to code the exploit
for several versions/builds. As long as it is possible to make a value appear
on the target’s stack (this can be in innocuous means, such as expected user
input) this value can be searched for the DWARF program and used as a
parameter, allowing the code path taken to be adjusted when the attack is
triggered rather than merely at the time of injection.

5.2 No Side Effects

Through control of the stack and base pointers, a DWARF program can to
some degree control the contents of the stack when execution is resumed.
DWARF instructions/expressions do not, however, have the ability to di-
rectly modify memory or push anything onto the stack therefore it can be
difficult to make the code at the landing pad access values on the stack
that were calculated by the DWARF expression. One workaround to this
is to exploit the fact that values computed for machine registers will still
be in memory (at least until overwritten by new stack frames) as they are
computed in memory and then transferred into the correct registers. The
DWARF program can set the stack or base pointer to point to the correct
region of memory. There are two limitations to this technique. The first
is that the appropriate location where the computed values will be found is
highly dependent on the precise stack layout and thus varies between versions
and builds of libgcc and libstdc++. The second limitation is that there is of
course limited contiguous stack space that can be controlled, limited by the
number of restored registers and how they are laid out in memory.
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5.3 DWARF Machine Implementation

Obviously the implementation of the DWARF virtual machine has some ef-
fect upon what sort of computations can be performed. The current (gcc
4.5.2) implementation in libgcc allows the DWARF stack to grow only to a
size of 64 words [12]. The DWARF standard does not specify the maximum
size of the stack and there does not appear to be a reasoned processes be-
hind this number, rather it appears to have been arbitrarily chosen as a size
which should be large enough for any DWARF program gcc would expect
to be necessary. While this limit should be kept in mind when writing a
DWARF program it does not seriously hamper the creation of interesting
DWARF programs. As discussed in Section 4.1, a dynamic linker can be
programmed in DWARF using only 16 words on the stack.

5.4 Limited .eh frame space

When modifying an ELF binary, we cannot count on the presence of full
relocation information as GCC/ld does not by default emit relocatable ELF
objects. Therefore, we definitely cannot count on being able to expand
.eh frame and we would like to avoid moving it as well. Therefore, we
must be careful that DWARF programs and other modifications to FDE,
CIE, and LSDA structure do not require expanding the size of .eh frame.
This limitation can be fairly easily overcome, however. GCC does not at-
tempt to perform any static analysis to determine whether the call frame for
a given function will ever be unwound during exception handling. .eh frame

will even be generated for C compilation units despite the fact that C does
not support exception handling. The reason for this is that it allows excep-
tions to propagate seamlessly across areas of code which do not know how
to deal with them. Human analysis of the program being modified, however,
should yield insight into finding FDEs corresponding to functions which will
never need to be unwound. In Dwarfscript, these FDEs can simply be re-
moved from the script file, making available more room for lengthy DWARF
expressions. The dynamic linker referenced earlier and discussed in Section
4.1 requires less than 200 bytes of space for its instructions.
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5.5 Debugging

There are presently no tools available to debug DWARF programs. Rudi-
mentary debugging can be achieved by stepping through the execution of
the DWARF virtual machine in libgcc with a debugger. DWARF debugging
support is a planned feature for Katana.
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Chapter 6

Conclusion

We have demonstrated how the hitherto largely unexplored DWARF-format
exception handling information used on a wide-variety of Unix and Unix-like
platforms can be used to control the flow of execution. This has several ad-
vantages over traditional backdoors and over return-oriented-programming.
Advantages of our technique include the following

• Turing-complete environment.

• ASLR defeating.

• Less likely to be detected by traditional executable-content scanners.

• Built-in trigger mechanism (the attack can lie dormant until an excep-
tion is thrown).

• Fewer carefully chained gadgets required in the target program than in
return-oriented-programming therefore less analysis and time may be
necessary to develop an attack.

• Does not rely on bugs. Our DWARF programs leverage existing mech-
anisms as an extension of their intended purpose and do not rely on
implementation bugs and outright security holes but on deliberately
made behavior and mechanisms.

Notably, DWARF expressions can read registers and process memory, and,
as we have shown, they are suitable for writing a fully functional dynamic
linker.
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We stress the security risks associated with powerful computational envi-
ronments added in unexpected places. While being a sterling example of ex-
tensible software engineering and introducing a conceptually graceful method
of handling complex datastructures of previously unprecedented complexity,
this DWARF subsystem also far exceeds expectations of most developers and
defenders regarding the computations it is capable of performing.

This may lead defenders to underestimate the risks posed by such envi-
ronments, and miss a number of possible attack vectors.

Finally, we release Katana as a tool to painlessly create and experiment
with the sort of crafted DWARF programs we have discussed, so that inter-
ested researchers can further explore the relevant attack surface.

6.1 Availability

Katana is available under the GNU General Public License and may be found
at http://katana.nongnu.org/.
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Appendix A

CIE and FDE Structure Inside
.eh frame

CIE

length

CIE_id

version

augmentation (string)

address_size

segment_size

code_alignment_factor

data_alignment_factor

return_address_register

initial_instructions

padding

FDE

length

CIE_pointer

initial_location

address_range

LSDA pointer

instructions

padding
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Appendix B

.gcc except table Layout

Header

Call Site Table

Action Table

Type Table

LPStart encoding

LPStart

TType format

TTBase

Call Site format

Call Site table size

Call Site Record 0

Call Site Record 1

...

Call Site Record n

action 0

action 1

...

action n

typeid 0

typeid 1

...

typeid n

call site position

call site length

landing pad position

first action

type filter

offset to next action

LSDA 0

LSDA 1

...

LSDA n

a collection of 
language-specific 
data areas (LSDAs)

LSDA
gcc_except_table

Arrows indicate
expansion for a closer
look
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Appendix C

Dwarfscript Grammar

<dwarfscript> → <top property stmt list> <section list>

<section list> → <section list> <fde section>
| <section list> <cie section>
| <section list> <lsda section>
| ε

<fde section>→ begin fde<fde property stmt list> <instruction section>
<fde property stmt list> end fde

<cie section>→ begin cie <cie property stmt list> <instruction section>
<cie property stmt list> end cie

<instruction section>→ begin instructions <instruction stmt list>
end instructions

<expression section> → begin dwarf expr <expr stmt list>
end dwarf expr

<lsda section> → begin lsda <lsda part list> end lsda

<call site section>→ begin call site<call site property stmt list>
end call site
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<action section> → begin action <action property stmt list>
end action

<top property stmt list>→<top property stmt list><top property stmt>

<fde property stmt list>→<fde property stmt list><fde property stmt>

<cie property stmt list>→<cie property stmt list><cie property stmt>

<instruction stmt list>→<instruction stmt list><instruction stmt>
| ε

<expr stmt list> → <expr stmt list> <expr stmt>
| <expr stmt list> <label>
| ε

<lsda part list> → <lsda part list> <lsda part>
| ε

<call site property stmt list> → <call site property stmt list>
<call site property stmt>
| ε

<action property stmt list>→<action property stmt list><action property stmt>
|ε

<top property stmt> → <section type prop>
|<section location prop>
|<eh hdr location prop>
|<except table addr prop>

<cie property stmt> → <index prop>
|<length prop>
|<version prop>
| <augmentation prop>
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|<fde ptr enc prop>
| <fde lsda ptr enc prop>
|<personality ptr enc prop>
| <personality prop>
|<address size prop>
| <segment size prop>
|<data align prop>
| <code align prop>
| <return addr rule prop>

fde property stmt →<index prop>
| <length prop>
| <cie index prop>
| <initial location prop>
| <address range prop>
| <lsda idx prop>

<lsda part> → <lsda property stmt>
| <call site section>
| <action section>

<lsda property stmt> → <lpstart prop>
| <typeinfo enc prop>
| <typeinfo prop>

<call site property stmt> → <position prop>
| <length prop>
| <landing pad prop>
| <has action prop>
| <first action prop>

<action property stmt> → <type idx prop>
|<next prop>

<index prop> → index : <nonneg int lit>
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<length prop> → length : <nonneg int lit>

<cie index prop> → cie index : <nonneg int lit>

<initial location prop> → initial location : <nonneg int lit>

<address range prop> → address range : <nonneg int lit>

<version prop> → version : <nonneg int lit>

<fde ptr enc prop> → fde ptr enc : <dw pe lit>

<fde lsda ptr enc prop> → fde lsda ptr enc : <dw pe lit>

<personality ptr enc prop>→ personality ptr enc : <dw pe lit>

<personality prop> → personality : <nonneg int lit>

<address size prop> → address size : <nonneg int lit>

<segment size prop> → segment size : <nonneg int lit>

<data align prop> → data align : <int lit>

<code align prop> → code align : <nonneg int lit>

<return addr rule prop>→ ret addr rule : <nonneg int lit>

<section type prop> → section type : <string lit>

<section location prop> → section loc : <nonneg int lit>
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<eh hdr location prop> → eh hdr loc : <nonneg int lit>

<except table addr prop>→ except table addr : <nonneg int lit>

<lpstart prop> → lpstart : <nonneg int lit>

<typeinfo enc prop> → typeinfo enc : <dw pe lit>

<typeinfo prop> → typeinfo : <nonneg int lit>

<position prop> → position : <nonneg int lit>

<landing pad prop> → landing pad : <nonneg int lit>

<has action prop> → has action : <bool lit>

<first action prop> → first action : <nonneg int lit>

<type idx prop> → type idx : <nonneg int lit>

<next prop> → next : <nonneg int lit>
| next : none

<lsda idx prop> → lsda idx : <nonneg int lit>

<int lit> → <digits>
| - <digits>

<digits> → /[0-9]+/

<register lit> → r <digits>

<nonneg int lit> → <digits>
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<bool lit> → true
|false

<dw pe lit> → <dw pe lit> , <dw pe lit>
| DW EH PE absptr
| DW EH PE uleb128
| DW EH PE udata2
| DW EH PE udata4
| DW EH PE udata8
| DW EH PE sleb128
| DW EH PE sdata2
| DW EH PE sdata4
| DW EH PE sdata8
| DW EH PE pcrel
| DW EH PE textrel
| DW EH PE datarel
| DW EH PE funcrel
| DW EH PE aligned
| DW EH PE indirect
| DW EH PE omit

<instruction stmt> → <dw cfa set loc>
| <dw cfa advance loc>
| <dw cfa advance loc1>
| <dw cfa advance loc2>
| <dw cfa advance loc4>
| <dw cfa offset>
| <dw cfa offset extended>
| <dw cfa offset extended sf>
| <dw cfa restore>
| <dw cfa restore extended>
| DW CFA nop
| <dw cfa undefined>
| <dw cfa same value>
| <dw cfa register>
| <dw cfa remember state>
| <dw cfa restore state>
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| <dw cfa def cfa>
| <dw cfa def cfa sf>
| <dw cfa def cfa register>
| <dw cfa def cfa offset>
| <dw cfa def cfa offset sf>
| <dw cfa def cfa expression>
| <dw cfa expression>
| <dw cfa val offset>
| <dw cfa val offset sf>
| <dw cfa val expression>

<dw cfa set loc> → DW CFA set loc <nonneg int lit>

<dw cfa advance loc>→DW CFA advance loc <nonneg int lit>

<dw cfa advance loc1>→DW CFA advance loc1 <nonneg int lit>

<dw cfa advance loc2>→DW CFA advance loc2 <nonneg int lit>

<dw cfa advance loc4>→DW CFA advance loc4 <nonneg int lit>

<dw cfa offset>→DW CFA offset <register lit><nonneg int lit>

<dw cfa offset extended>→DW CFA offset extended <register lit>
<nonneg int lit>

<dw cfa offset extended sf> → DW CFA offset extended sf
<register lit> <int lit>

<dw cfa val offset>→DW CFA val offset <register lit> <nonneg int lit>

<dw cfa val offset sf>→DW CFA val offset sf <register lit>
<int lit>
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<dw cfa restore> → DW CFA restore <register lit>

<dw cfa restore extended>→DW CFA restore extended <register lit>

<dw cfa undefined> → DW CFA undefined <register lit>

<dw cfa same value>→DW CFA same value <register lit>

<dw cfa register>→DW CFA register <register lit> <register lit>

<dw cfa remember state> → DW CFA remember state

<dw cfa restore state> → DW CFA restore state

<dw cfa def cfa>→DW CFA def cfa <register lit> <nonneg int lit>

<dw cfa def cfa sf>→DW CFA def cfa sf <register lit> <int lit>

<dw cfa def cfa register>→DW CFA def cfa register <register lit>

<dw cfa def cfa offset>→DW CFA def cfa offset <nonneg int lit>

<dw cfa def cfa offset sf>→DW CFA def cfa offset sf <int lit>

<dw cfa def cfa expression>→DW CFA def cfa expression
<expression section>

<dw cfa expression> → DW CFA expression <register lit>
<expression section>

<dw cfa val expression>→DW CFA val expression <register lit>
<expression section>
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<expr stmt> → <dw op addr>
| DW OP deref
| <dw op const1u>
| <dw op const1s>
| <dw op const2u>
| <dw op const2s>
| <dw op const4u>
| <dw op const4s>
| <dw op const8u>
| <dw op const8s>
| <dw op constu>
| <dw op consts>
| DW OP dup
| DW OP drop
| DW OP over
| <dw op pick>
| DW OP swap
| DW OP rot
| DW OP xderef
| DW OP abs
| DW OP and
| DW OP div
| DW OP minus
| DW OP mod
| DW OP mul
| DW OP neg
| DW OP not
| DW OP or
| DW OP plus
| <dw op plus uconst>
| DW OP shl
| DW OP shr
| DW OP shra
| DW OP xor
| <dw op skip>
| <dw op bra>
| DW OP eq
| DW OP ge
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| DW OP gt
| DW OP le
| DW OP lt
| DW OP ne
| <dw op litn>
| <dw op regn>
| <dw op bregn>
| <dw op regx>
| <dw op bregx>
| <dw op deref size>
| <dw op xderef size>
| DW OP nop

<label> → <identifier> :

<identifier> → /[a-zA-Z ][a-zA-Z0-9 ]*/

<dw op addr> → DW OP addr <nonneg int lit>

<dw op const1u> → DW OP const1u <nonneg int lit>

<dw op const1s> → DW OP const1s <int lit>

<dw op const2u> → DW OP const2u <nonneg int lit>

<dw op const2s> → DW OP const2s <int lit>

<dw op const4u> → DW OP const4u <nonneg int lit>

<dw op const4s> → DW OP const4s <int lit>

<dw op const8u> → DW OP const8u <nonneg int lit>

<dw op const8s> → DW OP const8s <int lit>
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<dw op constu> → DW OP constu <nonneg int lit>

<dw op consts> → DW OP consts <int lit>

<dw op pick> → DW OP pick <nonneg int lit>

<dw op xderef> → DW OP xderef

<dw op plus uconst> → DW OP plus uconst

<dw op skip> → DW OP skip <int lit>
| DW OP skip <identifier>

<dw op bra> → DW OP bra <int lit>
| DW OP bra <identifier>

<dw op litn> → DW OP lit0
| DW OP lit1
| DW OP lit2
| DW OP lit3
| DW OP lit4
| DW OP lit5
| DW OP lit6
| DW OP lit7
| DW OP lit8
| DW OP lit9
| DW OP lit10
| DW OP lit11
| DW OP lit12
| DW OP lit13
| DW OP lit14
| DW OP lit15
| DW OP lit16
| DW OP lit17
| DW OP lit18
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| DW OP lit19
| DW OP lit20
| DW OP lit21
| DW OP lit22
| DW OP lit23
| DW OP lit24
| DW OP lit25
| DW OP lit26
| DW OP lit27
| DW OP lit28
| DW OP lit29
| DW OP lit30
| DW OP lit31

<dw op regn> → DW OP reg0
| DW OP reg1
| DW OP reg2
| DW OP reg3
| DW OP reg4
| DW OP reg5
| DW OP reg6
| DW OP reg7
| DW OP reg8
| DW OP reg9
| DW OP reg10
| DW OP reg11
| DW OP reg12
| DW OP reg13
| DW OP reg14
| DW OP reg15
| DW OP reg16
| DW OP reg17
| DW OP reg18
| DW OP reg19
| DW OP reg20
| DW OP reg21
| DW OP reg22
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| DW OP reg23
| DW OP reg24
| DW OP reg25
| DW OP reg26
| DW OP reg27
| DW OP reg28
| DW OP reg29
| DW OP reg30
| DW OP reg31

<dw op bregn> → DW OP breg0 <int lit>
| DW OP breg1 <int lit>
| DW OP breg2 <int lit>
| DW OP breg3 <int lit>
| DW OP breg4 <int lit>
| DW OP breg5 <int lit>
| DW OP breg6 <int lit>
| DW OP breg7 <int lit>
| DW OP breg8 <int lit>
| DW OP breg9 <int lit>
| DW OP breg10 <int lit>
| DW OP breg11 <int lit>
| DW OP breg12 <int lit>
| DW OP breg13 <int lit>
| DW OP breg14 <int lit>
| DW OP breg15 <int lit>
| DW OP breg16 <int lit>
| DW OP breg17 <int lit>
| DW OP breg18 <int lit>
| DW OP breg19 <int lit>
| DW OP breg20 <int lit>
| DW OP breg21 <int lit>
| DW OP breg22 <int lit>
| DW OP breg23 <int lit>
| DW OP breg24 <int lit>
| DW OP breg25 <int lit>
| DW OP breg26 <int lit>
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| DW OP breg27 <int lit>
| DW OP breg28 <int lit>
| DW OP breg29 <int lit>
| DW OP breg30 <int lit>
| DW OP breg31 <int lit>

<dw op regx> → DW OP regx <nonneg int lit>

<dw op bregx>→DW OP bregx <nonneg int lit> <int lit>

<dw op deref size> → DW OP deref size <nonneg int lit>

<dw op xderef size>→DW OP xderef size <nonneg int lit>
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