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vibhor, prasad@cs.dartmouth.edu

February 26, 2010

Abstract

We study Reader-Writer Exclusion [1], a well-known variant of the Mutual Exclusion problem [2] where
processes are divided into two classes–readers and writers–and multiple readers can be in the Critical Section
(CS) at the same time, although no process may be in the CS at the same time as a writer. Since readers don’t
conflict with each other, they should not obstruct each other. Specifically, the concurrent entering property
must be satisfied: if all writers are in the remainder section, each reader should be able to enter the CS in
a bounded number of its own steps. Three versions of the Reader-Writer Exclusion problem are commonly
studied–one where writers have priority over readers, another where readers have priority, and the last where
neither class has priority over the other and no process may starve.

To ensure high performance on Cache-Coherent (CC) and Distributed Shared Memory (DSM) multipro-
cessors, algorithms should be designed to generate as few remote memory references (RMRs) as possible.
The ideal would be to achieve constant RMR complexity, i.e., the worst case number of RMRs that a process
generates in order to enter and exit the CS once is a constant, independent of the number of processes.

Constant RMR complexity algorithms have existed for Mutual Exclusion for two decades [3, 4], but none
exists for Reader-Writer Exclusion. Danek and Hadzilacos’ lower bound proof implies that it is impossible to
achieve sublinear RMR complexity for DSM machines [5]. For CC machines, the best existing bound, also
due to Danek and Hadzilacos [5], is O(log n), where n is the number of processes. In this work, we present
the first constant RMR complexity algorithms for all three versions of the Reader-Writer Exclusion problem
(for CC machines).

∗Submitted to the Proceedings of the Twenty-Ninth annual symposium on Principles of distributed computing (PODC 2010).
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1 Introduction

Mutual exclusion [2] is a well-studied, fundamental problem in distributed computing. Here processes repeatedly
cycle through four sections of code–Remainder Section, Try Section, Critical Section (CS), and Exit Section–in
that order, and the problem consists of designing the code for the Try and Exit sections so that the mutual ex-
clusion property–at most one process is in the CS at any time–is satisfied. The algorithm is often required to
additionally satisfy some liveness (e.g., starvation-freedom) and fairness (e.g., first-come-first-served [6]) prop-
erties.

Past research on mutual exclusion can be cleanly divided into two parts. The early research, spanning roughly
1965-89, focused mostly on formulating desirable properties (livelock freedom versus starvation freedom, first-
come-first served, abortability, self-stabilization etc.) and on designing algorithms that realized these properties
on the machines of that era–the multitasking/timesharing uniprocessors. (For a survey of this early research, see
[7].) These algorithms, however, are poorly suited to multiprocessors because they do not take into account the
fact that if a processor p accesses a shared variable that resides at p’s local memory module, the access will be
fast, but if p accesses a remote shared variable, the access can be extremely slow (because of the delay in gaining
exclusive access to the interconnection bus and the high latency of the bus). Later research (1990-present) on
locking algorithms has therefore been driven by the goal to minimize the number of remote memory references
(RMRs) (see the survey [8]). (In Distributed Shared Memory (DSM) machines, a reference to a shared variable
X is considered remote if X is at a memory module of a different processor; in Cache Coherent (CC) machines,
a reference to X by a process p is considered remote if X is not in p’s cache.) This goal implies that locking
algorithms should be designed to spin locally, i.e., processes do not make any remote references in busywait
loops. The ideal goal is to design locking algorithms whose RMR complexity–the worst case number of remote
memory references made by a process to enter and exit the CS once–is a constant, independent of the numbers
of readers/writers attempting to acquire the lock. Research in this direction over the last two decades led to many
algorithms [3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17], lower bounds [18, 19, 20, 21], and an understanding of the
limitations of various shared memory primitives [18, 19]. The highlight is the design of constant RMR complexity
mutual exclusion algorithms: Anderson’s algorithm achieves constant RMR complexity for CC machines [3] and
Mellor-Crummey and Scott’s algorithm, which was awarded the Dijkstra Prize in 2006, achieves constant RMR
complexity for both CC and DSM machines [4].

In this paper, we study Readers/Writers Exclusion [1], a well-known variant of the Mutual Exclusion problem
where processes are divided into two classes–readers and writers–and the exclusion property is revised to allow
for more concurrency: multiple readers can be in the CS at the same time, although no process may be in the
CS at the same time as a writer. Since readers don’t conflict with each other, it is desirable if they don’t obstruct
each other from entering the CS. More specifically, if all writers are in the remainder section, every reader in the
Try section should be able to enter the CS in a bounded number of its own steps. This property is known in the
literature as concurrent entering [22, 23]. Reader-writer locks are used extensively in operating systems and in
parallel applications to implement shared data structures, where processes whose operations modify the state are
modeled as writers and processes that merely sense the state as readers.

As already mentioned, constant RMR complexity is achievable for Mutual Exclusion. Can a similar result
be achieved for Reader/Writer Exclusion? For DSM machines, the answer is no: Danek and Hadzilacos’ lower
bound proof for 2-Session Group Mutual Exclusion implies that a sublinear RMR complexity algorithm satisfying
concurrent entering is impossible for the Reader/Writer Exclusion problem, even if there is only one writer [5].
Intuitively, if the writer w is in the CS and all n readers are spinning on shared variables in their respective local
memory modules, when w leaves the CS it must wake each reader r by writing in r’s spin location, thereby
incurring Ω(n) RMR complexity. This argument does not apply to CC machines since all readers can potentially
spin on the same location and the writer can wake all of them at once by writing into that single location.
Henceforth, we pursue the design of constant RMR complexity reader/writer algorithms only for CC machines.
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Existing reader/writer algorithms either fail to satisfy concurrent entering [1, 9, 24, 25] or have non-constant
RMR complexity [1, 5, 26]. Using a novel synchronization scheme that works very differently from the earlier
ones, we design the first constant RMR complexity algorithm for Reader/Writer Exclusion. Besides concurrent
entering, our algorithm satisfies many desirable properties, including starvation-freedom, FCFS among writers,
FIFE (First-In First-enabled) among readers, and bounded exit.

Starting from the earliest paper [1], most works on Reader/Writer Exclusion studied two more natural variants
of the problem–one in which readers have priority over writers, and the other where writers have priority. None
of the works, however, gave any specification (formal or informal) of what it means for one class of processes to
have priority over the other. As we explain later, it is nontrivial to provide a rigorous specification that captures
our intuitive notion of priority. We give such a specification for both the reader-priority and the writer-priority
cases, and design constant RMR algorithms for the two cases. To the best of our knowledge, the algorithms
presented in this paper are the first to achieve constant RMR complexity for the three cases of reader-priority,
writer-priority, and no-priority.

2 Specification of the Reader-Writer Problem

In the Reader-Writer Problem, each process is labeled a reader or a writer, and its program is an infinite loop that
cycles through four sections of code—Remainder section, Try section, Critical Section (CS), and Exit section.
The Try section, in turn, consists of two code fragments—a doorway, followed by a waiting room—with the
requirement that the doorway is a bounded “straight line” code [6]. Intuitively, a process “registers” its request
for the CS by executing the doorway, and then busywaits in the waiting room until it has the “permission” to
enter the CS. Initially, all processes are in their remainder section. We assume that no process accesses shared
variables while in the CS or the remainder section.

Each execution of the Try, CS, and Exit sections by a process is called an attempt; it is a read attempt
(respectively, write attempt) if the process is a reader (respectively, writer). An attempt by a process p spans from
a time t when p executes the first state statement of its Try section to the earliest time t′ > t when p completes
the Exit section and goes back to the remainder section. An attempt A is active in a configuration C if, in C, A
is in the Try section, CS, or Exit section.

The following definitions of “precedence” and “enabled” will be useful for defining fairness and priority
properties in the next section. If A is an attempt by a process p, henceforth we write “A completes the doorway
at time t” as a shorthand for “p completes the doorway at time t during the attempt A.”

Definition 1 If A and A′ are any two attempts in a run (possibly by different processes), A doorway precedes A′

if A completes the doorway before A′ begins executing the doorway. A and A′ are doorway concurrent if neither
doorway precedes the other.

Definition 2 A process p is enabled to enter the CS in configuration C if p is in the Try section in C and there is
an integer b such that, in all runs from C, p enters the CS in at most b of its own steps.

The Reader-Writer Problem is to design the code for the Try and Exit sections so that certain safety and
liveness properties hold in all runs of the algorithm. The exact set of properties will depend on whether we want
readers to have a higher priority than writers, or writers to have a higher priority than readers, or neither. We
begin by stating the properties that are desirable in all three cases.

• (P1). Mutual Exclusion : If a writer is in the CS at any time, then no other process is in the CS at that
time.
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• (P2). Bounded Exit : There is an integer b such that in every run, every process completes the Exit section
in at most b of its steps.

• (P3). First-Come-First-Served (FCFS) among writers : If w and w′ are any two write attempts in a run
and w doorway precedes w′, then w′ does not enter the CS before w.

• (P4). First-In-First-Enabled (FIFE) among readers : Let r and r′ be any two read attempts in a run such
that r doorway precedes r′. If r′ enters the CS before r, then r is enabled to enter the CS at the time r′

enters the CS.

• (P5). Concurrent Entering : Informally, if all writers are in the remainder section, readers should be able
to enter the CS in a bounded number of steps. More precisely: There is an integer b such that, if σ is any
run from a reachable configuration such that all writers are in the remainder section in every configuration
in σ, then every read attempt in σ executes at most b steps of the Try section before entering the CS.

Finally, we state the liveness property. Starvation-freedom is too strong a property to require in our context:
when one class of processes (e.g., readers) have priority over the other class (e.g., writers), the starvation of
processes belonging to the lower priority class is unavoidable. Therefore, we require the weaker livelock freedom
property, which is appropriate in all three cases of reader-priority, writer-priority, and no-priority. It guarantees
that, under the standard assumption that no process occupies the CS forever and no process permanently stops
taking steps in the Try or the Exit section, not all processes will get stuck in the Try or the Exit section.

Henceforth, we say a process p crashes in an infinite run σ if p enters the CS and does not subsequently leave
the CS or p has an incomplete attempt and only a finite number of steps in σ.

• (P6). Livelock Freedom : If no process crashes in an infinite run, then infinitely many attempts complete
in that run.

2.1 Specifying reader priority

Suppose that we want to give readers priority over writers. Then, if a reader r completes the doorway before a
writer w even enters the doorway, it makes sense to require that w does not enter the CS before r. What else
must we ensure? Consider a scenario where a writer p is in the CS, and a reader r and a writer w are waiting. If
readers have priority over writers, when p leaves the CS, we expect r, and not w, to enter the CS, even if w has
been waiting much longer than r. If p were instead a reader, we still expect that r enters the CS before w. We
capture these expectations through the reader-priority relation >rp, which is a binary relation between the set of
read attempts and the set of write attempts in a run.

Definition 3 Let r and w be a read attempt and a write attempt, respectively, in a run. We define r >rp w if

• r doorway precedes w, or

• There is a time when some reader or writer is in the CS, r is in the waiting room, and w is in the Try
section.

The next property states what it means for readers to have priority over writers.

• (RP1). Reader Priority : Let r and w be a read attempt and a write attempt, respectively, in a run. If
r >rp w, then w does not enter the CS before r.
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2.2 Specifying writer priority

Specifying writer priority is similar, but not entirely symmetric. To see why, consider a scenario where a process
p is in the CS, and a reader r and a writer w are waiting. If p is a writer, when p leaves the CS, we expect w,
and not r, to enter the CS. However, if p is a reader, it might not be possible to stop r from proceeding to the
CS (because r might be already enabled to enter the CS by the FIFE property). So, requiring w to enter the CS
before r would contradict FIFE. In view of these considerations, we define the writer-priority relation >wp as
follows.

Definition 4 Let r and w be a read attempt and a write attempt, respectively, in a run. We define w >wp r if

• w doorway precedes r, or

• There is a time when some writer is in the CS, w is in the waiting room, and r is in the Try section.

The next property formalizes what it means for writers to have priority over readers.

• (WP1). Writer Priority : Let r and w be a read attempt and a write attempt, respectively, in a run. If
w >wp r, then r does not enter the CS before w.

2.3 The case of no priorities

If readers or writers have priority over the other, a process belonging to the lower priority class may starve.
However, if neither class has priority over the other, we can require that no process—neither a reader nor a
writer—starves:

• (P7). Starvation Freedom : If no process crashes in an infinite run, then all attempts complete in that run.

2.4 Some additional desirable properties

2.4.1 When readers have priority

Consider the case when readers have priority over writers. The Reader Priority property stated above ensures that
a writer does not race ahead of a higher priority reader, but it gives no guarantee about the ability of the higher
priority reader to make progress towards entering the CS. As a result, certain undesirable scenarios can arise. For
example, consider a scenario where a reader r′ is in the CS, a reader r and a writer w are in the waiting room,
and all other processes are in the remainder section. By definition, r >rp w; hence, by Reader Priority property,
w does not enter the CS before r. Now, suppose that r′ chooses to remain in the CS while r and w repeatedly
execute steps in the waiting room. Since the CS is already occupied by a reader and r is actively taking steps,
we would want r to be able to enter the CS and co-occupy the CS with r′. Yet, the properties listed above do not
guarantee that r will be able to join r′ in the CS (more specifically, r’s entry into the CS is not guaranteed until
r′ leaves the CS). To fix this weakness in the specification, we now define an additional property. The first part
of the property states that, if the CS is occupied by readers at a time when some reader r is in the waiting room,
then r must be able to enter the CS in a bounded number of its own steps. The second part states that if there
is no writer in the CS or the Exit section, a reader r is in the waiting room, and r has higher priority than every
writer in the Try section, then r must be able to enter the CS in a bounded number of its own steps.

• (RP2). Unstoppable Reader Property : Let C be any reachable configuration in which some read attempt
r is in the waiting room.
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1. If a reader is in the CS in C, then r is enabled to enter the CS in C.

2. If no writer is in the CS or the Exit section in C and r >rp w holds for all write attempts w that are
in the Try section in C, then r is enabled to enter the CS in C.

Note that neither part implies the other. Since the first part demands that r be enabled even if some writers
are present in the Exit section, it does not follow from the second part. Since the first part requires the CS to be
occupied by one or more readers and the second part does not, the second part does not follow from the first.

2.4.2 When writers have priority

Arguing as above, we will now identify a property for the case when writers have priority over readers. Since
there is a fundamental difference between readers and writers—unlike readers, writers cannot share the CS—the
property below will be quite different than the one for the reader-priority case.

To motivate the property, suppose that the CS and Exit sections are empty, a writer w is in the waiting room
(all other writers are in the remainder section), and w >wp r for all readers r in the Try section. Then, we would
want the writer w to be able to enter the CS in a bounded number of its own steps.

Next, consider a slightly different scenario in which two writers w and w′ are both in the waiting room (all
other writers are in the remainder section), we have both w >wp r and w′ >wp r for all readers r in the Try
section, and, as before, the CS and the Exit sections are empty. Since all active readers are dominated by writers
(by the >wp relation), we would want to stipulate that readers cannot block w or w′ from entering the CS. But
can one of these writers block the other? The answer will depend on whether one writer clearly dominates the
other: if one writer doorway precedes the other, then the former should be able to enter the CS in a bounded
number of its own steps. On the other hand, if neither w nor w′ doorway precedes the other, neither process may
be enabled to enter the CS; however, in this case, if both w and w′ keep taking steps, it is reasonable to require
that one of the two will eventually enter the CS, regardless of whether other writers and readers are slow, fast, or
have crashed. These considerations lead to:

• (WP2). Unstoppable Writers Property : Let C be any reachable configuration in which (1) no processes
are in the CS or the Exit section, (2) the set S of write attempts in the waiting room is non-empty, (3)
w ∈ S is the earliest among the write attempts in S to enter the waiting room, and (4) S′ ⊆ S is the set
of write attempts in S that are doorway concurrent with w. If w >wp r for all active read attempts r in C,
then in every infinite run σ from C, either some write attempt in S′ enters the CS or some write attempt in
S′ has only finitely many steps. (In other words, if all of the write attempts in S′ keep taking steps, then
one of them is guaranteed to eventually enter the CS, regardless of whether other processes perform their
steps fast, slow, or even crash.)

Note that this property, together with Mutual Exclusion, implies that the first process to enter the CS in any
run from C will be from S′. To see why, suppose that some process p 6∈ S′ enters the CS first in some run from
C. Let C ′ be a configuration in which p is in the CS, and let σ′ be the finite run from C to C ′. Consider an infinite
run σ′′ from C ′ in which all processes in S′ repeatedly execute steps and all other processes (including p) take
no steps. By the above property, some write attempt in S′ enters the CS in σ′′, contradicting Mutual Exclusion
(since p is already in the CS).

3 Single Writer Algorithm satisfying Starvation Freedom and Writer Priority

In this section, we present an algorithm that supports only a single writer and multiple readers, and satisfies
starvation freedom as well as writer priority properties. The algorithm in the next section is also a single writer
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algorithm that satisfies reader priority properties. In section 5, we show how to transform these single-writer
algorithms into multi-writer algorithms.

Figure 1 presents a single writer algorithm that satisfies properties (P1)-(P7), (WP1) and (WP2). Hence, it
addresses the case when the writer has priority over readers while also ensuring that no process–the writer or a
reader–starves. The overall idea is as follows. The writer can enter the critical section from two sides, 0 and 1.
It never changes its side during one attempt of the critical section. The writer also toggles its side for every new
attempt. To enter from a certain side, say 1, the writer sets the shared variable D to 1. Then it waits for the readers
from the previous side (in this case side 0) to exit the critical and exit section. The last reader to exit from side 0,
lets the writer in the critical section. Once the writer is done with the critical section of side 1, it lets the readers
waiting from side 1 into the critical section, using variable Gate[1] described later.

The readers, in their try section set their side d equal to D. Then they increment their count in side d and
attempt for critical section from side d. In order to enter the critical section from side d, they busy wait on Gate[d]
until it is open. When the readers are exiting they decrement their count from side d and the last exiting reader
wakes up the writer. Now we describe the shared variables used in the algorithm.

Shared Variables
D ∈ {0, 1} is a read/write variable, initialized to 0
ExitPermit is a boolean read/write variable
∀d ∈ {0, 1},Permit[d] is a boolean read/write variable
∀d ∈ {0, 1},Gate[d] is a boolean read/write variable, Gate [0] is initialized to true and Gate [1] to false
EC is a F&A variable with two components [writer-waiting ∈ {0, 1}, reader-count ∈ N], initialized to [0, 0]
∀d ∈ {0, 1}, C[d] is a F&A variable with two components [writer-waiting ∈ {0, 1}, reader-count ∈ N], initialized to [0, 0]

procedure Write-lock() procedure Read-lock()
1. REMAINDER SECTION 15. REMAINDER SECTION

2. prevD← D, currD← prevD 16. d← D
3. D← currD 17. F&A(C[d], [0, 1])
4. Permit[prevD]← false 18. d′ ← D
5. if (F&A(C[prevD], [1, 0]) 6= [0, 0]) 19. if(d 6= d′)
6. wait till Permit[prevD] 20. F&A(C[d′], [0, 1])
7. F&A(C[prevD], [−1, 0]) 21. d← D
8. Gate[prevD]← false 22. if(F&A(C[d], [0,−1]) = [1, 1])
9. ExitPermit← false 23. Permit[d]← true
10. if (F&A(EC, [1, 0]) 6= [0, 0]) 24. wait till Gate[d]
11. wait till ExitPermit 25. CRITICAL SECTION

12. F&A(EC, [−1, 0]) 26. F&A(EC, [0, 1])
13. CRITICAL SECTION 27. if(F&A(C[d], [0,−1]) = [1, 1])
14. Gate[D]← true 28. Permit[d]← true

29. if(F&A(EC, [0,−1]) = [1, 1])
30. ExitPermit← true

Figure 1: Single-Writer Multi-Reader Algorithm satisfying Starvation Freedom and Writer-Priority
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3.1 Shared variables and their purpose

All the shared variable names start with upper case and the local variables start with lower case.
D : This is a boolean read/write variable, and is only written by the writer. This variable denotes the side

with which the writer wants to attempt for the critical section. It is toggled every time in the beginning of the
try section by the writer. The readers use this variable to determine which side they should attempt for critical
section.

Gate[d], d ∈ {0, 1} : This is a read/write boolean variable, written only by the writer. Gate[d] is used by to
block the readers to enter the critical section through side d. So before entering the critical section all the readers
have to check if the Gate[d] is open, where d is the side the reader is attempting for critical section. One invariant
maintained by the algorithm regarding Gate is that before the writer starts with the attempt to enter the critical
section from side d (sets D to d), the Gate[d] is already closed, i.e., Gate[d] = false. Also the writer once done
with its critical section from side d opens the Gate[d] for the readers who entered through side d and are waiting.

Permit[d], d ∈ {0, 1} : This is a read/write boolean variable written and read by both readers and the writer.
The writer busy waits on Permit[d] to get the permission to go to critical section from the readers who are present
from side d. The idea is that the last reader to exit side d, will wake up the writer using Permit[d].

ExitPermit : This is a read/write boolean variable written and read by both readers and the writer. It is similar
to Permit, with the difference that it it used by the writer to wait on the readers to clear up the exit section. The
idea is that the last reader to exit the exit section will wake up the writer using this variable.

C[d], d ∈ {0, 1} : This is a fetch&add variable, read and updated both by the writer and readers. C[d] has
two components [writer-waiting, reader-count]. Where writer-waiting ∈ {0, 1} denotes whether the writer is
waiting for the readers from side d to leave the critical section, it is only updated by the writer. And reader-count
denotes the number of readers currently registered in side d. reader-count of C[d] is only incremented (and
decremented) by a reader once in any attempt. The idea is that the last process to leave side d and get [1, 1] from
a F&A(C[d],−1) will wake up the writer through Permit[d].

EC : This is a fetch&add variable, read and updated both by the writer and readers. Similar to C[d], it has two
components [writer-waiting, reader-count]. Where writer-waiting ∈ {0, 1} denotes whether the writer is waiting
for the readers to complete the exit section. And reader-count denotes the number of readers currently in the exit
section. Similar to C[d], the idea is that the last process to leave the exit section and get [1, 1] from F&A(EC,−1)
will wake up the writer through ExitPermit.

3.2 Line by Line commentary

First we describe the code of the writer w in Write-lock() procedure. First in the bounded doorway, Line
2-3, the writer toggles D, currD is set to the new side and prevD is set to the previous side. This informs the
new reader to attempt the critical section from side D = currD. As mentioned earlier Gate[currD] at this point
is closed, so any reader which enters the try section now will be blocked till w completes the current attempt
of critical section from side currD. Hence, if w doorway precedes a reader r, then r does not enter the critical
section before w. This gives us the writer priority property (WP1).

In order to enter the critical section, w has to be sure that there are no readers are in critical section from
the previous side. This is because the algorithm maintains the invariant that no readers are present in the critical
section from the side currD, we’ll discuss this fact again. Now w sets Permit[prevD] to false (Line 4). And then
it increments the writer-waiting component of C[prevD] to set it to 1 (Line 5). This will notify the readers that w
is waiting on Permit[prevD]. If w finds C[prevD] equal to [0, 0] at Line 5, it knows that all the readers from side
prevD have left, hence it does not’t have to wait for them at Line 6.

If w goes to Line 6, it waits until it gets permission from the readers in side prevD, i.e., Permit[prevD] = true.
Only the last reader from the side prevD will do this. Hence if w goes past Line 6, it knows for sure that there
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is no reader in critical section. Now w decrements the writer-waiting component of C[prevD] to set it to 0 (Line
7). Now all the active readers are either in side currD or are about to register for it. So one can see that next time
the writer attempts to try for critical section with side prevD there will be no readers in critical section with side
prevD. Then w closes Gate[prevD] for its next attempt to critical section (Line 8). In Lines 9 to 12, w waits for
all the processes to leave the exit section in the same way it waited for them to leave the critical section in Lines
4-6. We will explain this subtle feature of the algorithm later. Note that at this point no reader is in the critical
or exit section. Now the writer can to go critical section (Line 13). Finally, w exits by waking up the waiting
readers by opening Gate[currD].

Now we proceed to describe the code of a reader r in Read-lock(). First r sets the value of d to D and then
increments the reader-count of C[d] (Line 16,17). Then it checks the value of D again (Line 18). If it is different,
it proceeds with the if statement starting at Line 20 and increments on the other side, i.e., d′. And then it reads
the value of D into d (Line 21). Now as r incremented the reader-count of both C[d] and C[d], it decrements on
the other side to which it does not belong, i.e., d (Line 22). But if the value returned to r after the F&A(C[d]) is
equal to [1, 1], then it means the reader-count of C[d] is set to 0 and the writer is waiting on Permit[d]. In this
case r should wake up the writer who is waiting on Permit[d].

Now when r is at Line 24, it is only registered at side d. It waits until the Gate[d] is open. If the writer is
in the remainder section, then Gate[d] will be open, hence concurrent entry of readers is satisfied. Once Gate[d]
opens, the reader enters the critical section (Line 25). In the exit section the reader first increments the exit-count,
i.e., EC (Line 26). And then it decrements the C[d] (Line 27). Similar to Line 22, depending upon the return
value of the F&A operation at Line 27, r wakes up the writer at Line 28. Similarly it decrements EC at Line 29,
and wakes up the writer if r is the last exiting reader and the writer is waiting on ExitPermit (Line 30).

3.3 Subtle features of the algorithm

In the above description of the algorithm we deferred the explanation of a subtle feature, namely, the need for
the writer to wait for readers in the exit section. We now explain why this feature is need to guarantee mutual
exclusion. Say the writer w does not wait for all the readers to finish the exit section before entering the critical
section. Consider the following scenario. The writer w is at Line 6 waiting for Permit[0] to set to be true, and
there are only two reader r and r′ active in the system. Say r is in critical section, and say r′ is at Line 17 and it
set d = 0 long time ago. By our discussion earlier as w is in try section with side 1, d of r is equal to 0. Now say,
r exits the critical section and executes Line 27, hence, PCr = 28 and C[0] = [1, 0]. Now say r′ starts executing
and one can see from the Line 17-21, that it will increment both C[d] and C[d] and set its d equal to 1. So now
C[0] = [1, 1] and when r′ executes Line 22, it will get [1, 1] as the return value and then execute Line 23. And
now the w wakes up, and if w does not wait for r to exit, r is poised to set Permit[0] equal to true for a future
writer. Now one can see that mutual exclusion could be in danger.

Theorem 1 (Single-Writer Multi-Reader lock with Starvation Freedom and Writer Priority) The algorithm
in Figure 1 implements a Single-Writer Multi-Reader lock satisfying the properties (P1)-(P7), (WP1) and (WP2).
The RMR complexity of the algorithm in the CC model is O(1). The algorithm uses O(1) number of shared
variables that support read, write, and fetch&add operations.

4 Single Writer Algorithm satisfying Reader Priority

A single-writer multi-reader algorithm is presented in Figure 2 which satisfies properties (P1)-(P6), (RP1) and
(RP2). The overall idea of the algorithm is as follows. For the writer w to enter the critical section it has to set
a shared variable X to true. This variable X is not equal to true in the beginning of w’s try section. To set X
to true, w executes the procedure called Promote. The purpose Promote is to set X to true if no readers are
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active (reader-count is zero). If some reader is active and w is not able to set X to true, w busy waits till all the
readers exit and the last one of them wakes w up. Note that the readers can keep going to the critical section and
starve the writer forever, but this is acceptable as this is a reader priority algorithm.

Readers in their try section first increment the count C. Then they check if X is true. If it is not, they know
the writer is not in the critical section, so they just enter the critical section. If X is true then the writer is in
the critical section, so they wait on a variable (Gate), till the writer wakes them up. When the readers exit, they
decrement the count C and then execute the Promote procedure just as w executed it in its try section. Now we
describe the shared variables used in the algorithm.

Shared Variables
D ∈ {0, 1} is a read/write variable, initialized to 0
∀d ∈ {0, 1},Gate[d] is a boolean read/write variable, Gate [0] is initialized to true and Gate [1] to false
X ∈ PID ∪ {true} is a CAS variable , initialized to any i ∈ PID
Permit is a boolean read/write variable, initialized to true
C is a fetch and add variable, initialized to 0

procedure Write-locki() procedure Read-locki()
1. REMAINDER SECTION 17. REMAINDER SECTION

2. D← D 18. F&A(C, 1)
3. Permit← false 19. d← D
4. Promote() 20. x← X
5. wait till Permit 21. if (x ∈ PID)
6. CRITICAL SECTION 22. CAS(X,x, i)
7. Gate[D]← false 23. if (X = true)
8. Gate[D]← true 24. wait till Gate[d]
9. X ← i 25. CRITICAL SECTION

procedure Promote() 26. F&A(C,−1)
10. x = X 27. Promote()
11. if(x 6= true)
12. if(CAS(X,x, i))
13. if(¬Permit)
14. if(C = 0)
15. if(CAS(X, i, true))
16. Permit← true

Figure 2: Single-Writer Multi-Reader Algorithm satisfying Reader Priority

4.1 Shared variables and their purpose

All the shared variable names start with upper case letter and the local variables with lower case letters.
D : This is a boolean read/write variable, and is only written by the writer. This variable denotes the side with

which the writer wants to attempt for the critical section. The writer toggles at the beginning of its try section.
Gate[d], d ∈ {0, 1} : This is a read/write boolean variable, written only by the writer. Gate[d] is used to block

the readers to enter the critical section through side d. Also once the writer is done with its critical section from
side d, it opens the Gate[d] for the readers in side d. The algorithm maintains the following two invariants with
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respect to Gate variables : (invariant 1) if the writer is in the remainder section, then Gate[D] = true, (invariant
2) if the writer is in the try section and not the critical section then Gate[D] = true. Another invariant maintained
by the algorithm is that both Gate[0],Gate[1] are not true at any time.

X : This is a CAS variable which either stores pid of a process or true. X 6= true means that the writer is not
in critical section. When the writer begins its try section the value of X is not true. Before the writer enters the
critical section, X is set to true either by the writer itself or the last reader to exit critical section. The algorithm
maintains the following invariant with respect to X : (invariant 3) if a reader is in the critical section then either
X 6= true or X = true, Gate[D] = true and the writer is at Line 9.

C : This is a fetch&add variable, read by the writer and incremented only by readers. C is only incremented
by a reader in the beginning of the try section and decremented in the exit section.

Permit : This is a read/write boolean variable written and read by both readers and the writer. The writer busy
waits on Permit to get the permission from the readers to go to the critical section. The writer in the try section
or the exiting reader checks if C = 0 in the Promote procedure. If it finds that C = 0, then it first attempts to
set the variable X to true, and if it succeeds, it sets Permit = true in order to enable the writer to enter the critical
section.

4.2 Line by Line commentary

Now we informally describe the code for the writer w in Write-lock. First the writer toggles D and sets it to
a new value, call it d (Line 2). At this point Gate[d] = false, X 6= true and Permit = true. Then it sets Permit
to false (Line 3). Then it executes the Promote procedure (Line 4). We will go into the detail of Promote
later. Then w busy waits on Permit until it is set to true (Line 5). Once Permit is set to true, w enters the critical
section (Line 6). In the exit section w closes Gate on the other side D for the next attempt by the writer for critical
section (Line 7). In Line 8, w opens Gate[d] for the readers waiting from side d. At this point the critical section
belongs to the readers, and they can go freely in it even though X = true. As Gate[D] is open the invariant (3) is
not violated. And finally w sets X to its own pid before finishing the exit section (Line 9).

Now we describe the code for a reader r in Read-lock. First r increments the counter C (Line 18). Then
sets its side d as the value in D (Line 19). What if the writer changes D after r reads it ? We claim that if D was
changed by a writer w after r reads it, then r should still be fine, rather w cannot enter the critical section before
r. This is true because at the time w changes D, the variable X 6= true. For w to enter the critical section, some
process has to execute Promote and check C = 0 before setting X to true. But as r has already incremented
C, this would not happen and hence w cannot enter the critical section before r. This also demonstrates that the
algorithm satisfies Reader Priority (RP1). In the next three Lines r tries to setX to its own pid ifX is not already
true (Lines 20-22). We will explain the need of this subtle feature later. Then r checks the value of X (Line 23).
If X is not true then r knows that the writer is not in critical section hence it enters the critical section in Line 25.
If X is true at Line 23, then r busy waits on Gate[d] till it is open (Line 24). Once that gate is open r enters the
critical section (Line 25). In the exit section r first decrements the counter C and then executes Promote.

The purpose of the Promote is to enable the writer to enter the critical section if no readers are in the try or
critical section. Now we explain the code of Promote as executed by a process pi whose pid is i. First pi sets
its local variable x to X and checks if x is true (Line 10-11). If X is true then there is nothing for pi to do as the
process which set X to true will wake up the writer. If x 6= true, then pi tries to CAS its own pid (i) into X (Line
12). Then pi checks if Permit = false (Line 13), if it is not then it knows that the writer is not waiting on Permit,
so there is nothing for pi to do. Then it checks if C = 0 (Line 14). If C = 0 then it tries to CAS true into X by
comparing X with i (15). If the CAS succeeds then pi wakes up the writer by setting Permit to true. One might
wonder, why can’t pi just CAS true into X without CASing i into X . This is subtle feature of the algorithm and
we will address this later.
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4.3 Subtle features of the algorithm

Now we explain the need for the subtle features mention earlier, namely, (A) the need for Lines 20-22 and (B) the
need to CAS in the pid in to X in Promote. We need both the features to ensure the mutual exclusion property.

To see why we need (A), consider the following scenario. No reader is active in the system and the writer w
starts its try section and executes up to Line 15 in Promote. One can easily see that this would happen. Now
a reader r starts its try section. If Lines 20-22 are not there, since as X 6= true, r will enter the critical section.
Now if w executes Line 15, its CAS would be successful and hence it will set Permit to true and enter the critical
section also. Hence mutual exclusion would be violated. The same scenario can arise when a reader is about to
execute Line 15, and then some reader quickly starts and completes its doorway. So having Lines 20-22 ensure
that even if some reader r starts the try section while some process is about to execute Line 15, mutual exclusion
is not violated.

Now we explain why we need feature (B). Assume that Line 12 is not there and Line 15 is CAS(X,x, true).
Now, assume the writer is waiting for Permit at Line 5 and two reader pi and pj with pids i and j respectively
are at Line 10. Assume that no other readers are active. Now assume that both pi and pj execute Lines 10-15
together and they find x = r, where r is the pid of some reader pr. Now say pi succeeds in doing the CAS at Line
15, and pj is still at Line 15. Now say later, in future X is again set to r. If pi executes Line 15 now, it will we
poised to set Permit to true irrespective of the number of readers in critical section, thus putting mutual exclusion
to danger.
The main theorem stated below summarizes the properties of the single-writer multi-reader lock implemented by
the algorithm in Figure 2. Its formal proof is given in the appendix.

Theorem 2 (Single-Writer Multi-Reader lock with Reader Priority) The algorithm in Figure 2 implements
a Single-Writer Multi-Reader lock satisfying the properties (P1)-(P6), (RP1) and (RP2). The RMR complexity
of the algorithm in the CC model isO(1). The algorithm usesO(1) number of shared variables that support read,
write, fetch&add, and compare&swap operations.

5 Single Writer to Multi Writer Constructions

In this section we use the single algorithms described before to the full multi-writer versions while preserving all
the properties the single writer algorithms have. For our construction we will use a existing mutual exclusion lock,
M . This lock will be used by the writers so that only one writer accesses the underlying single writer algorithm at
any time. The lock we use was designed by T. Anderson [3]. Apart from satisfying mutual exclusion, starvation
freedom, FCFS and bounded exit, it has O(1) RMR in CC model. The lock also satisfies the following property
which is used to guarantee Unstoppable Writer Priority (WP2) in the writer priority algorithm : If a set S of
processes is in the waiting room and no process is in the critical or exit section then, some process in S is enabled
for critical section.

Notations used in this section : We denote SW-Write-try (respectively, SW-Read-try) for the try section code
of the writer (respectively, reader) in the corresponding single writer algorithm. For example when we say SW-
Write-try from the algorithm in Figure 1, we mean the try section of the writer given in the Figure 1 (Lines 2-12).
Similarly we use SW-Write-exit (respectively, SW-Read-exit) for the exit section code of the writer (respectively,
reader). We use the procedures acquire and release for the try and exit section of M . A process returns from
acquire(M) only after it owns the lock. It owns the lock M till it executes release(M).

We claim that the transformation T implements a multi-writer single-reader, starvation free lock satisfying
(P1)-(P7) given any single-writer single-reader lock satisfying (P1)-(P7). The transformation also implements
a multi-writer single-reader, reader priority lock satisfying (P1)-(P6), (RP1) and (RP2) given any single-writer
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procedure Write-lock() procedure Read-lock()
1. REMAINDER SECTION 7. REMAINDER SECTION

2. acquire(M) 8. SW-Read-try()
3. SW-Write-try() 9. CRITICAL SECTION

4. CRITICAL SECTION 10. SW-Read-exit()
5. SW-Write-exit()
6. release(M)

Figure 3: T : transformation from a Single Writer Multi Reader to Multi Writer Multi Reader algorithm

single-reader lock satisfying (P1)-(P6), (RP1) and (RP2). The following theorems states these facts formally and
we leave their proof as an exercise for the readers.

Theorem 3 (Multi-Writer Multi-Reader lock with Starvation Freedom) The algorithm in Figure 3 imple-
ments a Multi-Writer Multi-Reader lock satisfying the properties (P1)-(P7) using the lock M from [3] and the
algorithm in Figure 1. The RMR complexity of the algorithm in the CC model is O(1). The algorithm uses O(n)
number of shared variables that support read, write, and fetch&add.

Theorem 4 (Multi Writer Multi Reader lock with Reader Priority) The algorithm in Figure 3 implements a
Multi Writer Multi Reader lock satisfying the properties (P1)-(P6), (RP1) and (RP2) using the lock M from [3]
and the algorithm in Figure 2. The RMR complexity of the algorithm in the CC model is O(1). The algorithm
uses O(n) number of shared variables that support read/write, fetch&add and compare&swap operations.

Wcount ∈ [0 . . . n] is F&A variable
W-token ∈ {PID ∪ false ∪ {0, 1}} is CAS variable
D,Gate are the shared variables used in SW-waiting-room

procedure Write-lock()
1. REMAINDER SECTION

2. F&A(Wcount, 1)
3. t = W-token
4. if (t ∈ PID)
5. CAS(W-token, t, false)
6. t = W-token
7. if (t ∈ {0, 1})
8. D← t
9. acquire(M)
10. currD← D, prevD← currD

11. if (W-token ∈ {0, 1})
12. wait till Gate[prevD]
13. SW-waiting-room()
14. CRITICAL SECTION

15. W-token← p
16. F&A(Wcount,−1)
17. release(M)
18. if(Wcount = 0)
19. if(CAS(W-token, p, prevD))
20. Gate[currD] = true

Figure 4: Write-lock() of the Multi-Writer Multi-Reader Writer Priority Algorithm, Read-lock() pro-
cedure is same as in Figure 3
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5.1 Multi-Writer Multi-Reader Writer Priority

Say we use T together with the single-writer, writer priority algorithm given in Figure 1. The transformation T
together with SWWP does not work for the writer-priority case. To see why, take the following scenario :

Let w be a writer in critical section and w′ be a writer in the waiting room. Now say a reader r enters the try
section and then the waiting room. Now w starts exiting and executes SW-Write-exit, Line 5 of T . At this point
the the reader r is enabled and it would enter the critical section, violating the desired writer priority. In Figure
4 we give our correct multi-writer multi-reader, writer priority algorithm. We first describe the shared variables
used in the algorithm and their roles.
The algorithm uses the single-writer multi-reader writer priority lock given in Figure 1. We will refer to this lock
as SWWP . Also SW-waiting-room corresponds to the Lines 4− 12 of SWWP . Apart from the shared variables
used in SWWP , following additional shared variables are used in the algorithm.
Wcount : This is a F&A variable and it keeps the count of the writers in the try and the critical section. The
writers increment it in try section and decrement it in the exit section.
W-token : This is a CAS variable, which can store either a 0, 1, false and a process id. A writer in exit section first
writes its own pid into W-token and then it checks if any writers are in try section. If there are writers in the try
section then it leaves W-token as it is. If the exiting writer does not notice any writers in the try section, it tries
to CAS in d into W-token, where d is the new side with which the writers should attempt the critical section in
SWWP . The writer in try section tries to CAS false into W-token in try section if it sees that W-token contains
some pid. We will get into its detail later.

5.2 Informal description of the algorithm in Figure 4

The overall idea is as follows. The readers simply executed the SWWP protocol. For a writer w to be in critical
section it needs to be in the critical section of both lock M and SWWP and in that order. When w is exiting and
notices some process in try section (using Wcount), it does not exit SWWP , but exits the lock M . This writer
w leaves a token for the next writer w′ so that w′ does not participate in SWWP . The situation gets tricky if w
does not see any writer in try section and is just about to exit SWWP when a writer and bunch of readers enter
the try section.

We handle this tricky situation in this algorithm as follows. If a writer w′ in the try section knows that the
last exiting writer w exited SWWP , w′ executes the doorway of SWWP before entering the waiting room of
M . Before we go into the details of this, we make the following observation about SWWP : any reader r which
starts its try section after a writer W has executed Line 3, i.e., D ← currD, does not enter the critical section
before W . So the writer w′ executes the doorway of SWWP by setting D to the new side with which the writers
should attempt for critical section. w′ gets this side from the W-token which was set by the exiting writer w.
The Read-lock procedure is same for the readers as in SWWP , so we describe the Write− lockp() as
executed by a process p in detail. In order to describe the code of the writer w in Write− lock() clearly we
will do Line by Line commentary starting from its critical section. Say the writer w is in the critical section. Let
currD be the current side of w in SWWP . In the exit section w first sets W-token to its own pid p (Line 15). Then
w decrements Wcount (Line 16). At this point Wcount is the number of writers in the try section. Then w releases
the lock M (Line 17). Now w has to check if any writers are in the try section. If there are no writers in in the try
section, w has to exit SWWP so as to avoid readers to starve forever in absence of any future writers. To achieve
this w first checks if Wcount is equal to zero (Line 18). If Wcount = 0, then w tries to CAS in W-token, the next
direction with which the writers should attempt for critical section (Line 19). Note that if w is a very old writer,
i.e., many writers have have entered the critical section after w, the CAS of w would fail as W-token would be
equal to some other pid. If the CAS succeeds, then w exits SWWP (Line 20). Note that the exit section of the
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writer has only one statement, Gate[currD] ← true. If the CAS at Line 19 succeeds, how is w confident that no
process is in the waiting room ? To understand this lets look at the try section of a writer w′.

First w′ increments Wcount (Line 2). Then w′ checks if W-token is equal to pid of some process (Line 3-4).
If W-token is equal to some pid, then it might be the case that that some writer w is in exit section and is about to
execute Line 19. To preempt w from giving the critical section to the readers, w′ tries to CAS false into W-token
(Line 5). Now this ensures that at the time CAS by w succeeds at Line 19, no process is in the waiting room.

But what if the writer w′ enters the waiting room while w is at Line 20 ? To ensure writer priority, w′ should
not be overtaken (into the critical section) by a reader r which starts the try section after w′ enters the doorway.
So before entering the waiting room, w′ checks if the CAS by the last exiting writer w succeeded at Line 19,
i.e., W-token ∈ {0, 1} (Line 6-7). If W-token ∈ {0, 1}, then w′ executes the doorway of SWWP . In this case
it is just setting D to the new direction which is given by W-token (Line 8). Now w′ enters the waiting room
of acquire(M). As it has succeeded in completing the doorway of SWWP , no reader which starts its doorway
now can go past w′. Then w′ waits to acquire M (Line 9). Once w′ owns M , it sets the local variables currD
and prevD appropriately for the underlying single writer protocol, i.e., SWWP (Line 10). If w′ is the first writer
to acquire lock M after the previous writer has exited SWWP , w′ has to compete in SWWP . So w′ checks if
W-token ∈ {0, 1} (Line 11). If W-token ∈ {0, 1} thenw′ first waits for the previous writer to exit from underlying
protocol (Line 12). We have to do this because it is possible for the previous writer w to succeed in its CAS at
Line 19, but not exit from SWWP (Line 20). So if w′ does not wait for w to execute Line 20, w might cause
danger to the safety property later. Also note that as w is still in the exit section, even if w′ waits, the Unstoppable
Writer property is not violated. After making sure that the previous writer has exited from SWWP , w′ competes
in SWWP by executing its waiting room (Line 13). And once w′ is in the critical section of SWWP , it enters the
critical section (Line 13-14). If W-token 6∈ {0, 1} at Line 11, then it means that the previous writer did not exit
SWWP , so w′ can enter the critical section without competing with the readers. Following theorem summarizes
the properties of this algorithm.

Theorem 5 (Multi-Writer Multi-Reader lock with Writer Priority) The algorithm in Figure 4 implements a
Multi-Writer Multi-Reader lock satisfying the properties (P1)-(P6), (WP1) and (WP2) using the lock M from
[3] and the algorithm in Figure 1. The RMR complexity of the algorithm in the CC model isO(1). The algorithm
uses O(n) number of shared variables that support read, write, fetch&add and compare&swap operations.
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A Proofs for Section 3

A.1 Invariants of the algorithm in Figure 1

Our proof style is based on invariants, similar to Hoare style non-interference proofs. We identify various invari-
ants which should be true when the writer w is about to execute a certain instruction. To prove the properties of
the algorithm, first one has to prove the invariants itself and then use the invariants to prove the properties of the
algorithm.

Now we present some notations used in the presentation of our invariants. We use r(condition A) to denote
the set or readers who would satisfy the condition A, e.g., r(d = D, PC ∈ {18 . . . 21}), denotes the set of readers
that have their d value equal to D and have their program counter in the range {18 . . . 21}. C(d) refers to the set
of readers who have incremented the reader-count component of C(d) (line 17,20), but have not decrement it yet
(line 22, 27). Similarly EC is defined.

The following proposition says that if a PC of a reader r is between line 18 and line 27, then r has incre-
mented C[d] (it might have incremented C[d] too), but has not decremented it yet.

Proposition A.1 If r is a reader and PCr ∈ {18, 27} then r ∈ C(α) at time t, where α is the value of the d
variable of r at t.

The proposition is obvious from the code of Read-lock() in Figure 1. From now on we will take this proposi-
tion as a fact and not recall it every time the conditions of the proposition are true.

Some of the invariants of the algorithm in Figure 1 are given below. Now we describe one of those invariants
to give some intuition behind them.

Lets take the invariant when PCw = 4. The item 1 of the invariant just says what the value of C[0], C[1] and
EC would be in relation to C(0), C(1) and EC respectively. It also tells whether the writer has done an increment
on writer-waiting component on any of these variables. As one can see from the code and the invariant that
writer-waiting value of all of these variables should be 0 when PCw = 4. The item 2 of the invariant just tells
the state of the Gate variables. Item 3 says that all the reader who belong to EC, i.e., have incremented EC but
not decremented it, have their d = D, i.e., belong to the previous side of the current writer. And those reader
are not at line 28, this intuitively makes sense because the writer has not even incremented on the writer-waiting
component of EC, hence has not asked the readers to wake it up through ExitPermit. Now lets look at the last
item in the invariant, r(d = D, PC ∈ {23, 25 . . . 30}) = φ. It says that there are no readers from the current side
of the writer in the critical or exit section. This makes sense intuitively because the readers from the same side
as the writer could not have entered the critical section as the writer made sure that the gate this side is closed
already.

• When PCw ∈ {1, 2, 3}, the following hold:

1. C[D] = [0, |C(D)|], C[D] = [0, |C(D)|], EC =
[0, |EC|]

2. Gate[D] = true,Gate[D] = f

3. EC = r(d = D, PC ∈ {27, 29})
4. r(d = D, PC ∈ {28, 30}) = φ

5. C(D) = r(d = D, PC ∈ {18..27})∪
r(d = D, d′ = D, PC = 21)

6. C(D) = r(d = D, PC ∈ {18..21})∪
r(d = D, d′ = D, PC ∈ {21, 22})

7. r(d = D, PC ∈ {22..30}) = φ

• When PCw = 4, the following hold:

1. C[D] = [0, |C(D)|], C[D] = [0, |C(D)|], EC =
[0, |EC|]

2. Gate[D] = false,Gate[D] = true

3. EC = r(d = D, PC ∈ {27, 29})
4. r(d = D, PC ∈ {28, 30}) = φ

5. C(D) = r(d = D, PC ∈ {18 . . . 22, 24})∪
r(d = D, d′ = D, PC = 21)

6. C(D) = r(d = D, PC ∈ {18 . . . 27})∪
r(d = D, d′ = D, PC ∈ {21, 22})

7. r(d = D, PC ∈ {23, 25 . . . 30}) = φ

• When PCw = 5, the following hold:
Same as when PCw = 4 except Permit[D] = false
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• When PCw = 6 and Permit[D] = false, the following hold:

1. C[D] = [0, |C(D)|], C[D] = [1, |C(D)|], EC =
[0, |EC|]

2. Gate[D] = false,Gate[D] = true

3. EC = r(d = D, PC ∈ {27 . . . 29})
4. |r(d = D, PC = 28)I ≤ 1 and r(d = D, PC =

30) = φ

5. C(D) = r(d = D, PC ∈ {18 . . . 24})∪
r(d = D, d′ = D, PC = 21)]

6. C(D) = r(d = D, PC ∈ {18 . . . 27})∪
r(d = D, d′ = D, PC ∈ {21, 22})

7. |C(D)|+ r( PC ∈ {23, 28}) > 0

8. r(d = D, PC ∈ {25 . . . 30}) = φ

• When PCw = 6 and Permit[D] = true, the following hold:

1. C[D] = [0, |C(D)|], C[D] = [1, |C(D)|], EC =
[0, |EC|]

2. Gate[D] = false,Gate[D] = true

3. EC = r(d = D, PC ∈ {28 . . . 29})
4. |r(d = D, PC = 28)| ≤ 1 and r(d = D, PC =

30) = φ

5. C(D) = r(d = D, PC ∈ {18 . . . 24})∪
r(d = D, d′ = D, PC = 21)

6. C(D) = r(d = D, PC ∈ {18 . . . 21})∪
r(d = D, d′ = D, PC ∈ {21, 22})

7. r(d = D, PC ∈ {25 . . . 30}) = φ

• When PCw = 7 , the following hold:
Same as for the case PCw = 6 and Permit[D] = true.

• When PCw = 8, the following hold:

1. C[D] = [0, |C(D)|], C[D] = [0, |C(D)|], EC =
[0, |EC|]

2. Gate[D] = false,Gate[D] = true

3. EC = r(d = D, PC ∈ {28 . . . 29})
4. |r(d = D, PC = 28)| ≤ 1 and r(d = D, PC =

30) = φ

5. C(D) = r(d = D, PC ∈ {18 . . . 24})∪
r(d = D, d′ = D, PC = 21)

6. C(D) = r(d = D, PC ∈ {18 . . . 21})∪
r(d = D, d′ = D, PC ∈ {21, 22})

7. r(d = D, PC ∈ {25 . . . 30}) = φ

• When PCw = 9, the following hold:
Same as when PCw = 8 except that Gate[D] = false

• When PCw = 10, the following hold:
Same as when PCw = 9 except that ExitPermit = false

• When PCw = 11 and ExitPermit = false , the following
hold:

1. C[D] = [0, |C(D)|], C[D] = [0, |C(D)|], EC =
[1, |EC|]

2. Gate[D] = false,Gate[D] = false

3. EC = r(d = D, PC ∈ {28 . . . 29})

4. |r(d = D, PC ∈ {28, 30})| ≤ 1

5. C(D) = r(d = D, PC ∈ {18 . . . 24})∪
r(d = D, d′ = D, PC = 21)

6. C(D) = r(d = D, PC ∈ {18 . . . 21})∪
r(d = D, d′ = D, PC ∈ {21, 22})

7. EC ∪ r( PC = {30}) 6= φ

8. r(d = D, PC ∈ {25 . . . 30}) = φ

• When PCw = 11 and ExitPermit = true , the following
hold:

1. C[D] = [0, |C(D)|], C[D] = [0, |C(D)|], EC =
[1, |EC|]

2. Gate[D] = false,Gate[D] = false

3. EC = φ

4. r( PC ∈ {25 . . . 30}) = φ

5. C(D) = r(d = D, PC ∈ {18 . . . 24})∪
r(d = D, d′ = D, PC = 21)

6. C(D) = r(d = D, PC ∈ {18 . . . 21})∪
r(d = D, d′ = D, PC ∈ {21, 22})

• When PCw = 12, the following hold:
Same as the case when PCw = 11 and ExitPermit = true

• When PCw =∈ {13, 14}, the following hold:

1. C[D] = [0, |C(D)|], C[D] = [0, |C(D)|], EC =
[0, |EC|]

2. Gate[D] = false,Gate[D] = true

3. EC = φ

4. r( PC ∈ {25 . . . 30}) = φ

5. C(D) = r(d = D, PC ∈ {18 . . . 24})∪
r(d = D, d′ = D, PC = 21)

6. C(D) = r(d = D, PC ∈ {18 . . . 21})∪
r(d = D, d′ = D, PC ∈ {21, 22})

A.2 Proof of Theorem 1

Based on the invariants given above we prove properties of the algorithm in Figure 2.

Lemma 6 (Mutual Exclusion) A reader r and the writer w cannot be in the critical section together.
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PROOF. This lemma is obvious from the invariant when PCw = 13.

Lemma 7 (Writer Priority) If the writer w has better priority than a reader r then, r does not enter critical
section before w.

PROOF. One can see that when there is only one writer in the system, if w has better priority than r, it means
that w doorway precedes r. In the other words r was in remainder section when PCw = 4. The following lemma
states that such an r would never set its d to D while w is in try section.

Lemma 8 If w is in try section and doorway precedes some reader r in try section, then d of r is not equal to D
while w is active.

As the writer only updates D at line 3 and r starts its try section after w has executed line 3, so r would set its
d = D at line 16. From the rest of the code for Read-lock, one can see that r changes its d variable only if
observes some change in D, this is not possible while w is active.

To see why the lemma holds, observe that value Gate[d] is false when PCw ∈ [4, 14]. This clearly means
that r cannot go past line 24 and hence cannot enter the critical section while w is still in try section.

Before proving the Unstoppable Writer property, we define what we mean by a process not occupying the critical
section.

Definition 5 (process not occupying critical section) A process p from an attempt A does not occupy the crit-
ical section, if either the A has completed or p is in exit section in A and some process with conflicting p has
entered the critical section after p.

Lemma 9 (Unstoppable Writer Property) If the writer w is in the waiting room, w has better priority than all
the readers in the try section and no reader occupies CS then w is CS-enabled.

PROOF. First we claim that if a reader does not occupy CS then it cannot be in critical or exit section. Say a
reader r does not occupy CS , by definition it cannot be in critical section. And if it is in some exit section then
some writer before w, say w′, entered the critical section after r. If we look at the invariants when PC of w′ is
13, one can clearly see that no process is in the exit section (EC = φ). Hence r cannot be still in the exit section.
This fact together with the following lemma proves the lemma.

Lemma 10 If the writer w is in the waiting room, w doorway precedes all the readers in try section, and no
readers are in critical or exit section then w is CS-enabled.

PROOF. By lemma 8 all the no reader in try section will have d = D. Also as w doorway precedes all the
readers in try section, there will be no reader in the try section with d′ = D.

Suppose, w is not CS -enabled, that means it will spin at the loops at line 6 or 11. Lets consider both the
cases.

Case (a) w spins at line 6 : this means that it finds Permit[D] to false when PCw = 6. By item 6 of the invariant
when PCw = 6 and Permit[D] = false, C(D) = r(d = D, PC ∈ {18 . . . 27}) ∪ r(d = D, d′ =
D, PC ∈ {21, 22}). As we noticed earlier no reader in try section has d′ = D, so r(d = D, d′ =
D, PC ∈ {21, 22}) = φ. And as there are no readers in try section or critical section with d = D
so C(D) = φ. By the item 7 of the invariant for PCw = 6 and Permit[D] = false, one can see that
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|C(D)|+ r( PC ∈ {23, 28}) > 0, but this is a contradiction as there are no readers in C(D) and the exit
section.

Case (b) w spins at line 11 : this means that it finds ExitPermit[D] to false. By the item 7 of the invariant when
PCw = 11 and ExitPermit = false, EC ∪ r( PC = {30}) 6= φ. But this is a clear contradiction to the
fact that there are no readers in exit section.

Lemma 11 (Starvation Freedom) If no process stays in critical section forever then any process which enters
the try section eventually enters the critical section.

PROOF. We prove this lemma by covering different cases when the writer w or a reader r is in try section
forever.

Case (a) : w spins at line 6 forever : Then we prove the following claim that C(D) will eventually be empty
forever.

Claim 11.1 If w spins at line 6 forever, then eventually C(D) will be empty forever.

PROOF. w spins at line 6 forever. It means that Permit[D] is equal to false forever. So if we look at the
invariants when PCw = 6 and Permit[D] = false, we get C(D) = r(d = D, PC ∈ {18 . . . 27})∪r(d =
D, d′ = D, PC ∈ {21, 22}).

First we claim that r(d = D, PC ∈ {18 . . . 27}) will eventually be empty. So see why this is true say
some reader has d = D, one can see from the invariants for PCw = 5, that Gate[D] = true, hence
this reader will eventually either enter the critical section or update its d to D at line 21. Also any
reader which will update its d variable while PCw = 5 cannot update it to D. Using the previous two
facts and the assumption that no process stays in critical or exit section one can see that r(d = D,
PC ∈ {18 . . . 27}) will eventually be empty.

Now to show that eventually C(D) is empty, we have to show that eventually r(d = D, d′ = D, PC ∈
{21, 22}) is empty. Note that eventually any reader who updates d′ (line 18) will set it to D and not to
D, hence there will be a point when no more readers are added to this set. Also, all the readers in this
set will eventually go past line 22 and will be removed form this set. Hence this proves that eventually
forever r(d = D, d′ = D, PC ∈ {21, 22}) = φ.

Now from the invariant 7 for PCw = 5 and Permit[D] is equal to false, one can see that when C(D) = φ,
there has to be some process at line 23 or 28. In both these lines a reader sets Permit[D] to true. Hence
eventually when a reader executes either of these lines, Permit[D] = true and the writer does not spin
on line forever, a contradiction.

Case (b) w spins at line 11 forever. Exactly like the the previous case with the difference that now one has to
argue that eventually EC will be empty forever.

Hence we have shown that the writer w never starves. To show that the reader never starves we prove
the following lemma first.
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Lemma 12 If a reader r is in the waiting room and PCw ∈ {1 . . . 3} then r is CS-enabled.

PROOF. Say r is in the waiting room ( PCr = 24), and w is in the remainder section ( PCw = 1).
Then by the item 7 of the invariant when PCw = 1, one can see that d of r is equal to D, say d = 1. By
the item 2 of the same invariant one can see that Gate[1] = true. We prove the lemma by making the
following claim that proves that w does not set Gate[1] to false while r is at line 24.

Claim 12.1 If a reader r is at line 24 with d = α, α ∈ {0, 1} and Gate[α] is equal to true, then Gate[α]
is not set to false while r is at line 24.

PROOF. Suppose w does set Gate[α] from true to false (at line 8) while r is still at line 24. If we look
at the invariants when PCw = 8, only Gate[D] = true (item 2 of the invariant when PCw = 8), hence
α = D. And all the processes at line 24 have d = D = α (item 5,6), but this contradicts the fact that r
is at line 24 with d = α.

Case (c) r spins at line 24 forever. If the writer ever enters the remainder section while r is at line 24, by the
lemma 12, r should be enabled. Now if w is in try section, then by case (a) and (b) of this lemma, it
will eventually enter the critical section, and by assumptions of the lemma eventually exit and go to the
remainder section. Hence in ether case, r will be eventually CS -enabled, hence cannot spin at line 24
forever.

Lemma 13 (Concurrent Entry) If a reader r is in the waiting room, and the writer is not in try section and does
not occupy CS then r should be enabled.

PROOF. We claim that if the writer is not in try section and does not occupy CS then it should be in remainder
section, this together with lemma 12 will prove the lemma. If w does not occupy CS then by definition it cannot
be in the critical section. And if its in exit section then some reader entered the critical section after it. But as
there is only one statement in the exit section of w, line 14. By looking at the invariants when PCw = 14, one
can clearly see that no reader should be in critical section, it means that w has to completely leave the exit section
to not occupy CS .

Lemma 14 (First in First Enabled) If a reader r is in the waiting room, another reader r′ is in the critical
section and r doorway precedes r′ then r should be CS-enabled.

PROOF. As r is in the waiting room so PCr = 24, W.L.O.G say d of r is equal to 1. So r is spinning till
Gate[1] = true. If d of r′ is also equal to 1, it means that r′ saw Gate[1] = true at some point when r was at line
24. By using claim 12.1 one can see that r should also be enabled in this case.

Now suppose d of r is 1 and d of r′ is 0. If PCw ∈ {1 . . . 3} at the point when r executes line 24 for the first
time, then by lemma 12, r should be enabled. So lets, suppose PCw > 3 and Gate[1] = false when r executes
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line 24 for the first time, say at time t. One can see from the item 2 of the invariants for PCw > 3 that D = 1 at
t. But as r′ starts its doorway after r and set its d equal to 0 at some time while r is at line 24. It means that the
writer entered the remainder section while r was at line 24, hence by lemma 12 again r should be enabled.

The following property was not given in the main part of the paper, but we claim that it is very useful and our
algorithm satisfies it.

Lemma 15 (Waiting Reading Enabled property) If a reader r is in the waiting room, the writer w is in critical
section, then r should be CS-enabled at the time some reader enters critical section after w.

PROOF. Say r enters the waiting room at time t and let r′ be the earliest reader to enter CS after w, and say it
enters CS at time t′. As w is in critical section at some time in the interval [t, t′), and r′ is in CS at t′, it means that
w exited CS at some time in the interval [t, t′). By the invariants when PCw = 14, w cannot be at line 14 when,
r′ enters CS . Hence this means that w enters the remainder section at some time in the interval [t, t′), hence r
should be CS -enabled at t′.

Lemma 16 (Constant RMR complexity) The algorithm given in Figure 1 has O(1) RMR complexity in CC
model.

PROOF. As both Write-lock() and Read-lock() have constant number of steps, all we have to ar-
gue is that the RMR complexity of their wait till statement is also constant. It is very easy to see that for
Write-lock(). As the writer waits for Permit[D] and ExitPermit to be set to true at line 6 and 11 respectively,
and as writer is the only process to set them to false, so value of these variables only changes once while the
writer is spinning on them.

In a Read-lock(), a reader waits till Gate[d] is set to true (line 24). By claim 12.1, once the value of
Gate[d] is set to true, it is not set back to false while the reader is still at line 24. Hence Read-lock() also has
O(1) RMR complexity in CC model.

B Proofs from section 4

B.1 Invariants of the Algorithm in Figure 2

The invariants for the algorithm in Figure 2 are presented in Figure 5. The notations used here are similar to the
notations used in previous section. Using the invariants given in 5, here we present the proofs of the properties
the algorithm in Figure 2 satisfies.

B.2 Proof of Theorem 2

Lemma 17 (Mutual Exclusion) A reader r and the writer w cannot be in the critical section together.

PROOF. One can easily see from invariant for PCw = 6 that there is no reader r in critical section ( PCr =
25).

One can see that Concurrent entry (P5) and FIFE (P4) are mere consequence or the Unstoppable Reader
Property. Also as there is only one writer, Unstoppable Reader Property also implies Reader Priority (RP1).
Now we prove Unstoppable Reader Property.
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Global invariant : C = |r{ PC ∈ 15 . . . 22}|

• PCw = 1, 2

1. Gate[D] = true,Gate[D] = false

2. X 6= true, r(PID ∈ X, PC ∈ {14, 15}) = φ

3. Permit = true

4. r(d = D, PC{20 . . . 26}) = r( PC = 16) = φ

• PCw = 3

1. Gate[D] = false,Gate[D] = true

2. X 6= true, r(PID ∈ X, PC ∈ {14, 15}) = φ

3. Permit = true

4. r( PC = 16) = φ

• PCw ∈ [10− 15], X 6= true

1. Gate[D] = false,Gate[D] = true

2. r( PC = 16) = φ

3. Permit = false

• PCw = [10− 15], X = true and Permit = false

1. Gate[D] = false,Gate[D] = true

2. r(d = D, PC ∈ {20 . . . 26}) = r(d = D, PC ∈
{25, 26}) = φ

3. |r( PC = 16)| = 1

• PCw = [10− 15], X = true and Permit = true

1. Gate[D] = false,Gate[D] = true

2. r(d = D, PC ∈ {20 . . . 26}) = r(d = D, PC ∈
{25, 26}) = φ

3. r( PC = 16) = φ

• PCw = 16

1. Gate[D] = false,Gate[D] = true

2. X = true

3. Permit = false

4. r(d = D, PC ∈ {20 . . . 26}) = r(d = D, PC ∈
{25, 26}) = φ

5. r( PC = 16) = φ

• PCw = 5 and X ∈ PID

1. Gate[D] = false,Gate[D] = true

2. |r( PC ∈ {19 . . . 27, 10})| + |r(x = X, PC ∈
{11, 12})|+ |r(PID = X, PC ∈ [13, 15])| > 0

3. Permit = false

4. r( PC = 16) = φ

• PCw = 5, X = true,Permit = false
Same as when PCw = [10− 15], X = true and Permit =
false

• PCw = 5, X = true,Permit = true
Same as when PCw = [10− 15], X = true and Permit =
true

• PCw = 6, 7

1. Gate[D] = false,Gate[D] = true

2. X = true

3. r(d = D, PC ∈ {20 . . . 26}) = r(d = D, PC ∈
{25, 26}) = φ

4. Permit = true

5. r( PC = 16) = φ

• PCw = 8

1. Gate[D] = false,Gate[D] = false

2. X = true

3. r(d = D, PC ∈ {20 . . . 26}) = r(d = D, PC ∈
{25, 26}) = φ

4. Permit = true

5. r( PC = 16) = φ

• PCw = 9

1. Gate[D] = true,Gate[D] = false

2. X = true

3. r(d = D, PC ∈ {20 . . . 26}) = φ

4. Permit = true

5. r( PC = 16) = φ

Figure 5: Invariants for algorithm in Figure 2
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Lemma 18 (Unstoppable Reader Property) If a reader r is in the waiting room (line 24), r has better priority
than the writer w (if w is in try section), and the writer does not occupy CS then r is CS -enabled.

PROOF. First we prove the following two lemmas which are used to proving the lemma.

Lemma 19 If a reader r in the waiting room and PCw ∈ {1, 9} then r is CS-enabled.

PROOF.
Lets take the case of PCw = 1. As r is in the waiting room it means PCr = 24. So one can see from the

invariants when PCw = 1 that variable d of r is equal to D and Gate[d] = true . WLOG let d = D = 1, we will
show that Gate[1] is not set to false while r is at line 24.

Say Gate[1] is set to false later while r is still at line 24. It means w executes Gate[1] ← false (line 7), but
by the invariant for PCw = 7, r(d = 1, PC ∈ {20 . . . 26}) = φ, this contradicts the fact that r is still at line 24.
The case for PCw = 9 is exactly the same.

Lemma 20 If at time t a reader r is in the waiting room and some reader is in critical section then r is CS-
enabled.

PROOF. If at time t, X = true and some reader is in critical section (line 25), from the invariants one can clearly
see that PCw = 9, and from the lemma 19, r should be CS -enabled.

As PCr = 24 it means r previously observedX = true at line 23. So ifX 6= true at time t, by the inspection
of the code once can see that only the writer changes X when it is true (line 9). Hence it means w executed line
9 during the interval r[23, t]. Hence by the lemma 19, r should be CS -enabled.

To prove the lemma lets first consider the case when the writer is not in try section. As the writer w does not
occupy CS , then it either is in the remainder section ( PCw = 1) in which case using lemma 19 we are done, or w
is in exit section and some other reader entered the CS while w is in exit section ( PCw ∈ [7, 9]). By inspecting at
the invariants when PCw ∈ [7, 9], one can clearly see that for some reader to enter CS while w is in exit section,
w has to be at line 9. Hence by using lemma 19, r should be CS -enabled.

Now lets consider the case when the writer is in the try section. As the reader has better priority than the
writer w then by the definition of priority either w was in remainder section while r is in waiting room, or some
reader was in CS while r is in waiting room. By using the lemma 19 for the former case and lemma 20 for the
later case we can see that r should be enabled.

Lemma 21 (Reader Starvation freedom) If a reader r is in try section and the writer does not stay in critical
section forever then r eventually enters the critical section.

PROOF. Suppose r stays in try section forever. Then we claim that the writer w also stays in the try section
forever. This is true because, if r keeps taking steps then it will eventually complete its doorway. Now if w ever
enters remainder section, by lemma 19, r will be CS -enabled. If w enters the critical section, by assumption of
the lemma it will have to exit and enter remainder eventually (as exit section is bounded too). So one can see
both r and w will be in the try section forever, which means PCr = 24, PCw = 5 and Permit = false forever.

Now we claim that X = true while r is at line 24. So see why this is true, note that as r is at line 24, it would
have seen X = true at line 23. But if X 6= true later while r is at line 24, it means that w would have executed
line 9 while r is in waiting room. Hence by lemma 19, r should be CS enabled which is a contradiction.
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So which means PCw = 5, X = true and Permit = false, but looking at the invariant for this case, one can
see that some reader is at line 16 and it will eventually execute it, which means that Permit would be set to true
and w will enter CS eventually which is a contradiction.

Lemma 22 (Livelock freedom) If some process is in the try section and no process is in the critical and exit
section then some process enters the critical section eventually.

PROOF. As we have already shown starvation freedom for readers all we have to show is that if no reader is
active then the writer does not starve forever.

Say the writer stays in try section forever, so PCw = 5 and Permit = false forever. If X = true then by the
invariants when PCw = 5, X = true,Permit = false, one can see that there is one reader at line 16, which is a
contradiction. If X 6= true, then by the item 3 of the invariant when PCw = 5, X 6= true,Permit = false, one
can see that some reader is active, which is a contradiction.

Lemma 23 (Constant RMR complexity) The algorithm given in Figure 2 has O(1) RMR complexity in CC
model.

PROOF. As the doorway and exit section of both Write-lock() and Read-lock() have constant number of
steps, all we have to show is that the RMR complexity when the processes are spinning is constant.

In case of Write-lock it is easy to see why this is true ; when the Permit is set to true in the waiting room
of the writer, it is CS -enabled. As writer is the only process to set Permit to false, so Permit would remain true
till the writer goes to the critical section.

In the Read-lock, say a reader r is in the waiting room (line 24), say without loss of generality, r is waiting
for Gate[1] to be set to true, we claim that once Gate[1] is equal to true, it is not set back to false while r is still
at line 24. To see why this claim is true notice that only the writer ever writes into the Gate variable and it only
sets it to false at line 7. Say Gate[1] is true at this point and PCw = 7, by the invariants when PCw = 7 one can
see that there should be no reader at line 24 with d = 1, but this contradicts the assumption that r is at line 24
waiting for Gate[1] to be set to true. Now with this claim one can see that RMR complexity of Read-lock in
CC model is also constant.
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