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Abstract

We present an approach to improving the security of complex, composed systems
based on formal language theory, and show how this approach leads to advances in
input validation, security modeling, attack surface reduction, and ultimately, software
design and programming methodology. We cite examples based on real-world security
flaws in common protocols representing different classes of protocol complexity. We also
introduce a formalization of an exploit development technique, the parse tree differential
attack, made possible by our conception of the role of formal grammars in security.
These insights make possible future advances in software auditing techniques applicable
to static and dynamic binary analysis, fuzzing, and general reverse-engineering and
exploit development.

Our work provides a foundation for verifying critical implementation components
with considerably less burden to developers than is offered by the current state of the
art. It additionally offers a rich basis for further exploration in the areas of offensive
analysis and, conversely, automated defense tools and techniques.

This report is divided into two parts. In Part I we address the formalisms and their
applications; in Part II we discuss the general implications and recommendations for
protocol and software design that follow from our formal analysis.

1 Introduction

Composition is the primary engineering means of complex system construction. No matter
what other engineering approaches or design patterns are applied, the economic reality is
that a complex computing system will ultimately be pulled together from components made
by different people and groups of people.

For the traditional division of a system into hardware, firmware, and software, and of
software into device drivers, generic OS kernel and its sub-layers, and various application
software stacks and libraries the fact of this composition is so obvious that it is commonly
dismissed as trivial; how else can one build modern computers and modern software if not
in a modular way? Moreover, modularity is supposed to be good for security and reliability,
because without them programming would be intractable.
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However, doing composition securely has emerged as the primary challenge to secure sys-
tem construction. Security practitioners know that interfaces are attack targets of choice,
and that vulnerabilities are often caused by unexpected interactions of features across com-
ponents; yet the reasons for this are elusive (except perhaps the attacker’s desire for reliable
execution of their exploits, which leads them to target the best-described parts of systems
with tractable state; still, this does not explain our collective inability to design systems
without unwanted feature interactions).

In this paper we argue that we need a new, stronger theoretic understanding of compu-
tational units’ composition and of their underlying properties that make it empirically hard
to “get it right”, i.e., design systems without vulnerabilities caused by composition.

We show that there are strong computational-theoretic and formal language-theoretic
reasons for the challenges of secure composition, and chart design principles to reduce these
challenges. In particular, we show that the hard challenges of safe input handling and secure
composition arise due to the underlying theoretically hard or unsolvable (i.e., undecidable)
problems that certain protocol designs and implementations essentially require to solve in
order to secure them. We posit that the (unwitting) introduction of such problems in
the design stage explains the extreme propensity of certain protocols and message formats
to yield a seemingly endless stream of “0-day” vulnerabilities despite efforts to stem it,
and the empirical hopelessness of “fixing” these protocols and message formats without a
fundamental redesign.

We also chart ways to avoid such designs prone to turning into security nightmares
for future Internet protocols. Empirically, attempts to solve an engineering problem that
implies a “good enough” (or “80%/20%”) solution to the underlying undecidable theory
problem are doomed to frustration and failure, which manifests in many ways, such as no
amount of testing apparently sufficing to get rid of bugs, or the overwhelming complexity
and not-quite-correct operation of the automation or detection tools created to deal with
the problem. Thus, avoiding such problems in the first place (at the design stage) saves
both misinvestment of programming effort and operational costs.

Our argument focuses on the application of fundamental decidability results to the two
basic challenges of composed and distributed system construction due to communication
between components: safely accepting and handling inputs in every component, and identical
interpretation of messages passed between components at every endpoint. In particular, we
consider the following two perspectives on composition:

1. Single-component perspective: A component in a complex system must accept inputs
or messages across one or more interfaces. This creates an attack surface, leveraged
by an absolute majority of exploitation techniques. We discuss hardening the attack
surface of each component against malicious crafted inputs, so that a component is
capable of rejecting them without losing integrity and exhibiting unexpected behavior
— in short, without being exploited.

2. Multi-component perspective: As components exchange messages, they must ensure
that, despite possible implementation differences, they interpret the messages identi-
cally. Although this requirement appears to be trivially necessary for correct opera-
tion, in reality different implementations of a protocol by different components produce
variations, or mutually intelligible dialects, with message semantic differences masked
(and therefore ignored) in non-malicious exchanges. A smaller but important class of
attack techniques leverages such differences, and can lead to devastating attacks such
as those on X.509 and ASN.1 discussed in this paper.
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The importance of these requirements is an empirical fact of the Internet security experience
(cf. [1, 2, 3]), which our paper puts in solid theory perspective. We then elaborate the general
principles of protocol design that follow from our analysis.
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Structure of this paper

Our presentation consists of two parts. In Part I we make the case for formal language-
theoretic approach to security, and show the direct relevance of various formalisms to prac-
tical, state-of-the-art classes of exploits and defences. In Part II we change tack and address
protocols designers, developers, and security auditors with a set of recommendations derived
from our formal analysis but formulated informally and accessibly. Readers interested in
our recommendations may skip the formal arguments in Part I and go straight to Part II’s
for their summary.

We start with the motivation of our approach in Section 2 and review the necessary
background formalisms in Section 3.

Then in Section 4 we explain how these general formalisms apply to exploitation of
computing systems, and illustrate this application for several well-known classes of practical
exploitation techniques. In doing so, we connect the corresponding classes of attacks with
formal language properties of targeted data structures, which provides a novel and definitive
way to analyze various suggested defences.

In Section 5 we show how to apply formal language-theoretic techniques to achieve
rigorous, non-heuristic input validation. We start our discussion with SQL validation, but
also show that the same approach applies to other context-free languages such as PKCS#1
(in Section 5.2 we prove that PKCS#1 is indeed context-sensitive). We also discuss flaws
in previous validation approaches, and show why these flaws matter for practical security.

The discussion of flaws leads to us Section 6, in which we present a new technique for
security analysis of differences between mutually intelligible language dialects that arise
from implementation differences. This technique, Parse Tree Differential Analysis, proved
a powerful tool to enhance code auditing and protocol analysis.

In Section 7, we show that the challenges and failures of IDS/IPS, arguably the most
common form of security composition, can be explained via language-theoretic computa-
tional equivalence. We conclude Part I with an outline of future work.

In Part II we recap the observations of Part I and formulate several principles that follow
from our analysis in the preceding sections, and discuss their corollaries for designing and
implementing protocols securely.
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Part I. Security and Formal Language Theory

2 Why Security Needs Formal Language Theory

We posit that input verification using formal language theoretic methods — whether simply
verifying that an input to a protocol constitutes a valid expression in the protocol’s gram-
mar or also verifying the semantics of input transformations — is an overlooked but vital
component of protocol security, particularly with respect to implementations. Simply put,
a protocol implementation cannot be correct unless it recognizes input correctly, and should
be considered broken.

Formal software verification seeks to prove certain safety (“nothing bad happens”) and
liveness (“something good happens, eventually”) properties of program computations: if ev-
ery computation a program can perform satisfies a particular property, the program is safe
(or, respectively, live) with respect to that property [4]. Program verification in the general
case is undecidable, and although many approaches to falsification and verification of
properties have been developed, unsolved and unsolvable problems with the scalability and
completeness of algorithmic verification have prevented formal correctness from displacing
testing and code auditing as the industry gold standard for software quality assurance [5].
However, programs that implement protocols — that is to say, routines that operate over a
well-defined input language1 — share one characteristic that can be leveraged to dramati-
cally reduce their attack surfaces: their input languages can — and, we posit, should — in
general be made decidable and can be decided in a tractable fashion. We show that this
requirement of being well-specified and tractably decidable is in fact a crucial pre-requisite
of secure design and, in fact, its violation is the source of much of the present-day computer
insecurity.

Inputs to system components such as web browsers, network stacks, cryptographic pro-
tocols, and databases are formally specified in standards documents, but by and large,
implementations’ input handling routines parse the languages these standards specify in
an ad hoc fashion. Attacks such as the Bleichenbacher PKCS#1 forgery [6, 7] show what
can happen when an ad hoc input-language implementation fails to provide all the prop-
erties of the input language as actually specified. In more recent work [8], we have shown
that variations among implementations can be exploited to subvert the interoperation of
these implementations, and that ambiguity or underspecification in a standard increases the
chances of vulnerability in otherwise standards-compliant implementations.

On this basis, we argue that “mutually intelligible dialects” of a protocol cannot make
guarantees about their operation because the problem Equivalent(L(G) = L(H)) is unde-
cidable when G and H are grammars more powerful than deterministic context-free [9, 10].
We also observe that systems that consist of more than one component have inherent, de
facto “design contracts” for how their components interact, but generally do not enforce
these contracts; SQL injection attacks (hereafter SQLIA), for instance, occur when an at-
tacker presents a database with an input query that is valid for the database in isolation,
but invalid within the context of the database’s role in a larger application.

Since well-specified input languages are in the main decidable2 (or can be made so),

1This includes file formats, wire formats and other encodings, and scripting languages, as well as the
conventional meaning of the term, e.g. finite-state concurrent systems such as network and security protocols.

2Albeit with notable exceptions, such as XSLT [11, 12], HTML5+CSS3 (shown to be undecidable by
virtue of its ability to implement Rule 110 [13, 14]), and PDF (for many reasons, including its ability to
embed Javascript [15]).
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there is no excuse for failing to verify inputs with the tools that have existed for this
exact purpose for decades: formal parsers. We will examine input verification from several
different angles and across multiple computability classes, highlight the unique problems
that arise when different programs that interoperate over a standard permit idiosyncratic
variations to that standard, and show formally how to restrict the input language of a
general-purpose system component (such as a database) so that it accepts only those inputs
that it is contractually obligated to accept.

Given the recent advent of provably correct, guaranteed-terminating parser combina-
tors [16] and parser generators based on both parsing expression grammars [17] and context-
free grammars [18], we hold that the goal of general formal parsing of inputs is within practi-
cal reach. Moreover, informal guarantees of correct input recognition are easy to obtain via
commonly available libraries and code generation tools; we encourage broader use of these
tools in protocol implementations, as incorrect input handling jeopardizes other properties
of an implementation.

Note. We must distinguish between formal language theoretic security — i.e., a security
policy that governs inputs to systems and system components, restricting them to strings
in the the formal languages particular to each component, and is enforced through the use
of correct parsers for those languages as input handlers — and language-based security [19],
which incorporates mechanisms that enforce security policies into the programming lan-
guages in which systems and their components are implemented. All of the vulnerabilities
we will discuss could appear in programs written in languages that provide language-based
security mechanisms. That said, language-based security mechanisms such as proof-carrying
code and certifying compilers provide a means by which formal-language-theoretically secure
implementations can be verified as such.

3 Background Formalisms

3.1 Computability Bounds and the Chomsky Hierarchy

Noam Chomsky classified formal grammars in a containment hierarchy according to their
expressive power, which correlates with the complexity of the automaton that accepts exactly
the language a grammar generates, as shown in Fig. 1 [20].

Within this hierarchy, one class of automaton can decide an equivalently powerful lan-
guage or a less powerful one, but a weaker automaton cannot decide a stronger language.
(E.g., a pushdown automaton can decide a regular language, but a finite state machine can-
not decide a context-free language.) Thus, formal input validation requires an automaton
(hereafter, parser) at least as strong as the input language. It is a useful conceit to think
of a protocol grammar in terms of its place in the Chomsky hierarchy, and the processor
and code that accept input in terms of machine strength, while being conscious of their
equivalence.

Recursively enumerable languages are undecidable, which presents a serious implemen-
tation problem: the Turing machine that accepts a given recursively enumerable language,
or recognizer3 for that language, halts in an accepting state on all strings in the language, but

3Compare with the decider, a Turing machine that accepts strings in a recursive language (which is
stronger than context-sensitive but weaker than recursively enumerable), rejects strings not in the language,
and is guaranteed to halt.
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regular *

deterministic

context-free †

nondeterministic

context-free ‡

decidable ††

Turing-recognizable ‡‡

Figure 1: The Chomsky hierarchy of languages according to their expressive power. Lan-
guages correspond to grammars and automata as follows:
? regular grammars, regular expressions, finite state machines
† unambiguous context-free grammars, deterministic pushdown automata
‡ ambiguous context-free grammars, non-deterministic pushdown automata
†† context-sensitive grammars/languages, linear bounded automata
‡‡ recursively enumerable languages, unrestricted grammars, Turing machines
The shaded area denotes classes for which the equivalence problem is decidable.

either rejects or fails to halt on inputs not in the language. All weaker language classes are
decidable; their equivalent automata always terminate in an accept or reject state [20, 10].
An unrestricted protocol grammar is thus a security risk, since malicious input could cause
its parser to fail to halt — a syntactic denial of service — or perform arbitrary computa-
tion. The rubric we derive from these bounds on expressiveness — “use a sufficiently strong
parser for an input language, but no stronger” — is echoed in the W3C’s “Rule of Least
Power”: “Use the least powerful language suitable for expressing information, constraints
or programs on the World Wide Web.” [21]

Parsers also exhibit certain safety and liveness properties (after Lamport [4]). Soundness
is a safety property; a sound parser only accepts strings in its corresponding language, and
rejects everything else. Completeness is a liveness property; a complete parser accepts every
string in its corresponding language. Termination is also a safety property; a terminating
parser eventually halts on every string presented to it, whether that string belongs to its
language or not.

Two other decidability problems influence our analysis: the context-free equivalence
and containment problems. Given two arbitrary context-free grammars, G and H, both
L(G) = L(H) and L(G) ⊆ L(H) are undecidable [10], except for a particular construction
detailed in [22]. The context-free grammars form two disjoint sets: deterministic and non-
deterministic, corresponding to deterministic and non-deterministic pushdown automata
respectively. All unambiguous context-free grammars are deterministic [23], and the equiv-
alence problem for deterministic CFGs is decidable (though the containment problem is
not) [9].

Any grammar in which the value of an element in the string influences the structure of

7



another part of the string is at least context-sensitive [24]. This applies to most network
protocols and many file formats, where length fields, e.g. the Content-Length field of an
HTTP header [25] or the IHL and Length fields of an IPv4 datagram [26], are commonplace.
Programming language grammars that support statements of the form “if B1 then if B2

then S1 else S2”, e.g. Javascript [27], are nondeterministic context-free (at best) due to
the ambiguity the “dangling else” problem introduces [28]; if the shift-reduce conflict is
resolved without adding braces or alternate syntax (e.g. elif or end if), the resulting
grammar is non-context-free. Conveniently, the PostgreSQL, SQLite, and MySQL database
engines all use LR grammars, which are deterministic context-free [29]. Membership tests
for certain subclasses of LR (e.g. LALR, LR(k), etc.) and approximate ambiguity detection
methods exist [30]; however, determining whether an arbitrary CFG is unambiguous is
undecidable [31].

3.2 Modeling Communication from a Security Standpoint

In 1948, Claude Shannon proposed a block-diagram model to describe systems which gen-
erate information at one point and reproduce it elsewhere [32]. In it, an information source
generates messages (sequences drawn from an alphabet); a transmitter encodes each mes-
sage into a signal in an appropriate form for the channel over which it can pass data, then
sends it; a receiver decodes signals into reconstructed messages; and a destination associated
with the receiver interprets the message. The engineering problem of maximizing encoding
efficiency motivated Shannon’s work; he regarded the meanings of messages as outside the
scope of this transmission model. Nevertheless, social scientists such as Schramm [33] and
Berlo [34] expanded the transmission model to incorporate semantic aspects of communi-
cation. Schramm recast the destination as an interpreter, which takes actions according
to the decoded message’s semantic content, and replaced Shannon’s one-way message path
with a bidirectional one; Berlo emphasized the difficulty of converting thoughts into words
and back, particularly when sender and receiver differ in communication ability. These
insights, combined with Hoare’s axiomatic technique for defining programming language
semantics [35], have surprising implications for the practice of computer security.

When a destination extracts a different meaning from a decoded message than the one
the source intended to transmit, the actions the destination performs are likely to diverge
— perhaps significantly — from what the source expected. In human communication, it
is difficult to evaluate whether an unexpected response signifies a failure in transmission of
meaning or that the source’s assessment of what behavior to expect from the destination
was wrong. In computer science, however, we can make formal assertions about the proper-
ties of destinations (i.e., programs), reason about these properties, and demonstrate that a
program is correctup to decidability [35]. When a destination program’s semantics and im-
plementation are provably correct, “whether or not it carries out its intended function” [35]
is a question of whether the destination received the intended message. If a verified destina-
tion’s response to a source’s message M does not comport with the response that deduction
about the program and M predict, the receiver has decoded something other than the M
that the transmitter encoded. In practice, this situation is not infrequent between different
implementations of a protocol.

Berlo’s and Schramm’s adaptations rightly drew criticism for their focus on encoding
and decoding, which implied the existence of some metric for equivalence between one per-
son’s decoder and the inverse of another person’s encoder. However, in transmissions over
computer networks, where both source and destination are universal Turing machines, we
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can test the equivalence of these automata if they are weak enough; if they are nondetermin-
istic context-free or stronger, their equivalence is undecidable. Points of encoder-decoder
inequivalence — specifically, instances where, for a message M , an encoding function E , and
a decoding function D, D(E(M)) 6= M — can cause the destination to take some action
that the source did not anticipate. An attacker who can generate a signal E(M) such that
D(E(M)) 6= M can take advantage of this inequivalence. Indeed, many classic exploits,
such as buffer overflows, involve crafting some E(M) — where the meaning of M , if any,
is irrelevant 4 — such that applying D to E(M), or passing D(E(M)) as an input to the
destination, or both, elicits a sequence of computations advantageous to the attacker (e.g.,
opening a remote shell).

Naturally, an attacker who can alter E(M) in the channel, or who can modify M before
its encoding, can also elicit unexpected computation. The former is a man-in-the-middle
attack; the latter is an injection attack. Both affect systems where the set of messages that
the source can generate is a subset of those on which the destination can operate.

Note that we do not consider situations where D(E(M)) = M but different destinations
respond to M with different actions; these constitute divergent program semantics, which
is relevant to correctness reasoning in general but outside the scope of this work. We are
only interested in the semantics of D and E .

4 Exploits as Unexpected Computation

Sending a protocol message is a request for the receiving computer to perform computation
over untrusted input. The receiving computer executes the decoding (parsing) algorithm
D(M), followed by (i.e., composed with) subsequent operations conditional on the result
of D; thus, E(M) → D(E(M)) · C(D(E(M))). It is never the case that simply parsing an
input from an untrusted source should result in malicious code execution or unauthorized
disclosure of sensitive information; yet, this is the basis of most effective attacks on modern
networked computer systems, specifically because they permit, though they do not expect,
the execution of malicious algorithms when provided the corresponding input. That this
computation is unexpected is what leads to such vulnerabilities being considered exploits,
but ultimately, the problem constitutes a failure in design. Whether implicitly or explicitly,
designers go to work with a contract [37] in mind for the behavior of their software, but if
the code does not establish and enforce preconditions to describe valid input, many types
of exploits are possible.

This behavior is especially harmful across layers of abstraction and their correspond-
ing interfaces, since in practice these layer boundaries become boundaries of programmers’
competence.

4.1 Injection Attacks

Injection attacks target applications at points where one system component acquires input
from a user in order to construct an input for another component, such as a database, a
scripting engine, or the DOM environment in a browser. The attacker crafts an input to
the first component that results in the constructed input producing some computation in

4This phenomenon suggests that Grice’s Maxim of Relation [36] – “Be relevant” – applies to the prag-
matics of artificial languages as well as natural ones.
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the second component that falls outside the scope of the operations the system designer
intended the second component to perform. Some examples:

Example 1 (Command injection) Functions such as system() in PHP, Perl, and C;
nearly all SQL query execution functions; and Javascript’s eval() take as argument a string
representation of a command to be evaluated in some execution environment (here, the sys-
tem shell, a database engine, and the Javascript interpreter respectively). Most such envi-
ronments support arbitrary computation in their own right, though developers only intend
their systems to use a very limited subset of this functionality. However, when these func-
tions invoke commands constructed from unvalidated user input, an attacker can design an
input that appends additional, unauthorized commands to those intended by the developer —
which the environment dutifully executes, using the same privileges afforded to the desired
commands [38].

Example 2 (HTTP parameter pollution) RFC 3986 [39] observes that the query com-
ponent of a URI often contains “key=value” pairs that the receiving server must handle, but
specifies nothing about the syntax or semantics of such pairs. The W3C’s form-urlencoded
media type [40] has become the de facto parameter encoding for both HTTP GET query
strings and HTTP POST message bodies, but parameter handling semantics are left to im-
plementer discretion. Idiosyncratic precedence behaviour for duplicate keys, in a query string
or across input channels, can enable an attacker to override user-supplied data, control web
application behaviour, and even bypass filters against other attacks [41].

All types of injection leverage a weak boundary between control and data channels [42]
to modify the structure, and thereby the execution semantics, of an input to an application
component [22, 42]. Halfond et al [43] enumerate many heuristic injection defenses; in
section 5.1 we describe parse tree validation, a verifiable defense technique. There are
several categories of defense against injection: escaping, which attempts to transform user
input that might alter the structure of a subsequently constructed input into a string-literal
equivalent; tainting, which flags user input as untrusted and warns if that input is used
unsafely; blacklisting, which attempts to identify and reject malicious inputs; programmatic
abstraction, which provides control channel access through an API and relegates user input
to the data channel [43] Another technique, parse tree validation, passes constructed inputs
through a validator that parses them, compares the resulting parse tree to a set of acceptable
candidate parse trees, and rejects inputs whose structure is not in that set.

4.2 Other Attack Surfaces

Other attack vectors blur the boundaries between control and data channels in subtler ways;
rather than targeting the higher-level languages that injection exploits, they take advantage
of input handling failure modes to alter the machine code or bytecode in an already-executing
process. Many such attacks, e.g. shellcode attacks [44], contain a sequence of opcodes that
are written to a location within the process’s address space and executed by means of a jump
from an overwritten stack frame return address; other techniques, such as return-to-libc [45]
and its generalization, return-oriented programming [46, 47], overwrite the return address
to point to a function or a code fragment (a.k.a. “gadget”, e.g., in the program’s code
section, or in a library such as libc) not meant to be a part of the stack-backed control flow
and adjacent memory to contain any arguments the attacker wants to pass to that function,
enabling arbitrary code execution even on platforms with non-executable stacks [48].
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Example 3 (Buffer Overflows) When a function designed to write data to a bounded
region of memory (a buffer) attempts to write more data than the buffer can contain, it
may overwrite the values of data in adjacent memory locations — possibly including the
stack frame return address [49] or a memory allocator’s heap control structures [50, 51, 52].
Constraining such a function’s input language to values that the function cannot transform
into data larger than the buffer can prevent an overflow, although the presence of format
string arguments (see below) can complicate matters.

Example 4 (Format String Attacks) Certain C conversion functions permit placehold-
ers in their format string argument which interpolate subsequent arguments into the string
the function constructs. If a process allows an attacker to populate the format string argu-
ment, he can include placeholders that let him inspect stack variables and write arbitrary
values to arbitrary memory locations [53]. Other languages that support format strings ex-
hibit similar vulnerabilities [54], and languages implemented in C, such as PHP, can succumb
indirectly if unsafe input reaches a format string argument in the underlying implementa-
tion [55]. Fortunately, C’s placeholder syntax is regular, and since the regular languages are
closed under complement [10], it is easy to define a positive validation routine [43] which
admits only user input that contains no formatting placeholders.

Thus, we see that hardening input routines, so that they do not provide subsequent
operations with arguments that violate those operations’ preconditions or fail in ways that
permit an attacker to execute arbitrary code, is at the core of all defensive coding practices.
We now examine in detail the mechanics of validating input languages of various classes in
a provable and tractable fashion.

5 Provably Correct Input Validation

Despite the majority of work in this area focusing on injection attacks, formal language
theoretic input validation offers security protections against a much wider range of exploits.
Any attack that exploits a process’s parsing such that it accepts an input that does not
conform to the valid grammar of the intended protocol can and should be prevented via
strict validation of inputs.5

5.1 Injection Attacks and Context-Free Parse Tree Validation

In 2005, Dejector [22] presented a context-free parse tree validation approach to preventing
SQLIA.6 It introduced a formal construction for restricted sublanguages of SQL7; using this
approach, validating an SQL query consists of testing it for membership in the sublanguage.
Given a set of known-good queries and the formal grammar for the appropriate dialect
of SQL, Dejector transforms the SQL grammar into a subgrammar that contains only the

5We consider the case of context-free languages such as SQL in this paper; our examination of the
context-sensitive languages has been omitted for space, but is available in the extended version.

6The technique was independently discovered by a number of research teams. [56] and [57] published
similar approaches around the same time; [58] popularized the idea, but Dejector has thus far been mostly
overlooked by the academic community due to its publication at a hacker conference. This is, to our
knowledge, the first peer-reviewed description of Dejector, with emphasis placed on the features which
distinguish it from later attempts to implement these core ideas.

7Su and Wassermann [59] later independently arrived at the same construction.
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rules required to produce exactly the queries in the known-good set8. Strings recognized
by the subgrammar are guaranteed to be structurally identical to those in the known-good
set — a validity metric attested throughout the injection attack literature [59, 58]. The
subgrammar is then used with a parser generator such as bison or ANTLR to produce a
recognizer for the sublanguage. Notably, this automaton is exact rather than heuristic (as
in [56]) or approximate (as in [60] and [61]), and has the optimizing effect of comparing
inbound queries to all known-good structures simultaneously.

Subsequent research has produced improvements to the original approach, primarily fo-
cused on identifying the initial legitimate-query set and automatically integrating validation
into an application. Unfortunately, each of these efforts suffers from flaws which prevent
them from guaranteeing correct validation or correct application behavior. These include:

5.1.1 Insufficiently strong automaton

Several automata-based validators [60, 61, 62, 63, 64] model the set of acceptable queries
using a finite state machine, following the approach of Christensen et al. [65], wherein static
analysis of calls to methods that issue SQL queries yields a flow graph representing possible
generated strings, which is then widened to a regular language for tractability. Sun and
Besnozov identify cases where such FSA models generate false-positive reports [66], and
indeed Wassermann et al. concede that their approximation of the set of legitimate query
strings is overly permissive. However, they assert:

In practice, we do not find a function that concatenates some string, the return
value of a recursive call to itself, and another string (which would construct a
language such as {(na)n}), so this widening step does not hurt the precision of
the analysis.

We examined the bison grammar that generates the PostgreSQL parser and, regrettably,
discovered four such functions. The right-hand sides of the production rules select with parens

and joined table contain the precise parenthesis-balancing syntax that Wassermann et al.
claimed not to find in practice. Unbalanced parentheses alone are sufficient to trigger those
vulnerabilities classified in the taxonomy of Halfond et al. as “illegal/logically incorrect
queries” [43].

The other functions we found are subtler and more troubling. The right-hand side of
the production common table expr, which can precede SELECT, INSERT, UPDATE or
DELETE statements, contains the sequence ’(’

PreparableStmt ’)’; a PreparableStmt is itself a SELECT, INSERT, UPDATE or DELETE
statement. Furthermore, the a expr and c expr productions, which recognize unary, binary,
and other expressions — such as x NOT NULL, x LIKE y, and all arithmetic expressions
— are mutually recursive. These productions appear throughout the PostgreSQL grammar,
and are the grammatical targets of nearly every category of SQLIA, since user-supplied
inputs typically correspond to productions on the right-hand side of an a expr.

Thus, while tools using this methodology have performed well against SQLIA suites such
as the AMNESIA testbed [67, 68], we question their efficacy against attacks that deliberately

8Unused production rules are removed, as are unused alternatives from retained production rules; if the
rule A ::= B|C appears in the grammar, but the known-good set only requires the application of the A⇒ C
branch, the corresponding subgrammar rule is A ::= C. Note that for grammars where a nonterminal
whose right-hand side contains more than one alternative appears in the right-hand side of more than one
nonterminal that appears in the parses of known-good queries, these alternatives must be distinguished in
the subgrammar.
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target the “impedance mismatch” between a generated FSA model and an underlying SQL
grammar.

5.1.2 Validator and database use different grammars

Many parse tree validation approaches properly represent the set of acceptable structures
using a CFG, but derive their acceptable-structure set from a grammar other than that of
the target database system, possibly introducing an impedance mismatch. SQLGuard [57]
compares parse trees of queries assembled with and without user input, using the ZQL
parser [69]; CANDID [58] uses a “standard SQL parser based on SQL ANSI 92 standard,
augmented with MySQL-specific language extensions”; SQLPrevent [66] uses ANSI SQL
but does not mention which version. Others only state that the grammars they use are
context-free [59, 70, 71].

While it is possible to demonstrate the equivalence of two LR grammars, none of these
authors have provided equivalence proofs for their implementation grammars and the SQL
dialects they aim to validate. Dejector sidesteps this problem by directly using PostgreSQL’s
lexer and bison grammar. Dejector’s drawback is that its implementation is coupled not
only to the database distribution, but the specific parser revision; however, it prevents an
attacker from constructing an input that “looks right” to the validator but yields unwanted
behavior when it reaches the database. As an example, CVE-2006-2313 and CVE-2006-2314
describe a relevant vulnerability in PostgreSQL multibyte encodings [72, 73]. An attacker
could craft a string that an encoding-unaware validator (i.e., one that assumes input to be
in ASCII, Latin-1 or some other single-byte encoding) accepts, but which a server using a
multibyte encoding (UTF-8, Shift-JIS, etc.) parses in such a way as to terminate a string
literal early. We examine such parse tree differential attacks in more detail in section 6.

5.2 Parse Tree Validation in the Context-Sensitive Languages

In 2006, Daniel Bleichenbacher presented an RSA signature forgery attack against PKCS#1
implementations that do not correctly validate padding bytes [6]. We show that PKCS#1
is context-sensitive and can be validated in the same fashion as SQL, using an attribute
grammar representation [74].

Theorem 1 PKCS#1 is context-sensitive.

Proof 1 Lemma 1 Upper bound: a linear-bounded automaton for PKCS#1.

Proof 2 Let P = {wn|w is a hexadecimal octet, n is the size of the RSA modulus in bits,
and wn = ’00’ ’01’ ’FF’n−len(hash)−len(d.e.)−3 ’00’ digest-encoding hash, where digest-
encoding is a fixed string ∈ {0, 1} as specified in RFC 2313 [75] and hash is a message
hash ∈ {0, 1} of length appropriate for the digest-encoding}. We define a linear-bounded
automaton, AP , that accepts only strings in P . The length of AP ’s tape is n, and it has
states q0, q1, ...q67 and a reject state, qR. q67 is the start state.

1. Go to the leftmost cell on the tape.

2. Consume octet 00 and transition to state q66. If any other octet is present, transition to qR and
halt.

3. Consume octet 01 and transition to state q65. If any other octet is present, transition to qR and
halt.

4. Consume FF octets until any other octet is observed, and transition to state q64. (If the first octet
following the 01 is anything other than FF, transition to qR and halt.)
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5. Simulate regular expression matching of the fixed digest-encoding strings (as described in the attribute
grammar in the next subsection) over the next 15-19 octets as follows:

(a) MD2 sequence → q15

(b) MD5 sequence → q15

(c) SHA-1 sequence → q19

(d) SHA-256 sequence → q31

(e) SHA-384 sequence → q47

(f) SHA-512 sequence → q63

(g) No match → qR

6. Until q0 is reached, or the rightmost end of the tape is reached, apply the following procedure:

(a) Consume an octet

(b) qn → qn−1

7. If in state q0 and the tape head is at the rightmost end of the tape, Accept. Otherwise, Reject.

Because P can be described by a linear-bounded automaton, it is therefore at most context-
sensitive.

Lemma 2 Lower bound: PKCS#1 is not context-free.

Proof 3 We show that P is non-context-free using the context-free pumping lemma, which
states that if L is a context-free language, any string s ∈ L of at least the pumping length
p can be divided into substrings vwxyz such that |wy| > 0, |wxy| ≤ p, and for any i ≥ 0,
vwixyiz ∈ A [10].

As stated above, n is the size of the RSA modulus in bits. (n can vary from case to case;
different users will have different-sized RSA moduli, but the grammar is the same no matter
the size of n.) Neither w nor y can be any of the fixed bits, ’00’, ’01’ and ’00’, since
the resulting string would be too long to be in P . Nor can w or y correspond to any part of
the hash, as the pumping lemma requires that w and y can be pumped an arbitrary number
of times, and eventually the length of the hash alone would exceed n. Indeed, since n is
fixed, the only way to pump s without obtaining a string that is either too long or too short
would be if both w and y were the empty string. However, the pumping lemma requires that
|wy| ≥ 0, and thus P cannot be context-free.

Since P is at most context-sensitive and must be stronger than context-free, P is therefore
context-sensitive. Q.E.D.

5.2.1 An attribute grammar for PKCS#1

The following attribute grammar, where 〈T〉 represents any valid octet from 00 to FF,
generates strings in P for arbitrary n:
〈S〉 ::= 00 01 〈FFs〉 00 〈ASN.1〉

Valid(〈S〉) ← Valid(〈ASN.1〉) & Len(〈FFs〉) = n - Len(〈ASN.1〉) - 3
〈FFs〉 ::= FF FF FF FF FF FF FF FF

Len(〈FFs〉) ← 8
| 〈FFs〉2 FF

Len(〈FFs〉) ← (Len(〈FFs〉2) + 1)
〈ASN.1〉 ::= 〈Digest-Algo〉 〈Hash〉

Valid(〈ASN.1〉) ← (HashLen(〈Digest-Algo〉) = Len(〈Hash〉))
Len(〈ASN.1〉) ← (Len(〈Digest-Algo〉) + Len(〈Hash〉))
〈Digest-Algo〉 ::= 〈MD2〉

HashLen(〈Digest-Algo〉) ← HashLen(〈MD2〉)
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Len(〈Digest-Algo〉) ← 18
| 〈MD5〉

HashLen(〈Digest-Algo〉) ← HashLen(〈MD5〉)
Len(〈Digest-Algo〉) ← 18

| 〈SHA-1〉
HashLen(〈Digest-Algo〉) ← HashLen(〈SHA-1〉)
Len(〈Digest-Algo〉) ← 15

| 〈SHA-256〉
HashLen(〈Digest-Algo〉) ← HashLen(〈SHA-256〉)
Len(〈Digest-Algo〉) ← 19

| 〈SHA-384〉
HashLen(〈Digest-Algo〉) ← HashLen(〈SHA-384〉)
Len(〈Digest-Algo〉) ← 19

| 〈SHA-512〉
HashLen(〈Digest-Algo〉) ← HashLen(〈SHA-512〉)
Len(〈Digest-Algo〉) ← 19
〈MD2〉 ::= 30 20 30 0C 06 08 2A 86 48 86 F7 0D 02 02 05 00 04 10

HashLen(〈MD2〉) ← 16
〈MD5〉 ::= 30 20 30 0C 06 08 2A 86 48 86 F7 0D 02 05 05 00 04 10

HashLen(〈MD5〉) ← 16
〈SHA-1〉 ::= 30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 14

HashLen(〈SHA-1〉) ← 20
〈SHA-256〉 ::= 30 31 30 0D 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20

HashLen(〈SHA-256〉) ← 32
〈SHA-384〉 ::= 30 41 30 0D 06 09 60 86 48 01 65 03 04 02 02 05 00 04 30

HashLen(〈SHA-384〉) ← 48
〈SHA-512〉 ::= 30 51 30 0D 06 09 60 86 48 01 65 03 04 02 03 05 00 04 40

HashLen(〈SHA-512〉) ← 64
〈Hash〉 ::= 〈T〉16

Len(〈Hash〉) ← 16
| 〈Hash〉2 〈T〉

Len(〈Hash〉) ← Len(〈Hash〉2) + 1

6 Parse Tree Differential Analysis

We observe that, while different implementations of the same specification should process
input and perform tasks in effectively the same way as each other, it is often the case
that different implementations parse inputs to the program (or messages passed internally)
differently depending on how the specification was interpreted or implemented. Such im-
plementations provide distinct dialects of a protocol. While these dialects may be mutually
intelligible for the purpose of non-malicious information exchange, prior security assump-
tions may fail. In order to retain the security properties of each process in an environment
where several processes participate in sequentialized communication, one must show that
the properties also hold for the concurrent system they constitute.

We have developed a powerful technique to enhance code auditing and protocol analysis,
known as the parse tree differential attack [8], wherein we give two different implementa-
tions of the same specification identical state and input parameters, consider their decodings
as concrete parse trees, and enumerate the differences between the trees. Deviations be-
tween the trees indicate potential problems, e.g. an area of implementor discretion due to
specification ambiguity or an implementation mistake.

Looking back to the work of Shannon et al. (Section 3.2), the goal of a parse tree
differential attack is to find combinations of Msrc, Esrc, and Ddst such that M 6= D(E(M)),
with M semantically valid for the source and D(E(M)) semantically valid for the destination,
where the destination’s response to D(E(M)) includes computations that its response to M
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would not have. The set

{MA ∪MB |MA 6= DB(EA(MA)),MB 6= DA(EB(MB))}

describes a lower bound on the set of vulnerabilities present on the attack surface of the
composed system that has implementations (i.e., processes) A and B as endpoints of a
common channel (after Howard et al [76]).

6.1 Attack Surface Discovery

We have used edge-cases identified by parse tree differential analysis to isolate serious vul-
nerabilities in X.509. We found many instances where two implementations of the X.509
system behaved differently when given the same input, in such a way that these differences
led to a certificate authority signing a certificate that it viewed as being granted one privi-
lege, while the client-side application (the web browser) parsed the same input in a manner
yielding different security assertions, leading to a compromise of the system [8].

Example 5 (Null terminator attack) The attacker presents a certificate signing request
to a certificate authority (CA) that will read the Common Name as www.paypal.com\x00.badguy.com
and return a signed certificate for this Subject CN. The message that this certificate repre-
sents is M , and the certificate itself is E(M). Now present E(M)) to a browser vulnerable to
the null terminator attack. Although the CN field’s value in M is www.paypal.com\x00.badguy.com,
its value in D(E(M)) is www.paypal.com.

In this case, the decoder at the CA correctly interprets the CN as a Pascal-style string
(which can include the \x00 character), compares its reading of the CN with the credentials
presented by the source, and responds with an encoding of a message incorporating this valid-
but-peculiar CN. Little does the destination know, other destinations’ decoders interpret the
CN as a C-style string, for which \x00 is an end-of-string indicator, and decode the CA’s
encoding into a signed message vouching that the certificate is valid for www.paypal.com!

6.2 Other applications of parse tree differentials

In certain settings, aspects of protocol implementation divergence are of particular sensi-
tivity; a prime example is anonymity systems. Prior work has shown that the anonymity
provided by a lower-layer tool can be compromised if higher-layer differences are revealed to
an attacker; the EFF’s Panopticlick tool demonstrates how to use web browser identifiers to
whittle away the assurances offered by low-level anonymity systems such as Tor [77]. The
potential for an attacker to perform parse tree differential analysis of common client ap-
plication implementations of standard protocols a priori allows her to generate a codebook
of sorts, consisting of the inputs which, when sent to the unsuspecting user, will trigger
the user’s client (web browser, etc.) to respond in a way that will enable the attacker to
partition the anonymity set [78]. Similarly, the use of a parse tree differential analysis tool
may enhance other fingerprinting-based attacks.

A more indirect means of using parse tree differentials as oracles appears in Clayton’s
work on British Telecom’s CleanFeed anti-pornography system [79]. He constructed TCP
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packets with a specially chosen TTL value which, if actually used, would leverage the Clean-
Feed proxy system’s traffic-redirection behavior against the behavior of non-interdicted traf-
fic so as to selectively reveal exactly which IP addresses hosted material that BT was at-
tempting to block!

Notably, Clayton’s attack makes use of three separate protocols — TCP, IP, and ICMP
— being used by multiple systems (a user’s, BT’s, and that of a banned site). This highlights
the empirically well-known observation that composed systems tend to have characteristic
behaviors that result from composition and are not obviously inherent in the individual
components. In critical applications (such as an anonymity system used to evade violent
repression), such behaviors can be deadly. To quote a hacker maxim, “Composition Kills”.

6.2.1 A well defined order on parse tree differentials

Consider a parse tree differential attack executed between two different implementations
of the same protocol a “zeroth-order” parse tree differential. It has two steps, protocol
encoding and protocol decoding.

Now consider a parse tree differential attack executed between two different implemen-
tations of two different protocols, e.g. ASN.1 → HTTP. (e.g., X generates ASN.1 which
is transformed into HTTP which is parsed by Y). The transformation between one proto-
col and another is a point of interest; can, for instance, malformed ASN.1 be generated
with respect to the transformation function to HTTP such that Y performs some unex-
pected computation? This is a first-order parse tree differential. It has three steps: protocol
encoding, protocol transformation (to protocol’) and protocol’ decoding.

The construction extends recursively.

7 Why Johnny Can’t Detect

One arguably non-principled but practically common form of composition is that of adding
an intrusion detection/prevention system (IDS) to a target known to be susceptible to
exploitation. The IDS monitors the target’s inputs and/or state, models the target’s com-
putation, and is expected to catch the exploits. This design obviously relies on the ability of
the IDS to match at least those aspects of the target’s input processing that serve as attack
vectors; without such matching the IDS does not reduce insecurity, and may in fact increase
it by adding exploitable bugs of its own. Far from being merely theoretical, the latter is a
hard reality well-known to security practitioners on both the attack and defense sides (see,
e.g., [80]).

The language-theoretic and computational magnitude of the challenge involved in con-
structing such an effective matching in this de-facto composed design should by now be clear
to the reader, as it requires approaching de-facto computational equivalence between the
IDS and the target input handling units. The first work [81] to comprehensively demonstrate
the fundamental weakness of network intrusion detection systems (NIDS) was, predictably,
based on hacker intuitions. These intuitions were likely informed by previous use of TCP/IP
stack implementation differences for system fingerprinting in tools like Nmap, Xprobe, and
Hping2 (e.g., [82] methodically explores the differences in OS network stacks’ response to
various ICMP features). Subsequent research established that the only hope of addressing
this weakness was precise matching of each target’s session (re)assembly logic by the NIDS
(e.g., [83, 84, 85]).
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In host-based intrusion detection systems (HIPS), the problem of matching the “de-
fending” computation with the targeted computation is no less pronounced. For example,
Garfinkel [86] enumerates a number of traps and pitfalls of implementing a system call-
monitoring reference monitor and warns that “Duplicating OS functionality/code should be
avoided at all costs.” We note that isolating the reference monitor logic from the rest of
the system would seem advantageous were it possible to validate the matching between the
system’s own computation and the isolated, duplicated computation; however, as we have
seen, such validation coule easily be undecidable.

In a word, hardening a weak system by composing it with a monitor that replicates
the computation known or suspected to be vulnerable likely attempts to convert an input-
validation kind of undecidable problem into a computational-equivalence undecidable prob-
lem – hardly an improvement in the long run, even though initially it might appear to gain
some ground against well-known exploits. However, it leaves intact the core cause of the
target’s insecurity, and should not therefore be considered a viable solution.

One common approach for modeling program behavior involves sequences of system
calls [87, 88]. Because system calls represent the method by which processes affect the
external world, these sequences are thought to provide the most tangible notion of system
behavior. Despite their apparent success in detecting anomalies due to attacks, such models
have several shortcomings, including susceptibility to mimicry attacks [89]; an attacker can
keep the system within some epsilon of the “normal” patterns while executing calls of their
choosing. This problem suggests that we should investigate the extraction and use of a more
fine-grained notion of program activity. Note that our goal is not to criticize system call
approaches for being susceptible to mimicry attacks; instead, the lesson we should learn is
that relatively large amounts of work can happen “between” system calls, and it is the more
precise nature of this activity that can help inform models of program behavior.

Popular flavors of model or anomaly-based intrusion detection often offer only very slight
deltas from each other; Taylor and Gates [90] supply a good critique of current approaches,
and a recent paper by Sommer and Paxson also explores the reasons why we as a community
might not successfully use machine learning for intrusion detection [91]. The prevailing
approach to detection (matching sequences of system calls) is a glorified form of the oft-
critized regular expression string matching used in misuse signature-based systems like Snort
and Bro.

An impressive number of RAID, CCS, and Oakland papers have spilled a lot of digital ink
offering slight twists or improvements on the original system call sequence model proposed by
Denning and matured by Forrest, Somayaji et al. [92, 87, 93]. This follow-on pack of work
considers, in turn, changes that include: longer sequences, sequences with more context
information (e.g., instruction pointer at time of call, arguments, machine CPU register
state, sets of open files and resources), anomalous system call arguments, cross-validation
of system call sequences across operating systems, and other various insignificant changes
in what information is examined as the basis of a model.

The most natural next step was to attempt to characterize normal behavior, abnormal
behavior, and malware behavior using control-flow graph structures. From this perspective,
sequences of system calls are very simple “graphs” with a linear relationship.

Unfortunately, this move toward more complicated models of representing execution
behavior reveal just how limited we are in our expected success. When viewed from the
pattern of language-theoretic equivalence, this style of intrusion detection is essentially a
problem of matching grammars, and it suffers from the same limitations as proving that
two protocol implementations of sufficient complexity actually accept the same strings.
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The intrusion detection community overlooks this critically important point in its search
for ever more efficient or representative models of malicious (or benign) behavior. Adding
incremental adornments to a language model will not result in a dramatic advancement of
our ability to detect malicious computation; it can only serve to increase the complexity of
the language – and hence increase the difficulty of showing that the particular model accepts
some precise notion of malicious or abnormal. This is a counter-intuitive result: initiatives
aimed at “improving” the power of an IDS model actually detract from its ability to reliably
recognize equivalent behavior. In this case, “more powerful” maps to “less reliable.”

We note that, to the best of our knowledge, Schneider [94] comes closest to considering
the limits of security policy enforceability as a computation-theoretic and formal language-
theoretic phenomenon, by matching desired policy goals such as bounded memory or real-
time availability to classes of automata capable of guaranteeing the acceptance or rejection
of the respective strings of events. In particular, Büchi automata are introduced as a class
of security automata that can terminate insecure executions defined by the Lamport’s safety
property: execution traces excluded from the policy can be characterized as having a (finite)
set of bad prefixes (i.e., no execution with a bad trace prefix is deemed to be safe).

Schneider’s approach connects enforceable security policies with the language-theoretic
properties of the system’s language of event traces. We note that the next step is to consider
this language is an input language to the automaton implementing the policy mechanism,
and to frame its enforcement capabilities as a language recognition problem for such trace
languages.

8 Future Work

In an expanded version of this paper, we will show how context-free parse tree validation
can be extended to the context-sensitive languages, using attribute grammars [74] as both
a representational formalism and a code-generation tool [95].

Our future work will integrate existing work on generation of verifiable, guaranteed-
terminating parsers [16, 17, 18] with verification of finite-state concurrent systems and the
work of Bhargavan et al [96] on the use of refinement types to carry security invariants (and,
by extension, input-language preconditions) in order to develop a complete verified network
stack that is compositionally correct from end to end. We also plan to build on previous work
in automated implementation checking, such as aspier [97], to develop automated parse
tree differential analysis tools (akin to smart fuzzers) for the benefit of security auditors.
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Part II. Language-theoretic recommendations for secure
design

9 A summary of language-theoretic view of security

We posit that by treating valid or expected inputs to programs and network protocol stacks
as input languages that must be simple to parse we can immensely improve security. We
posit that the opposite is also true: a system whose valid or expected inputs cannot be
simply parsed cannot in practice be made secure.

Indeed, a system’s security is largely defined by what computations can and cannot
occur in it under all possible inputs. The parts of a system where input-driven computation
occurs are typically meant to act together as a recognizer for the inputs’ validity, i.e., they
are expected to accept valid or expected inputs,9 and reject bad inputs. Exploitation — an
unexpected input-driven computation — usually occurs there as well; thinking of it as an
input language recognizer bug often helps find exploitable vulnerabilities.

Crucially, for complex inputs (input languages), the recognizer that matches the pro-
grammer’s expectations can be equivalent to the Halting Problem, that is, undecidable.
Then no generic algorithm to establish the inputs’ validity is possible, no matter how much
effort is put into making the input data “safe”. In such situations, whatever actual checks
the software performs on its inputs at various points are unlikely to correspond to the pro-
grammer assumptions of validity or safety at these points or after them. This greatly raises
the likelihood of exploitable input handling errors.

Furthermore, most approaches to input validation employ hand-written recognizers,
rather than recognizers generated from a protocol’s grammar even if such a formal gram-
mar is available. These ad-hoc recognizers at most using regular expressions to whitelist
acceptable inputs and/or blacklist potentially-malicious ones. Such recognizers, however,
are powerless to validate stronger classes of languages that allow for recursively nested data
structures, such as context-free languages, which require more powerful recognizers.

A protocol that appears to frustratingly resist efforts to implement it securely, to weed
out vulnerabilities by comprehensively testing its implementations, or to watch it effectively
with an IDS behaves that way, we argue, because its very design puts programmers in
the position of unwittingly trying to solve (or approximate a solution to) undecidable
problems. Of course, for such problems no “80/20” engineering approximation is possible.

Conversely, as Sassaman and Patterson have shown, understanding the flavor of mis-
match between the expected and the required (or impossible) recognizer power for the pro-
tocol as an input language to a program considerably eases the task of vulnerability hunting
and exploit construction, as it helps to find false data and state validity assumptions that
open ways to manipulate the target program’s state.

Recognizers and “weird machines”. The latter observation perfectly agrees with the
modern understanding of exploit programming as “setting up, instantiating, and program-
ming a weird machine” [98, 99]. The term “weird machine” refers to the computational
environment (embedded in the target system) that consists of a subset of the actually pos-
sible system states (as opposed to valid states envisioned by designers and programmers),
which, as Dullien has observed, explodes in the presence of errors and bugs, and of transi-

9See our discussion of Postel’s Principle for distinguishing between valid and expected inputs.
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tions between them caused by crafted inputs. In a word, malicious computation constructed
by the attacker runs on the “weird machine” inside the target.

Thus programming an exploit involves enumerating the relevant unanticipated system
states and transitions (cf. the axiomatic definition of vulnerability by Bishop et al. [100] in
terms of unauthorized system states and transitions). Failures of input recognition, and in
particular false assumptions regarding data received as input provide a rich source of such
states and transitions.

For example, extra state typically arises when the programmer incorrectly believes cer-
tain constraints on input-derived data to be satisfied (i.e., enforced by input validation
logic), and programs to that assumption, actually creating implicit data flows and unex-
pected control flows that contribute to the “weird machine”.

10 Language-theoretic Principles of Secure Design

Decidability matters. Formally speaking, a correct protocol implementation is defined
by the decision problem of whether the byte string received by the stack’s input handling
units is a member of the protocol’s language. This problem has two components: first,
whether the input is syntactically valid according to the grammar that specifies the protocol,
and second, whether the input, once recognized, generates a valid state transition in the
state machine that represents the logic of the protocol. The first component corresponds to
the parser and the second to the remainder of the implementation.

The difficulty of this problem is directly defined by the class of languages to which the
protocol belongs. Good protocol designers don’t let their protocols grow up to be Turing-
complete, because then the decision problem is Undecidable.

In practice, undecidability suggests that no amount of programmer or QA effort is likely
to expose a comprehensive selection of the protocol’s exploitable vulnerabilities related to
incorrect input data validity assumptions. Indeed, if no generic algorithm to establish input
validity is possible, then whatever actual validity checks the software performs on its inputs
at various points are unlikely to correspond to the programmer assumptions of such validity.
Inasmuch as the target’s potential vulnerability set is created by such incorrect assumptions,
it is likely to be large and non-trivial to explore and prune.

From malicious computation as the basis of the threat model and the language-theoretic
understanding of inputs as languages, several bedrock security principles follow:

Principle 1: “Starve the Turing beast”, request and grant minimal
computational power.

Computational power is an important and heretofore neglected dimension of the attack
surface. Avoid exposing unnecessary computational power to the attacker.

An input language should only be as computationally complex as absolutely needed,
so that the computational power of the parser necessary for it can be minimized. For
example, if recursive data structures are not needed, they should not be specified in the
input language.

The parser should be no more computationally powerful than it needs to be. For exam-
ple, if the input language is deterministic context-free, then the parser should be no more
powerful than a deterministic pushdown automaton.

For Internet engineers, this principle can be expressed as follows:

21



• a parser must not provide more than the minimal computational strength necessary
to interpret the protocol it is intended to parse, and

• protocols should be designed to require the computationally weakest parser necessary
to achieve the intended operation.

An implementation of a protocol that exceeds the computational requirements for parsing
that protocol’s inputs should be considered broken.

Protocol designers should design their protocols to be as weak as possible. Any increase
in computational strength of an input language should be regarded as a grant of additional
privilege, and thus increasing security risks. Such increases should therefore be entered into
reluctantly, with eyes open, and should be considered as part of a formal risk assessment.
In the very least, designers should be guided by the Chomsky hierarchy (described in the
sidebar).

Input-handling parts of most programs are essentially Turing machines, whether this
level of computational power is needed or not. From the previously discussed malicious
computation perspective of exploitation, it follows that this delivers the full power of a
Turing-complete environment into the hands of any attacker who finds a way of leveraging
it through crafted inputs.

Viewed from the venerable perspective of Least Privilege, Principle 1 states that com-
putational power is privilege, and should be given as sparingly as any other kind of privilege
to reduce the attack surface. We call this extension the “Minimal Computational Power
Principle.”

We note that recent developments in common protocols run contrary to these principles.
In our opinion, this heralds a bumpy road ahead. In particular, HTML5+CSS is Turing-
complete, whereas HTML4 was not.

Principle 2, Secure composition requires parser computational equiv-
alence

Composition is and will remain the principal tool of software engineering. Any principle
that aims to address software insecurity must pass the test of being applicable to practical
software composition, lest it forever remain merely theory. In particular, it should specify
how to maintain security in the face of (inevitable) composition – including, but not limited
to, distributed systems, use of libraries, and lower layer APIs.

From our language-theoretic point of view, any composition that involves converting data
structures to streams of bytes and back for communications between components necessarily
relies for its security on the different components of the system performing equivalent
computations on the input languages.

However, computational equivalence of automata/machines accepting a language is a
highly non-trivial language-theoretic problem that becomes Undecidable starting from
non-deterministic context-free languages.

The example of X.509 implementations ([101]) shows that this problem is directly related
to the insecurity of distributed systems’ tasks. Moreover, undecidability essentially precludes
construction of efficient code testing and algorithmic verification techniques and tools.
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On the relevance of Postel’s Law.

This leads to a re-evaluation of Postel’s law and puts Dan Geer’s observations in “Vulnerable
Compliance” [1] in solid theoretical perspective.

Postel’s Robustness Principle (RFC 793), best known today as Postel’s Law, laid the
foundation for an interoperable Internet ecosystem. In his specification of TCP, Postel
advises “be conservative in what you do, be liberal in what you accept from others.” Despite
being a description of the principle followed by TCP, this advice became widely accepted in
the IETF and general Internet and software engineering communities as a core principle of
protocol implementation.

However, this policy maximizes interoperability at the unfortunate expense of consistent
parser behavior, and thus at the expense of security. We argue in an upcoming article [102]
that a strict reading of the Postel’s Principle should in fact discourage ambiguity and com-
putational complexity in protocols.

10.1 Why secure composition is hard

The second principle provides a powerful theoretical example of why composition – the
developer’s and engineer’s primary strategy against complexity – is hard to do securely.
Specifically, a composition of communicating program units must rely on computational
equivalence of its input-handling routines for security (or even correctness when defined);
yet such equivalence is undecidable for complex protocols (starting with those that need
a Nondeterministic Pushdown Automaton to recognize their input language), and therefore
cannot in practice be checked even for differing implementations of the same communication
logic.

Conversely, this suggests a principled approach for reducing insecurity of composition:
keep the language of the messages exchanged by the components of a system to a necessary
minimum of computational power required for their recognition.

10.2 Parallels with Least Privilege Principle

The understanding of “malicious computation” programmed by crafted inputs on the “weird
machine” made of a target’s artifacts as a threat naturally complements and extends the
“Least Privilege Principle” as a means of containing the attacker. In particular, just as
the attacker should not be able to spread the compromise beyond the vulnerable unit or
module, he should not be able to propagate it beyond the minimal computational power
needed. This would curtail his ability to perform malicious computations.

Thus, the “Least Privilege Principle” should be complemented by the “Minimal Compu-
tational Power Principle”. This approach should be followed all the way from the application
protocol to hardware. In fact, we envision hardware that limits itself from its current Turing
machine form to weaker computational models according to the protocol parsing tasks it
must perform, lending no more power to the parsing task than the corresponding language
class requires – and therefore no more power for an attacker to borrow for exploit-programs
in case of accidental exposure, starving the potential “weird machines” of such borrowed
power. This restriction can be accomplished by reprogramming an FPGA to only provide
the appropriate computational model, say, finite automaton or a pushdown automaton, to
the task, with appropriate hardware-configured and enforced isolation of this environment
from others (cf. [103]).
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11 Defensive recognizers and protocols

To complete our outlook, we must point to several successful examples of program and
protocol design that we see as proceeding from and fulfilling related intuitions.

The most recent and effective example of software specifically aimed to address the
security risks of an input language in common Internet use is Blitzableiter by Felix ’FX’
Lindner and Recurity Labs [80]. It takes on the task of safely recognizing Flash, arguably
the most complex input language in common Internet use, due to two versions of bytecode
allowed for backward compatibility and the complex SWF file format; predictably, Flash is
a top exploitation vector with continually surfacing vulnerabilities. Blitzableiter (a pun on
lightning rod) is an armored recognizer for Flash, engineered to maximally suppress implicit
data and control flows that help attackers construct malicious computations.

We note that that the approach of normalizing complex network protocols to remove
both ambiguity and contsructs requiring excessive computation power (e.g., [83]) is a close
correlate, and works for the same reason.

Another interesting example are the observations by D.J. Bernstein on the 10 years of
qmail [3] We find several momentous insights in these, in particular avoiding parsing (i.e., in
our terms, dealing with non-trivial input languages) whenever possible as a way of making
progress in eliminating insecurity, pointing to hand-crafting input handling code for effi-
ciency as a dangerous distraction, and his stress on using UNIX context isolation primitives
as a way of enforcing explicit data flows (thus hobbling construction of malicious compu-
tations). Interestingly, Bernstein also names the Least Privilege Principle — as currently
understood — as a distraction; we argue that this principle needs to be updated rather than
discarded, and see Bernstein’s insights as being actually in line with our proposed update.

12 Conclusion

Computer security is often portrayed as a never-ending arms race between attackers seeking
to exploit weak points in software and defenders scrambling to defend regions of an ever-
shifting battlefield. We hold that the front line is, instead, a bright one: the system’s security
is defined by what computations can and cannot occur in it under all possible inputs. To
approach security, the system must be analyzed as a recognizer for the language of its valid
inputs, which must be clearly defined by designers and understood by developers.

The computational power required to recognize the system’s valid inputs language(s)
must be kept at a minimum when designing protocols. This serves to both reduce the
power the attacker will be able to borrow, and help to check that handling of structured
data across the system’s communicating components is computationally equivalent. The lack
of such equivalence is a core cause of insecurity in network stacks and in other composed
and distributed systems; undecidability of checking such equivalence for computationally
demanding (or ambiguously specified) protocols is what makes securing composed systems
hard or impossible in both theory and practice.

We state simple and understandable but theoretically fundamental priciples that could
make protection from unexpected computations a reality, if followed in design of protocols
and systems. Furthermore, we suggest that in future designs, hardware protections should
be put in place to control and prevent exposure of unnecessary computational power to
attackers.
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