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Abstract

Despite advances in software modularity, security, and reliability,
offline patching remains the predominant form of updating or protect-
ing commodity software. Unfortunately, the mechanics of hot patching
(the process of upgrading a program while it executes) remain under-
studied, even though such a capability offers practical benefits for both
consumer and mission-critical systems.

A reliable hot patching procedure would serve particularly well by
reducing the downtime necessary for critical functionality or security
upgrades. Yet, hot patching also carries the risk – real or perceived
– of leaving the system in an inconsistent state, which leads many
owners to forego its benefits as too risky.

In this paper, we propose a novel method for hot patching ELF
binaries that supports (a) synchronized global data and code updates
and (b) reasoning about the results of applying the hot patch. We
propose a format, which we call a Patch Object, for encoding patches
as a special type of ELF relocatable object file. Our tool, Katana,
automatically creates these patch objects as a by-product of the stan-
dard source build process. Katana also allows an end-user to apply
the Patch Objects to a running process. In essence, our method can
be viewed as an extension of the Application Binary Interface (ABI),
and we argue for its inclusion in future ABI standards.
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“Some reports, such as the case of the Conficker outbreak within Sheffield
Hospital’s operating ward, suggest that even security- conscious environ-
ments may elect to forgo automated software patching, choosing to trade off
vulnerability exposure for some perceived notion of platform stability...” –
http://mtc.sri.com/Conficker/

1 Introduction

It is somewhat ironic that users and organizatations hesistate to apply patches
whose stated purpose is to support availability or reliability precisely because
the process of doing so can lead to downtime (both from the patching pro-
cess itself as well as unanticipated issues with the patch). Periodic reboots
in desktop systems — irrespective of the vendor — are at best annoying.
Reboots in enterprise environments (e.g., trading, e-commerce, core network
systems), even for a few minutes, imply large revenue loss or an extensive
backup and failover infrastructure with rolling updates. We question whether
this de facto acceptence of significant downtime and redundant infrastructure
should not be abandoned in favor of a reliable hot patching process.

Software, the product of an inherently human process, remains a flawed
and incomplete artifact. This reality leads to the uncomfortable inevitability
of future fixes, upgrades, and enhancements. Given the way such fixes are
currently applied (i.e., patch and reboot), downtime is a foregone conclusion
even as the software is released.

While patches themselves are a necessity, we believe that the process of
applying them remains rather crude. First, the target process is terminated,
the new binary and corresponding libraries (if any) are then written over the
older versions, the system is restarted if necessary, and finally the upgraded
application begins execution. Besides the appreciable loss in uptime, all con-
text held by the application is also lost, unless the application had saved its
state to persistent storage [6, 5] and later restored it (which is expensive to
design for, implement, and execute). In the case of mission-critical services,
even after a major flaw is unveiled and a patch subsequently created, ad-
ministrators likely wish to apply the patch and upgrade the process without
actually restarting the program and losing state and time. This requirement
serves as our motivation for hot patching.
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1.1 Challenges of Patching

Requiring and encouraging the adoption of the latest security patches is a
matter of common wisdom and prudent policy. It appears, however, that
this wisdom is routinely ignored in practice. This disconnect suggests that
we should look for the reasons underlying users’ hesitancy to apply patches,
as these reasons might be due to fundamental technical challenges that are
not yet recognized as such. We believe that the current mechanics of applying
patches prove to be just such a stumbling block, and we contend that the
underlying challenges need to and can be addressed in a fundamental manner
by extending the core elements of the ABI and the executable file format.

Mission-critical systems seem hardest to patch. They can ill afford down-
time, and the owner may be reluctant to patch due to the real or perceived
risk of the patch breaking essential functionality. For example, patching a
component of a distributed system might lead to a loss or corruption of state
for the entire system. An administrator might also suspect that the patch is
incompatible with some legacy parts of the system. Even so, the patch may
target a latent vulnerability in a software feature that is not now in active
use, but also cannot be easily made unreachable via configuration or module
unloading. The administrator is forced to accept a particularly thorny choice:
inaction holds as much risk as a proactive “responsible” approach. Since the
risks of patching must be weighed against those of staying unpatched, we
seek to shift the balance of this decision toward hot patching by
making it not only possible, but also less risky in a broad range of
circumstances.

Our key observation is that current binary patches, whether “hot” or
static, are almost entirely opaque and do not support any form of reasoning
about the impact of the patch (short of reverse engineering both the patch
and the targeted binary). In particular, it is hard for the software owner
to find out whether and how a patch would affect any particular subsystem
or compatibility of the target with other software in any other way than
applying the patch on the test system and trying it out, somehow finding a
way to faithfully replicate the conditions of the production environment.

Given these circumstances, our tool Katana and our Patch Object for-
mat not only seek to make possible the mechanics of hot patching, but also
enable administrators to reduce the risk of applying a particular fix by pro-
viding them with enough information to support examination of the patch
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structure, reasoning1 about its interaction with the rest of the system, and
an understanding of the tradeoffs involved in applying it.

1.2 Why Not Just Employ Redundancy?

Redundant infrastructure, containing replicas of nodes and service paths,
often helps an organization bridge the service disruption stemming from
patches. We believe, however, that redundancy isn’t always the best ap-
proach for ensuring availability during an upgrade or security-critical patch-
ing process. Rather than an established best practice, we invite the reader to
see redundancy as an extreme measure that needlessly duplicates hardware,
networking, and software of the original system. We suggest that redundancy
is:

a. expensive - especially in medium-sized enterprises where the cost of a
single server, gateway, or switch is high enough to outweigh the benefits
of redundancy.

b. wasteful - Redundant systems are typically passive bystanders, lying
in wait for an active machine to initiate a failover.

c. requires complicated logic - Transferring application state (even
across multiple homogenous systems) is non-trivial, especially when
the state transfer occurs within hardware (such as for call trunks).

d. specialized - The process of building system redundancy is not easily
generalizable across heterogenous systems and requires full knowledge
of the underlying protocol and application state in order to provide
faithful failover and failback.

2 Katana Design: Tracking Object Depen-

dencies

Katana leverages the typical Unix Makefile build mechanism to track file-
level dependencies. Normally, after applying a source patch file and perform-
ing a top-level make, only those object files whose underlying sources have

1By which we mean manual, human-level reasoning, although applying automated rea-
soning methods is an interesting (and open) avenue of research.
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changed are rebuilt. Katana thus tracks object-level (.o) dependencies as
follows. We first replicate all object files and the ELF executable from the
existing source tree. We then apply the patch to the original source tree.
At this point, only source files have been modified. Next, using the Linux
kernel’s inotify mechanism2, Katana sets up a notification on the original
source tree, so that it knows when an object file is created or modified under
the original tree. Finally, we perform the top-level make under this source
and record all created/modified object files, along with the newly created
executable.

.c  .c 
.c 

.c 
.c 

.o  .o 
.o 

.o 
.o 

.o  .o  .o  .o  .o 

Executable 

Figure 1: An Example Code Base. From the top: each source file creates a corre-
sponding object file; multiple object files are combined into intermediate compila-
tion units (CU); and multiple CUs are merged to form the executable. All shaded
blocks indicate modified files.

Figure 1 illustrates how object files are modified by make as a result of
source-level changes. Katana only considers objects that are closest to the
source files and ignores all other intermediate object files and compilation
units (CU). Hence, in Figure 1, Katana only records the shaded circle-objects
along with the final executable.

To dynamically update the running application, Katana needs to patch
both the code and the data within the process. It first creates a patch object
(PO): an ELF file with sections that indicate the type of patch (code or data),
the patch offsets and lengths within the process address space, patch data,
function and data names, etc.

2inotify allows the registration of filesystem triggers
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3 Automated Patching

In this section, we describe our data and code patching methods. We note
that, compared to previous work, our PO data structures allow reasoning
about the scope, extent, and impact of the patch (e.g., whether it affects
particular subsystems within the process).

Code Patching The process of code patching involves several stages.

(i) Code Identification: Katana first needs to identify the section(s) of text
that need to be modified within the running process. To do this, we consider
the list of all modified object files from our tracking step, and identify all
functions (both static and global) within these files from their symbol table.
This list gives us the set of all functions that need to be patched within the
executing application. We note that just because an object file has been
modified does not mean all functions (at the source-level) within that object
have necessarily been modified, but since it is not possible for us to deter-
mine which exact functions a patch modifies3, we resort to fully patching
all functions within a modified object. Functions thus identified as needing
patching are copied into the PO and marked as code.

(ii) Symbol Resolution: After identifying all functions that require a patch,
we need to resolve outstanding symbol references within each function. Typ-
ically, symbol resolution for an application happens at both the linking stage
(called static linking, when the symbol is present within another object file
or archive), and the execution stage (or dynamic linking, when the symbol
is present within a shared library). All code relocations are identified in the
ELF sections .rel.text and .rela.text, within the object files and the
final executable. Each relocation entry contains, among other information,
the code offset that requires relocation, and the outstanding symbol that
provides this fix-up.

For each relocation entry, Katana uses the replicated executable (from
before the patch) to figure out the address of the symbol. If the symbol was
provided by another object file, then the symbol table of the old executable
contains this final address, and we update the PO accordingly, with this
address as the patch target. Otherwise, if the symbol was dynamic (i.e.,
present in a shared library such as libc), then the fixup value is the address of

3as local and weak symbols are not unique within an executable
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a corresponding entry in the procedure linkage table (PLT) of the executable.
The PLT is essentially a jump table with entries for each symbol that needs
to be resolved at runtime by the dynamic linker. When the process begins
execution, the dynamic linker maps the required shared libraries into the
address space of the process, and updates each PLT entry.

For dynamic symbols, Katana traverses the PLT entries of the replicated
executable and compares the symbol name of each entry with the symbol
name that requires relocation. If Katana finds a match, then the PO is
updated with the corresponding symbol value. In our prototype, Katana is
unable to handle calls to previously unused functions present in any shared
libraries4

Finally, if the outstanding symbol’s definition was not found within the
replicated executable (either within the symbol table or the PLT), then it
was newly added by the patch; it is marked as such and added to the PO.

(iii) Patch Application: Applying a code patch is simple enough, and has
been researched in other systems [1, 2, 3, 14]. We map the new function
in memory, and insert a trampoline jmp instruction at the beginning of the
old function within the process memory image. This interposition allows the
caller to execute our new function instead of the previous one at the cost
of an extra jump. It is possible to avoid the overhead (from branch mis-
prediction) of the jmp instruction by adding code in the old function which
traces up the stack and modifies the caller’s call instruction operand to
point to the new address instead of the old one. Although this optimization
would ensure that all subsequent calls from the same caller would execute
the new patched function without stepping into the old one, it does makes
the process of rolling back a patch non-trivial.

Data Patching Patching data within a running process is significantly
harder than patching application code. The primary challenge here is to
synchronize the code and the data structures it acts on.5

Tracking down previously allocated data is nontrivial (one of the reasons
why garbage collectors are interwoven with the language implementation).

4This would require creation of new PLT and GOT entries and either subsequent re-
basing of the following segments of the executable, or creation of a new segment to allocate
the extra entries. Although ELF rewriting systems like ERESI or Diablo show that such
manipulations can be made practical, we chose not to complicate Katana with them.

5For example, consider adding a new member to a C struct definition and an additional
clause to the logic that processes it.
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Even after identifying the allocated chunks of memory, in the absence of
some kind of a type specification, the internal structure of memory remains
opaque. We also need a method for extracting only the modified data vari-
ables from the patch and a means to discover the actual modifications that
were performed.

We first note that any code that acts on patch-modified data is already
taken care of by Katana’s code patching process. This is because we rely on
make to build the object files that correspond to all modified sources. We
resolve the previously identified problems towards patching data by leverag-
ing DWARF6 debugging information within the application executable. This
requires the object files to be compiled with debugging support, but we do
not see this as a limitation. Since we only need DWARF information while
building the PO, all debugging symbols can be stripped from the executable
during application deployment, if so desired. We recall the representation of
types in the DWARF format and then detail the various steps in Katana’s
data patching process.

DWARF Type Information The DWARF structure is laid out as
a tree of DIEs (Debugging Information Entries) within the executable file.
Each DIE has an associated tag and a set of attributes. The DIE that defines
type information has the tag as one of DW TAG base type, DW TAG structure type

or DW TAG union type. Typedefs and other type modifiers (such as const,
volatile, pointer etc.) are referenced by the DIE that defines the type.
In case of structures or unions, each member is contained as a separate DIE
within the parent DIE that identifies the struct/union. It is important to
note that DWARF annotates types of all visibilities from the program sources
- local, global and static.

Katana’s data patching process contains a number of steps:
(i) Type Discovery: We set out to discover all newly created or modi-

fied data types – those that are primarily user-defined (such as structures
and unions in C). Katana traverses the type information (as identified by
the above DWARF tags) from the newly created executable, and for each
encountered type, it searches for the corresponding type-name within the
replicated executable (from before the patch). If so found, the full types (i.e.
the number, type and position of all member variables contained within) are
compared to determine if they are identical. If not identical, the parent type
identifying the struct/union is inserted into the PO. Else, if the type name

6http://dwarfstd.org
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itself was not found within the replicated executable, then the current type
was created by the patch, and is added as such to the PO.

(ii) Data Traversal: The next step is to traverse all variables defined within
the new application, and for each one encountered, we first determine its
lexical scope. If the scope is local, then we ensure that the corresponding
function (the one that defines this variable) does not have an activation frame
on the program stack while applying the patch. Else, the variable has been
defined as either global or static. We first check if the replicated executable
defines the same variable. If not, then this variable has been created by the
patch and we need not worry about it and leave the symbol resolution upto
the compiler (as only new code can use this variable). Otherwise, we verify
whether the variable’s type is one of the modified types identified during type
discovery. If it is, then we add the variable along with its original address
from the replicated executable, its new address from the patch, and type in-
formation to the PO. At the end of this stage, Katana would have identified
all newly created or modified variables from the patch.

(iii) Patch Application: Applying a data patch consists of first tracking
down the relevant symbols in program memory. Katana reads in the PO,
and for each data variable encountered, it checks if the variable is a pointer
or not. If it is, then the current validity of the pointer is verified (by bounds-
checking the pointer value to within heap boundaries). If the pointer is found
to be invalid, no further action is taken. If the pointer is valid, then memory
for the new type(s) is allocated, the older structure is copied into the new
one taking into account the difference in structure definition, the old memory
is then freed, and the pointer is modified to point to the new segment (in
case of structures such as lists, trees, since we have the type specification,
we can repeat this process recursively for each node on the list or tree). Else
if the variable is not a pointer, then Katana modifies all its references in
the program text to the updated memory location from the patch. Katana
automatically zeros all new member variables within structures.

Challenges Hot patching still faces a number of challenges, includ-
ing dealing with multithreaded programs and address space randomization
(which slight changes to the OS loader can help us overcome). Furthermore,
dynamic updates require some knowledge of the program’s execution state
so that the application is quiescent with respect to the code and data being
altered by Katana as it applies the Patch Object. We consider the program
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to be in a safe state if all activation records are free of functions contained
in the PO and all activition records are free of functions that (1) access any
global or static symbols we identify during Katana’s Data Traversal stage
and (2) do not define any local variables of modified types identified dur-
ing our Type Discovery phase. Katana uses the ptrace interface to pause
execution and query this state.

4 Related Work

The work most closely related to Katana focuses on enabling a software
application to continue providing service or survive significant events like er-
rors, exploits, and patches. The concept of crash-only software [6] advocates
microrebooting: the procedure of retrofitting each component of a system
with the ability to crash and reboot safely as the default mode of operation.
Despite its appeal as a design principle, such an approach would be difficult
to retrofit to legacy software. Although restarting a particular service or
application is disruptive enough, rebooting the operating system itself mul-
tiplies this disruption. The ability to update the running kernel (as opposed
to adding or removing modules) without rebooting was achieved at least ten
years ago [7] and recently rediscovered, albiet mostly for research, rather than
commodity, kernels [10, 4, 12]). Finally, software self-healing aims at ensuring
continuous or increased availability for systems subjected to exploited vul-
nerabilities, either by automatically generating patches [13, 11] to gradually
harden the application or seeking to avoid a restart altogether by modifying
certain runtime aspects (e.g., the memory subsystem [9], properties of the
execution environment [8]).

5 Conclusion

We introduce a method for hot patching: a technique we believe to be a
promising alternative to redundancy, ad hoc self–healing techniques, “patch
and pray,” or other approaches to dynamic software updates. Hot patching
has the potential for aligning actual practices with acknowledged “best prac-
tices” relating to critical security or functionality updates. We hold that one
major impediment to hot patching is the opaque nature of most patches (be
it proprietary or open software), and our method of patching along with the
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PO file format are first attempts at providing a basis for informed reasoning
about the structure and implications of a patch.
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