
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Computer Science Technical Reports Computer Science 

9-16-2008 

LZfuzz: a fast compression-based fuzzer for poorly documented LZfuzz: a fast compression-based fuzzer for poorly documented 

protocols protocols 

Sergey Bratus 
Dartmouth College 

Axel Hansen 
Dartmouth College 

Anna Shubina 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr 

 Part of the Computer Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Bratus, Sergey; Hansen, Axel; and Shubina, Anna, "LZfuzz: a fast compression-based fuzzer for poorly 
documented protocols" (2008). Computer Science Technical Report TR2008-634. 
https://digitalcommons.dartmouth.edu/cs_tr/316 

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital 
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F316&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/316?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F316&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


LZfuzz: a fast compression-based fuzzer for poorly

documented protocols

Sergey Bratus, Axel Hansen, Anna Shubina1

Department of Computer Science

Dartmouth College, Hanover, NH

September 16, 2008

1This work was supported in part by the National Science Foundation, under grant CNS-
0524695. The views and conclusions do not necessarily represent those of the sponsors.

Dartmouth Computer Science Technical Report TR2008-634



Abstract

Computers make very fast, very
accurate mistakes.

From a refrigerator magnet.

Real-world infrastructure offers many scenarios where protocols (and other de-
tails) are not released due to being considered too sensitive or for other reasons.
This situation makes it hard to apply fuzzing techniques to test their security and
reliability, since their full documentation is only available to their developers, and
domain developer expertise does not necessarily intersect with fuzz-testing expertise
(nor deployment responsibility). State-of-the-art fuzzing techniques, however, work
best when protocol specifications are available. Still, operators whose networks in-
clude equipment communicating via proprietary protocols should be able to reap
the benefits of fuzz-testing them.

In particular, administrators should be able to test proprietary protocols in
the absence of end-to-end application-level encryption to understand whether they
can withstand injection of bad traffic, and thus be able to plan adequate network
protection measures. Such protocols can be observed in action prior to fuzzing, and
packet captures can be used to learn enough about the structure of the protocol to
make fuzzing more efficient.

Various machine learning approaches, e.g. bioinformatics methods, have been
proposed for learning models of the targeted protocols. The problem with most
of these approaches to date is that, although sometimes quite successful, they are
very computationally heavy and thus are hardly practical for application by network
administrators and equipment owners who cannot easily dedicate a compute cluster
to such tasks.

We propose a simple method that, despite its roughness, allowed us to learn
facts useful for fuzzing from protocol traces at much smaller CPU and time costs.
Our fuzzing approach proved itself empirically in testing actual proprietary SCADA
protocols in an isolated control network test environment, and was also successful in
triggering flaws in implementations of several popular commodity Internet protocols.
Our fuzzer, LZfuzz (pronounced “lazy-fuzz”) relies on a variant of Lempel–Ziv com-
pression algorithm to guess boundaries between the structural units of the protocol,
and builds on the well-known free software GPF fuzzer.



Section 1

Introduction

Fuzzing has become a popular method for software testing and vulnerability dis-
covery. It is very well-suited for “black box” and “grey box” settings, in which the
source code of an application or an OS component is not available, and potentially
much more powerful source code-based analysis tools cannot be brought to bear. At
the core of the fuzzing approach is generation of crafted input intended to trigger
faults in the receiving software.

A typical fuzzer generates a broad range of malformed inputs as fast as they
can be accepted by the targeted software, creating them by superimposing some
pre-programmed “basic” flaws. These combinations of injected flaws are “random”
(more precisely, stochastic, according to a particular generative model), but if the
software does any kind of input sanity checking, should mimic valid inputs closely
enough to pass muster.

The underlying intuition that “random” inputs can create execution conditions
unforeseen by software developers and testers has been amply validated empirically,
but construction of efficient fuzzers still remains an art rather than science.

The challenge of fuzzing. The challenge of generating fuzzed input is funda-
mentally that of producing input faulty enough to trigger flaws, yet well-formed
and “normal” enough to first pass the target code’s initial sanity checks and then
to cause faults during the actual processing. Also, once flaws in early stages of pro-
cessing are uncovered, it may be preferrable for the crafted inputs to be “normal”
enough to get to later stages in the application to probe their logic in turn.

Thus either pre-programmed knowledge about the target protocol or some form
of machine learning of its features is necessary.

Indeed, as we describe below, state-of-the-art fuzzing frameworks (e.g., Sulley1)
use block-level descriptions of targeted protocols as generative models to produce
their crafted inputs. Absence of protocol specifications detailed enough to derive an

1At the time of writing available from http://www.fuzzing.org/fuzzing-software

1



idea about the basic blocks or units of the protocol creates a problem that must be
solved before efficient fuzzing becomes possible.

Why LZfuzz is useful. The problem of fuzzing plain-text proprietary protocols
is not as artificial as one might think. Real world infrastructure provides many
examples of protocols that were not designed to provide end-to-end confidentiality
or integrity protections, such security goals being outside of the developer’s scope,
or assumed to be taken care of by the products’ environment.

Also, retrofitting encryption and cryptographic-based integrity protections to
software that must be operated under changing environment security assumptions
is not easy, for various reasons. It may require rewriting substantial portions of
code; it also opens the “can of worms” that is cryptographic key management.

As a result, fully or partially plain-text protocols remain in operation, and must
be protected by other means such as end-to-end encryption in lower network layers
and other network security measures. In order to better understand the actual risks,
network administrator should be able to find out just how brittle their protocols are.
In particular, a means of fuzz-testing proprietary protocols without specifications is
desirable.

Why fuzzers must adapt to their targets. It is notable that, despite a sub-
stantial number of free and commercial fuzzers available, and the relatively high
profile of fuzzing as a software testing technique, it continues to prove an amazingly
fruitful technique for finding new exploitable software faults. Although this contin-
ued success of adversarial fuzzing might be explained away by the failure of software
vendors to apply similar techniques at the QA phase of their product development
cycle, reports appear to contradict this explanation.

We must assume, therefore, that most fuzzing tools in actual use by software
authors in fact cover rather narrow classes of all possible faulty inputs, so that
introduction of new tricks into the generation process tends to pay off immediately
and dramatically in new flaws that previous generators had failed to locate.

Of course, diagnosing a triggered flaw as an exploitable vulnerability and devel-
oping it into an actual exploit requires substantial investment in the correspond-
ing vulnerability development framework that involves debugger integration, binary
code instrumentation, analysis tools, etc., and indeed a lot of effort has been invested
into building such frameworks (see, e.g., [sul, aut, Rit07]). We note that there has
been great progress and a number of novel technical solutions in this area; however,
in this paper we concentrate on the issue of fuzzed input generation alone. We note
that in control networks a simple denial of service condition caused by crashes and
restarts of vulnerable processes is likely to be a bigger concern than in other kinds
of networks.

2



On evaluating fuzzer efficiency. Emprically, a fuzzer’s worth is “proved” by its
ability to successfully induce faults in the target processes, or, simply put, to crash
its targets. Beyond such empirical evidence, the quality of the fuzzer’s generation
component is very hard to measure. Towards the end of this paper we discuss
how our fuzzing approach can be compared with more precise and computationally
demanding ones.

A reasonable theoretical measure of fuzzer quality would be its ability to trigger
all existing vulnerabilities;2 as such, it is impossible to even approximate it. Other
measures, such as code coverage, i.e., the portion of the target code actually executed
when processing the fuzzed input, have been proposed and implemented, but they
characterize only isolated aspects of the fuzzer’s generative behavior that affect its
success only under rather strong assumptions. For example, “covered” code may
have been executed with benign data, so the fact that it has been reached does not
necessarily mean that it was reached with the right data to trigger its flaws; still, the
assumption that less tested code is more likely to contain trivially triggered errors
is quite realistic, and thus the metric is useful.

In the absence of a clear metric, development of fuzzer’s generation components
is driven by intuition and the apparent empirical yield of found flaws. Such, too,
is the nature of our argument in this paper: we build a fuzzer that attempts to
extract information about the “tokens” of a protocol from a packet capture and
argue that the results of the dissection it performs are useful for subsequent fuzzing.
We compare our dissection results with those obtained through a much more com-
putationally demanding bioinformatics method described in [Bed] and introduce a
metric that captures our intuition on why our dissector, while somewhat less accu-
rate, should perform comparably, while being much faster.

2Arguably, an even more useful measure would also take into account likelihood and impact of
vulnerabilities.

3



Section 2

Block-based fuzzing for
proprietary protocols

Block-based fuzzing of well-specified protocols. When protocol specifica-
tions are available, the block-based fuzzer architecture has proved to be the most
effective and popular one. In this architecture, crafted input is modeled and gen-
erated as a sequence of byte-array blocks corresponding to the structural units of
the actual protocol. These blocks are filled randomly by the fuzzer code with values
from non-uniform distributions of protocol field values that are deemed more likely
to trigger a fault (such as big integers close to MAXINT for a fixed length interger
field).

The knowledge about the protocol is expressed in the specification of block types
and relations between blocks (e.g., one block can be specified to be filled with the
size or a control sum of another).

Dave Aitel’s SPIKE1 has been a very successful example of this architecture; the
authors of the state-of-the-art Sulley2 recognize it and build on this design, as do
some older fuzzers such as Peach3.

From the object-oriented point of view, a block-based fuzzer represents the hi-
erarchical units of the target protocol as a composition of objects corresponding to
the atomic units such as integers of various fixed widths or byte arrays of varying
width. Each such object provides a method for traversing either all possible values
of the respective protocol field, or only values that are likely to cause faults either
by themselves or in combination with others. In the parlance of “design patterns”,
these block objects are iterators over some probability distributions used to fill the
corresponding fields.

The generation part of the fuzzer itself is built as a composition of these objects,
1At the time of writing available from http://www.immunitysec.com/

resources-freesoftware.shtml
2At the time of writing available from http://www.fuzzing.org/fuzzing-software
3http://peachfuzzer.com/

4



and operates as an aggregate “iterator” over a set of malformed inputs indended to
induce faults. Clearly, this design is only possible when the object compositions in
question express the relevant parts of the protocol specification.

Fuzzing without protocol specification. Although quite powerful, this archi-
tecture assumes considerable knowledge of protocol internals, mostly unavailable
in case of proprietary protocols. Assuming that the protocol’s connections can be
captured and either replayed or modified (e.g., that there are no strong crypto-
graphic integrity and authentication protections on it), one can start with heuristics
that attempt to guess the boundaries and types of those blocks that would be most
amenable to fuzzing, and fuzz them.

This latter approach is demonstrated by the General Purpose Fuzzer (GPF).4

GPF heuristically partitions a TCP session reconstructed from a packet capture into
“tokens”, such as apparent ASCII strings, and produces the fuzzed input by apply-
ing various token-specific transformations, such as inserting large runs of ASCII
characters inside these suspected strings and adding random combinations of de-
limiters where a delimiter is detected, whereas apparent binary fields are subjected
to mutations such as bit flips. The transformations for a particular token are cho-
sen randomly, from a series of hard-coded distributions that are different for each
guessed token type. To get the fuzzed input past “sanity checks” such as checks
of known checksum fields, the user is given the capability of adding custom fix-up
functions, applied successively after all mutations take place.

GPF’s approach, although definitely useful in the initial phases of protocol test-
ing, is clearly limited, since it discards most of the information available from packet
captures of plain text-based protocols (the evolutionary fuzzing extention of GPF
compensates for it in a different way).

Bioinformatics connections. Several research projects, notably PI [Bed] and
PROTOS [HVLR06] (see also the overview in [SGA07]) attempt to extract infor-
mation about the protocol structure from captured traffic. Their application of
bioinformatics methods such as dynamic programming sequence alignment algo-
rithms and philogenetic trees to protocol dissection is fascinating and, intuitively
and anecdotally, appears very promising.

We note, however, that these algorithms require many tens of hours of CPU
time even on relatively small traffic samples.5 The capability to process large packet
samples is desirable in order to build better models of a protocol, if only because
they provide more accuracy for estimating distributions of its field values (or, simply,
may indicate variability of a field that would otherwise appear constant in a small

4Available from http://www.vdalabs.com/tools/efs_gpf.html, together with research presen-
tations outlining its further development.

5For example, analysis of a sample of 550 ICMP packets using PI took over 6 hours on a 600Mhz
Intel Coppermine processor.

5



sample). Unfortunately, the runtime requirements of bioinformatics methods are,
generally speaking, exponential in CPU and RAM, although they can be reduced
with various heuristics.

Moreover, it is not clear how much of the information derived by bioinformatics
methods can be effectively used for fuzzing proper. Whereas intuitively finer proto-
col dissection is better, fuzzed fault injection into captured or proxied data may be
effective with much rougher generative models than those used by geneticists (after
all, the injected faults are usually quite simplistic).

Our hypothesis and approach. We hypothesize that a simpler class of fast
captured data-driven algorithms can produce protocol models effective for use in
fuzzers. Our key intuition that we quantify in Section 4 is that not all mistakes
made by a protocol dissector in the process of constructing a generative model
of the protocol are equally harmful to fuzzing efficiency. In other words, a fast
rougher dissector can be just as good as a slow, more accurate one. Although it is
hard to quantify the overall “quality” of a fuzzer, and thus to validate this claim
exhaustively, we feel that fast, simple dissectors are worth studying.

In this paper, we present a simple fuzzer that uses the string table generated
by running the Lempel–Ziv compression algorithm over the protocol payload to
guess the field boundaries and structural units of an unknown protocol. Although
obviously prone to errors, it performed well in our tests, causing faults in targeted
software.6

6We used our fuzzer in the course of testing proprietary production SCADA protocols. Unfor-
tunately, non-disclosure agreements prevent us from sharing the specific results of this testing.

6



Section 3

LZfuzz in operation

Our fuzzer operates as a fuzzer-in-the-middle (FITM) proxy fuzzer, taking advan-
tage of the plaintext nature of the target protocols. In our experiments, we used
an ARP poisoning technique1 to intercept the IP packets exchanged between the
communicating parties. This setup was necessitated by our testing circumstances:
we could not instrument the systems at one or both endpoints of fuzzed communi-
cations, since we were not allowed to modify them.

The packets were then segmented into “tokens” by the Lempel–Ziv compression
process, running with a pre-collected string table. The string table was derived from
a compression pass on the previously captured data, with the shortest and the rarest
strings optionally removed. The tokens were then either randomly replaced accord-
ing to a probability table, or fuzzed with the standard GPF fuzzing operations.
The GPF was accordingly modified to accept and handle the tokenized input rather
than the assembled TCP stream (its normal mode of operations). The packets were
then re-assembled and sent to the original destination. Figure 3.1 illustrates these
operations and Figure 3.2 details the architecture of the tool.

At its simplest, our fuzzer operated on individual packets; however, the under-
lying “tokenization” and GPF-based token mutation can use a buffer that collects
larger parts of the stream than packets prior to mutation and replay. We note
that for many protocols an Ethernet packet’s length is enough to transmit whole
commands and data units.

The string table produced during the training run phase (in which the fuzzer
acted as a simple man-in-the-middle forwarder and did not introduce any modifica-
tions into the forwarded data) accumulates the frequently repeated byte substrings,
which – we hope – correspond to protocol tokens. The results of compression other
than the resulting partition of the input stream are discarded.

Of course, the process of filling the Lempel–Ziv string table is rather random:
for example, in its beginning when the table is empty, a number of shorter strings
will be inserted into it, in the order they are encountered and in no clear relation to

1Specifically, the arp-sk tool, explained and available at http://sid.rstack.org/arp-sk/.

7



   

Desktop Server

Laptop

Intercept packets

LZfuzz string table

xxx gjhjhgjhgjhg http get put aquire resetxxx 
gjhjhg http get put aquire rese
xxx gj   hjhgjhgjhg http get put aquire reset
xxx gjhjhgj  hgjhg http get put aquire reset
xxx g jhg http get put aquire resett   

Tokenize &
mutate

Figure 3.1: LZfuzz in operation

their prevalence in the subsequent stream. We use various heuristics to somewhat
decrease the effect of this “warm-up” phase, such as supressing shorter or infrequent
tokens from the string table used in the fuzzing phase.

This approach can be compared to that PI of Beddoe [Bed], where bioinformatics
methods are applied to dissecting the protocol into constant and “mutating” tokens,
the former assumed to be elements of the protocol’s syntax. The resulting dissection
can then be used to generate fuzzed input that generally conforms to the protocol’s
format. A similar idea of protocol genes is proposed in [HVLR06].

Our dissection is especially prone to off-by-one kind of alignment errors, in which
the token boundaries produced by the compression algorithm are shifted with re-
spect to those of the actual protocol fields, because of the frequently observed com-
binations of bytes (e.g., in the case of a frequent cross-boundary byte bigram, due
to frequent co-occurrence of the ending byte and the leading byte of two adjacent
multi-byte fields). We note, however, not all of these errors are equally damaging
to the fuzzer’s generative model. We compare our dissections with those produced
by PI in Section 5.

8



   

 

packet capture  raw sockets

IP forwarding/
routing

libpcap libnet

LZfuzz
learning GPF

token
fuzzing

LZfuzz
tokenizer

ARP spoofing:
arpsk

sniffing/
interception

injection/
spoofing

packet
forwarding/

fuzzing

Figure 3.2: LZfuzz architecture

9



Section 4

Fuzzing dissection quality
metric

In this section we define a metric that captures our intuition regarding the dissec-
tion part of protocol modeling for producing fuzzed inputs. This metric depends on
several simplifying assumptions, listed below, which arguably ignore much the com-
plexity of real protocols. However, we note that existing fuzzing practices achieved
their impressive results while relying on much rougher assumptions, and also that,
even in the more general machine learning domains such as Bayesian models, strong
independence assumptions were not found to perform necessarily inferior to more
complex ones (see, e.g., [FGG97]).

A natural choice for a protocol dissection metric is its precision/recall score: the
ratio of correct field boundary guesses to the total number of guesses vs. the ratio of
correct guesses to the total number of actual boundaries. It is given in Tables 5.2–
5.5 for two samples of well-known protocols. We also give the same scores with
allowances of 1 and 2 bytes.

However, not all alignment errors counted by these metrics are equally detri-
mental for the end-goal, generation of effective fuzzed input. We propose to weigh
them differently, depending on the observed variation of the fields’ contents, based
on the following assumption:

Assumption. Protocol fields that show high variability in packet captures are
likely to be associated with the code paths executed more frequently and in more
diverse environments. As a result, these code paths are likely to have been more
throughly tested and debugged. Conversely, non-constant fields that show less vari-
ability are more likely to be processed by less frequently exercised codepaths, and
therefore a more likely place to find undetected flaws.

Accordingly, for each actual protocol field Fi we compute H(Fi), the entropy
of the frequency distribution D(Fi) of the distinct values of Fi observed over the

10



training packet capture T (reference protocol parses were produced by the dissector
plugins of the Wireshark free software network analyzer1). We take this entropy as a
measure of variability of the field and normalize it by either the overall bit length of
the field for fixed-length fields or the longest observed field length for variable-length
fields. We attach the coefficient

qi = 1− H(Fi)
MaxlenD(Fi)(Fi)

to the alignment errors for the field Fi. Note that qi is close to 0 when the distribution
D(Fi) is close to uniform and tends to 1 when the entropy tends to 0.

Figure 4.1 visualizes the application of this metric applied to the results of dis-
secting a set of ICMP packets. It compares Wireshark’s packet dissections (top
bar of each pair) with our LZ-based dissection (bottom bar of each pair). The
true dissections’ fields are colored in grayscale according to the entropy of their ob-
served frequency distribution normalized by length (darker for higher entropy), the
guessed fields merely alternate in color. Note that the darkest actual field is the
ICMP checksum, to be fixed by the user-defined fix-up before replay. Also, note the
constant (white) second byte, which did not change across the training capture set;
as a result, it is not detected by our dissector and gets included into larger guessed
tokens.

Figure 4.1: ICMP packet set: actual fields vs LZfuzz dissection. Actual ICMP fields
shown in gray scale, LZfuzz partitions in alternating red and blue.

As a dissection quality metric, this formula, of course, relies on the availability
of the correct dissection (e.g., produced by a protocol analyzer such as Wireshark).
However, it has another important application for fuzzing proper: applied to hy-
pothesized tokens, it can select the priority order in which these tokens are to be
fuzzed. By the fundamental assumption above, tokens that show less entropy across
the training set are better targets for fuzzing.

1Available from http://www.wireshark.org/, formerly known as Ethereal.

11



Section 5

Measurements

In this section we compare the dissection errors made by our LZfuzz token dissector
and the PI dissector on captures of two different protocols, ICMP and HTTP, ICMP,
the Internet Control Message Message Protocol, is a network-layer binary protocol
used by Internet routers and hosts to test connectivity and report error conditions,
whereas HTTP is an application-level text-based protocol, representative of complex
plain text application protocols.

We chose them as representatives of the “binary” and “text-based” classes of
protocols. The ICMP packet capture consisted of 551 packets, and the HTTP
capture of 471 packets.

Table 5.2 shows how well LZfuzz dissects an ICMP capture with 551 packets.
LZfuzz misses boundaries sometimes when there is little variation near the boundary;
to take this error into account, any boundary within a threshold of the true boundary
is counted as correct. When a threshold is used, the number of counted correct
boundaries sometimes exceeds the number of real boundaries. This could occur if
LZfuzz interprets a real boundary as two boundaries that are both within a threshold
of the true boundary, and both of the dissected boundaries are counted. We see that
both our algorithm and PI framework end up with more false positives than correct
finds.

Table 5.3 shows how similar the results are between PI and LZfuzz. In this
table, PI is interpreted as the correct dissection. More than half of the boundaries
that LZfuzz finds per packet match those found in PI when using a threshold of 2
bytes. Taking into account LZfuzz’s significantly lower running time (see Table 1),
the difference between the dissections is quite small.

Table 5.4 shows how the accuracy of LZfuzz can be improved by removing short
tokens from the string table between the first and second iterations of the compres-
sion algorithm. Whenever we removed tokens, we used a threshold of less than 4
bytes. The number of correct finds nearly doubles, and the accuracy of LZfuzz’s
results becomes closer to that of PI when small tokens are removed.

Table 5.5 shows the results of the two dissectors weighted by entropy and length

12



PI LZfuzz
real user sys real user sys

HTTP 264m24.695s 263m13.107s 1m11.588s 0m2.560s 0m2.536s 0m0.024s
ICMP 45m34.292s 45m33.579s 0m0.440s 0m0.470s 0m0.464s 0m0.008s

Table 5.1: Dissector running times for HTTP and ICMP packet captures. LZfuzz
is much faster.

Match precise ±1 byte ±2 bytes
Correct finds 520 1220 1247
Correct per packet 0.94 2.21 2.26
Incorrect (false positive) 2378 1651 1651
FP per packet 4.32 3.00 3.00
Not found (false negative) 2235 224 224
FN per packet 4.05 0.41 0.41

Table 5.2: LZfuzz dissector scores for ICMP, unweighted. LZfuzz is prone to false
positives.

(see section 4). Although PI finds more correct boundaries, it also finds more severe
incorrect boundaries. The boundaries that LZfuzz does not find are not very severe:
0.2 incorrect boundaries are found per packet when using a threshold.

Match precise ±1 byte ±2 bytes
Correct finds 1792 2673 2771
Correct per packet 3.25 4.85 5.03
Incorrect (false positive) 1106 225 127
FP per packet 2.01 0.41 0.23
Not found (false negative) 6473 3414 1822
FN per packet 11.75 6.20 3.31

Table 5.3: LZfuzz dissector compared to PI, on ICMP. PI-produced boundaries are
taken as ground truth, as if the ICMP specification were not available. LZfuzz finds
most of PI-found boundaries.

13



Match LZfuzz, ±2 bytes, LZfuzz, ±2 bytes PI, ±2 bytes
toks < 4 removed

Correct finds 2333 1247 3857
Correct per packet 4.23 2.26 7.00
Incorrect (false positive) 2841 1651 4408
FP per packet 5.16 3.00 8
Not found (false negative) 0 224 0
FN per packet 0 0.41 0

Table 5.4: Dissector comparison on ICMP capture, unweighted, with string table
filtering heuristics applied.

Match LZfuzz PI, LZfuzz, PI,
weighted, weighted, ±2 bytes weighted,
precise precise ±2 bytes

Correct finds 520 2755 1247 3857
Correct per packet .94 5 2.26 7
Incorrect (false positive) 1345.29 4157.03 1553.16 4144.97
FP per packet 2.44 7.54 2.82 7.52
Not found (false negative) 701.02 0 114.14 0
FN per packet 1.27 0 0.21 0

Table 5.5: Dissector comparison on ICMP capture, weighted. When weighted by
field entropy, LZfuzz’s boundary errors appear less severe.

14



Section 6

Related work

In this section we review the history of fuzzing. We refer the reader to Section 2 for
a discussion of the state-of-the-art fuzzing methods and the ongoing challenges that
the fuzz-testing methodology faces.

Fuzz testing was formalized in 1989 at the University of Wisconsin-Madison by
Professor Barton Miller and the students [MFS90]. The tools developed by Miller
et al. threw randomly generated, unstructured input at UNIX programs.

Following the research of Miller et al, numerous fuzzers were developed in at-
tempts to improve the efficiency of the fuzzing approach by generating more struc-
tured input. In 1999, a group of researchers at the University of Oulu introduced
the PROTOS test suite [RLTK02], which conducted fuzz testing by first analyzing
a protocol and then producing inputs based on the protocol specification. PROTOS
was followed by SPIKE [Ait02], which introduced block-based protocol analysis.
SPIKE uses protocol descriptions in the form of lists of block structures and gener-
ates fuzzing data by filling those blocks with randomly generated data, which may
contain strings from SPIKE’s library of fuzz strings.

Whereas most fuzzers are based on detailed knowledge of the layout of the input
to be fuzzed, a few attempt to analyze inputs with unknown structure automatically.
A bioinformatics approach to the problem of automatic protocol analysis was imple-
mented by Marshall Beddoe in PI framework [Bed]. PI framework detects fields of
protocol packets by aligning packets to find similar sequences, similarly to aligning
sequences of genetic information in biology. Automatic detection of building blocks
of a protocol, so-called protocol genes, was also the motivation of the PROTOS
Protocol Genome Project [HVLR06], which uses formal grammars for representing
protocol genes.

A genetic algorithm approach was implemented in a fuzzer called Sidewinder,
which was presented at the BlackHat security conference in 2006 [ESC06]. A genetic
algorithm starts with a population of solutions, selects the most fit solutions, mates
them, mutates them, and uses the resulting solutions as the new population to repeat
the entire process. Sidewinder’s algorithm uses the control-flow graph of the binary

15



under examination; as acknowledged by the authors in the BlackHat presentation,
this technique needs testing on more complex problems.

EFS (Evolutionary Fuzzing System), another fuzzer implementing a genetic al-
gorithm, was presented by a group from Michigan State University at BlackHat
and Defcon in 2007 [DEP07]. Similarly to Sidewinder, EFS evaluates the fitness of
inputs based on the path through the code. EFS uses PaiMei debugging framework
to set breakpoints in the code and keep track of hits of these breakpoints.

Another interesting approach to automated protocol dissection was taken by
Dan Kaminski in his CFG9000 fuzzer [Kam]. CFG9000 uses the Sequitur algorithm
[NMW97] to generate a grammar of the data to be fuzzed. This approach appears
to be more suitable to file fuzzing, because of substantial amounts of data required
to learn the grammar.

16



Section 7

Empirical results

We developed our fuzzer, LZfuzz (pronounced “lazy-fuzz”) for testing of plain text
SCADA protocols and tested it on actual equipment’s communications in an isolated
control network test environment, successfully validating our methodology. We view
the results as a justification of further research into using simpler, faster tricks to
model protocols for fuzz-testing.

We also tested LZFuzz on several popular protocols using the FITM setup de-
scribed earlier. In these tests, since we were fuzzing in real time, the Lempel-Ziv
algorithm was only run once over each packet. Fuzzing the protocol used by AOL
Instant Messager crashed the Gaim client in Ubuntu. We were also able to hang the
iTunes client (version 2.6) consistently by fuzzing the music sharing protocol. We
chose not to investigate these conditions further.

We note that LZfuzz is essentially a proof-of-concept. Its accuracy can likely
be improved by retaining in the string table and using the information about the
origin of the token strings; also, our heuristics to mitigate the accuracy-reducing
effects of the initial population of the string table are primitive and can no doubt
be improved. We leave these for future work.

17



Section 8

Conclusions and future work

In this paper, we used a variant of Lempel–Ziv compression algorithm as a very
rough protocol dissector for the purposes of fuzz-testing protocol implementations.
Although predictably not as accurate as bioinformatics approaches, it nevertheless
appears to be able to match the protocol structures well enough to contribute to
efficient fuzzing. It is also much faster and requires much less CPU power than
bioinformatics methods, which makes it possible to apply it for “online” proxy-
based learning and fuzzing.

Addressing the needs of asset owners, we plan to develop a “fuzzer-in-a-box”
package that could be deployed and used by network administrators interested in
testing proprietary equipment communicating via plain-text type protocols for pos-
sible weaknesses, such as DoS conditions (assuming that the attacker gains control
of a machine on the same network). In this scenario, the administrators’ knowledge
about the protocol is minimal (although it may have to include the location and
type of control sums, so that the fuzzed packets could be appropriately fixed for
testing).

18



Bibliography

[Ait02] Dave Aitel. The Advantages of Block-based Protocol Analysis for Secu-
rity Testing. Technical report, Immunity, Inc., February 2002.

[aut] Autodafé. http://autodafe.sourceforge.net/.

[Bed] Marshall A. Beddoe. Network Protocol Analysis Using Bioinformatics
Algorithms. http://www.4tphi.net/ awalters/PI/PI.pdf.

[DEP07] Jared D. DeMott, Richard J. Enbody, and William F. Punch. Revolu-
tionizing the Field of Grey-box Attack Surface Testing with Evolutionary
Fuzzing. Black Hat USA 2007 & DefCon 15, 2007.

[ESC06] Shawn Embleton, Sherri Sparks, and Ryan Cunningham. ”Sidewinder”:
An Evolutionary Guidance System for Malicious Input Craft-
ing. http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-
Embleton.pdf, 2006.

[FGG97] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian Network
Classifiers. Machine Learning, 29(2-3):131–163, 1997.

[HVLR06] Aki Helin, Joachim Viide, Marko Laakso, and Juha Röning. Model Infer-
ence Guided Random Testing of Programs with Complex Input Domains.
www.ee.oulu.fi/research/ouspg/protos/genome/papers/paper/paper.pdf,
2006.

[Kam] Dan Kaminski. Black Ops 2006. http://www.doxpara.com/slides/
dmk_blackops2006_ccc.ppt.

[MFS90] Barton P. Miller, Lars Fredriksen, and Bryan So. An Empirical Study
of the Reliability of UNIX Utilities. Communications of the Association
for Computing Machinery, 33(12):32–44, 1990.

[NMW97] Craig G. Nevill-Manning and Ian H. Witten. Identifying Hierarchical
Structure in Sequences: A Linear-Time Algorithm. Journal of Artificial
Intelligence Research, 7:67–82, 1997.

19



[Rit07] Nathan Rittenhouse. Byakugan – Automating Exploitation. ToorCon 9,
2007.

[RLTK02] J. Röning, M. Laakso, A. Takanen, and R. Kaksonen. PROTOS - Sys-
tematic Approach to Eliminate Software Vulnerabilities. http://www.
ee.oulu.fi/research/ouspg/protos/, 2002.

[SGA07] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley, 2007.

[sul] Sulley Fuzzing Framework. http://www.fuzzing.org/2007/08/02/sulley-
fuzzing-framework-release/.

20


	LZfuzz: a fast compression-based fuzzer for poorly documented protocols
	Dartmouth Digital Commons Citation

	tmp.1601412842.pdf.WZ6dM

