
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Computer Science Technical Reports Computer Science 

12-1-2007 

Exclusion and Object Tracking in a Network of Processes Exclusion and Object Tracking in a Network of Processes 

Yih-Kuen Tsay 
National Taiwan University 

Chien-Chung Huang 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr 

 Part of the Computer Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Tsay, Yih-Kuen and Huang, Chien-Chung, "Exclusion and Object Tracking in a Network of Processes" 
(2007). Computer Science Technical Report TR2007-608. https://digitalcommons.dartmouth.edu/cs_tr/
307 

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital 
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/307?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/307?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Exclusion and Object Tracking in a Network of Processes∗

Yih-Kuen Tsay†

Dept. of Information Management

National Taiwan University, TAIWAN

Chien-Chung Huang

Department of Computer Science

Dartmouth College, U.S.A.

Abstract

This paper concerns two fundamental problems in distributed computing—mutual exclu-
sion and mobile object tracking. For a variant of the mutual exclusion problem where the
network topology is taken into account, all existing distributed solutions make use of tokens.
It turns out that these token-based solutions for mutual exclusion can also be adapted for
object tracking, as the token behaves very much like a mobile object. To handle objects
with replication, we go further to consider the more general k-exclusion problem which has
not been as well studied in a network setting. A strong fairness property for k-exclusion
requires that a process trying to enter the critical section will eventually succeed even if up

to k − 1 processes stay in the critical section indefinitely.
We present a comparative survey of existing token-based mutual exclusion algorithms,

which have provided much inspiration for later k-exclusion algorithms. We then propose
two solutions to the k-exclusion problem, the second of which meets the strong fairness
requirement. Fault-tolerance issues are also discussed along with the suggestion of a third
algorithm that is also strongly fair. Performances of the three algorithms are compared
by simulation. Finally, we show how the various exclusion algorithms can be adapted for
tracking mobile objects.

1 Introduction

A distributed system stores and manages various shared resources so that they can be conve-
niently accessed by users of the system. We refer to an instance of any of these resources as
an object. The mutual exclusion problem is fundamental in such a system, as a shared object
typically may be accessed by one user at a time to ensure consistency. Locating an object so as
to deliver messages such as operation requests intended for the object is also fundamental; the
problem becomes more complicated when the object may move. The mutual exclusion problem
has a longer history and is more extensively studied, while object tracking is a central problem
in the management of mobile objects which has attracted much attention recently.

Mutual exclusion in a network of processes is different from that in a shared memory system
and is solved in a different way. Under the network model, the privilege to exclusively access
a shared object, or to enter the critical section, is typically materialized by the possession of a
unique token. An algorithm for the mutual exclusion problem essentially needs to address (1)
how a request is forwarded to the token holder and (2) how processes change their states as the
system evolves to reflect the new location of the token.

The task of locating an object in a distributed system is usually performed by a directory or
name service of the system. The relevant directory service may be centralized at a particular
server or distributed across a number of servers or even the entire system. Disregarding these
variations, certain distributed data structure has to be maintained to keep track of the objects

∗Dartmouth Computer Science Technical Report 2007-608
†Email: tsay@im.ntu.edu.tw; post: No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; tel: +8862 3366 1189

1



so that a request can be routed to the intended object. Forwarding a request to the node
(or process) where a particular mobile object resides is very similar to forwarding a request to
the token holder in a mutual exclusion algorithm. The distributed data structure of a mutual
exclusion algorithm intuitively can be adapted as the distributed directory for tracking a mobile
object.

To handle objects with replication, we consider the more general k-exclusion problem where the
exclusion (safety) property requires that at most k processes are allowed in the critical section
at any time and the basic fairness (liveness) property requires that, if no process stays in the
critical section indefinitely, every process trying to enter the critical section will eventually
succeed. Mutual exclusion is then the special case of k = 1. The k-exclusion problem was first
defined by Fischer [6]. Though quite a few algorithms, e.g., [1, 3, 2], have been proposed for
a shared memory system, the problem has not been as well studied in a network setting. A
stronger fairness property, referred to as Starvation-Freedom with Concurrency (SFC)
here, requires that a process trying to enter the critical section will eventually succeed even if
up to k−1 processes stay in the critical section indefinitely. SFC implies that the response time
of a good solution is insensitive to how long a particular process stays in the critical section (or
holds a copy of the object in the context of sharing mobile objects).

We present a brief comparative survey of existing token-based mutual exclusion algorithms,
which have provided much inspiration for later k-exclusion algorithms. Building upon the ideas
of these token-based algorithms, we then propose two solutions to the k-exclusion problem, the
second of which meets the SFC requirement. Fault-tolerance issues are also discussed along with
the suggestion of a third algorithm that also meets SFC. Performances of the three algorithms
are compared by simulation. Finally, we show how the various exclusion algorithms can be
adapted for tracking mobile objects.

Related Work Van de Snepscheut [15] was probably the first to give solutions to the mutual
exclusion problem in a network of processes, extending the earlier work for rings by Martin
[8]. The main idea was to orient the edges of the network so that they point to the token
holder; when the token moves, the directions of the edges are updated accordingly. Raymond
[13] proposed another algorithm which turned out to be identical to a restricted version of Van
de Snepscheut’s where a rooted spanning tree instead of a directed acyclic graph (DAG) is
maintained. However, he was able to give a more detailed analysis of the average case message
complexity, which is O(log N).

Naimi et al. [10] presented yet another spanning tree-based solution for networks whose topology
is a complete graph (or equivalently, for general networks with an underlying end-to-end routing
service). Unlike the previous algorithms, the edge set of the tree maintained by their algorithm
changes over time. They were also able to derive an average case message complexity of O(log N)
(where the end-to-end transmission of a message is counted as one message).

Demmer and Herlihy [5] proposed the so-called arrow distributed directory protocol for keeping
track of mobile objects in a distributed system. They noted the close relationship between
distributed mutual exclusion and object tracking. Their main algorithmic technique can be
seen as a combination of those of Van de Snepscheut and Naimi et al. The preceding four
algorithms can be classified as token-based; they introduce distributed data structures that are
also applicable to object tracking. We shall review these algorithms in more detail shortly.

Bulgannawar and Vaidya [4] extended the work of Naimi et al. by using k dynamic spanning
trees to route requests. Their algorithm does not meet SFC. Walter et al. [16] generalized
the routing topology of Van de Snepscheut to a multi-sink DAG for managing k tokens. They
considered a mobile environment where network links may fail. However, their algorithm meets

2



only a restricted variation of SFC, as we shall explain in a subsequent section.

An early work by Mullender and Vitányi [9] had suggested the relationship between distributed
mutual exclusion and object tracking (or name service, in their terminology). They showed that
mutual exclusion and name service can be formulated as special instances of the so-called dis-
tributed match-making problem. However, the formulations seem to be biased toward particular
types of algorithms.

There has been a considerable amount of work on the subject of object location (we use the
term object tracking in this paper to emphasize that the object being located may move). PRR
(Plaxton, Rajaraman, and Richa) [11], Chord [14], CAN [12], and Tapestry [7] represent a most
recent line of such research. These location schemes either do not handle mobility of an object or
simply treat it as a combination of object deletion and insertion. Moreover, these schemes can
all be classified as home-based in that every object is mapped to a fixed home and all messages
for an object (or at least the first of messages in the same session) must be routed through its
home. The home of an object may be a potential bottleneck of performance. In contrast, the
tracking schemes derived from token-based exclusion algorithms do not assign a fixed home to
an object.

2 Token-Based Mutual Exclusion Algorithms

We briefly review and compare four token-based algorithms for mutual exclusion. Their basic
ideas are explained with illustrative diagrams for the ease of comprehension. Part of the material
has been moved to the Appendix due to the page limit.

Van de Snepscheut [15] and Raymond [13] The edges of the network are oriented to
form a single-sink directed acyclic graph (DAG) with the sink holding the token. When a node
wishes to enter the critical section, it sends a request along one of the directed paths to the
token holder. The next node in the path will either relay the request along one of its outgoing
edges or put the request in a local queue. Each node (as an originator or forwarder) permits at
most one outstanding request while keeping all others in its local queue. The token is routed
in the reverse order along the path that the request has travelled. The direction of each edge
incident to a node is updated to point to the node, when the node receives the token; this
maintains acyclicity and also ensures that the token holder is the only sink of the entire graph.
A diagram illustrating these ideas can be found in the Appendix.

Raymond’s algorithm is essentially a restricted version of Van de Snepscheut’s where a rooted
spanning tree instead of a DAG is maintained. Raymond further considered recoverable node
failures. His idea was for a recovering node to restore its state through assistance from its
immediate neighbors. However, disregarding the problem of multiple failures, the fault-tolerance
measure still leaves processes that are not in the same partition with the token holder to wait
probably indefinitely.

Naimi et al. [10] The algorithm of Naimi et al. also uses a tree structure, but their tree
is for routing requests only and is more dynamic with a changing set of edges. An additional
distributed queue tells the current token holder and subsequent holders which node is the next
in line waiting for the token (in contrast, Van de Snepscheut’s and Raymond’s algorithms use
separate local queues). Conceptually, the root of the routing tree is also the tail (and sometimes
the head as well) of the distributed queue, where some other process may be added (what really
happens is more complicated with possibly multiple trees and roots and hence multiple queues

3



A B

C D

FE

(a) A holds the token and is the
root, treating itself as its parent.

A B

C D

FE

r

(b) B sends a request r to its par-
ent D and makes itself a new root.

A B

C D

FE

r

(c) D relays request r to its parent
C and makes B its new parent.

A B

C D

FE

r

r'

(d) C relays request r to its parent
A and makes B its new parent. A

will add B to the queue when it re-
ceives r. F also initiates a request
r′.

A B

C D

FE

r'

(e) A releases the token to B (via
the assumed routing service) and
makes B its new parent. D for-
wards request r′ to B.

A B

C D

FE

(f) B leaves the critical section,
sends the token to F , and makes
F its new parent.

Figure 1: How the algorithm of Naimi et al. works.

being created and merged). They assume that the network is a complete graph, which makes
it possible for a node to switch its parent to any other node. Practically, this assumption boils
down to working in a general network with an underlying routing service. The “physical link”
between each pair of nodes in their model corresponds to the “logical link” realized by the
routing service between the pair in the general network.

Initially, the tree is a star-shaped one (any spanning tree would also be suitable) with the token
holder as the root and as the parent of every other node. The initial token holder is also the only
node, the head, and the tail of the distributed queue. When a node wants to enter the critical
section, it sends a request to its parent. It then regards itself as the new root, expecting that,
once its request is received by the current root, it will be added to the distributed queue and
become the new tail of the queue. Other nodes on the directed path to the current root, upon
receiving the request, make the request originator their new parent. As the request travels to its
destination, tree edges are removed and added and the tree is temporarily split into two smaller
trees. Finally, the current root inserts the request originator behind itself in the queue and also
makes the originator its new parent, turning itself into a non-root node and thus merging the
two smaller trees back into one. The head of queue, after holding the token for a finite amount
of time, will pass out the token to the next node and remove itself from the queue. Every node
in the queue eventually will get the token. A scenario can be found in Figure 1.

As shown in the figure, more than one processes may be trying to enter the critical section.
Though the overall changes to the tree and the queue may be more complicated, processes
behave just as described in the preceding paragraph. A new root may receive some other
request even before it is actually added to the queue; it handles the request just as the current
root would do. The isolated segment of queue gets hooked back to the distributed queue when
the new root is eventually added to the queue. A root allows just one process to be added
behind it in the queue. Once such an addition occurs, the root has got a new parent, i.e., the
request originator; a second request will be forwarded to the new parent.

4



Demmer and Herlihy [5] Though originally intended for mobile object tracking, Demmer
and Herlihy’s algorithm closely resembles that of Naimi et al. The main difference is that their
tree has a fixed set of edges which is more like the tree in Van de Snepscheut’s (restricted
tree version) and Raymond’s algorithms. They also use a distributed queue for lining up the
processes waiting for the token, which is identical to that of Naimi et al.; the tree tells where
the tail of the distributed queue is.

3 Algorithm A

Algorithm A generalizes the tree version of Van de Snepscheut’s algorithm to maintain k tokens.
Initially, k tokens are created and arbitrarily distributed among the nodes of the network. Each
node records the number of tokens it holds and, for each incident tree edge e, it also maintains
a pair (te, re) of numbers, where te indicates “the number of tokens in the subtree that e leads
to” and re “the number of outstanding requests sent along e”. The difference te − re provides
an estimate of the number of free tokens in the subtree that e leads to.

When a node wishes to enter the critical section but does not have a free token, it sends a
request along a tree edge e such that te − re is the highest among all incident tree edges. A
receiving node of the request that is without a free token passes the request along a different

tree edge e′ with highest possible t
e
′ − r

e
′ . The request eventually will reach either a node with

a free token or a node where further forwarding would be fruitless (when every te − re value is
zero). In the first case, the free token backtracks along the path that the request has travelled.
In the second case, the request is put into a local queue of the last receiving node and will be
forwarded when te−re for some edge e become positive. Further care much be taken to prevent
deadlocks, but we omit the details here. It is interesting to note that Algorithm A degenerates
into the mutual exclusion algorithm of Van de Snepscheut when k equals 1.

A diagram illustrating the basic ideas of Algorithm A can be found in the Appendix. As the
forwarding of a request may stop at a leaf node that happens to be in the critical section and
the node might hold the corresponding token indefinitely, Algorithm A fails to meet SFC.

4 Algorithm B

Algorithm B is built upon the ideas of Naimi et al. and Demmer and Herlihy. It assumes the
existence of an underlying routing service that allows a node to send messages to any other
designated node. A distributed request-routing tree is maintained. Either the tree of Naimi et

al. or that of Demmer and Herlihy can be applied, but we assume using the former one. To line
up the nodes wishing to enter the critical section, we use a distributed token-relay tree instead
(a queue is a special case of a rooted tree). A node may have up to two occurrences in the tree,
as we shall explain shortly.

Initially, the k tokens are assigned to the only node and the root of the token-relay tree, which
is also the root of the request-routing tree. When a request is initiated, it will be routed to the
root of the request-routing tree as described before. The root makes the request originator its
“(immediate) successor” in the token-relay tree. We use “successor” and “predecessor” (instead
of “parent” and “child” or “ancestor” and “descendant”) when talking about the token-relay
tree. A waiting node enters the critical section when it receives the first token; it passes
subsequent tokens (and the first token after it leaves the critical section) to its (immediate)
successor.

Consider a node that has entered and left the critical section, but is still in the token-relay

5



A B C D E F G

(a) A, B, E are in the critical section. F and G are
in the trying section and still waiting for tokens to
arrive.

D DB C E F GA

(b) A leaves the critical section and passes the cor-
responding token to B, which forwards it to C. D

initiates a request and becomes the successor of G.

E HB C F G DDA

(c) C forwards the token to D. D cannot enter the
critical section as discussed in the paper. H initiates
a request.

E HB C F G DDA

(d) The token is passed from D to E, to F , then to
G. G enters the critical section.

E HB C F G D

X

DA

(e) G relays the token from F to D. D enters the
critical section and also deletes the pointer to E.

E HB C F G D DA

(f) D passes the token to H , which enters the critical
section. D subsequently initiates yet another request.

Figure 2: How the token-relay tree of Algorithm B works (the case of k = 3).

tree (because it has not seen all k tokens yet) and wants to enter the critical section again. A
tempting idea is to let the node just sit and wait for a token to arrive from its predecessors.
However, this will not meet SFC, as its predecessors may refuse to release the tokens, while
there might be a free token residing in one of its successors.

Our solution is to let the node join the token-relay tree again (thus allowing a node to have
two occurrences in the tree). A waiting node distinguishes its predecessors as from two groups:
the new pre-group which includes the predecessors (of its newer occurrence) that are also its
successors (of its older occurrence) and the old pre-group that includes all its other predecessors.

The waiting node will eventually receive a token from either the new pre-group or the old pre-
group. In the first case, all nodes in the new pre-group must have entered the critical section
and are not starving. Therefore, the waiting node can keep the token and enter the critical
section. It can also eliminate its first occurrence from the token-relay tree, making the second
occurrence, if any, to be the first and the sole occurrence of the tree; this may be regarded as
“transplanting” all subtrees having a path to its first occurrence to its second occurrence. In the
second case (the token is from the old pre-group), it passes the token to its successor that is also
in the new pre-group to prevent starvation of those nodes in that group. An illustrative scenario
is given in Figure 2; the detailed code and its correctness proof can be found in Appendix A.

5 Fault Tolerance: Algorithm C

k-exclusion algorithms such as Algorithm A that use network links directly to route requests or
tokens are vulnerable to link failures. The assumption of a routing service, as in Algorithm B,
relegates the fault-tolerance responsibility to the underlying routing service. In this section, we
discuss how link failures may be handled directly. We first review the work of Walter et al. [16]
which has tackled the same issue and then propose our third k-exclusion algorithm.

The algorithm of Walter et al. can be seen as an extension of Van de Snepscheut’s algorithm.
A multiple-sink DAG is maintained for routing requests, in which any non-token holding node
can follow a directed path to some token holder. As in the algorithm of Van de Snepscheut, the
request is forwarded along the directed edges until it arrives at some token; the token backtracks

6



the very same path and the edges have to be re-directed to ensure that any non-token-holding
node always can reach some token holder. When a node detects the failure of some link over
which the outstanding request has been sent, it re-routes the request along some other available
path.

A node permits at most one outstanding request and keeps others in its local queue. To enhance
concurrency, they introduced a technique called “token forwarding”. The idea is that free tokens
are circulated systematically around the network so that they may possibly arrive in regions
with high contention.

Their algorithm meets a restricted variation of SFC, where exactly k − 1 processes stay in the
critical section indefinitely. There is an anomalous behavior that they seemed to fail to notice.
Consider the following scenario: there exist two distant sinks in the DAG, each of which holds
a token. Suppose that some other node initiates a request and the request is routed to one of
the two sinks, which unfortunately refuses to release the token. The other sink holds a second
free token. Now further suppose that one of its neighbors has exactly one outgoing edge that is
connected to the second sink. If the second sink and its neighbor repeatedly attempt to enter
the critical section and ask for the free token, then the token will “oscillate” between the two
nodes and never have a chance of being routed to other parts of the network by the technique
of “token forwarding”.

Algorithm C We seek another way of extending the work of Van de Snepscheut. Initially, a
primary token is assigned to one of the processes in the network. A counter is kept in the primary
token to record the number of secondary tokens currently in the system so as to guarantee that
there are at most k − 1 of them at a time. The algorithm maintains a directed acyclic graph
of the network such that all edges are directed toward the primary token holder. Any process
holding either the primary token or a secondary token may enter the critical section.

A request is routed along the directed edges until it reaches the primary token holder; any path
may be chosen if there exist more than one paths to the primary token. If the primary token
is not in use, it is sent to the request originator; the directions of the edges change accordingly
as the token moves. Otherwise, the primary token holder generates a secondary token for the
request originator or, if the counter has reached k − 1, puts the request in a local queue. The
movement of a secondary token does not change the direction of an edge.

If a node has sent a request through a link that fails, it sends the request again through a
second link (if there is any) directed towards the primary token holder; otherwise, it waits until
the failed link recovers. The orientation of a recovered link may be determined according to
which of the two end-processes most recently held the primary token since they detected the
last failure of the link. For each failed link, that piece of information may be recorded in the
primary token.

When a process leaves the critical section, if the token it holds is primary and the local queue
of requests is not empty, it sends the token to the first request originator in the queue and
forwards all other requests to the new token holder. If the token is secondary, the process
simply returns it to the primary token holder. The latter destroys the token and decrements
the secondary token count if there is no pending request in the local queue; otherwise, it forwards
the secondary token to fulfill the request. An illustrative diagram for Algorithm C can be found
in the Appendix.

A variant of Algorithm C may be derived by allowing requests to be intercepted by a node
that has relayed a secondary token on one of its incoming edges. When the secondary token
is returned and arrives at this node, the token can be sent directly to the originator of the
intercepted request (without being returned to the primary token holder). Intercepting a request

7



reduces the number of exchanged messages, but may increase the response time (depending how
quickly the secondary token is released by its holder). Moreover, this variation fails to meet
SFC because of repeated interceptions.

0 200 400 600 800 1000 1200
5

10

15

20

25

30

Number of Processes

N
um

be
r 

of
 M

es
sa

ge
s/

C
S

 E
nt

ry

 

 Alg.A
Alg.B(physical)
Alg.B(logical)
Alg.C

(a) Average message cost

0 200 400 600 800 1000 1200
0

2000

4000

6000

8000

10000

12000

14000

Number of Processes

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

 

 
Alg.A

Alg.B

Alg.C

(b) Average response time

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7
x 10

5

Number of Processes

W
or

st
−

ca
se

 R
es

po
ns

e 
T

im
e

 

 
Alg.A

Alg.B

Alg.C

(c) Worst-case response time

Figure 3: Comparative results with varying numbers of processes; k=8; average time in the
critical section = 100.

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

Number of Tokens (k)

N
um

be
r 

of
 M

es
sa

ge
s/

C
S

 E
nt

ry

 

 

Alg.A

Alg.B(physical)

Alg.B(logical)

Alg.C

(a) Average message cost

2 4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

Number of Tokens (k)

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

 

 
Alg.A

Alg.B

Alg.C

(b) Average response time

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3
x 10

5

Number of Tokens (k)

W
or

st
−

ca
se

 R
es

po
ns

e 
T

im
e

 

 
Alg.A

Alg.B

Alg.C

(c) Worst-case response time

Figure 4: Comparative results with varying numbers of tokens; number of nodes = 128; average
time in the critical section = 100.

6 Performance Evaluation

We conducted an extensive simulation study to (comparatively) evaluate the message costs and
response times of the three algorithms. Simulation experiments were carried out for different
scales (numbers of nodes) of random networks with varying settings for the number of tokens
and the average time that a node spends in the critical section. Durations of the remainder
section and of the critical section are modeled as Poisson processes, while the transmission
time of a message over a link is uniformly distributed over (0, 100] (simulation time units). All
underlying networks are created at random with a connectivity of 0.05. Performance results
with varying network scales are shown in Figure 3; similarly, those with different numbers of
tokens (k) and those with regard to average time that a node spends in the critical section can
be found in Figure 4 and 5, respectively. When an algorithm causes some nodes to starve within
the simulation time, we omit to plot its data.

In terms of message cost, as can be seen from Figure 3(a) and Figure 4(a), Algorithm A is the
most efficient. We have measured the counts of messages over both the logical (end-to-end)
links and the physical links for Algorithm B, which assumed an underlying routing service. In

8



0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14
x 10

5

Average Time in CS

W
or

st
−

ca
se

 R
es

po
ns

e 
T

im
e

 

 
Alg.A

Alg.B

Alg.C

(a) Worst-case response time; number of processes=
64; k = 4.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

x 10
5

Average Time in CS

W
or

st
−

ca
se

 R
es

po
ns

e 
T

im
e

 

 

Alg.A

Alg.B

Alg.C

(b) Worst-case response time; number of processes=
128; k = 8.

Figure 5: Comparative results with varying average times that a node spends in the critical
section.

Figure 4(a), the message costs of the three algorithms increase with the number of tokens for
different reasons. For Algorithms A and C, higher k allows for more outstanding requests (and
secondary tokens) being circulated around the network. For Algorithm B, the cost increases
because more tokens are being routed in the token-relay tree. In terms of average response
time, the three algorithms are comparably equal, disregarding the network scale or the number
of tokens, as can be seen from Figure 3(b) and Figure 4(b).

From Figure 3(c) and Figure 4(c) and the whole Figure 5, one can see that the worst-case
response times differ considerably with Algorithm B being the best, while Algorithm A often
starves its nodes. The difference can be attributed to whether the algorithms satisfy SFC.

7 Adaptations for Object Tracking

There are many possibilities regarding what a process wants from an object. As our main
concern is for a process to find the whereabout of a mobile object, we assume that a requesting
process always wants the object to be moved to the process’s site and then performs a read or
write operation on it. An object tracking solution needs to meet the following requirements:

• (Safety) There is at most one legitimate copy of the object in the system at any time.

• (Liveness) A requesting process will eventually acquire the object.

With the object replaced by a token, the above two requirements become those for a token-
based solution to mutual exclusion. The distributed data structure of a token-based algorithm
can therefore be adapted as the distributed directory for tracking a mobile object.

An object may sometimes be replicated to enhance availability. We assume that some other
mechanism controls the replication of an object and is not part of the object tracking problem;
however, the number of copies never exceeds a predefined bound k. The requirements for
tracking replicated objects are as follows:

• (Safety) There are at most k legitimate copies of the object in the system at any time.

• (Liveness) A requesting process will eventually acquire a copy of the object assuming up to
k−1 copies may be held indefinitely by other processes. (An alternative formulation may
allow a process to insist on getting a particular copy if that copy is never held indefinitely.)

9



One way of adapting token-based exclusion algorithms to track k replicated objects is to deploy
k copies of a mutual exclusion algorithm and replace a token with a corresponding object replica.
This should be more message-efficient than flooding the network. However, there is a problem
with this adaptation. If a particular copy that a process tries to acquire is being used, the
process either has to wait for the copy to become available or try another copy (which may be
in use, too). The first choice may incur undue delay, while the second will cost more messages,
probably without any gain. One solution is to have the k copies of algorithm collaborate so
that different object replicas can be attempted simultaneously without additional cost, which is
exactly what Algorithm A achieves. Another solution is to adapt an algorithm like Algorithm
B which fulfills the much desired property of SFC.

Demmer and Herlihy had outlined a solution for tracking replicated objects [5], which is an
extension of their algorithm reviewed in Section 2. They assumed that one copy of the object
is designated as the primary copy. A process wishing to write the object must first acquire the
primary copy and then “invalidate” the secondary copies (without actually moving them). A
similar solution can be obtained by adapting Algorithm C to incorporate links to secondary
copies so that the primary copy holder can actively invalidate secondary copies.

One can also view these solutions as a combination of a mutual exclusion algorithm and a k-
exclusion algorithm. The mutual exclusion algorithm is used for acquiring the primary copy,
while the k-exclusion algorithm is for acquiring or invalidating a secondary copy. Our algorithms
provide alternatives for the needed k-exclusion algorithm.

8 Conclusion

We have presented three solutions to the k-exclusion problem in a network setting, by exploring
the ideas of earlier token-based mutual exclusion algorithms. Two of the algorithms satisfy
the fairness requirement of Starvation-Freedom with Concurrency. We hope that we have shed
some new lights on solutions for tracking mobile objects by deriving them from token-based
exclusion algorithms. One distinctive property of the derived solutions is that no fixed home is
assigned to an object. These “homeless” tracking schemes, unlike the home-based ones, seem
to avoid the performance bottleneck of a home. However, if an object and its replicas require a
separate directory structure, the schemes will not scale to a large number of different objects.
The merits of such homeless schemes remain to be further studied.

References

[1] Y. Afek, D. Dolev, E. Gafni, and N. Shavit. A bounded first-in-first-enabled solution to the l-
exclusion problem. ACM TOPLAS, 16(3):939–953, 1994.

[2] K. Alagarsamy and K. Vidyasankar. Fair and efficient mutual exclusion algorithms. In DISC, LNCS

1693, pages 166–179, 1999.

[3] J. Anderson and M. Moir. Using k-exclusion to implement resilient, scalable shared objects. In
ACM PODC, pages 141–150, 1994.

[4] S. Bulgannawar and N. Vaidya. A distributed k-mutual exclusion algorithm. In ICDCS, pages
153–160, 1995.

[5] M. Demmer and M. Herlihy. The arrow distributed directory protocol. In DISC, LNCS 1499, pages
119–134, 1998.

[6] M. Fischer, N. Lynch, J. Burns, and A. Borodin. Resource allocation with immunity to process
failure. In IEEE FOCS, pages 78–92, 1979.

10



[7] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao. Distributed object location in a dynamic network.
In ACM SPAA, pages 41–52, 2002.

[8] A. Martin. Distributed mutual exclusion on a ring of processors. Science of Computer Programming,
5:265–276, 1985.

[9] S. Mullender and P. Vitányi. Distributed match-making. Algorithmica, 3:367–391, 1988.

[10] M. Naimi, M. Tréhel, and A. Arnold. A log(n) distributed mutual exclusion algorithm based on
path reversal. Journal of Parallel and Distributed Computing, 34:1–13, 1996.

[11] C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies of replicated objects in a dis-
tributed environment. In ACM SPAA, pages 311–320, 1997.

[12] S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A scalable content-addressable network. In
ACM SIGCOMM, pages 161–172, 2001.

[13] K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Transactions on

Computer Systems, 7(1):61–77, August 1989.

[14] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In ACM SIGCOMM, pages 149–160, 2001.

[15] J. Van de Snepscheut. Fair mutual exclusion on a graph of processes. Distributed Computing,
2:113–115, 1987.

[16] J. Walter, G. Cao, and M. Mohanty. A k-mutual exclusion algorithm for wirelesss ad hoc networks.
In ACM POMC, pages 51–57, 2001.

A Code of Algorithm B and Its Correctness

The detailed code of Algorithm B is given in Figure 6. We prove its correctness in two parts. To not
lose the intuition, we will be informal yet rigorous enough so that our proofs permit obvious conversion
to more formal ones (for example, in the assertional style) without undue ingenuity.

Before embarking on the proof, we recap the conventions of a typical distributed computing model with
reliable asynchronous message-passing communication. The code of Algorithm B and its user processes
are collectively referred to as the system or network. Every action as given in the code of Algorithm
B is atomic, i.e., only the state before or after an action is observable when we speak of an assertion
about states of the system. A variable with subscript i, such as num of tokensi, refers to that variable
of node i; nodes (processes) are numbered from 1 through n. Messages in transit are part of the state
and are observable after having been sent and before having been received. We assume that messages
from the same source and to the same destination are delivered in FIFO order. An action, if enabled
continuously, will eventually get executed. For instance, Action B1 is enabled when the user makes a
transition from remainder to trying (i.e., it requests to enter the critical section). The action will remain
enabled continuously until executed, at which point it becomes disabled.

A.1 Exclusion

The exclusion (safety) property requires that at most k processes are in the critical section at any time.
It is clear from the code that every transition from trying to critical (temporarily) removes one token
from the system and every transition from critical to exit eventually gives back the token. To prove the
exclusion property, it suffices to show that the sum of the following quantities is exactly k at any time:

tn: sum of all num of tokensi (1 ≤ i ≤ n),

tm: sum of the c’s in all token messages Token(c,j) in transit,

tc: number of processes in the critical section, and

te: number of processes in the exit section.

The equality tn+tm+tc+te = k is obviously true initially (after every node has executed its initialization
action) and it is preserved by every action.

11



VARIABLES:

state: trying , critical , exit , or remainder . Transitions from remainder to trying and from critical to exit

are controlled by “the user” of this code and other transitions by this code (node i).

parent: identifier of node i’s parent node in the request-routing tree.

first next: identifier of successor of node i’s first occurrence in the token-relay tree.

second next: identifier of successor of node i’s second occurrence in the token-relay tree.

predecessor: the identifier of node i’s latest predecessor in the token-relay tree.

num of tokens: number of free tokens held by node i.

MESSAGES:

Req(j): request message carrying the identifier of the request originator.

Token(c,j): token message carrying some number of tokens and the identifier of the sender.

Notify(j): notification message to the prospective successor carrying the identifier of the sender.

INITIALIZATION: Initially, node 1 is the root of the request-routing tree and also the single node and the root
of the token-relay tree, holding all k tokens.

B0: On being initialized /* Assume state has been initialized to remainder by “the user”. */

if i = 1
then num of tokens := k; parent := nil ;
else num of tokens := 0; parent := 1;
first next := nil ; second next := nil ; predecessor := nil ;

ACTIONS:

B1: On observing “remainder → trying”

if num of tokens > 0 /* If true, node i must also be the root of the token-relay tree. */
then state := critical ; num of tokens := num of tokens − 1;
else send Req(i) to parent; parent := nil ; predecessor := nil ;

B2: On observing “critical → exit”

if first next = nil

then num of tokens := num of tokens + 1;
else send Token(1,i) to first next; /* Node i must have just one free token. */
state := remainder ;

B3: On receiving Token(c,j)

if j = predecessor /* If true, node i is trying and the tokens are from the new pre-group. */
then state := critical ; num of tokens := num of tokens + c − 1; predecessor := nil ;

if second next 6= nil /* If true, node i has two occurrences in the token-relay tree.*/
then first next := second next; second next := nil ;
else if parent = nil then first next := nil ;

else num of tokens := num of tokens + c;
if num of tokens > 0 and first next 6= nil /* Pass all free tokens to the latest successor if any. */
then send Token(num of tokens,i) to first next; num of tokens := 0;

B4: On receiving Req(j)

if parent = nil

then send Notify(i) to j;
if first next = nil

then first next := j;
else second next := j;
if num of tokens > 0
then send Token(num of tokens,i) to first next; num of tokens := 0;

else send Req(j) to parent;
parent := j;

B5: On receiving Notify(j)

predecessor := j;

Figure 6: Code of Algorithm B for Node i.

12



A.2 Fairness

We will prove directly the Starvation-Freedom with Concurrency (SFC) property, which implies the
basic fairness property. The gist of the proof lies in precisely defining the query-routing tree and the
token-relay tree, which we have only spoken of conceptually in the description of the algorithm, and
associated rank functions that measure the progress of a process trying to enter the critical section.

We start with defining the query-routing tree. One simple definition would be using just the values of
parenti’s, but this would force us to reason about a forest of trees most of the time as the system evolves;
recall that a node sets its parent to nil when it initiates a request, breaking the tree into two smaller
trees. (Note: Naimi et al. [10] reasoned about this forest, which makes their proof rather operational and
harder to follow.) To avoid the complication, we make use also of request messages that are in transit,
which help glue the smaller trees together. Precisely, we define the query-routing tree with the set Tr of
tree edges as follows:

(i, j) ∈ Tr iff (1) parenti = j or
(2) “a request message is in transit from node i to node j”

It can be shown by the usual assertional argument that Tr (with edge directions ignored) is a spanning
tree of the network at any time. For convenience, tree edges of kind (1) are said to be solid and tree edges
of kind (2) vanishing. A node i with an outstanding request Req(i) and the node that will eventually
receive the request with parent = nil reside on two different subtrees connected by the vanishing edge
over which Req(i) is in transit. The subtree where node i resides will grow, while the other where the
eventual recipient of Req(i) resides will shrink (an appropriate rank function may be defined to reflect
this). This is so because when a node j receives a request message Req(i) over a vanishing tree edge
(k, j), the vanishing edge is removed from Tr and a solid edge (j, i) is added to Tr (see Action B4). If
parentj was l immediately before the receipt of the request, node j forwards the request Req(i) to node
l, making (j, l) a vanishing edge. Since the network is finite, every request will eventually be received by
a node with parent = nil .

We now define the token-relay tree. The shape of the token-relay tree depends not only on the values
of first nexti’s and second nexti’s but also on parenti’s. The latter dependency is needed, as we have
deliberately chosen not to count the number of tokens that a node has relayed (to simplify the code). A
node may have its first next point to some other node, but actually has no further tokens to relay. Such
a node must tell if it is the “root” (by checking parent = nil), otherwise it would forward tokens to the
process pointed to by its first next, an erroneous act.

Let (i, 1) denote the first occurrence of node i and (i, 2) the second occurrence in the tree. When
a node, pointed to by the first next or second next of another node, has two occurrences, we need to
distinguish which of the occurrences is being pointed to. For this purpose, it is convenient to speak of
“the corresponding Req(j) was initiated while first nextj 6= nil” when node i with parenti = nil receives
a request. This can be achieved by superimposing the code to tag Req(j) with a boolean value: the tag
is true if first nextj 6= nil and false otherwise. The set Tt of tree edges of the token-relay tree is defined
as follows:















































((i, 1), (j, 1)) ∈ Tt iff (first nexti = j and parenti 6= nil) and (second nextj = nil or
(predecessorj 6= i and “no Notify(i) is in transit from i to j”))

((i, 1), (j, 2)) ∈ Tt iff (first nexti = j and parenti 6= nil) and (predecessorj = i and
“the corresponding Req(j) was initiated while first nextj 6= nil”)

((i, 2), (j, 1)) ∈ Tt iff (second nexti = j) and (second nextj = nil or
(predecessorj 6= i and “no Notify(i) is in transit from i to j”))

((i, 2), (j, 2)) ∈ Tt iff (second nexti = j) and (predecessorj = i and
“the corresponding Req(j) was initiated while first nextj 6= nil”)

When the request Req(j) of a node j is eventually received by a node i with parenti = nil (which much
occur as proven earlier), node j will be pointed to by either first nexti or second nexti (Action B4) and
be added to the token-relay tree. Consider the case of second nexti being set to j and the request Req(j)
having been tagged true. In this case, ((i, 2), (j, 2)) will be added to Tt after a slight delay for the message
Notify(j) to arrive in node i at which point predecessorj becomes i (Action B5). Once a node has been

13



added to the token-relay tree (as either the first or the second occurrence), it remains to show that the
node will eventually receive a token from its predecessor (the node recorded in its predecessor) and enter
the critical section (Action B3).

In terms of the token-relay tree Tt, Algorithm B enjoys the following property (simplified):

If a node i in Tt is in the trying section, then every token is either (1) held by an occurrence
of node that lies on a path directed towards the latest occurrence of node i or (2) in transit
between two nodes that lie on a path directed towards the latest occurrence of node i.

The statement is simplified, as some edges lower in the tree may be formed later than those higher in
the tree. A similar and more accurate property may be stated in “stages” as pieces of the tree are
connected together. Now, let us consider an arbitrary node i in Tt that is in the trying section. If a node
eventually leaves the critical section and releases the corresponding token, the token will advance along a
path directed towards node i (more precisely, the latest occurrence of node i). Any other free token will
also advance along some path directed towards node i. (An appropriate rank function may be defined
to measure the progress more precisely.) By induction, node i will eventually receive a token and enter
the critical section even if up to k − 1 nodes stay in the critical section (and keep a token) indefinitely.

B Further Details of Token-Based Mutual Exclusion Algorithms

Figure 7 shows a scenario of Van de Snepscheut’s algorithm.

A B

C D

FE

r

r'

r

(a) Request r is initiated by E and
r′ by D. Request r arrives at A

earlier.

A B

C D

FE
r

r'

r'

(b) A sends the token to C and also
relays request r′ to C. (C, A) is
redirected towards C.

A B

C D

FE

r'

r'
r'

C

(c) C relays the token and request
r′ to E. (E, C) is redirected to-
wards E.

A B

C D

FE

r'

r'

(d) E leaves the critical section
and sends the token to C. (C, E)
is redirected towards C.

A B

C D

FE

r'

(e) C relays the token to A. (A, C)
is redirected towards A.

A B

C D

FE

(f) A relays the token to D.
(D, A), (D, C), and (D, E) are
redirected towards D.

Figure 7: How Van de Snepscheut’s algorithm works.

Demmer and Herlihy [5] Though originally intended for mobile object tracking, Demmer and
Herlihy’s algorithm closely resembles that of Naimi et al. The main difference is that their tree has
a fixed set of edges which is more like the tree in Van de Snepscheut’s (restricted tree version) and
Raymond’s algorithms. They also use a distributed queue for lining up the processes waiting for the
token, which is identical to that of Naimi et al.; the tree tells where the tail of the distributed queue
is. An underlying routing service is assumed for transmitting the token; as we pointed out earlier, the
routing service provides a logical complete communication network that Naimi et al. assumed.

The algorithm starts with a spanning tree of the network whose root is the node holding the unique
token. Changes to the orientation of the edges occur while requests are processed. When a node wants

14



to enter the critical section, it sends a request to its parent and then regards itself as the new root. The
algorithm differs from that of Naimi et al. in how a node changes its parent. Each of the intermediate
nodes on the directed path to the current root, after forwarding the request to the next node, makes
the precedent node its new parent (i.e., the direction of the corresponding edge is reversed). Finally, the
current root inserts the request originator behind itself in the queue and also makes the precedent node
its new parent. When this is done, the direction of the path that the request has travelled is reversed,
pointing to the new root.

A B

C D

FE

r

(a) B sends a request r to its par-
ent D and makes itself a new root.

A B

C D

FE

r

(b) D relays request r to its parent
C and makes B its new parent.

A B

C D

FE

r

r'

(c) C relays request r to A and
makes D its new parent. A will add
B to the queue when it receives r.
E also initiates a request r′.

A B

C D

FE

r'

(d) A sends the token to B (via
the assumed routing service) and
makes C its new parent. C relays
request r′ to D.

A B

C D

FE

r'

(e) D relays request r′ to B and
makes C its new parent. B will add
E to the queue when it receives r′.

A B

C D

FE

(f) B leaves the critical section and
sends the token to E (also via the
assumed routing service).

Figure 8: How Demmer and Herlihy’s algorithm works.

More than one processes may be trying to enter the critical section. But again, like in the algorithm of
Naimi et al., although the overall changes to the tree and the queue may be more complicated, processes
behave just as described above. Figure 8 illustrates a typical scenario.

C An Illustrative Diagram for Algorithm A

Figure 9 illustrates the basic ideas of Algorithm A.

D An Illustrative Diagram for Algorithm C

Figure 10 illustrates the basic ideas of Algorithm C.

15



C D

E F

(2,0) (0,0)

(0,0)

(2,0)

(2,0)

BA

(0,0)

(0,0)

(2,0)

(1,0)

(1,0)

(a) For D, the pair (2, 0) on edge
{C, D} indicates 2 tokens on the
subtree {C, D} leads to and no out-
standing requests from D to that
subtree, etc.

C D

E F

(2,1) (0,0)

(0,0)

(2,1)

(2,0)

BA

(0,0)
(0,0)

(2,0)

(1,0)

(1,0)

r

r

(b) B initiates a request r to D and
the pair (2, 0) on edge {B, D} be-
comes (2, 1). D relays r to C.

C D

E F

(2,2) (0,0)

(0,0)

(2,1)

(2,0)

BA

(0,0)
(0,0)

(2,0)

(1,0)

(1,0)

r

r'

r

(c) D initiates another request r′

to C and the pair (2, 1) on edge
{C, D} becomes (2, 2).

C D

E F

(2,2) (0,0)

(0,0)

(2,1)

(2,1)

BA

(0,0)
(0,0)

(2,0)

(1,0)

(1,0)

r

r'

r''

r

(d) F initiates request r′′ to D,
which puts r′′ in its queue.

C D

E F

(1,1)
(0,0)

(0,0)

(2,1)

(2,1)

B

(1,0)
(0,0)

(2,0)

(1,1)

(1,0)

A

r' r

r''

r'

(e) C sends a token to D and
the pair (0, 0) on {C, D} becomes
(1, 0). It also relays r′ to A.

C D

E F

(1,1)
(1,1)

(0,0)

(1,0)

(2,1)

B

(1,0)
(0,0)

(2,0)

(1,1)

(1,0)

A

r' r''

r'

r''

(f) D relays the token as well as r′′

to B. B enters the critical section.

Figure 9: How Algorithm A works (the case of k = 2).

C D

E F

BA

p

r

r

(a) D holds the primary token. A

initiates a request r to C, which
relays it to D.

C D

E F

BA

p

r

(b) D creates a secondary token
and sends it to C.

C D

E F

BA

p

r'

(c) C relays the secondary token to
A. E initiates a request r′ to D.

C D

E F

BA

p

(d) D sends the primary token to
E. (E, D) and (E, C) are redi-
rected towards E.

C D

E F

BA

p

(e) A returns the secondary token
to D (A may also send it via C).

C D

E F

BA

p

(f) D relays the secondary token to
E.

Figure 10: How Algorithm C works (the case of k = 2).

16


	Exclusion and Object Tracking in a Network of Processes
	Dartmouth Digital Commons Citation

	tmp.1601412842.pdf.0Ds81

