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Blocking Misbehaving Users without TTPs

(Extended Version)∗†
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Dartmouth Computer Science
Technical Report TR2007-601

September 30th 2007

Abstract

Several credential systems have been proposed in which users can authenticate to services
anonymously. Since anonymity can give users the license to misbehave, some variants allow
the selective deanonymization (or linking) of misbehaving users upon a complaint to a trusted
third party (TTP). The ability of the TTP to revoke a user’s privacy at any time, however, is
too strong a punishment for misbehavior. To limit the scope of deanonymization, systems such
as “e-cash” have been proposed in which users are deanonymized under only certain types of
well-defined misbehavior such as “double spending.” While useful in some applications, it is not
possible to generalize such techniques to more subjective definitions of misbehavior.

We present the first anonymous credential system in which services can “blacklist” misbe-
having users without contacting a TTP. Since blacklisted users remain anonymous, misbehaviors
can be judged subjectively without users fearing arbitrary deanonymization by a TTP.

∗This paper is the extended version of the paper to appear in CCS ’07 under the same title [TAKS07].
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1 Introduction

Several cryptographic schemes allow users to authenticate to service providers (SPs) anonymously.
While anonymous authentication offers users a high degree of privacy, it can give users the license to
misbehave without the fear of punishment. For example, Wikipedia1 has allowed editors to modify
content anonymously, and as a result several users have misbehaved by posting inappropriate
content. SPs, therefore, desire some level of accountability against misbehaving users. Several
anonymous credential systems have been proposed in which users can be selectively deanonymized
or have their accesses linked (pseudonymized) under special circumstances. As we will discuss, for
certain applications the existing schemes are either too punitive—deanonymization (or linking) is
unreasonably harsh, and often relies on trusted third parties (TTPs) capable of revoking a user’s
privacy at any time—or too restrictive—allowing deanonymization under only certain narrowly
defined types of misbehavior.

Deanonymizing a user is not always necessary to discourage misbehavior; in some cases it is
sufficient to simply block misbehaving users from making future accesses, while maintaining their
anonymity. We call this property anonymous blacklisting. For example, anonymous access at
SPs such as Wikipedia and YouTube2 empowers users to disseminate content without the fear
of persecution—a user may add political content on Wikipedia that is forbidden by his or her
government, or post a video of police brutality to YouTube. In such cases, while Wikipedia and
YouTube may want to penalize users who deface webpages or post copyrighted material, it is
of paramount importance for SPs to preserve the anonymity of their well-behaving users. By
guaranteeing anonymity to all users, anonymous blacklisting allows SPs to penalize misbehavior
without the risk of exposing legitimate users such as political dissenters. We now discuss why
existing solutions are not desirable for such applications.

Anonymous credential systems that support accountability (such as Camenisch and Lysyan-
skaya’s [CL01, CL04] and schemes based on group signatures [CvH91, ACJT00, BBS04, KY05])
feature a TTP called the Open Authority (OA). The OA is capable of identifying (or linking) the user
behind any anonymous authentication. Anonymous credential systems with dynamic membership
revocation [CL02a, AST02, BS04, Ngu05], mostly constructed from dynamic accumulators [CL02a],
also feature a TTP that is capable of deanonymizing (or linking) users. The existence of such a
TTP, however, is undesirable—users can never be assured that their privacy will be maintained
by the TTP. Defining the circumstances under which a TTP can expose a user, and ensuring its
trustworthiness to judge fairly, is an undue burden on SPs. For such applications, therefore, a
system without TTPs is desirable.

To eliminate the reliance on TTPs, certain “threshold-based” approaches such as e-cash [ACS05,
CHL05, CHL06] and k-Times Anonymous Authentication (k-TAA) [TFS04, NSN05, TS06, ASM06]
have been proposed. In these schemes, users are guaranteed anonymity unless they authenticate
more than a certain number of threshold times. For example, spending an e-coin twice (an unde-
sirable action) or authenticating k + 1 times in a k-TAA scheme, provides the SP with enough in-
formation to compute the user’s identity. Linkable ring signatures [LWW04, TW05, TWC+04] and
periodic n-times anonymous authentication [CHK+06] also fall into this category. Unfortunately,
misbehavior cannot always be defined in terms of threshold values. For example, “inappropriate”
edits to a Wikipedia page, or “offensive” video uploads to YouTube are usually identified based on
human subjectivity. For such applications, therefore, subjective judging is desirable.

1http://www.wikipedia.org
2http://www.youtube.com
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1.1 Related Solutions

To reiterate, it is important to have an anonymous credential system in which users can be black-
listed in a way that (1) preserves their anonymity, (2) is based on subjective definitions of misbe-
havior, and (3) does not rely on a TTP. Though not intended for anonymous blacklisting, Syverson
et al. present a scheme [SSG97] that ensures that users can perform anonymous and serial trans-
actions at an SP. The SP issues blind tokens to users, which are renewed at the end of a user’s
transaction. The SP can block future connections from a user by simply not issuing a new token at
the end of a transaction (e.g., if the user fails to pay for continued service). The major drawback
to this approach is that misbehavior must be judged while the user is online. Indeed, their scheme
was not designed for blacklisting users since misbehavior is usually identified long after a user has
disconnected. Recently, some of the authors of this paper proposed the Nymble system [JKTS07] to
allow SPs to block misbehaving users hiding behind an anonymizing network such as Tor [DMS04].
Nymble makes several practical considerations for anonymous IP-address blocking based on sub-
jective judging, but it does rely on multiple entities that can collude to deanonymize (or link) a
misbehaving user.

Even though it may seem that the ability to block future accesses from subjectively-judged
misbehaving users inherently requires a TTP capable of deanonymizing (or linking) users, we show
that this is not the case.

1.2 Our Contributions

We propose the BLacklistable Anonymous Credential (BLAC) system, the first cryptographic con-
struction of an anonymous credential system that supports anonymous blacklisting and subjective
judging without relying on TTPs that are capable of revoking the privacy of users at will. We
formalize the security model for such a system and prove that our construction is secure under
this model. Furthermore, we provide an implementation of our BLAC system and evaluate its
performance both analytically and experimentally.

Paper Outline We provide a high-level overview of our BLAC system in Section 2 and formalize
the model and security properties in Section 3. In Section 4 we present preliminary information
on the various cryptographic tools and assumptions used in our construction, which we present in
Section 5. We present an experimental evaluation of our construction in Section 6, a discussion of
several issues in Section 7, and finally conclude in Section 8.

2 Our Approach

We provide a high-level overview of our BLacklistable Anonymous Credential (BLAC) system in this
section, and defer cryptographic details to the subsequent sections.

In our system, users authenticate to Service Providers (SPs) anonymously using credentials
issued by a Group Manager (GM). The GM is responsible for enrolling legitimate users into the
system by issuing credentials to them.3 These credentials are private to the user, and not known
by the GM. We emphasize that the GM is not a TTP that can compromise the privacy of users,
and is trusted only to enroll legitimate users into the system, and issue at most one credential per
user. SPs are willing to serve anonymous users as long as they are legitimate users in the system
(by enrolling themselves with the GM), and have never misbehaved thus far, where misbehavior

3Who is a legitimate user and how to verify such legitimacy are application-dependent.
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may be arbitrarily defined and subjectively judged by each individual SP. We describe this process
next.

The novelty of our approach is that SPs maintain their own blacklists of misbehaving users
without knowing the identity of the misbehaving users. Users anonymously authenticating to
the SP must first prove that they are not on the SP’s blacklist (otherwise authentication will
fail). Following a user’s authentication, SPs store a ticket extracted from the protocol transcript
of the authentication and if the user is later deemed to have misbehaved during the authenticated
session, possibly long after the user has disconnected, the SP can add the ticket as an entry in its
blacklist.4 If a user Alice detects that she is on the blacklist, she terminates the authentication
and disconnects immediately. The SP, therefore, learns only that some anonymous blacklisted user
was refused a connection, i.e., the SP does not learn the identity of the blacklisted user, and the
user is anonymous within the set of blacklisted users. Users not on the blacklist will be able to
authenticate successfully, and the SPs learn only that the user is not on the blacklist. Furthermore,
our system allows SPs to remove entries from the blacklist, thereby forgiving past misbehaviors.5

Depending on the severity of misbehavior, a user may be blacklisted for varying periods of time—
using inappropriate language could correspond to being blacklisted for one week, whereas posting
copyrighted material could correspond to blacklisting for one month. Users are always assured that
if they successfully authenticate to an SP their access will always remain anonymous—all that an
SP can do is block future accesses by a misbehaving user.

A Glimpse into Tickets Tickets are a vital object in our BLAC system. A ticket is the only
piece in the authentication protocol transcript that contains information about the identity of the
authenticating user. Here we describe some of the properties these tickets must possess for the
system to be secure. First, tickets have to be the output of some non-invertible mapping of the
user’s credential. If this were not the case, the system would have no anonymity. Also, tickets from
the same user should be unlinkable, for otherwise SPs would be able to tell if two authentications
are from the same user. This property implies that the mapping just mentioned must also take
as input some randomness, as a deterministic mapping implies linkability. Furthermore, tickets
must be such that it is possible to prove and verify that a ticket is correctly formed, and that a
ticket does not belong to a given user (if it is indeed the case). Without such a property, a user
blacklisted by an SP would still be able to authenticate to the SP. As we will see, this property is
also a necessary condition to prevent misbehaving users from being “framed” (by other users for
example).

Remark. Our BLAC system may be configured to allow or disallow the sharing of blacklist entries
(tickets) between SPs. Sharing a blacklist entry would allow multiple SPs to block a user who
misbehaved at one of the SPs. We will first present the system where such sharing is disallowed
and then point out how to allow sharing in Section 7.

3 Model

We present the syntax of the Blacklistable Anonymous Credential (BLAC) system, followed by
security properties that any construction of the BLAC system must satisfy.

4In practice, the SP may privately log arbitrary information about an authenticated session that is necessary for
it to judge at a later time whether the anonymous user misbehaved during that session.

5Adding and removing blacklist entries are atomic actions as will be discussed in Section 7.
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3.1 Syntax

The entities in the BLAC system are the Group Manager (GM), a set of Service Providers (SPs)
and a set of users. The BLAC system consists of the following protocols:

3.1.1 Setup

This algorithm is executed by the GM to set up the system. On input of one or more security
parameters, the algorithm outputs a pair consisting of a group public key gpk and a group private
key gsk. The GM publishes gpk and keeps gsk private.

3.1.2 Registration

This protocol is executed between the GM and a legitimate user to register the user into the
system. Upon successful completion of the protocol, the user obtains a credential cred, which she
keeps private to herself, and is thereby enrolled as a member in the group of registered users.

3.1.3 Authentication

This protocol is executed between a user with credential cred and an SP. When an execution of
the protocol terminates, the SP outputs a binary value of success or failure. If the SP outputs
success in an execution of the protocol, we call the execution a successful authentication and say
that the authenticating user has succeeded in authenticating herself; otherwise the authentication
is unsuccessful and the user has failed. Only upon a successful authentication does the SP establish
an authenticated session with the authenticating user during which the user can access the service
provided by the SP. Note that the protocol transcript of a successful authentication as seen by the
SP is useful for the SP to blacklist the authenticating user, as described next.

3.1.4 Blacklist Management

This is a suite of three algorithms: Extract, Add and Remove, which are executed by SPs for
managing their blacklists. On input of an authentication protocol transcript, Extract extracts and
returns a ticket from the transcript. A blacklist is a collection of tickets. On input of a blacklist
and a ticket, Add returns a new blacklist that contains all the tickets in the input blacklist as well
as the input ticket. On the other hand, on input of a blacklist and a ticket, Remove returns a
new blacklist that contains all the tickets in the input blacklist, except the one(s) equivalent to the
input ticket.6

When we say that a user Alice is blacklisted by an SP Bob, we mean that there exists an
authentication between Alice and Bob such that Bob has added the ticket extracted from the
authentication transcript to his blacklist and has not removed it (yet). Otherwise Alice is not
blacklisted by Bob. Also, we say that Alice is misbehaving with respect to Bob if she is blacklisted
by Bob. Otherwise, she is well-behaving.

Correctness Any construction of the BLAC system must be correct:

Definition 1 (Correctness) A construction of the BLAC system is correct if all entities in the
system are honest (i.e., they follow the system’s specification) implies that for any registered legit-
imate user Alice and for any SP Bob, Alice is able to successfully authenticate herself to Bob with
overwhelming probability if Alice is not blacklisted by Bob during the authentication.

6We don’t define the equivalence of tickets here because it is construction-dependent.
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3.2 Security Notions

We now give informal definitions of the various security properties that a construction of the BLAC
system must possess. Their formal definition will be given in the next subsection.

3.2.1 Mis-authentication Resistance

Mis-authentication occurs when an unregistered user successfully authenticates herself to an SP. In
a BLAC system with mis-authentication resistance, SPs are assured to accept authentication only
from registered users.

3.2.2 Blacklistability

Any SP Bob may blacklist a user, who has authenticated successfully, at any later time. As a
consequence, the blacklisted user will no longer be able to successfully authenticate herself to Bob
until the user is unblacklisted by Bob. In a BLAC system with blacklistability, SPs are assured to
accept authentication only from well-behaving users, i.e., users who are not blacklisted.

3.2.3 Anonymity

In a system with anonymity, all that SPs can infer about the identity of an authenticating user is
whether the user is or was blacklisted at the time of protocol execution, regardless of whatever the
SPs do afterwards, such as arbitrarily manipulating their blacklists.

3.2.4 Non-frameability

A user Alice is framed if she is not currently blacklisted by an honest SP Bob, but is unable to
successfully authenticate herself to Bob. In a BLAC system with non-frameability, well-behaving
users can always successfully authenticate themselves to honest SPs.

Security Any construction of the BLAC system must be secure:

Definition 2 (Security) A construction of the BLAC system is secure if it has mis-authentication
resistance, blacklistability, anonymity and non-frameability.

3.3 Formal Definitions

We use a game-based approach to define the security formally. The adversary’s capabilities are
modeled by arbitrary and adaptive queries to oracles, which are stateful and together share a
private state denoted by state. state contains three counters m, n and a, which are initialized to 0,
and six sets UP ,UA,UB,SP ,SA,AA, which are initialized to ∅. The oracles are described as follows.

• P-Reg. This oracle allows the adversary to register an honest user with the honest GM.
Upon invocation, the oracle increments n by 1, simulates the registration protocol between
an honest user and the honest GM, sets state := state||〈n, transn, credn〉, where transn is
the resulting protocol transcript and credn is the resulting user credential, adds n to UP and
returns (transn, n) to the adversary. The user is indexed by n.

• A-Reg. This oracle allows the adversary to register a corrupt user with the honest GM.
Upon invocation, the oracle increments n by 1, plays the role of the GM and interacts with

7



the adversary in the registration protocol, sets state := state||〈n, transn,⊥〉, where transn is
the protocol transcript, adds n to UA and returns n to the adversary. The user is indexed
by n.

• B-Reg. This oracle allows the adversary to register an honest user with the corrupt GM.
Upon invocation, the oracle increments n by 1, plays the role of a user and interacts with the
adversary in the registration protocol, sets state := state||〈n,⊥, credn〉, where credn is the
credential issued to the user by the adversary, adds n to UB and returns n to the adversary.
The user is indexed by n.

• Corrupt-U(i). This oracle allows the adversary to corrupt an honest user. On input i, the
oracle removes i from UB or UP , adds i to UA, and returns credi to the adversary.

• Add-SP(ID). This oracle allows the adversary to introduce an SP with identity ID ∈ {0, 1}∗
into the system. Upon invocation, the oracle increments m by 1, adds it to SP , and returns
it to the adversary. The SP is indexed by m.

• Corrupt-SP(j). This oracle allows the adversary to corrupt an honest SP. On input j, the
oracle removes j from SP and adds it to SA.

• P-Auth(i, j). This oracle allows the adversary to eavesdrop an authentication run between
an honest user and an honest SP. On input (i, j) such that i ∈ UP ∪UB and j ∈ SP , the oracle
increments a by 1, simulates (using credi) the authentication protocol between honest user
i and honest SP j, sets state := state||〈πa, a〉, where πa is the resulting protocol transcript,
and returns (πa, a) to the adversary.

• A-Auth(j). This oracle allows a corrupt user to be authenticated by an honest SP. On input
j ∈ SP , the oracle increments a by 1, plays the role of SP j and interacts with the adversary
in the authentication protocol, adds a to AA, sets state := state||〈πa, a〉, where πa is the
resulting protocol transcript, and returns a to the adversary.

• B-Auth(i, j). This oracle allows a corrupt SP to authenticate an honest user. On input
i ∈ UB ∪ UP and j ∈ SA, the oracle increments a by 1, plays the role of user i to be
authenticated by SP j and interacts with the advesary in the authentication protocol, sets
state := state||〈πa, a〉, where πa is the resulting protocol transcript, and returns a to the
adversary.

• Add-To-BL(j, k). This oracle allows the adversary to influence an honest SP to think that
an authenticated session involves a misbehavior. On input j ∈ SP and k ≤ a, the oracle adds
the ticket τk = Extract(πk) to SP j’s blacklist.

• Remove-From-BL(j, τ). This oracle allows the adversary to influence an honest SP to think
that an authenticated session does not involve a misbehavior. On input j ∈ Sp and τ such
that τ is in SP j’s blacklist, the oracle removes τ from that blacklist.

We remark that queries to P-Reg and A-Reg do not interleave because the honest GM registers
user one at a time; queries to Add-To-BL(j, ·) and Remove-From-BL(j, ·) do not interleave with
one another, or with queries to P-Auth or A-Auth because honest SPs update their blacklists
only when no authentication is in progress. Queries to P-Auth is atomic, but we allow interleaving
among queries to P-Auth, A-Auth and B-Auth.

8



3.3.1 Mis-authentication Resistance and Blacklistability

Mis-authentication resistance is in fact implied by Blacklistability: if someone can authenticate to
an SP without having registered, she can authenticate after being blacklisted by mounting an attack
against mis-authentication resistance. The following game between challenger C and adversary A
formally defines Blacklistability.

Setup Phase. C takes a sufficiently large security parameter and generates gpk and gsk. gpk is
given to A.

Probing Phase. A is allowed to issue queries to all the oracles except B-Reg.

End Game Phase. A outputs j ∈ SP . A wins the game if both of the following are true:

• There exists a sub-sequence S of the sequence of all oracle queries in the same order as
they were made, where S =

〈a1 := A-Auth(j), Add-To-BL(j, a1),
a2 := A-Auth(j), Add-To-BL(j, a2),

...
ak := A-Auth(j), Add-To-BL(j, ak),

ak+1 := A-Auth(j)〉

such that ax ∈ AA for all x = 1 to k, and all these k + 1 A-Auth queries are successful.

• k ≥ |UA|+QR, where QR is the number of Remove-From-BL(j, Extract(πai)) queries
such that i ∈ {1, . . . , k}.

3.3.2 Anonymity

The following game between challenger C and adversary A formally defines anonymity.

Setup Phase. C takes a sufficiently large security parameter and generates gpk and gsk, which
are given to A.

Probing Phase. A is allowed to issue queries to all the oracles except P-Reg and A-Reg. Oracle
queries can be interleaved and/or span the Challenge Phase and Probing Phase 2.

Challenge Phase. A outputs i0, i1 ∈ UB and j ≤ m. C then flips a fair coin b ∈ {0, 1}. A queries
P-Auth(⊥, j) if j ∈ SP , and B-Auth(⊥, j) otherwise, without specifying i. C answers the
query assuming ib.

Probing Phase 2. A is allowed to issue queries as in the Probing Phase, except that queries to
Corrupt-U(i0) or Corrupt-U(i1) are not allowed.

End Game Phase. A outputs a guess bit b′. A wins the game if b = b′ and at least one of the
following is true:

• (Case I.) For any Add-To-BL(j, k) queried by A during the Probing Phase such that
πk is an authentication transcript from user i0 or i1, A later queried, during the same
phase, Remove-From-BL(j, τ) where τ = Extract(πk). In Probing Phase 2, A never
queried Add-To-BL(j, k) such that πk is an authentication transcript from user i0 or i1.

9



• (Case II.) There exist two queries Add-To-BL(j, k0) and Add-To-BL(j, k1), in Prob-
ing Phase, such that πk0 and πk1 are authentication transcripts from user i0 and i1
respectively and A did not later make queries to, during the two probing phases,
Remove-From-BL(j,Extract(πk0)) or Remove-From-BL(j,Extract(πk1)).

3.3.3 Non-frameability

The follow game between challenger C and adversary A formally defines Non-frameability.

Setup Phase. C takes a sufficiently large security parameter and generates gpk and gsk, which
are given to A.

Probing Phase. A is allowed to issue queries to all the oracles except P-Reg and A-Reg. Oracle
queries can be interleaved and/or span the End Game Phase.

End Game Phase. A outputs i ∈ UB and j ∈ SP such that if k was the output of a P-Auth(i, j)
or B-Auth(i, j) query there was no Add-To-BL(j, k) query. C then runs P-Auth(i, j). A
wins the game if that P-Auth is unsuccessful.

4 Preliminaries

In this section we outline the assumptions and cryptographic tools that we use as building blocks
in our construction of the BLAC system.

4.1 Pairings

A pairing is a bilinear mapping from a pair of group elements to a group element. Specifically, let
G1, G2 and GT be multiplicative cyclic groups of order p. Suppose P and Q are generators of G1

and G2 respectively. A function ê : G1×G2 → GT is said to be a pairing if it satisfies the following
properties:

• (Bilinearity.) ê(Ax, By) = ê(A,B)xy for all A ∈ G1, B ∈ G2 and x, y ∈ Zp.
• (Non-degeneracy.) ê(P,Q) 6= 1, where 1 is the identity element in GT .
• (Efficient Computability.) ê(A,B) can be computed efficiently (i.e. in polynomial time) for

all A ∈ G1 and B ∈ G2.

4.2 Mathematical Assumptions

The security of our construction of the BLAC system requires the following two assumptions:

Assumption 1 (DDH) The Decisional Diffie-Hellman (DDH) problem in group G is defined as
follows: On input of a quadruple (g, ga, gb, gc) ∈ G4, output 1 if c = ab and 0 otherwise. We say
that the DDH assumption holds in group G if no probabilistic polynomial time (PPT) algorithm
has non-negligible advantage over random guessing in solving the DDH problem in G.

Assumption 2 (q-SDH) The q-Strong Diffie-Hellman (q-SDH) problem in (G1,G2) is defined
as follows: On input of a (q + 2)-tuple (g0, h0, hx

0 , hx2

0 , . . ., hxq

0 ) ∈ G1 × Gq+1
2 , output a pair

(A, c) ∈ G1 × Zp such that A(x+c) = g0 where |G1| = p. We say that the q-SDH assumption holds
in (G1,G2) if no PPT algorithm has non-negligible advantage in solving the q-SDH problem in
(G1,G2).
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4.3 Proofs of Knowledge

In a Zero-Knowledge Proof of Knowledge (ZKPoK) protocol [GMR89], a prover convinces a ver-
ifier that some statement is true without the verifier learning anything except the validity of the
statement. Σ-protocols are a special type of three-move ZKPoK protocols, which can be con-
verted into non-interactive Signature Proof of Knowledge (SPK) schemes, or simply signature
schemes [GMR88], that are secure under the Random Oracle (RO) Model [BR93].

In the following, we review several Σ-protocols that will be needed as building blocks in our
construction. We follow the notation introduced by Camenisch and Stadler [CS97]. For instance,
PK{(x) : y = gx} denotes a Σ-protocol that proves the knowledge of x ∈ Zp such that y = gx for
some y ∈ G. The corresponding signature scheme resulting from the application of the Fiat-Shamir
heuristic to the above Σ-protocol is denoted by SPK{(x) : y = gx}(M).

4.3.1 Knowledge and Inequalities of Discrete Logarithms

Let g, b ∈ G and bi ∈ G for all i be generators of some group G of prime order p such that their
relative discrete logarithms are unknown. One can prove in zero-knowledge the knowledge of the
discrete logarithm x ∈ Zp of y ∈ G in base g by using the Σ-protocol:

PK {(x) : y = gx} ,

the construction of which first appeared in Schnorr identification [Sch91]. As we shall see, our
BLAC construction requires the SPK of this protocol to prove the correctness of tickets.

One can further prove in zero-knowledge that x does not equal logb t, the discrete log of t ∈ G
in base b, using the Σ-protocol:

PK {(x) : y = gx ∧ t 6= bx} ,

the most efficient construction of which is due to Camenisch and Shoup [CS03, §5].
In our BLAC system construction we will need a generalized version of the above Σ-protocol to

prove that a user is not currently on the blacklist. In particular, we need a protocol that allows one
to prove in zero-knowledge that, for some n > 1 and for all i = 1 to n, x 6= logbi

ti, where ti ∈ G.
That is,

PK

{
(x) : y = gx ∧

(
n∧

i=1

ti 6= bxi

)}
.

Such a Σ-protocol can be constructed by applying a technique due to Cramer et al. [CDS94] to
Camenisch and Shoup’s construction mentioned above.7

4.3.2 BBS+ Signatures

Let g0, g1, g2 ∈ G1 and h0 ∈ G2 be generators of G1 and G2 respectively such that g0 = ψ(h0) and
their relative discrete logarithms are unknown, where ψ is a computable isomorphism and (G1,G2)
is a pair of groups of prime order p in which the q-SDH assumption holds. Let e be a pairing
defined over the pair of groups. One can prove possession of a tuple (A, e, x, y) ∈ G1×Z3

p such that
Ae+γ = g0g

x
1g

y
2 , or equivalently, ê(A,whe

0) = ê(g0gx
1g

y
2 , h0), where w = hγ

0 , by the Σ-protocol:

PK{(A, e, x, y) : Ae+γ = g0g
x
1g

y
2}.

7The technique describes a general method of constructing proofs of disjunction or conjunction of any of the two
statements about knowledge of discrete logarithms.
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The construction of this protocol can be found in [BBS04, §4], which is secure under the Decision-
linear Diffie-Hellman assumption. Au et al. [ASM06] provide a modified construction that does not
need to rely on such an assumption. As first pointed out in [CL04], the protocol’s corresponding
SPK is actually the SDH-variant of CL signatures [CL02b], which is referred to as BBS+ Signatures
in [ASM06]. Our BLAC construction will need this protocol as a building block for users to prove
that they are legitimate in the system. We will employ the construction given in [ASM06] to avoid
the need of less standard assumptions.

5 System Construction

In this section, we detail our cryptographic construction and assess its security and efficiency.

5.1 Description

5.1.1 Parameters

Let λ, ` be sufficiently large security parameters. Let (G1,G2) be a bilinear group pair with com-
putable isomorphism ψ as discussed such that |G1| = |G2| = p for some prime p of λ bits. Also let
G be a group of order p where DDH is intractable. Let g0, g1, g2 ∈ G1 and h0 ∈ G2 be generators of
G1 and G2 respectively such that g0 = ψ(h0) and the relative discrete logarithm of the generators
are unknown.8 Let H0 : {0, 1}∗ → G and H : {0, 1}∗ → Zp be secure cryptographic hash functions.

5.1.2 Setup

The GM randomly chooses γ ∈R Zp and computes w = hγ
0 . The group secret key is gsk = (γ) and

the group public key is gpk = (w).

5.1.3 Registration

At the successful termination of this protocol between a user Alice and the GM, Alice obtains a
credential in the form of (A, e, x, y) such that Ae+γ = g0g

x
1g

y
2 , and (A, e, x, y) is known only to the

user. The private input to the GM is the group secret key gsk.

1. The GM sends m to Alice, where m ∈R {0, 1}` is a random challenge.

2. Alice sends a pair (C,Π1) to the GM, where C = gx
1g

y′

2 ∈ G1 is a commitment of (x, y′) ∈R Z2
p

and Π1 is a signature proof of knowledge of

SPK1

{
(x, y′) : C = gx

1g
y′

2

}
(m) (1)

on challenge m, which proves that C is correctly formed.

3. The GM returns as failure if the verification of Π1 returns invalid. Otherwise the GM
sends to Alice a tuple (A, e, y′′), where e, y′′ ∈R Zp and A = (g0Cg

y′′

2 )
1

e+γ ∈ G1.

4. Alice computes y = y′ + y′′. She returns as failure if ê(A,whe
0) 6= ê(g0gx

1g
y
2 , h0). Otherwise

she outputs cred = (A, e, x, y) as her credential.

To prevent the possibility of a concurrent attack [Dam00], we require that users must be regis-
tered one after the other, as opposed to concurrently.

8This can be done by setting the generators to be the output of a cryptographic hash function of some publicly
known seeds.
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5.1.4 Authentication

During an execution of this protocol between a user Alice and an SP Bob, Alice’s private input
is her credential cred = (A, e, x, y). Let Bob ∈ {0, 1}∗ be the string that uniquely identifies Bob.
When the protocol terminates, Bob outputs success or failure, indicating whether Bob should
consider the authentication attempt successful.

1. (Challenge.) Bob sends to Alice a pair (BL,m), where m ∈R {0, 1}` is a random challenge
and BL = 〈τ1, . . . , τn〉 is Bob’s current blacklist and τi = (si, ti) ∈ {0, 1}` ×G, for i = 1 to n,
is the i-th ticket in the blacklist.

2. (Blacklist Inspection.) Alice computes, for i = 1 to n, the bases bi = H0(si||Bob). She
returns as failure if tag ti = bxi for some i (indicating that she is blacklisted). She proceeds
otherwise.

3. (Proof Generation.) Alice returns to Bob a pair (τ,Π2), where τ = (s, t) ∈ {0, 1}` × G is
a ticket generated by randomly choosing a serial s ∈R {0, 1}` and computing the base b as
H0(s||Bob) and then the tag t as bx, and Π2 is a signature proof of knowledge of:

SPK2

{
(A, e, x, y) : Ae+γ = g0g

x
1g

y
2 ∧

(
n∧

i=1

ti 6= bxi

)
∧ t = bx

}
(m) (2)

on the challenge m, which proves:

(a) Ae+γ = g0g
x
1g

y
2 , i.e., Alice is a group member,

(b)
∧n

i=1 ti 6= H0(si||Bob)x, i.e., Alice is not currently on Bob’s blacklist, and

(c) t = H0(s||Bob)x, i.e., the ticket τ is correctly formed.

4. (Proof Verification.) Bob returns as failure if the verification of Π2 returns invalid.9

Otherwise Bob returns success.

The protocol transcript of a successful authentication at Bob is thus trans = 〈Bob, BL,m, τ,Π2〉.
As discussed, Bob stores ticket τ extracted from the transcript, along with information logging Al-
ice’s activity within the authenticated session.

5.1.5 Blacklist Management

The three algorithms are all very simple and efficient. Extract(trans) returns ticket τ in the input
transcript trans = 〈BL,m, τ,Π2〉. Add(BL, τ) returns blacklist BL′, which is the same as the
input blacklist BL, except with the input ticket τ appended to it. Remove(BL, τ) returns blacklist
BL′, which is the same as the input blacklist BL, except with all entries equal to the input ticket
τ dropped.

5.2 SPK Instantiation

Both SPK1 and SPK2 presented above require instantiation. We omit spelling out the relatively
trivial instantiation of SPK1. Now we instantiate SPK2 as follows.

9Bob also terminates with failure if the blacklist is being updated concurrently. This behavior ensures that if a
user is blacklisted at time t, she cannot authenticate to the SP after t or until she is unblacklisted.
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5.2.1 SPK2 Signing

To produce a proof Π2 for SPK2 on message m, do the following.

1. Produce auxiliary commitments (A1, A2, A3, Ã1, . . . , Ãn) by randomly picking ρ1, ρ2, ρ3, ρ4 ∈R

Zp and computing A1 = gρ1
1 g

ρ2
2 , A2 = Agρ1

2 , A3 = gρ3
1 g

ρ4
2 and, for all i = 1 to n, Ãi = (bxi /ti)

ρ3 .

2. Return Π2 as (A1, A2, A3, Ã1, . . . , Ãn,Π3), where Π3 is a signature proof of knowledge of:

SPK3

{
(e, x, y, ρ1, ρ2, ρ3, ρ4, α1, α2, β3, β4) :

A1 = gρ1
1 g

ρ2
2 ∧ 1 = A−e

1 gα1
1 gα2

2 ∧
A3 = gρ3

1 g
ρ4
2 ∧ 1 = A−x

3 gβ3
1 gβ4

2 ∧
ê(A2,w)

ê0
= ê(A2, h0)−eêx1 ê

y+α1
2 ê(g2, w)ρ1 ∧(

n∧
i=1

Ãi = bβ3
i t

−ρ3
i

)
∧ 1 = bβ3t−ρ3

}
(m) (3)

on message m, which can be computed using the knowledge of e, x, y, ρ1, ρ2, ρ3, ρ4, α1, α2,
β3 and β4, where α1 = ρ1e, α2 = ρ2e, β3 = ρ3x and β4 = ρ4x. In the above, we denoted
ê(gi, h0) as êi for i = 0 to 2.

5.2.2 SPK2 Verification

To verify a proof Π2 = (A1, A2, A3, Ã1, . . . , Ãn, Π3) for SPK2 on message m, return valid if the
verification of Π3 on m returns valid and Ãi 6= 1 for all i = 1 to n. Return invalid otherwise.

The instantiation of SPK3 itself is enumerated below.

5.2.3 SPK3 Signing

To produce a proof Π3 for SPK3 on message m ∈ {0, 1}∗, do the following:

1. (Commit.) Pick re, rx, ry, rρ1 , rρ2 , rρ3 , rρ4 , rα1 , rα2 , rβ3 , rβ4 ∈R Z∗
p uniformly at random.

Compute T1 = g
rρ1
1 g

rρ2
2 , T2 = A−re

1 g
rα1
1 g

rα2
2 , T3 = g

rρ3
1 g

rρ4
2 , T4 = A−rx

3 g
rβ3
1 g

rβ4
2 , and

T5 = ê(A2, h0)−re · ê(g1, h0)rx · ê(g2, h0)ry · ê(g2, w)rρ1 · ê(g2, h0)rα1 .

Also compute: T̃i = b
rβ3
i t

−rρ3
i , for all i = 1 to n, and T = brβ3 t−rρ3 .

2. (Challenge.) Compute c as: H(A1, A2, A3, Ã1, . . . , Ãn, T1, . . . , T5, T̃1, . . . , T̃n, T,m).

3. (Response.) Compute se = re − ce, sx = rx − cx, sy = ry − cy, sρi = rρi − cρi for i = 1 to 4.
sαi = rαi − cρie for i = 1, 2, and sβi

= rβi
− cρix for i = 3, 4.

4. (Output.) The signature proof of knowledge Π′ on m is

Π′ = (c, se, sx, sy, sρ1 , sρ2 , sρ3 , sρ4 , sα1 , sα2 , sβ3 , sβ4).
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5.2.4 SPK3 Verification

To verify a proof Π3 for SPK3 on message m, do the following:

1. Compute T ′
1 = g

sρ1
1 g

sρ2
2 Ac

1, T
′
2 = A−se

1 g
sα1
1 g

sα2
2 , T ′

3 = g
sρ3
1 g

sρ4
2 Ac

3, T
′
4 = A−sx

3 g
sβ3
1 g

sβ4
2 , and

T ′
5 = ê(A2, h0)−se · ê(g1, h0)sx · ê(g2, h0)sy · ê(g2, w)sρ1 · ê(g2, h0)sα1 ·

(
ê(A2, w)
ê(g0, h0)

)c

.

2. Compute T̃ ′
i = b

sβ3
i t

−sρ3
i Ãc

i for all i = 1 to n, and T ′ = bsβ3 t−sρ3 .

3. Return valid if c equals: H(A1, A2, A3, Ã1, . . . , Ãn, T
′
1, . . . , T

′
5, T̃

′
1, . . . , T̃

′
n, T

′,m). Return
invalid otherwise.

Note that among the 5 pairings needed to compute T5 above, 4 of them are constant and are
assumed to be included in the system’s parameters. The signer thus only needs to compute one
pairing, namely e(A2, h0). This pairing does not depend on the blacklist and the message and can
thus be precomputed. Similarly, the SP needs to compute two pairings during verification, namely
e(A2, h0) and e(A2, w). The above explains the last row in Table 1.

5.3 Analysis

5.3.1 Security

The correctness of the construction mostly stems from the correctness of SPK’s. Its proof is thus
relatively straightforward. We claim that our construction has correctness without proof for the
sake of conciseness.

We now state the following theorem about the security of our construction. Its proof can be
found in Appendix A.

Theorem 1 (Security) Our construction of the BLAC system is secure if the q-SDH problem is
hard in (G1,G2) and the DDH problem is hard in G under the Random Oracle Model.

5.3.2 Complexity

We analyze the efficiency of our construction in terms of both time and space/communication
complexities. First we emphasize that both complexities are independent of the number of users
and SPs in the system. Thus our system scales well with respect to these two quantities. Both
complexities, however, are dependent on the size of the blacklist. In particular, the time it takes for
both a user and a SP to execute the authentication protocol, as well as communication overhead
for the same protocol, grow linearly with the current size of the SP’s blacklist.

More specifically, a blacklist of size n contains n tickets, each consisting of an `-bit string
and an element of G. A proof Π2 of SPK2 consists of 3 G1 elements, n G elements and 12 Zp

elements. The total communication complexity for an authentication is thus (n+2) `-bit strings, 3
G1 elements, (2n+1) G elements and 12 Zp elements. SPs need to store a ticket for every successful
authentication.

A breakdown of time complexity of the authentication protocol into the number of multi-
exponentiations (multi-EXPs)10 in various groups and pairings is shown in Table 1. Other opera-
tions such as G addition and hashing are neglected as they take negligible time. Some preprocessing

10 A multi-EXP computes the product of exponentiations faster than performing the exponentiations separately.
We assume that one multi-EXP operation multiplies up to 3 exponentiations.
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Table 1: Number of operations during an authentication with a blacklist of size n.

Operation
User

SP
w/o Preproc. w/ Preproc.

G1 multi-EXP 7 0 4
GT multi-EXP 2 0 2
G multi-EXP 2n+ 1 2n n+ 1

Pairing 1 0 2

is possible at the user before the knowledge of the challenge message and the blacklist. In fact, all
but 2n multi-EXPs in G can be precomputed by the user.

6 Performance Evaluation

We implemented our construction of the BLAC system in C and packaged the code into a software
library to allow for easy adoption by different potential applications. We used the Pairing-Based
Cryptography (PBC) Library.11 (version 0.4.7) for the underlying elliptic-curve and pairing op-
erations, which is built on the GNU MP Bignum (GMP) Library.12 We also made use of several
routines in OpenSSL,13 such as its SHA-1 hash function for instantiating the cryptographic hash
functions needed by our construction.

The choice of curve parameters can have a significant effect on the performance of an implemen-
tation. We used pairings over Type-A curves as defined in the PBC library. A curve of such type
has the form of E : y2 = x3 +x over the field Fq for some prime q. Both G1 and G2 are the group of
points E(Fq) of order p for some prime p such that p is a factor of q+ 1. The pairing is symmetric
and has an embedding degree k of 2. Thus GT is a subgroup of Fq2 . In our implementation, q and
p are respectively 512-bit and 160-bit. We also used GT for G, the group wherein the tickets reside.

The interface to the library we implemented is defined by a list of C functions. Some of the
more important ones are as follows. setup() is a function that implements the Setup algorithm.
The functions register gm() and register user(), executed by the GM and the user respec-
tively, together implement the Registration protocol. Similarly authen sp() and authen user()
together implement the Authentication protocol.

6.1 Prototyping

Using our library, we prototyped a proof-of-concept application that allows users to post text
messages at a web forum. This can be thought of as users editing Wikipedia pages. We did not
prototype the user registration part of the system because our major interest was to study the
performance of the Authentication protocol.

In our prototype, the authentication is carried out as follows. The SP first creates a listening
socket. Upon the arrival of a connection request from a user, the SP sets up an SSL socket with
the user using OpenSSL.14 This means that a confidential and server-authenticated channel is set
up between the user and the SP. From within this channel, the user and the server respectively

11http://crypto.stanford.edu/pbc/
12http://gmplib.org/
13http://www.openssl.org/
14For simplicity’s sake, the SP uses a self-signed key-pair to authenticate himself.
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execute authen user() and authen sp(). If authen sp returns failure, then the SP closes the
SSL connection, thereby refusing to serve the user. Otherwise, SP serves the user using the same
channel by recording the text message sent by the user, along with the ticket extracted from
the authentication transcript. The SP may then manually inspect the text message and add the
associated ticket to its blacklist.

Alternatively, by integrating it with SSL server-authentication, BLAC authentication can be
turned into a mutual authentication, in which the user authenticates the server’s identity but the
server is ensured that and only that the user is some well-behaving user.

6.2 Experimental Results and Analysis

For our experiments, we used a Dell GX745 desktop machine with an Intel dual-core 2.16 GHz
CPU and 2GB of RAM, running Linux/Ubuntu 6.10. All the timings reported below are averaged
over 10 randomized runs.

We measured two time quantities related to the execution of the Authentication protocol:
(1) the time it took for an SP to verify the authentication (i.e., step 4 of the protocol), and (2)
the time it took for a user to inspect the blacklist and produce a proof (i.e., steps 2 and 3 of the
protocol), with preprocessing enabled. The sum of these two quantities roughly represents the total
latency incurred by the protocol as perceived by the user if we ignore the network I/O delay, which
is network-dependent.

When the blacklist was empty, it took the SP 0.06s to verify the authentication. When the
blacklist had 400 entries instead, it took the server 0.46s to do the same. On the other hand, when
the blacklist size was 0 and 400, the user spent 0.09ms and 0.73s respectively to inspect the blacklist
and produce a proof. The estimated protocol latencies are thus 0.06s and 1.19s respectively. The
total communication overhead due to the authentication protocol is roughly 0.27KB per blacklist
entry. Table 2 shows experimental figures collected with different blacklist sizes. Please see our
discussion in Section 7 that elaborates on the feasibility of our construction in real applications.

Note that our authentication protocol scales well with the number of cores in CPUs because
virtually all computation that grows linearly with the blacklist size is parallelizable.15 As evi-
dence, on our dual-core machine, all the timings we collected using our original single-threaded
implementation almost doubled the figures we just reported above. In our current multi-threaded
implementation, the library interface includes a bootstrapping function that takes the number of
threads as an input.

7 Discussion

Efficiency In our cryptographic construction, blacklist verification requires O(n) computations,
where n is the number of entries in the blacklist. As indicated by Section 6, our scheme would
support 1,600 blacklist entries with 2 authentications per second on an 8-core machine.16 Since
anonymous authentications will be used at SPs such as Wikipedia only for certain operations such
as editing webpages, we believe this performance is reasonable. Consider two extreme examples.
In March 2007, Wikipedia averaged about two edits per second to its set of English webpages.17

Likewise, YouTube reported less than one video upload per second on average in July 2006.18

15The only exception is the two calls to SHA-1, but they take comparably negligible time.
16An 8-core Mac Pro with two 3.0GHz Quad-Core Intel Xeon processors was available for under $4,000 at the time

of writing.
17http://stats.wikimedia.org/EN/PlotsPngDatabaseEdits.htm
18http://technology.guardian.co.uk/weekly/story/0,,1823959,00.html
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Table 2: Performance of our authentication protocol with respect to different blacklist sizes.

Blacklist Size (#Entries) 0 100 200 400 800 1600
Time (in s) for User to

0.00 0.18 0.36 0.73 1.45 2.85inspect the blacklist and
generate a proof (steps 2 & 3)

Time (in s) for SP to 0.06 0.16 0.26 0.46 0.87 1.68verify the proof (step 4)

Estimated Protocol Latency 0.06 0.34 0.62 1.19 2.32 4.53(in s) perceived by User

Communication 0.8 27.7 54.7 108.6 216.4 431.8Overhead (in KB)

The communication complexity required to sustain one or two authentications per second with
1,600 blacklist entries would be about 3.5 to 7 Mbps for the SP. Such a data rate would be high
for an individual server, but would be reasonable for large SPs such as YouTube and Wikipedia,
which may have distributed servers across the nation for handling large bandwidth. Based on
these calculations, SPs with much lower authentication rates than Wikipedia or YouTube (e.g.,
one authentication every few seconds) can easily be served on commodity hardware and T-1 lines.
We reiterate that our construction is the first to allow anonymous blacklisting without TTPs, and
more efficient blacklist checking, perhaps in O(log n) or O(1) time, is an open problem that deserves
further research. Faster verification will allow much higher rates of authentication while supporting
extremely large blacklists, and this problem is, therefore, worthy of further study.

Interleaving Authentications One concern is that an individual user may attempt to interleave
multiple authentications and take up several hundreds of entries in the blacklist by misbehaving
several times in a short span of time. Such an attack is possible because users can parallelize
several anonymous sessions with an SP. A promising approach would be to use a scheme such as
Camenisch et al.’s periodic n-times anonymous authentication [CHK+06] to rate-limit the number
of anonymous accesses from users. In such a scheme, an anonymous user would be able to access
the SP anonymously at most n times within a time period. For example, for n = 10 and a time
period of 1 day, a single user would be able to contribute at most 10 entries to the blacklist in a
given day.

Remark. Since concurrent sessions are preempted while an entry is added (atomically) to a blacklist,
our system guarantees that once an entry is added to the blacklist at time t, the blacklisted user
will not be able to access the service after time t (or until unblacklisted at a later time).

Enrollment Issues We assume that the Group Manager issues only one credential per legitimate
user and assume it is difficult to perform “Sybil” attacks [Dou02], where users are able to obtain
multiple credentials by posing as different identities. The Sybil attack, however, is a challenging
problem that any credential system is vulnerable to, and we do not attempt to solve this problem
here.

In a real deployment of a BLAC system, users may eventually misplace their credentials, or have
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them compromised. Since that credential may be blacklisted by an SP, issuing a new credential to a
user can help that user circumvent anonymous blacklisting. As a trade-off, we suggest that if a user
misplaces his or her credential, that user is issued a pseudonymous credential for a certain amount
of time called the “linkability window.” If a user repeatedly attempts to acquire new credentials,
the linkability window of that user can be increased to curb misbehavior.

Allowing the Sharing of (Entries in) Blacklists We have presented our construction of the
BLAC system in which an SP Bob cannot use an entry from another SP’s blacklist (corresponding to
Alice) to prevent Alice from successfully authenticating to Bob. Nevertheless, in some applications,
a group of SPs may desire to block users misbehaving at any one of the SPs.

Our system can be modified to allow such sharing—instead of computing the tag as t =
H(s||Bob)x, one computes the tag as t = H(s)x regardless of the SP for which the ticket is meant.
Tickets with tags computed this way are sharable between SPs because adding a user’s ticket bor-
rowed from another SP is no different from the SP obtaining the ticket directly from the user. Such
a change in construction, however, makes it necessary to redefine security notions. For example,
Wikipedia may decide to add only YouTube’s tickets to its blacklist. If a user’s authentication
fails, Wikipedia knows that the user has previously visited YouTube. Even though the user is
anonymous, an SP can learn some information about the user’s behavior at another SP.

Revoking Compromised TPMs Concurrently and independently, Brickell and Li [BL07] have
proposed a method to unlinkably revoke compromised Trusted Platform Modules (TPMs) [TPM06].
While they focus on revoking compromised hardware, as opposed to blacklisting misbehaving users,
their construction is similar to ours. Both solutions use a protocol for proving the inequality of
multiple discrete logarithms to prove that a user is not revoked/blacklisted. Nevertheless, signatures
in their solution are not bound to the verifier’s identity and authenticating even once could result
in the global revocation of the prover. Our solution provides more privacy by allowing sharing and
non-sharing of blacklist entries among verifiers. Finally, their solution is RSA-based while ours is
pairing-based.

8 Conclusion

We motivated the need for anonymous credential systems that support anonymous blacklisting and
subjective judging without relying on trusted third parties that are capable of deanonymizing (or
linking) users. All previous solutions rely on either trusted third parties or restricted formulations of
misbehavior. We provide the first cryptographic construction that simultaneously provides anony-
mous blacklisting, subjective judging, and eliminates the reliance on trusted third parties capable of
revoking the privacy of users.
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A Proof Sketches

We sketch the proof for Theorem 1 in the following three subsections, one for each security require-
ment.

A.1 Blacklistability

Suppose there exists a PPT adversary A who can win in game Blacklistability with non-negligible
probability, we show how to construct a PPT simulator C that solves the q-SDH problem with
non-negligible probability.

On input of an instance of the q-SDH problem (g′0, h
′
0, h

′
0
γ , . . . , h′0

γq

), C’s task is to output a pair
(Ā, ē) such that ê(Ā, h′0

γh′0
ē) = ê(g′0, h

′
0). Let q be the number of times A queries the A-Reg oracle

and the Corrupt-U oracle. C uses the problem instance to generate the public parameters so that
it can answer these q queries, using the same technique as in [ASM06]. Specifically, C randomly
generates a degree (q−1) polynomial f such that f(x) =

∏q−1
i=1 (x+ei). It computes h0 = h′0

f(γ) and
w = hγ

0 = h′0
γf(γ). It also computes h1 = [(whe∗

0 )k∗h−1
0 ]1/a∗ and h2 = hµ

1 for some e∗, k∗, a∗, µ ∈ Z∗
p

generated uniformly at random. Next, it computes gi = ψ(hi) for i = 0 to 2. Finally, C gives
(h0, h1, h2, g0, g1, g2, w) to A as the system parameters. Let K be the set {1, . . . , q − 1} ∪ {∗}.

C keeps track of every user in the system. For a user j ∈ UP , C simulates the P-Reg oracle by
first selecting xj ∈ Z∗

p uniformly at random and uses it to simulate the Registration protocol. This
is possible since the Registration protocol has Honest-Verifier Zero-Knowledgeness (HVZK).

To simulate P-Auth, B-Auth for user j ∈ UP , C computes the tag as t = bxj and simulates
the other steps using the HVZK property of the Authentication protocol.

When user j ∈ UP is to be corrupted, C chooses i in the set K uniformly at random. If i = ∗,
C sets yj = (a∗ − xj)/µ, Aj = gk∗ and ej = e∗, and returns (Aj , ej , xj , yj) as the credential of user
j. Otherwise, C chooses yj ∈ Z∗

p uniformly at random, sets ej = ei, computes Aj as

Aj =
(
g0g

xj+µyj

1

) 1
ej+γ = g′0

f(γ)
ej+γ g

xj+µyj
γ+ei

1

= g′0

f(γ)
ej+γ

(
g

(xj+µyj)k∗(e∗+γ)−(xj+µyj)

(ej+γ)a∗

0

)

= g′0

f(γ)
ej+γ

“
1−

xj+µyj
a∗

”(
g

(xj+µyj)k∗

a∗
0

)„
1−

ej−e∗

ej+γ

«

= g′0

f(γ)
ej+γ

„
1−

xj+µyj
a∗ −

(ej−e∗)(xj+µyj)k∗

a∗

«
g

(xj+µyj)k∗

a∗
0 ,

and finally returns (Aj , ej , xj , yj) as the credential of user j. In both cases, C removes i from K.
The simulation of A-Reg is similar. Upon receiving C for user j (to be added to UA), C first

extracts the pair (xj , y
′
j) by rewinding the adversary and selects i from K uniformly at random.

If i = ∗, C chooses y′′j such that xj + µ(y′j + y′′j ) = a∗, sets Aj = gk∗ , ej = e∗ and finally returns
(Aj , ej , y

′′
j ). Otherwise, C chooses y′′j uniformly at random, sets ej = ei and yj = y′j + y′′j , computes

Aj as

Aj = g′0

f(γ)
ej+γ

„
1−

xj+µyj
a∗ −

(ej−e∗)(xj+µyj)k∗

a∗

«
g

(xj+µyj)k∗

a∗
0 ,

and finally returns (Aj , ej , y
′′
j ). C removes i from K in both cases.
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C stores all the credentials issued to A in a set UKI .
For each A-Auth query, C extracts the underlying credential (An, en, xn, yn) by rewind simu-

lation and stores it in the set UKA.
During the End Game phase, A has produced k + 1 authentications in the A-Auth Oracle.

Let {H0(si, U), ti} be the set of tickets associated with these k + 1 authentications. Let xi denote
logH0(si,U)(ti) for i = 1 to k + 1. Due to the soundness of SPK2, there exists q + 1 x’s such that
xi 6= xj if i 6= j for all i, j ∈ {1, . . . , q + 1}. It implies that there exists at least one tuple in UKA

and is not in UKI .
Let (A′, e′, x′, y′) ∈ UKA∧ /∈ UKI . There are three possibilities:

• Case I: e′ /∈ {ei, e∗}. Denote z = x′ + µy′. We have:

A′e′+γ = g0g
z
1

A′e′+γ = g
k∗z(e∗+γ)−z

a∗
0

A′ = g
a∗−z

a∗(e′+γ)

0

(
g

k∗z
a∗

0

)“
1− e′−e∗

e′+γ

”

g
1

e′+γ

0 =
(
A′g

−k∗z
a∗

0

) a∗
a∗−z−k∗z(e′−e∗)

.

Denote B′ = g0
1

e′+γ = g′0
f(γ)

e′+γ . Using long division, there exists a degree (q− 2) polynomial fq

such that f(γ)
(e′+γ) = fq(γ)(e′+γ)+f1 for some f1 ∈ Z∗

p\{0}. Thus B′ = g′0
f1

e′+γ
+fq(γ). Finally, A

computes Ā =
(
B′g′0

−fq(γ)
)1/f1

and sets ē = e′. (Ā, ē) is the solution to the q-SDH problem.

• Case II: (e′ = ei ∧ A′ = Ai) or (e′ = e∗ ∧ A′ = A∗). This case happens with negligible
probability unless F solves the relative discrete logarithm of h2 to base h1.

• Case III: e′ ∈ {ei, e∗} and (A′ 6= Ai ∨ A′ 6= A∗). With probability 1/q, e′ = e∗. Denote
z = x′ + µy′. We have:

A′e∗+γ = g0g
z
1

A′ = g
a∗−z

a∗(e∗+γ)

0 g
k∗z
a∗

0

g
1

e∗+γ

0 =
(
A′g

−k∗z
a∗

0

) a∗
a∗−z

.

Denote B′ = g0
1

e′+γ = g′0
f(γ)

e′+γ . C uses the same method as in Case I to solve the q-SDH
problem.

A.2 Anonymity

Suppose there exists a PPT adversary A who can win in game Anonymity with non-negligible
probability, we show how to construct a PPT simulator C that solves the DDH problem with
non-negligible probability. On input of a DDH tuple (g′, g′u

′
, g′v

′
, T ′), C is required to decide if

T ′ = g′u
′v′ . C sets G = 〈g′〉 and generates all other parameters honestly. The parameters and the

master key of the GM are given to A.
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C keeps track of every user in the system. C chooses one user, denoted as i∗. For all oracle
queries (except the Hash oracle) not related to i∗, C follows the protocol honestly.

Queries related to user i∗ are handled as follows. For B-Reg, C simulates the protocol as if
(u′, y′) is an opening of the commitment C. The distribution is perfect since for any u′ there exists
an y′ such that C = gu′

1 g
y′

2 . Upon receiving (A, e, y′′) from A, C records the credential for i∗ as
(A, e,⊥,⊥). The credential for i∗ is (A, e, u′, y) such that y = y′ + y′′. This credential, however, is
unknown to C. (P-Auth or B-Auth queries involving user i∗ is discussed below.)

For P-Auth or B-Auth queries related to user i∗, C chooses s uniformly at random and sets
H0(s||SPj) = g′R for some R generated uniformly at random. C then computes t = g′u

′R and
simulates the protocols with τ = (s, t).

Finally, if i∗ is chosen to be one of the two challenge users, C embeds the problem instance into
the authentication transcript by choosing si∗ uniformly at random and setting H0(si∗ ||SPj) = g′v

′
.

C computes the ticket τ = (H0(si∗ ||SPj), ti∗) = (g′v
′
, T ′) and simulates the Authentication protocol.

If T ′ is a DDH tuple, the simulation is perfect while if T ′ is a random element, the authentication
transcript is not related to either of the challenge users. Thus, if A can answer the challenge
correctly, C concludes that (g′, g′u

′
, g′v

′
, T ′) is a DDH-tuple.

A.3 Non-Frameability

Suppose there exists a PPT adversary A who can win in game Non-Frameability with non-negligible
probability, we show how to construct a PPT simulator C that solves the discrete logarithm problem
in G.

On input of a DL problem instance (T ′, g′), C is required to compute u′ such that g′u
′
= T ′. C

sets G = 〈g′〉 and all other parameters are generated honestly. The parameters and the master key
of GM are given to A.

C keeps track of every user present in the system. C chooses one user, denoted as i∗. For all
oracle queries (except Hash oracle) not related to i∗, C follows the protocol honestly. Let K be the
set of credentials C has obtained from A in the B-Reg query.

Queries related to user i∗ are handled as follows. For B-Reg, C simulates the protocol as if
u′, y′ is an opening of the commitment C. The distribution is perfect since for any u′ there exists
a y′ such that C = gu′

1 g
y′

2 . Upon receiving (A, e, y′′) from A, C adds (A, e,⊥,⊥) to K. For P-Auth
or B-Auth query related to user i∗, C chooses s uniformly at random and sets H0(s||SPj) = g′R

for some R generated uniformly at random. C then computes t = g′u
′R and simulates the protocols

with τ = (s, t).
To win the game, A must have produced an authentication transcript with ticket τ = (s, t) such

that x̂, defined as logH0(s||id)(t), is in K. With probability 1/|K|, x̂ = u′. Using rewind simulation,
C obtains u′, which is the discrete logarithm of T ′.
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