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LIGHT-BASED SAMPLE REDUCTION METHODS FOR INTERACTIVE
RELIGHTING OF SCENES WITH MINUTE GEOMETRIC SCALE

William B. Kerr Fabio Pellacini

Dartmouth College
Dartmouth Computer Science Technical Report TR2007-600

ABSTRACT
Rendering production-quality cinematic scenes requires
high computational and temporal costs. From an artist’s
perspective, one must wait for several hours for feedback
on even minute changes of light positions and parameters.
Previous work approximates scenes so that adjustments
on lights may be carried out with interactive feedback,
so long as geometry and materials remain constant. We
build on these methods by proposing means by which ob-
jects with high geometric complexity at the subpixel level,
such as hair and foliage, can be approximated for real-time
cinematic relighting. Our methods make no assumptions
about the geometry or shaders in a scene, and as such are
fully generalized. We show that clustering techniques can
greatly reduce multisampling, while still maintaining im-
age fidelity at an error significantly lower than sparsely
sampling without clustering, provided that no shadows are
computed. Scenes that produce noise-like shadow patterns
when sparse shadow samples are taken suffer from addi-
tional error introduced by those shadows. We present a
viable solution to scalable scene approximation for lower
sampling reolutions, provided a robust solution to shadow
approximation for sub-pixel geomery can be provided in
the future.

1 Introduction

Cinematic relighting presents the problem of receiving fast
and reliable feedback from a renderer when lights in a three
dimensional scene have changed. For production quality
scenes, changing a parameter on even one light can require
the scene to be fully re-rendered, forcing the lighting artist
to wait several hours for feedback in some cases. Other
options include substituting simplified versions of the ge-
ometry and shaders into the scene to reduce render time,
but the quality reduction of this approach makes it applica-
ble only to preliminary blocking phases of light design and
not to more detailed refinement. Rapid feeback is critical to
an artist’s workflow, and several relighting techniques have
been proposed to handle this by approximating the scene
while maintaining accuracy with respect to its reproduc-
tion.

We propose methods for reducing the number of sam-

ples taken from scenes that include geometric elements
smaller than the size of a single pixel. Examples of such
elements include thin hairs and foliage with small leaves,
stems, or blades of grass. Scenes like these pose problems
for current relighting approaches, since sparsely sampled
deep framebuffers and blurring cause detail at the subpixel
level to be lost. Our approach investigates the merging of
samples at a subpixel level into a reduced set of samples
that maintain the original level of detail.

To do this, we organize the material and intersection
data provided by a sample from the scene into a generalized
feature vector. Our methods operate on these vectors with-
out any semantic knowledge or assumptions about the data
they carry. Once the reduction has been performed, we are
able to restore meaning to the vector through a categorical
typing system set up by the artist. Essentially, all parame-
ters within a sample are quantized into a vector with a type,
clustered using one of several methods, and then reinter-
preted once the vectors have been merged and effectively
reduced.

Our work trades static geometry and materials for
flexibility with respect to lighting. We assume a fixed view-
ing angle with no changes to any element in the scene other
than lights. Since the lighting equation can be computed
quickly and efficiently, we preprocess the scene and store
information about geometry and materials. Any light pa-
rameters, including position, may be changed without re-
ferring back to the original set of samples. If geometry or
material parameters are changed, however, we must pre-
process again before relighting. For this paper, we both
preprocess and render using software. We claim that once
the samples have been reduced to a manageable size, trans-
lating to a hardware implementation that runs at interactive
rates can be achieved using methods similar to those found
in [Pellacini et al. 2005].

2 Methodology

In order to relight a scene in substantially less time than
the full render, we work on the assumption that there ex-
ists a reduced set of data that can be processed by the ren-
derer, producing very near the same result as the full set of
data. We choose to reduce the amount of samples actually
rendered through the lighting equation after intersections
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Figure 1: From left to right: A) Image sampled at 25spp with shadows, B) reduced to 8spp with K-means method, C) sampled at 25spp
without shadows, and D) reduced to 8spp with K-means method without shadows.

or rasterizations are calculated. Clustering techniques al-
low us to reduce the number of samples by merging similar
data points from the full set of samples. From this point
forward, the notion of a sample will be taken from our ray-
tracing implementation. Note that these methods are gen-
erally applicable to any kind of scene samples, as opposed
to just ray intersections.

2.1 Samples

Our approach relies on quantizing samples generated by the
ray tracer into multidimensional vectors that can be clus-
tered. For every intersection of a view ray with the scene,
all necessary data required to render the color value at that
intersection is stored in a sample and made available in the
form of a vector α. The data collected need not be the same
for every sample, but only sample vectors of the same di-
mensionality with parallel representation can be clustered
together. For example, one sample may contain a position,
normal, and diffuse coefficient, whereas another may con-
tain an additional specular coefficient, making it impossible
to merge the two. Furthermore, if the first sample has an ad-
ditional luminosity coefficient, even though the two sample
vectors share the same dimensionality, they would not have
parallel representation. We leave it to the shader artist to
construct materials in type groups that can be clustered ho-
mogeneously. The resulting clustered sample is then repre-
sented as another vector, ᾱ, with the same dimensionality.
This vector provides the renderer with all information nec-
essary to compute the lighting equation.

When merging samples, there exists data for which
it makes sense to average all merged values and data for
which a single representative must be chosen. For exam-
ple, a shader parameter such as a diffuse coefficient would
be averaged across all samples being merged. However,
one sample out of those being merged would be chosen
as a representative for intersection position to guarantee a
position on the surface of an object for lighting. Our meth-
ods do not rely on the semantic meaning of data elements
within a sample, and as such, require an artist to define

which elements are to be averaged and which are to be rep-
resentative.

2.2 K-means Approach

Once the vectors for all samples are built, we carry out a
clustering procedure to determine which samples to merge
together. The choice of k-means clustering as a simple, in-
tuitive method presents itself as a standard to benchmark
against for more advanced methods. All samples are calcu-
lated and clustered using the k-means algorithm [Mac67]
without any lighting knowledge. The samples in each clus-
ter are then merged. We choose the sample closest to the
cluster centroid as the representative for all data elements
not averaged. Our goal for the project is to outperform the
bar set by this trivial approach.

2.3 Light Metric

We experiment on multiple variations of a light-based met-
ric designed to perform clustering in a way more suited to
the specific problem of relighting. A light metric operates
on the notion that some samples have more influence than
others over the color of an entire pixel when light configu-
rations vary. Our goal is to find samples that minimize the
error function, ε, over the multiple integral representing all
possible parameter configurations of a general light type.

ε =
∫
λ∈L

(
∑s
i=1 f({αi} , {λ})

s
− f({ᾱ} , {λ}))2 (1)

where L is all possible light configurations, s is the number of
samples in the pixel, and f outputs the rendered color from the
given light and sample

We approximate the integral in equation 1 using
Monte Carlo over a set of l lights with randomized param-
eters.



ε =
1
l

l∑
j=1

(
∑s
i=1 f({αi} , {λj})

s
− f({ᾱ} , {λj}))2 (2)

We expect the lighting artist to provide bounds on the
lighting parameters for his or her given scene. For example,
the valid range of positions a point light can assume.

3 Implementation

We implement k-means clustering as well as six versions
of our light metric clustering. Each implementation con-
sists of three steps: choosing representatives, clustering,
and merging. Every pixel of s samples is reduced to k
samples by one of the following methods. Since samples
of differing material types cannot be merged from our gen-
eral perspective, each method precalculates, based on the
ratio of each material type in the pixel, a subset kt of the
k resulting samples for each material type. The number
of reduced samples of each type is directly proportional to
the number of original samples of each type. We give each
merged sample a weight based on the number of original
samples belonging to its cluster, where

weight =
samples in cluster

samples in all clusters
(3)

Note that some samples may be lost due to underrep-
resented material types that are not given a cluster. Unless
otherwise noted, all calculations are performed within the
scope of a single pixel.

3.1 K-means

Our K-means implementation chooses representatives af-
ter the clustering has been performed. The first k samples
are chosen as initial centroids, after which the clusters are
recalculated until convergence is reached. Once the clus-
tering is complete, the sample closest to the cluster cen-
troid in parameter space by Euclidean distance is chosen
as the representative. All parameters not indicated as rep-
resentative are averaged across all samples in the cluster.
This technique uses no information about possible lighting
conditions, and merges based on intersection and material
parameters alone.

3.2 Light Metric 1

All four Light Metric implementations begin by choosing
representative samples based on minimizing equation 2.
We parameterize lights in the same way as materials so that
any number of random lights can be generated by randomly
interpolating between two representative lights, which are
passed in by an artist. Our implementation keeps an nxl
data structure of the rendered color value of each sample

on each random light. These values are calculated for each
light individually, as if it was the only light in the scene.

To avoid exponential computational costs, instead of
computing equation 2 for every possible clustering, we ap-
proximate it through representative samples. For each ma-
terial type, Light Metric 1 chooses the kt samples that,
when rendered alone, most closely match the rendered out-
put of the entire pixel. I.e., for every sample α of material
type t, we calculate values for εα such that

εα =
1
l

l∑
j=1

(
∑s
i=1 f({αi} , {λj})

s
−f({α} , {λj}))2 (4)

The kt samples with minimum εα are chosen as rep-
resentatives and become initial cluster centroids. We de-
termine cluster membership for the rest of the samples of
the given material type by assigning samples to the cluster
whose representative centroid is closest to it by Euclidean
distance. Centroids are not recalculated. Once clusters are
built, Light Metric 1 merges each of them into a single sam-
ple as in K-means.

3.3 Light Metric 2

Light Metric 2 works in much the same way as Light Metric
1, with the addition of shader groups. When choosing rep-
resentatives, Light Metric 1 does not take into account that
even though a group of samples may have the minimum
εα values when evaluated individually, together they may
skew the pixel output towards a majority material parame-
ter configuration. For example, if the pixel contains 6 blue
phong samples and 2 red phong samples, and 4 represen-
tatives are chosen, then all 4 representatives will probably
be blue. A more accurate group of representatives would
probably be 3 blue and 1 red.

After the value of each sample is evaluated for each
random light, Light Metric 2 does the following. First,
the samples are partitioned into shader groups and each
shader group is assigned a probability. Each material type
has its own independent set of shader groups. We deter-
mine shader group membership using only the average
color value for a sample across all random lights. The
algorithm begins by making the first sample its own shader
group, represnted by a color value. It iterates through the
remaining samples and either adds a sample to an existing
shader group by averaging the color value of the sample
into the shader group, or creates a new shader group with
the sample’s color value. To determine whether sample A
will be a member of shader group B, where the RGB color
values of both are treated as vectors, we compute

cosθ = A ·B/(|A| |B|)
Euclidean distance A−B
If (θ < 30o) and (A−B <

√
3/5)

Then A is considered a member of B and is averaged in



Else A is a new shader group

Once all samples belong to a shader group, we cal-
culate PSG for every shader group. PSG is the probability
that the shader group will be chosen to provide the next
representative.

PSG =
samples in shader group

samples in all shader groups
(5)

Like Light Metric 1, Light Metric 2 chooses repre-
sentatives for cluster centroids using equation 4. For every
material type, instead of choosing the minimum kt samples
from all samples of this type, we follow the procedure

1. Select a shader group based on PSG

2. Add the sample in this shader group that has minimum εα
to the list of representatives

3. Remove this sample from the shader group

4. Repeat from 1 until all kt representatives are chosen

The subsequent clustering and merging operations are
carried out as in section 3.2.

3.4 Light Metric 3

This implementation puts a greater emphasis on diffuse
lighting when choosing representatives. It carries out ex-
actly as in section 3.3 through shader group calculations
and clustering. Once the clustering is complete, and before
merging, we recalculate the rendered value of each random
light on each sample, treating it as a fully white Lambert
material with no shadows. Using these new values, we
choose the sample from each cluster with the minimum εα,
and make it the representative for that cluster. Merging is
then carried out as usual.

3.5 Light Metric 4

Light Metric 4 addresses the same problem that shader
groups address in section 3.3. Essentially, rather than
choosing each sample that minimizes εα individually, we
choose the group of samples that minimize collectively.
Light Metric 4 accomplishes this with a greedy approach.

We proceed as in section 3.2, until it is time to choose
representatives. The sample that minimizes εα becomes
the first representative. Let V be the nxl array that stores
the rendered value of each sample on each random light.
We store an array, R, of length l that parallels a row of
V . R represents the conglomeration of the representative
samples collected thus far. We initialize R to the values in
the row of V for the first representative. When searching
for the remaining representatives we use a modified version
of equation 4:

εαR
=

1
l

l∑
j=1

(
∑s
i=1 f({αi} , {λj})

s
− f({αR} , {λj}))2

(6)
where αR is the value of R if α was averaged in. I.e.,
f({αR} , {λj}) = Rj

For each of the kt representatives, the sample, α, that
minimizes equation 6 and has not already been averaged
into R becomes the next representative. It is then averaged
into R, updating the values in R.

Once all representatives are chosen, clustering and
merging proceed as in section 3.2.

3.6 Light Metric 5

Light Metric 5 produces the same nxl array V as menioned
in section 3.5. It then treats each of the n rows of V as the
feature vector for the sample it represents. For example, if
rgb color is being used, then the feature vector would have
3l components. These feature vectors are then used by the
K-means algorithm to cluster, choose representatives, and
merge as in section 3.1.

3.7 Light Metric 6

Light Metric 6 clusters exactly the same way as K-means
in section 3.1. It then chooses representatives as in Light
Metric 1 using the method from section 3.2 and equation 4.
Merging occurs as in section 3.2. Light Metric 6 illustrates
the influence representatives have over the discrepancy be-
tween K-means and Light Metric 1.

4 Results

We conduct several experiments to assess the performance
of each clustering method by comparing the images it pro-
duces to the fully sampled image, images purely sampled
at reduced rates, and images with samples reduced by the
other clustering methods. Experiment 1 presents a com-
parison of performance for all methods at a fixed reduction
rate of 25 to 8spp. Experiments 2 and 3 explore the ef-
fects of varying reduction rates and the number of random
lights used by the Light Metrics respectively. For any of
the reduced images Ir, we define its error with respect to
the original, fully sampled image Io as follows:

Error =
1
n

n∑
i=1

√
(Rdi)2 + (Gdi)2 + (Bdi)2

3
(7)

where Rdi, Gdi, and Bdi are the red, green, and blue values
from the ith pixel in the difference image Id = Ir − Io, and n is
the number of pixels in Id.



The ”‘no shadows”’ experiment trials perform sample
reduction in exactly the same way as their shadowed coun-
terparts, but do not compute shadows when the resulting
image is rendered. Sample reduced images without shad-
ows are compared to fully sampled images without shad-
ows.

4.1 Scenes

To test the effectiveness of our approach, we use two scenes
with geometry smaller or thinner than the size of a single
pixel. The first consists of a ball covered in hair that follows
the Kajiya model [Kajiya and Kay 1989?], figure 8. The
second consists of geometry taken from the PBRT plant
ecosystem scene. This scene, shown in figure 9, features
subpixel detail in masses of foliage.

4.2 Experiment 1

We carry out the following experiment to test the effective-
ness of each implementation from section 3 as the scenes
are relit. For each of 50 trials:

1. Light the scene with a single, randomly placed, omnidirec-
tional point light.

2. Render the scene without sample reduction (PURE) at
25spp.

3. Render the scene without sample reduction (PURE) at 8spp.

4. Reduce the number of samples per pixel from 25 to 8 using
each of the 7 clustering implementations and render.

5. Record the error: average difference in a color channel be-
tween the reduced image and the full image.

When reducing samples for each scene, we use 200
random lights for our Light Metric clustering. We config-
ure the lights so that position is the only parameter random-
ized. A summary of the experiment can be seen in figure
2.

Throughout the experiment, K-means produces lower
error than any of the four Light Metric implementations.
Light Metric 4 produces the lowest error on the hair scene,
and Light Metric 1 produces the lowest error on the plant
scene out of all Light Metric implementations.

In the case of the hair scene with shadows, pure sam-
pling at 8spp outperforms all clustering methods. However,
when shadows are turned off when rendering the sample-
reduced images, pure sampling falls behind every cluster-
ing method. Pure sampling results in almost twice as much
error as even the lowest performing Light Metric in the case
of no shadows. The shadows computed for the rendered
images at 8spp do not take into account any approxima-
tion of the scene’s geometry. As such, they are simply de-
termined from a simple visibility calculation at 8spp. On
the hair scene, this produces shadows that closely resem-
ble noise because there is a low probability that any of the
8 shadow samples will detect a small hair obscuring light
for a pixel. The noise introduced by these shadows masks

Figure 2: Results from experiment 1.

over the smoothing and approximation introduced by our
clustering methods. To help illustrate this concept, imag-
ine two art forgers have a contest to see who can reproduce
Leonardo da Vinci’s Mona Lisa more exactly. Both are
skilled painters, but one captures the subtleties of da Vinci’s
style to perfection whereas the other can only produce a
general visage of the original. To an expert, the first painter
would be an obvious winner, but before the paintings are to
be judged someone sprinkles sand over both paintings, ob-
scuring their details. The shadows in our images have the
same effect as the sand. Even though one image is truer to
the original in most respects, noise obscures the details that
make it so.

Results from a single trial of experiment 1 can be seen
in figure 10. The sampling rate of 25spp is used as a base
since this is the minimum number of samples needed to
render a single hair continuously across several pixels. No-
tice that even at 25spp, shadows across the hairs appear
slightly irregular. At 8spp, much of the shadowing within
the hair cloud has been reduced to noise (see image B from
figure 10.

While K-means, Light Metric 1, and Light Metric 6
produce less error than pure sampling in the plant scene
for both shadowed and unshadowed trials, Light Metrics
2-5 do not. Through several experiments we have deter-
mined that Light Metric 5 does not perform well in gen-
eral. On the other hand, the results for Light Metrics 2-4
seem to contradict results from the hair scene. For exam-
ple, why does Light Metric 4 perform so poorly on the plant
scene, but excel above the other Light Metrics on the hair
scene? Light Metric 1 chooses the closest representatives
to the average across all random lights, so it does a bet-
ter job of . Conversely, Light Metrics 2-4 introduce error
across smooth curved surfaces because they work to pre-
serve heterogeneity in the cluster representatives. Figure 3



illustrates the shortcoming of Light Metric 4 compared to
pure sampling on a scene with only very large objects with
smooth surfaces. Both K-means and Light Metric 1 reduce
the sphere scene in figure 3 with 0.0 error.

Figure 3: From right to left: A) Base sphere scene rendered at
25spp, B) Error image by pixel for pure sampling at 2spp (10x
intensity), C) Error image by pixel for reduction to 2spp by Light
Metric 4 (10x intensity)

Results from a single trial of experiment 1 can be seen
in figure 12. Notice that shadows black out a large portion
of the image with very few artifacts even at 8spp. This
accounts for the increase in error for the rendered scenes
with shadows turned off. The shadows obscure much of
the areas where discrepancies could occur.

4.3 Experiment 2

Given the result from Experiment 1 in the case that pure
sample reduction outperforms clustering approaches, we
conduct a second experiment to observe what happens
when we reduce the sampling rate even further. For this
experiment, we reduce our test set to pure sampling and
the best performing clustering methods from experiment 1:
K-means, Light Metric 1, and Light Metric 4. We render
both the hair scene and the plant scene with the lighting
configurations seen in figures 8 and 9 at 25spp. We then
reduce the number of samples to 8, 4, and 2. Results on
images rendered with shadows and without shadows (ns)
can be seen in figures 4 and 5

Figure 4: Results of experiment 2 on the hair scene. (ns = no
shadows)

Figure 5: Results of experiment 2 on the plant scene. (ns = no
shadows)

4.4 Experiment 3

We run an experiment to evaluate the fidelity of our Light
Metric methods as the number of random lights used to
cluster is increased. K-means outperforms the Light Metric
implementations given the number of random lights used
in the trials in experiment 1, but could the Light Metric
do better? We evaluate ony Light Metrics 1 and 4 for this
comparison since they produce the lowest error for the hair
and plant scenes respectively. Experiment 2 compares the
error from K-means on the hair scene to Light Metrics 1
and 4 using 12, 25, 50, 100, 200, 400, and 800 random
lights for cluster precomputation. The results can be seen
in figures 6 and 7.

Figure 6: Results of experiment 3 on the hair scene. (ns = no
shadows)

Increasing the number of random lights beyond 12 has
little effect on the performance of the Light Metrics. The



Figure 7: Results of experiment 3 on the plant scene. (ns = no
shadows)

performance difference that does result from varying light
count is negligible and only spans about a 0.003 range. The
slight increase in error for the hair scene with no shadows is
most likely attributed to noise introduced by each random
light from shadows (figure 6). We do not see this effect as
heavily with shadows because the shadow noise in the final
rendered image masks over it.

Experiment 3 concludes that K-means yields lower
error than our Light Metric implementations regardless of
the number of random lights that are used. This implies
that the fundamental approach to approximating equation
2 used for the Light Metric implementations produces im-
ages with lower fidelity to a full render than the blind clus-
tering generated by K-means.

5 Conclusions and Future Work

In the case of scenes with intricate geometry at the sub-
pixel level, we have shown that a clustering approach to
sample reduction can produce approximations with greater
fidelity to the original image than purely rendering the
scene with a lower number of samples. There are cases
where pure sample reduction actually produces lower er-
ror than clustering, but this can be attributed to noise in
the shadow signal at the lower sample rate. When shadows
produce enough noise from the sub-pixel geometry to mask
over the smoothing that clustering provides, the benefits of
clustering are nullified. This can be seen in the descrepancy
between experiments run with and without shadows. In the
case where pure sample reduction outperforms clustering
with shadows, it falls short of clustering when shadows are
not present. The error discrepancy between the two is much
greater in the unshadowed case.

Our methods cannot approximate highly sampled

shadows due to the arbitrary position from which visibility
must be calculated when lights are moved. Unless a light-
obscuring point lies on the surface of an object that can be
seen in the projected view plane, the preprocessed clusters
have no knowledge of it. This suggests the need for an
independent solution to approximating the shadow signal.
The challenge here involves sampling the shadow signal at
a reduced rate and maintaining the same shadowed to un-
shadowed sample ratio as if an infinite number of samples
were taken. This way, very thin geometry would cast con-
tinuous shadows, eliminating the noise artifacts suffered in
these experiments.

Our results indicate that a light-based approach may
be inferior to a simple data clustering algorithm when re-
ducing the number of samples for relighting. This outcome
seems unlikely given the nature of the minimization func-
tion given in equation 2. We believe that our rough ap-
proximation of the Monte Carlo equation is to blame, but
this begs the question of how to achieve a more accurate
approximation.

We observe no significant performance increase as the
number of random lights used in the Light Metric imple-
mentations increases. No matter how many lights are used,
K-means will still produce lower error, calling into ques-
tion why such a light-ignorant clustering method would
produce such impressive results.

The strength of the generalized clustering approach,
implemented here with K-Means, comes from the lack of
assumptions made about the scene. We originally hypothe-
sized that this aspect would be a weakness compared to the
Light Metric, since the evaluation of the scene with random
lighting provides our Light Metric with more information
by which to cluster. The additional information provided
by the random lights could still prove useful in some other
form, but our research shows that using it to cluster around
centroids chosen from samples that produce rendered val-
ues closest to the value of the entire pixel does not increase
performance.

Future avenues of research on this topic would in-
clude investigating other generalized clustering algorithms
such as C-Means as well as better ways to cluster samples
so that equation 1 is approximated more closely and effi-
ciently.
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Figure 8: Hair scene, 25 samples per pixel

Figure 9: Plant scene, 16 samples per pixel



Figure 10: Single trial from experiment 1 on hair scene. From left to right: A) original 25spp image, B) K-means reduced to 8spp, C) purely
sampled 8spp. Top row: with shadows. Bottom row: without shadows.

Figure 11: Images displaying error perpixel for single trial from experiment 1 on hair scene. From left to right: A) K-means reduced to
8spp with shadows, B) purely sampled 8spp with shadows, C) K-means reduced to 8spp without shadows, D) purely sampled 8spp without
shadows.



Figure 12: Single trial from experiment 1 on plant scene. From left to right: A) original 25spp image, B) K-means reduced to 8spp, C) purely
sampled 8spp. Top row: With shadows. Bottom row: without shadows.

Figure 13: Images displaying error perpixel for single trial from experiment 1 on plant scene. From left to right: A) K-means reduced to
8spp with shadows, B) purely sampled 8spp with shadows, C) K-means reduced to 8spp without shadows, D) purely sampled 8spp without
shadows.
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