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Two’s Company, Three’s a Crowd: Stable Family and
Threesome Roommates Problems⋆

Chien-Chung Huang

Dartmouth College
villars@cs.dartmouth.edu

Abstract. We investigate Knuth’s eleventh open question on stable matchings.
In the stable family problem, sets of women, men, and dogs aregiven, all of
whom state their preferences among the other two groups. Thegoal is to orga-
nize them into family units, so that no three of them have the incentive to desert
their assigned family members to form a new family. A similarproblem, called
the threesome roommates problem, assumes that a group of persons, each with
their preferences among the combinations of two others, areto be partitioned into
triples. Similarly, the goal is to make sure that no three persons want to break up
with their assigned roommates.
Ng and Hirschberg were the first to investigate these two problems. In their for-
mulation, each participant provides a strictly-ordered list of all combinations.
They proved that under this scheme, both problems are NP-complete. Their pa-
per reviewers pointed out that their reduction exploitsinconsistentpreference lists
and they wonder whether these two problems remain NP-complete if preferences
are required to be consistent. We answer in the affirmative.
In order to give these two problems a broader outlook, we alsoconsider the pos-
sibility that participants can express indifference, on the condition that the pref-
erence consistency has to be maintained. As an example, we propose a scheme in
which all participants submit two (or just one in the roommates case) lists ranking
the other two groups separately. The order of the combinations is decided by the
sum of their ordinal numbers. Combinations are tied when thesums are equal. By
introducing indifference, a hierarchy of stabilities can be defined. We prove that
all stability definitions lead to NP-completeness for existence of a stable match-
ing.

⋆ Dartmouth Computer Science Report 2007-598



1 Problem Definition

Knuth proposed twelve open questions on the stable matchingproblem [9]. The eleventh
question asks whether the well-studied stable marriage problem [4] can be generalized
to the case of three parties, women, men, and dogs. In this paper, we call this problem
the stable familyproblem and refer generically to all participants in this problem as
“players.” Roughly speaking, given sets of women, men, and dogs, all of whom state
their preferences among the other two groups, the goal is to organize them into family
units so that there is noblocking triple: three players each preferring one another to
their assigned family members. A problem in a similar vein, which we call thethree-
some roommatesproblem, assumes that3n students are to be assigned to the dormitory
bedrooms in some college. They state their preferences of the combinations of two other
persons. The goal is to partition them into sets of size 3. Such a partition (matching) is
said to be stable if no three persons each prefer the others totheir assigned roommates.

As Knuth does not specify any precise definition of “preference” and “blocking
triples,” one can conceive a number of ways to define the two problems. One possi-
ble formulation is that each player submits a strictly-ordered preference list, ranking
all possible combinations that she/he/it can get in a matching. We call such a scheme
strictly-ordered-complete-list (SOCL) scheme. In this setting, Ng and Hirschberg [10]
proved that both problems are NP-complete.

At the end of their paper, Ng and Hirschberg mentioned that their reviewers pointed
out their reduction allows preference to beinconsistent. For example, manm might
rank (w1, d1) higher than(w2, d1), but he also ranks(w2, d2) higher than(w1, d2). In
other words, he does not consistently prefer womanw1 over womanw2 (nor the other
way around). Independently, Subramanian [11] gave an alternative NP-completeness
proof for stable family, but his reduction also uses inconsistent lists.

The reviewers of Ng and Hirschberg wondered whether these two problems remain
NP-complete if inconsistency is disallowed. To answer thisopen question and to mo-
tivate some variants problems we will define, we introduce the notion ofpreference
posetsandsimple lists. In stable family, assuming that each player has two simple lists
in which two different types of players are ranked separately, a preference poset is a
product poset of the two simple lists. In such a poset, the combination (w1, d1) pre-
cedes another combination(w2, d2) only if w1 ranks at least as high asw2 andd1 at
least as high asd2 in the simple lists. If neither combination precedes the other, they
are incomparable. Similarly, in threesome roommates, the preference poset is the prod-
uct poset of the one simple list with itself. By this notion, the question raised by the
reviewers of Ng and Hirschberg can be rephrased as follows. Under theSOCL scheme,
if every player has to submit a preference list which is alinear extensionof her/his/its
preference poset, are the stable family and the threesome roommates still NP-complete?
We answer in the affirmative.

In an attempt to give these two problems a broader outlook, wethen allow players
to express indifference by giving full preference lists containing ties. In particular, to
capture the spirit of maintaining consistency in the preferences, we stipulate that the full
list must be arelaxed linear extensionof a preference poset: strict precedence order in
the poset has to be observed in the relaxed linear extension;only incomparable elements
in the poset can be tied.



We propose the following scheme to make the above concept concrete. Suppose that
a player submits two simple lists (or just one in the roommates case). We create a full
list, ranking the combinations based on the sums of their ordinal numbers. For example,
for manm, the combination of his rank-2 woman and rank-5 dog is as goodas that of
his rank-4 woman and rank-3 dog; while both of them are inferior the combination of
his top-ranked woman and his top-ranked dog. We call such a scheme precedence-by-
ordinal-number (PON) scheme. ThePON scheme produces full preference lists which
are relaxed linear extensions of preference posets. Also, one can envisage an even more
flexible scheme. For example, instead of giving “ranks,” theplayers can provide “rat-
ings” of other players. The order of the combinations can be decided by the sum of the
ratings; two combinations are tied only when the sums of their ratings are equivalent.
Setting theoretical concerns aside for a moment, the above schemes are probably more
practicable whenn is large, because a player only has to provide lists ofΘ(n) length,
while under theSOCL scheme, they have to give strictly ordered lists of sizeΘ(n2).

By allowing indifference, we can define 4 different types of blocking triples and,
based on them, build up a hierarchy of stabilities. (This hierarchy is similar to that
constructed by Irving in the context of 2-party stable matchings [7].)

– Weak Stable Matching: a blocking triple is one in which all three players of the
blocking triple strictly prefer the other two members in thetriple over their assigned
family members (roommates).

– Strong Stable Matching: a blocking triple is one in which at least two players of
the blocking triple strictly prefer the other two players inthe triple to their assigned
family members (roommates), while the remaining player canbe indifferent or also
strictly prefer the other two players in the triple.

– Super Stable Matching: a blocking triple is one in which at least one player of
the blocking triple strictly prefers the other two players in the triple to her/his/its
assigned family members (roommates), while the remaining players can be indif-
ferent or also strictly prefer the other two players in the triple.

– Ultra Stable Matching: a blocking triple is one in which all three players in the
triple are at least indifferent to the others.

Note that if ties are not allowed in the full preference lists, i.e., theSOCL scheme,
then blocking triples can only be of degree 3. Thus there can be only one type of sta-
bility. For presentational reason, in this case, we refer tothe stability under theSOCL
scheme as the weak stability.

Our Results and Paper Roadmap We will prove in the paper that, if full prefer-
ence lists are (relaxed) linear extensions of preference posets, the problem of deciding
whether weak/strong/super/ultra stable matchings exist is NP-complete in both the sta-
ble family problem and the threesome roommates problem. Ourreduction techniques
are inspired by Ng and Hirschberg’s, although the consistency requirement in the pref-
erences makes our construction more involved. In presenting our result, instead of di-
rectly answering the open question posed by Ng and Hirschberg’s reviewers by studying
weak-stability, we make a detour to first study strong/super/ultra stability. Introducing



them first helps us to explain our intuition behind the more complex reduction for the
former problem.

As is well-known, the stable marriage and the stable roommates problems can
be solved inO(n2) time, by the Gale-Shapley algorithm [4] and by the Irving algo-
rithm [6], respectively. Unfortunately, our results, along with Ng and Hirschberg and
Subramanian’s, indicate that attempts to efficiently solvethe stable matching problem
in generalized cases of three (or more) parties are unlikelyto be fruitful. This is not
surprising, as in theoretical computer science, the fine line betweenP andNP is often
drawn between the numbers two and three.

We organize the paper as follows. In Section 2, we present necessary notation and
some basic lemmas on the properties of posets; Section 3 proves the NP-completeness
of strong/super/ultra stable matchings in the stable family problem under thePON
scheme; Section 4 presents a reduction to transform a stablefamily problem to a three-
some roommate problem, thereby establishing the NP-completeness of strong/super/ultra
stable matchings in the latter; Section 5 considers theSOCL scheme in threesome
roommates and exhibits another reduction to show the NP-completeness of (weak) sta-
ble matching, thereby answering the open question posed by the anonymous reviewers
of Ng and Hirschberg. Section 6 concludes and discusses related issues.

2 Preliminaries

We useM, W , D to indicate the sets of men, women, and dogs in stable family;the
students in threesome roommates are denoted asR. In stable family,Lg(p) denotes the
simple list of playerp on the players of typeg ∈ {M,W ,D}. For exampleLW(m) is
the simple list of manm among womenW . In threesome roommates, we simply write
L(m), wherem ∈ R, dropping the subscript.

In general, we use the notation≻ to denote the precedence order (in either posets or
in linear lists). For example, supposing thatpi ranks higher thanpj in the listl, we write
pi ≻l pj . In a posetQ, two elementsqi, qj either one precedes the other, which we write
qi ≻Q qj or qj ≻Q qi, or they are incomparable, which is expressed asqi||Qqj . The
notation≻ is also used to express explicitly the order of players in thesimple lists. For
example, we writeL(p) = q ≻ r ≻ · · · to show that playerp prefers playerq to player
r. Note also that the notation· · · denotes the remaining players in arbitrary order.

We say a blocking triple is of degreei, if i players strictly prefer the triple while the
remaining3−i players are indifferent. Unless stated otherwise, in the article, when we
say some triple “blocks,” it is always a blocking triple of degree 3. We use the notation
rp(q) to indicate the rank ofq on playerp’s simple list.

A preference poset constructed from listsl1 andl2 is written asl1×l2. To be precise,
given listsl1 andl2 and the posetl1 × l2, supposing that{pi, pj}, {pi′ , pj′} ∈ l1 × l2,
then{pi, pj} ≻l1×l2 {pi′ , pj′} only if (1) pi ≻l1 pi′ , pj = pj′ , or (2) pj ≻l2 pj′ , pi =
pi′ , or (3) pi ≻l1 pi′ , pj ≻l2 pj′ . The notationπ(X) means an arbitrary permutation
of elements in the setX. Eπ(l1 × l2) is an arbitrary linear extension of the preference
posetl1 × l2.



In a poset, we call an element apivot if in the linear extension of the poset we will
create, this element precedes all its incomparable elements. Any element can be a pivot,
as will be shown by the lemma below.

Lemma 1. Given any posetQ and any elementq ∈ Q, there exists a linear extensionl
of Q such that ifq||Qq′, thenq ≻l q′.

The next lemma will be useful when we present the reduction for the threesome
roommates problem.

Lemma 2. Let l be a strictly-ordered list. Suppose thatl is decomposed into nonempty
contiguous sublists(l1, l2, · · · , lk) such that (1)

⋃k
i=1 li = l, (2) if e ≻li f , thene ≻l f ,

and (3) ife ∈ li, f ∈ lj , i < j, thene ≻l f . Then there exists a linear extension ofl × l
such that all combinations drawn from{li, lj} precede all pairs drawn from{li′ , lj′},
provided thati ≤ j, i′ ≤ j′ and one of the following conditions holds (1)i < i′, (2)
i = i′, j < j′.

The proofs of the two lemmas can be found in the appendix.

3 Reducing Three-dimensional Matching to Stable Family

In this section, we focus on the NP-completeness of strong stable matching under the
PON scheme. Similar results hold for super stable and ultra stable matchings by a
straightforward argument and will be discussed at the end ofthis section.

Our reduction is from the three-dimensional matching problem, one of the 21 NP-
complete problems in Karp’s seminal paper [8]. The problem instance is given in the
form Υ = (M,W ,D, T ), whereT ⊆ M × W × D. The goal is to decide whether
a perfect matchingM ⊆ T exists. This problem remains NP-complete even if every
player inM∪W ∪D appears exactly 2 or 3 times in the triples ofT [5].

We first explain the intuition behind our reduction. Supposing that manmi ap-
pears in three triples(mi, wia, dia), (mi, wib, dib), (mi, wic, dic) in T , we create three
dopplegangers, mi1, mi2, mi3 in the derived stable family problem instanceΥ ′. We
also create four garbage collectors,wg

i1, d
g
i1, w

g
i2, d

g
i2. Each dopplegangermij puts a

woman-dog pair, with whom manmi shares a triple, and the garbage collectors on top
of his two simple lists. The goal of our design is that in a stable matching, exactly one
doppleganger will be matched to a woman-dog pair with whommi shares a triple inT ,
while the other two dopplegangers will be matched to garbagecollectors. In the case
that there are only two triples inT containing manmi, we artificially make a copy of
one of the triples, making the total number of triples three,and treat him as described
above.

Now, we will refer to the set of dopplegangers asM1,M2,M3, the set of garbage
collectors asWg

1 ,Wg
2 ,Dg

1 ,Dg
2 and the original set of real women and real dogs asW ,D.

Collectively, we refer to them asX = M1∪M2∪M3∪Wg
1 ∪Wg

2 ∪W∪Dg
1∪Dg

2∪D.
To realize our plan, we introduce two gadgets. The first is three sets of “dummy

players”:m#
1 , w#

1 , d#
1 , m#

2 , w#
2 , d#

2 , m#
3 , w#

3 , d#
3 . Their preferences are such that they

must be matched to one another in a stable matching. To be precise, forj ∈ {1, 2, 3},



– LW(m#
j ) = w#

j ≻ · · · , LD(m#
j ) = d#

j ≻ · · ·

– LM(w#
j ) = m#

j ≻ · · · , LD(w#
j ) = d#

j ≻ · · ·

– LM(d#
j ) = m#

j ≻ · · · , LW(d#
j ) = w#

j ≻ · · ·

These nine dummy players are used to “pad” the preference lists of other players.
Their purpose will be clear shortly.

Another gadget we need is a set of “guard players” for each doppleganger inM1 ∪
M2∪M3. They will make sure that in a stable matching, a doppleganger mij will only
get a woman-dog pair with whommi shares a triple inT or those garbage collectors.
As an example, consider the dopplegangermi1. He has six associated guard players,
m♭1

i1 , w♭1
i1 , d♭1

i1 , m♭2
i1 , w♭2

i1 , d♭2
i1 and their preferences are summarized below:

– LW(mi1) = wg
i2 ≻ wg

i1 ≻ wia ≻ w♭1
i1 ≻ w♭2

i1 ≻ w#
1 ≻ w#

2 ≻ w#
3 ≻ · · · ,

LD(mi1) = dg
i2 ≻ dg

i1 ≻ dia ≻ d♭2
i1 ≻ d♭1

i1 ≻ d#
1 ≻ d#

2 ≻ d#
3 ≻ · · ·

– LW(m♭1
i1) = w♭1

i1 ≻ · · · , LD(m♭1
i1) = d♭1

i1 ≻ · · ·
LW(m♭2

i1) = w♭2
i1 ≻ · · · , LD(m♭2

i1) = d♭2
i1 ≻ · · ·

– LM(w♭1
i1 ) = mi1 ≻ m♭1

i1 ≻ · · · , LD(w♭1
i1 ) = d♭1

i1 ≻ d#
1 ≻ · · ·

LM(w♭2
i1 ) = mi1 ≻ m♭2

i1 ≻ · · · , LD(w♭2
i1 ) = d♭2

i1 ≻ d#
1 ≻ · · ·

– LM(d♭1
i1) = mi1 ≻ m♭1

i1 ≻ · · · , LW(d♭1
i1) = w♭1

i1 ≻ w#
1 ≻ · · ·

LM(d♭2
i1) = mi1 ≻ m♭2

i1 ≻ · · · , LW(d♭2
i1) = w♭2

i1 ≻ w#
1 ≻ · · ·

The following case analysis proves that, in a stable matching M ′, mi1 will get only
players from the set{wg

i1, w
g
i2, wia, dg

i1, d
g
i2, dia}.

– Suppose thatmi1 gets two players ranking beloww♭1
i1 andd♭1

i1 respectively. It can be
observed that for bothw♭1

i1 , d♭1
i1 , the best man ismi1. Therefore, they would prefer

mi1 and so does he them, inducing a blocking triple toM ′, a contradiction.
– Suppose thatmi1 gets a womanw ∈ {wia, wg

i1, w
g
i2} and a dogd ranking below

d♭1
i1 . In this case, we can be sure thatd cannot bed#

1 or d#
2 or d#

3 , since their
preferences guarantee that they will only be matched to other dummy players. So,
rmi1

(w)+rmi1
(d) ≥ 10, whilermi1

(w♭1
i1 )+rmi1

(d♭1
i1) = 9, causing(mi1, w

♭1
i1 , d♭1

i1)
to become a blocking triple. This example explains why we need to “pad” the sim-
ple lists ofmi1 with dummy players.
The case thatmi1 gets a dogd ∈ {dia, dg

i1, d
g
i2} and a womanw ranking lower than

w♭2
i1 follows analogus arguments;(mi1, w

g
i2, d

g
i2) will become a blocking triple.

– Suppose thatmi1 gets only one of the players from the set{w♭1
i1 , w♭2

i1 , d♭1
i1 , d

♭2
i1}.

Without loss of generality, we assume that(mi1, w
♭1
i1 , dφ), wheredφ 6= d♭1

i1 , is
part of the matching. For womanw♭1

i1 , dog dφ cannot be the dummy playerd#
1 .

Therefore,rw♭1
i1

(mi1) + rw♭1
i1

(dφ) ≥ 4 > 3 = rw♭1
i1

(m♭1
i1) + rw♭1

i1
(d♭1

i1). Similarly

for d♭1
i1 , rd♭1

i1
(m♭1

i1) + rd♭1
i1

(w♭1
i1 ) = 3, which is better than whatever combination

it can get. Therefore, we have that(m♭1
i1 , w♭1

i1 , d♭1
i1) constitutes a blocking triple to

M ′. This example shows why we need to pad the preference ofw♭1
i1 , d♭1

i1 (and also
w♭2

i1 , d♭2
i1) with dummy players.



– Suppose thatmi1 getsw♭1
i1 andd♭1

i1 . Note thatw♭1
i1 ≻ w♭2

i1 andd♭2
i1 ≻ d♭1

i1 . There-
fore, mi1 is indifferent to the combinations ofw♭2

i1 and d♭2
i1 , sincermi1

(w♭1
i1 ) +

rmi1
(d♭1

i1) = 9 = rmi1
(w♭2

i1 ) + rmi1
(d♭2

i1). Additionally, w♭2
i1 , d♭2

i1 strictly prefer
mi1. Hence(mi1, w

♭2
i1 , d♭2

i1) constitutes a blocking triple of degree 2 toM ′. This
explains why we need two sets of guard players to guarantee that the doppleganger
will “behave” in a stable matching.

Again, the case thatmi1 getsw♭2
i1 andd♭2

i1 follows analogus arguments.

The other two dopplegangersmi2, mi3 also have six associated guard players for
each; they, along with their associated guard players, havesimilar preferences to guar-
antee thatmi2 andmi3 will only get garbage collectors or the woman-dog pairs with
whom mi shares triples. The only difference in the lists is thatmi2 andmi3 replace
wia, dia with wib, dib, and withwic, dic, respectively, in their simple lists. For a sum-
mary of the simple lists of members in the setX, see Table 1. It should be noted
that wg

i1, d
g
i1 (and alsowg

i2, d
g
i2) rank the three dopplegangers in reverse order. This

trick guarantees that the dopplegangers will not form blocking triples with the garbage
collectors, defeating our purpose. For example, suppose(mi1, wia, dia) is part of the
matching, we want to avoid(mi1, w

g
i1, d

g
i1) to becoming a blocking triple. It can be

easily verified that ifwg
i1 anddg

i1 are matched tomi2 or mi3, such a blocking triple will
not be formed.

Table 1.The simple lists of all players in the setX = M1∪M2∪M3∪Wg
1 ∪Wg

2 ∪W∪Dg
1 ∪

Dg
2 ∪D. We assume that there exist three triples(mi, wia, dia), (mi, wib, dib), (mi, wic, dic) in

T .

Player Simple Lists
mi1 ∈ M1 LW(mi1)=w

g
i2 ≻ w

g
i1 ≻ wia ≻ w♭1

i1 ≻ w♭2
i1 ≻ w

#
1 ≻ w

#
2 ≻ w

#
3 ≻ · · ·

LD(mi1) = d
g
i2 ≻ d

g
i1 ≻ dia ≻ d♭2

i1 ≻ d♭1
i1 ≻ d

#
1 ≻ d

#
2 ≻ d

#
3 ≻ · · ·

mi2 ∈ M1 LW(mi2)=w
g
i2 ≻ w

g
i1 ≻ wib ≻ w♭1

i2 ≻ w♭2
i2 ≻ w

#
1 ≻ w

#
2 ≻ w

#
3 ≻ · · ·

LD(mi2) = d
g
i2 ≻ d

g
i1 ≻ dib ≻ d♭2

i2 ≻ d♭1
i2 ≻ d

#
1 ≻ d

#
2 ≻ d

#
3 ≻ · · ·

mi3 ∈ M1 LW(mi3)=w
g
i2 ≻ w

g
i1 ≻ wic ≻ w♭1

i3 ≻ w♭2
i3 ≻ w

#
1 ≻ w

#
2 ≻ w

#
3 ≻ · · ·

LD(mi3) = d
g
i2 ≻ d

g
i1 ≻ dic ≻ d♭2

i3 ≻ d♭1
i3 ≻ d

#
1 ≻ d

#
2 ≻ d

#
3 ≻ · · ·

w
g
i1 ∈ Wg

1 LM(wg
i1) = mi1 ≻ mi2 ≻ mi3 ≻ · · ·

LD(wg
i1) = d

g
i1 ≻ d

#
1 ≻ d

#
2 ≻ d

#
3 ≻ · · ·

d
g
i1 ∈ Dg

1 LM(dg
i1) = mi3 ≻ mi2 ≻ mi1 ≻ · · ·

LW(dg
i1) = w

g
i1 ≻ w

#
1 ≻ w

#
2 ≻ w

#
3 ≻ · · ·

w
g
i2 ∈ Wg

2 LM(wg
i2) = mi1 ≻ mi2 ≻ mi3 ≻ · · ·

LD(wg
i2) = d

g
i2 ≻ d

#
1 ≻ d

#
2 ≻ d

#
3 ≻ · · ·

d
g
i2 ∈ Dg

2 LM(dg
i2) = mi3 ≻ mi2 ≻ mi1 ≻ · · ·

LW(dg
i2) = w

g
i2 ≻ w

#
1 ≻ w

#
2 ≻ w

#
3 ≻ · · ·

w ∈ W LM(w) = · · ·
LD(w) = · · ·

d ∈ D LM(d) = · · ·
LW(d) = · · ·



Finally, garbage collectors also use dummy players to pad their simple lists, to
avoid the awkward situation that some doppleganger is matched to a real woman and a
garbage collector dog (or a real dog and a garbage collector woman). How this arrange-
ment works will be clear in the proof below.

Lemma 3. Suppose a stable matchingM ′ exists in the derived stable family problem
instanceΥ ′. The following facts hold inM ′:

– Fact A: The three sets of dummy players are matched to one another.
– Fact B: For each dopplegangermij ∈ M1 ∪ M2 ∪ M3, the ranks of his family

members are at least as high as 3 in his simple lists.
– Fact C: The six associated guard players of each doppleganger mij ∈ M1∪M2∪
M3 are matched to one another.

Proof. Fact A follows directly from construction. Fact B is true as we have argued in
the case analysis before. Fact C is true because if the guard players are not matched to
one another, they will blockM ′, unlessw♭1

ij , d♭1
ij or w♭2

ij , d♭2
ij are matched tomij in M ′,

but this is impossible because of Fact B. ⊓⊔

Lemma 4. Suppose a stable matchingM ′ exists in the derived stable family problem
instanceΥ ′. Consider the garbage collectorswg

i1, d
g
i1, w

g
i2, d

g
i2 created for manmi ∈

M. We must have thatwg
i1, d

g
i1 belong to the same triplet1 and thatwg

i2, d
g
i2 belong

to the same triplet2 in M ′. Moreover, int1 and t2, the man player must be one of the
dopplegangersmi1, mi2 andmi3.

Proof. We will prove this lemma by progressively establishing the following facts.

Fact D: wg
i2 anddg

i2 must belong to the same triplet2 in M .

Proof: For a contradiction, suppose thatwg
i2 anddg

i2 are in different triples inM ′.
We claim that(mi1, w

g
i2, d

g
i2) forms a blocking triple. It is obvious thatmi1 andwg

i2

prefer such a triple. Now let the man and woman partners ofdg
i2 bemφ andwφ 6= wg

i2;
then by Fact A in Lemma 3,rd

g
i2

(w) ≥ 5. We have thatrd
g
i2

(mi1) + rd
g
i2

(wg
i2) = 4 <

6 ≤ rd
g
i2

(mφ) + rd
g
i2

(wφ). Sodg
i2 will also prefermi1 andwg

i2, forming a blocking
triple with them toM ′. This proof also shows why we need to pad the preferences of
the garbage collectors.

Fact E: wg
i1 anddg

i1 must belong to the same triplet1 in M ′.

Proof: For a contradiction, suppose that(mφ1, wg
i1, d

φ1) and (mφ2, wφ2, dg
i1) are

triples inM ′. There exists at least one doppleganger in{mi1, mi2, mi3} preferring the
combination ofwg

i1 anddg
i1 (since at most one doppleganger can be matched towg

i2

anddg
i2.) Let such a doppleganger bemij . Then by Fact A in Lemma 3,rw

g
i1

(mij) +

rw
g
i1

(dg
i1) ≤ 4 < 6 ≤ rw

g
i1

(mφ1) + rw
g
i1

(dφ2); and similarly,rd
g
i1

(mij) + rd
g
i1

(wg
i1) ≤

4 < 6 ≤ rd
g
i1

(mφ2) + rd
g
i1

(wφ2), implying that(mij , w
g
i1, d

g
i1) blocksM .



Fact F: wg
i2 anddg

i2 must be matched to one of the dopplegangers inM , and so are
wg

i1 anddg
i1.

Proof: If wg
i2 anddg

i2 are not matched to a doppleganger ofmi, then any dopple-
gangermij will prefer the combination of them over his family members,causing
(mij , w

g
i2, d

g
i2) to block M . A similar argument applies to the case ofwg

i1 and dg
i1,

giving the lemma. ⊓⊔

By the previous two lemmas, we have established the correctness of the reduction
on one side.

Lemma 5. (Sufficiency) If there exists a stable matchingM ′ in the derived stable
family problem instanceΥ ′, there exists a perfect matchingM in the original three-
dimensional matching instanceΥ .

To show the necessity, we need to prove one more lemma.

Lemma 6. In a matchingM ′ in the derived stable family problem instanceΥ ′, sup-
pose that dummy players are matched to one another. Suppose further that the garbage
collectors ofmi are matched to two of the dopplegangers, while the remainingdopple-
gangermij is matched to a real woman and a real dog with whommi shares a triple
in T in the original three-dimensional matching instanceΥ . Then there is no blocking
triple in which the dopplegangersmi1, mi2, andmi3 are involved.

Proof. We assume that(mi1, w
g
i2, d

g
i2), (mi2, w

g
i1, d

g
i1), (mi3, wic, dic) ∈ M ′. Other

cases follow analogous arguments. We claim that there does not exist a blocking triple of
the form (mij , w

g
i1, d

φ1), (mij , w
g
i2, d

φ2), (mij , w
φ3, dg

i1), and(mij , w
φ4, dg

i2) where
dφ1 6= dg

i1, dφ2 6= dg
i2, wφ3 6= wg

i1, andwφ4 6= wg
i2. We only argue the first case. Since

dφ1 6∈ {d#
1 , d#

2 , d#
3 }, we haverw

g
i1

(dφ1) ≥ 5 > 3 = rw
g
i1

(dg
i1) + rw

g
i1

(mi2). There-
fore,wg

i1 has no incentive to join the combination ofmij anddφ1. So we only need to
consider the three following potential blocking triples:(mi2, w

g
i2, d

g
i2),

(mi3, w
g
i2, d

g
i2), (mi3, w

g
i1, d

g
i1). It can be easily verified that they do not blockM ′ be-

cause the orders of the three dopplegangers in the simple lists of wg
i1 anddg

i1 (and also
wg

i2 anddg
i2) are reversed. ⊓⊔

Lemma 7. (Necessity) Suppose that there is a perfect matchingM in the original three-
dimensional matching instanceΥ . There also exists a stable matchingM ′ in the derived
stable family problem instanceΥ ′.

Proof. We build a stable matchingM ′ in Υ ′ as follows. Let the dummy players
{m#

j , w#
j , d#

j }, 1 ≤ j ≤ 3, be matched to one another. Given any dopplegangermij ,

let his guard players{m♭1
ij , w♭1

ij , d♭1
ij }, {m

♭2
ij , w♭2

ij , d♭2
ij } be matched to one another as

well. Furthermore, suppose that(mi, wix, dix) ∈ M . Let the doppleganger who lists
wix anddix above his guard players be matched towix anddix, while the other two
dopplegangers be matched to the garbage collectors. By thisconstruction, it can be seen
that none of the guard players and dummy players will be part of a blocking triple. This,
combined with Lemma 6, completes the proof. ⊓⊔



Suppose that in the given three-dimensional matching instanceΥ , |M| = |W| =
|D| = n. Then in the derived instanceΥ ′, we use in all3n dopplegangers,18n guard
players,4n garbage collectors,2n real women and real dogs, and 9 dummy players.
Their preferences (in the form of simple lists) can be generated inO(n2) time. There-
fore, this is a polynomial-time reduction. Also, given any matching, we definitely can
check its stability inO(n3) time. Combining the two facts with Lemma 5 and Lemma 7,
we can conclude:

Theorem 1. It is NP-complete to decide whether strong stable matchingsexist under
thePON scheme. Therefore, the question of deciding existence of strong stable matching
is also NP-complete when the full preference lists are consistent, i.e., when they are
relaxed linear extensions of preference posets.

Super Stability and Ultra Stability It can be observed that throughout the proof, all
arguments involving blocking triples use those of degree 3.The only exception is the
occasion that we argue that a doppleganger cannot be matchedto his guard players in
a stable matching. To recall, supposing that(mij , w

♭1
ij , d♭1

ij ) is part of a matching, then
(mij , w

♭2
ij , d♭2

ij ) is a blocking triple of degree 2. (Or if the latter is part of the match-
ing, the former is a blocking triple of degree 2). Therefore,our reduction only uses
blocking triples of degree 2 or 3; both are still blocking triples with regard to super
stability and ultra stability. Moreover, when we argue the strong-stability of matchings
in the reduction, we never allow blocking triples of degree 0or degree 1 to exist. There-
fore, essentially, our reduction has also established the NP-completeness of super stable
matchings and ultra stable matchings.

4 Threesome Roommates with Relaxed Linear Extensions of
Preference Posets

In this section, we exhibit a reduction of stable family to threesome roommates, thereby
establishing the NP-completeness of strong/super/ultra stable matchings in the latter
problem. Instead of thePON scheme, we use the more general scheme in which any
relaxed linear extension of preference posets is allowed. We choose to use this scheme
because the involved reduction technique has a different flavor. Nonetheless, we do have
another reduction for thePON scheme, whose idea is sketched in the appendix.

Let an instance of stable family problem beΥ = (M,W ,D, Ψ), whereΨ represents
the preferences of the players inM ∪ W ∪ D. We create an instance of threesome
roommatesΥ ′ = (R′, Ψ ′) by copying all players inM ∪ W ∪ D into R′. Regarding
the preferences inΨ ′, we first build up the simple lists of all players.

– Supposem ∈ M, L(m) = LW(m) ≻ LD(m) ≻ π(M−{m}).
– Supposew ∈ W , L(w) = LD(w) ≻ LM(w) ≻ π(W − {w}).
– Supposed ∈ D, L(d) = LM(d) ≻ LW(d) ≻ π(D − {d}).

In words, a man lists all women and then all dogs, based respectively on their origi-
nal order in his simple lists inΨ . He then attaches other fellow men in arbitrary order to
the end of his list. Women and dogs have analogous arrangements in their simple lists.



Having constructed the simple lists, we still need to build consistent relaxed linear
extensions. By Lemma 2, we can construct them as follows:

– Considerm ∈ M and assume thatW = LW(m), D = LD(m), N = π(M −
{m}). His relaxed linear extension is:Eπ(W × W ) ≻ X ≻ Eπ(W × N) ≻
Eπ(D×D) ≻ Eπ(D×N) ≻ Eπ(N ×N), whereX is the original relaxed linear
extension of manm’s preference poset given inΨ .

– Considerw ∈ W and assume thatD = LD(w), N = LM(w), W = π(W−{w}).
Her relaxed linear extension is:Eπ(D×D) ≻ Y ≻ Eπ(D×W ) ≻ Eπ(N ×N) ≻
Eπ(N × W ) ≻ Eπ(W × W ), whereY is the original relaxed linear extension of
womanw’s preference poset given inΨ .

– Considerd ∈ D and assume thatN = LM(d), W = LW(d), D = π(D−{d}). Its
relaxed linear extension is:Eπ(N × N) ≻ Z ≻ Eπ(N × D) ≻ Eπ(W × W ) ≻
Eπ(W × D) ≻ Eπ(D × D), whereZ is the original relaxed linear extension of
dogd’s preference poset given inΨ .

To prove that the reductionΥ to Υ ′ is valid, we will rely heavily on the following
technical lemma.

Lemma 8. In the derived instanceΥ ′, if a stable matchingM ′ exists, every triple in
M ′ must contain a man, a woman, and a dog. Moreover, suppose thatin a matching
M ′′ in Υ ′ in which each player gets two other types of players as roommates, then a
blocking triple cannot contain two (or three) players of thesame type.

Proof. For the first part, we argue case by case.

1. If {m, wi, wj} ∈ M ′, there exists another manm′ who can get neither a woman-
woman combination nor a woman-dog combination. By construction, m′ would
prefer any woman-dog combination to his assigned roommatesin M ′. Similarly,
there exists a dogd′ who gets another fellow dog inM ′. Such a dog would pre-
fer a man-woman combination to its assigned roommates inM ′. Finally, woman
wi andwj would prefer dog-man combination. Therefore, both{m′, wi, d

′} and
{m′, wj , d

′} blockM ′, a contradiction.
2. If {m, mi, mj} ∈ M ′, then there exists a womanw who gets a fellow woman in

M ′ and a dogd who gets a fellow dog inM ′. Thus, womanw would prefer a dog-
man combination and dogd would prefer a man-woman combination. Therefore,
{m,w, d}, {mi, w, d}, {mj , w, d} blockM ′, a contradiction.

3. All other cases can be argued similarly.

For the second part, suppose that matchingM ′′ has the stated property. Given any
manm, by our construction, if there is a blocking triple containingm and in which there
are two players of the same type, the only possibility of a blocking triple is{m, wi, wj}.
However, neitherwi norwj would prefer such a triple, because in our construction, for
a woman, a dog-man combination is better than a man-woman combination. The other
potential blocking triples not involving men follow analogous arguments, thus giving
us the lemma. ⊓⊔

It is straightforward to use Lemma 8 to prove our reduction isa valid one.



Theorem 2. Deciding whether strong/super/ultra stable matchings exist in the three-
some roommates problem is NP-complete when full preferencelists are consistent, i.e.,
when they are relaxed linear extension of preference posets.

5 Weak Stability of Threesome Roommates with Strictly-ordered
Consistent Preference Lists

In this section, we investigate the complexity of the threesome roommates problem un-
der theSOCL scheme, with the proviso that full preference lists must be strict linear
extensions of preference posets. We prove that under this scheme, both the the stable
family problem and the threesome roommates problem are NP-complete, thereby an-
swering the open question posed by the anonymous reviewers of Ng and Hirschberg. We
could have shown the stable family problem is NP-complete and used this fact and the
reduction given in the previous section to show threesome roommates is NP-complete.
However, our reduction for the former problem needs to rely on a rather complicated
gadget. On the other hand, using a similar idea, the latter problem has a simpler gad-
get, thus we present a direct reduction for the latter. For the former problem, a formal
NP-completeness proof can be found in the appendix.

The basic idea is similar to the one we used in Section 3. Suppose that the given
three-dimensional matching instance isΥ = (M,W ,D, T ), whereT ⊆ M×W ×D,
moreover, every element inM∪W∪D appears 2 or 3 times inT . We will transform it
into a threesome roommates instanceΥ ′ = (R′, Ψ ′). We also pre-process the instance
Υ so that every man inM appears in exactly three triples ofT .

Every manmi will have three dopplegangersmi1, mi2,mi3, two womenwg
i1, w

g
i2

and two dogsdg
i1, d

g
i2 as garbage collectors. Supposing that(mi, wix, dix) is one of the

triples given inT , a dopplegangermij in his simple list rankswg
i2, d

g
i2, w

g
i1, d

g
i1, wix, dix

the highest, followed by his associated guard players. The key difference is how to
design the guard players’ preferences so thatmij will not get any players ranking below
them (or among them) in a stable matching.

We introduce the following gadget. LetΥ †
ij be a roommate instance of only 4 stu-

dents,m♭3
ij , m♭4

ij , m♭5
ij , andm♭6

ij , such that no stable matchings exists inΥ †
ij . An example

of such an instance can be found in Table 3 in the appendix.
Given such an instanceΥ †

ij , if m♭3
ij is “removed” fromΥ †

ij , we surely have a stable

matching,{{m♭4
ij , m♭5

ij , m♭6
ij }}. On the other hand, ifm♭3

ij “exists,” then any matching

of Υ †
ij will have at least one blocking triple. Our plan is to embed the instanceΥ †

ij into

the derived instanceΥ ′ so that ifm♭3
ij is not removed, then a blocking triple involving

three members from the set{m♭3
ij , m♭4

ij , m♭5
ij ,m♭6

ij } arises.

We now explain more precisely what we mean by removingm♭3
ij and embedding

Υ †
ij into Υ ′. First, we need two more guard playersm♭1

ij andm♭2
ij to make sure thatmij

will get two players from the set{wg2
ij , wg1

ij , wix, dg2
ij , dg1

ij , dix}. This can be achived
by the simple lists and proper choices of pivots. Recall thata pivot is an element that
dominates all its incomparable elements in the constructedlinear extension.



– L(mij) = wg
i2 ≻ dg

i2 ≻ wg
i1 ≻ dg

i1 ≻ wix ≻ dix ≻ m♭1
ij ≻ m♭2

ij ≻ · · ·

(pivot: {m♭1
ij , m♭2

ij })
– L(m♭1

ij ) = mij ≻ m♭2
ij ≻ m♭3

ij ≻ · · ·

(pivot: {m♭2
ij , m♭3

ij })
– L(m♭2

ij ) = mij ≻ m♭1
ij ≻ m♭3

ij ≻ · · ·

(pivot: {m♭1
ij , m♭3

ij })
– L(m♭3

ij ) = m♭1
ij ≻ m♭2

ij ≻ X3 ≻ · · · , whereX3 is the original simple list ofm♭3
ij in

the instanceΥ †
ij . The linear extension of posetL(m♭3

ij ) × L(m♭3
ij ) is {m♭1

ij , m♭2
ij } ≻

Eπ((m♭1
ij ≻ m♭2

ij )×X3) ≻ Eπ((m♭1
ij ≻ m♭2

ij )× (L(m♭3
ij )−{X3∪m♭1

ij ∪m♭2
ij })) ≻

Eπ(X3 × X3) ≻ Eπ(X3 × (L(m♭3
ij ) − {X3 ∪ m♭1

ij ∪ m♭2
ij })) ≻ Eπ((L(m♭3

ij ) −

{X3 ∪ m♭1
ij ∪ m♭2

ij }) × (L(m♭3
ij ) − {X3 ∪ m♭1

ij ∪ m♭2
ij })). (Such an extension is

allowed because of Lemma 2.)
– L(m♭4

ij ) = X4 ≻ · · · , L(m♭5
ij ) = X5 ≻ · · · , L(m♭6

ij ) = X6 ≻ · · · , where

X4, X5, X6 are the original simple lists ofm♭4
ij , m♭5

ij , andm♭6
ij in Υ †

ij , respectively.

The linear extension ofL(m♭4
ij )×L(m♭4

ij ) is Eπ(X4×X4) ≻ · · · ; similarly, the lin-
ear extension ofL(m♭5

ij )×L(m♭5
ij ) andL(m♭6

ij )×L(m♭6
ij ) areEπ(X5×X5) ≻ · · ·

andEπ(X6 × X6) ≻ · · · , respectively. (Such extensions are allowed because of
Lemma 2.)

Ideally, in a stable matching ofΥ ′, mij will be matched to two players ranking
higher thanm♭1

ij , and{m♭1
ij ,m♭2

ij , m♭3
ij } and{m♭4

ij , m♭5
ij , m♭6

ij } will be part of the match-

ing. Then,m♭3
ij in this sense is “removed” fromΥ †

ij ; because{m♭1
ij , m♭2

ij } are his favorite

roommates, he has no incentive to leave them to go for membersin {m♭4
ij , m♭5

ij , m♭6
ij }.

On the other hand, ifm♭3
ij cannot get{m♭1

ij , m♭2
ij } in a matching, thenm♭3

ij will be
matched to members from the set{m♭4

ij , m♭5
ij , m♭6

ij } and/or some other students rank-

ing below them, disrupting the stability of the embedded instanceΥ †
ij , and hence also

Υ ′. This intuition is captured by the following lemma.

Lemma 9. In a matchingM ′ in Υ ′, if the guard playerm♭3
ij is not matched to{m♭1

ij , m♭2
ij },

a blocking triple containing three members from the set{mij , m
♭1
ij , m♭2

ij , m♭3
ij , m♭4

ij ,m♭5
ij , m♭6

ij }

blocksM ′. Conversely, if{m♭1
ij ,m♭2

ij , m♭3
ij }, {m♭4

ij , m♭5
ij , m♭6

ij } ∈ M , then there is no
blocking triple involving any of the six guard players ofmij .

Proof. We first consider the casem♭3
ij gets one of{m♭1

ij , m♭2
ij } in M ′. Without loss of

generality, suppose{m♭1
ij , m♭3

ij , mφ} ∈ M ′. There are two subcases. (1) Ifmφ = mij ,
then{mij , m

♭1
ij ,m♭2

ij } blocksM ′; (2) if mφ 6= mij , then{m♭1
ij , m♭2

ij , m♭3
ij } blocksM ′.

So we have three more cases. (1)m♭3
ij is matched to a student from the set{m♭4

ij , m♭5
ij , m♭6

ij }

and another student not from the set{m♭1
ij , m♭2

ij ,m♭4
ij , m♭5

ij , m♭6
ij }. (2) m♭3

ij is matched
two students neither of whom is in the set{m♭1

ij , m♭2
ij , m♭4

ij , m♭5
ij , m♭6

ij }. (3)m♭3
ij is matched

to two students from the set{m♭4
ij , m♭5

ij ,m♭6
ij }.

– In the first case, by our construction, all four persons{m♭3
ij , m♭4

ij , m♭5
ij , m♭6

ij } prefer
all the combinations of one another to their assigned roommate. So, any three of
them will constitute a blocking triple toM ′.



– In the second case and the third case, three students from the{m♭3
ij , m♭4

ij , m♭5
ij ,m♭6

ij }
are matched to one another. The situation is identical to that we have a matching
M ′

ij in the instanceΥij (in which the fourth person is left unmatched). SinceΥij

does not allow stable matching, a blocking triple must existto blockM ′
ij . By our

construction, such a blocking triple blocksM ′ as well. This completes the first part
of the lemma.

The second part of the lemma follows from the fact that{m♭1
ij , m♭2

ij } dominates all
other elements inm♭3

ij ’s preference posetL(m♭3
ij )×L(m♭3

ij ), hencem♭3
ij will not form a

blocking triple with anyone else. Finally, sincem♭3
ij will not be part of a blocking triple,

the three guard playersm♭4
ij , m♭5

ij , m♭6
ij find one another ranks the highest in their simple

lists (hence also in their full preference lists). They willnot form a blocking triple with
one another, nor with other players. This completes the proof. ⊓⊔

Now we will explain how the guard players guarantee that a dopplegangermij will
only get players ranking higher than them in a stable matching in Υ ′.

Lemma 10. In a stable matchingM ′ of Υ ′, mij must have two players as room-
mates ranking higher thanm♭1

ij in his simple listL(mij). Moreover, the two triples

{m♭1
ij ,m♭2

ij , m♭3
ij } and{m♭4

ij , m♭5
ij , m♭6

ij } must be part of the stable matchingM ′.

Proof. The following case analysis shows thatmij must get two roommates ranking
higher thanm♭1

ij .

– If mij gets{mφ1, mφ2} and (at least) one of them ranks lower thanm♭2
ij , then either

{m♭1
ij , m♭2

ij }||L(mij)×L(mij){m
φ1, mφ2}, or{m♭1

ij , m♭2
ij } ≻L(mij)×L(mij) {m

φ1, mφ2}.
For both cases, since{m♭1

ij , m♭2
ij } is the pivot in the linear extension ofL(mij) ×

L(mij), mij will prefer the combination{m♭1
ij , m♭2

ij }. Similarly, for m♭1
ij andm♭2

ij ,
the combination ofmij and the other ranks the highest in the linear extension of
their preference posets. Therefore,{mij , m

♭1
ij , m♭2

ij } blocksM ′.

– Suppose thatmij gets only one ofm♭1
ij andm♭2

ij as roommate inM ′. We argue
separately.

• Suppose that{mij ,m
♭1
ij , m♭3

ij } ∈ M ′ or {mij , m
♭2
ij , m♭3

ij } ∈ M ′, then
{mij , m

♭1
ij , m♭2

ij } blocksM ′, a contradiction.

• Suppose{mij ,m
♭1
ij , mφ

ij} ∈ M ′ or {mij ,m
♭2
ij , mφ

ij} ∈ M ′, wheremφ
ij 6=

m♭3
ij , then because{m♭2

ij , m♭3
ij } and {m♭1

ij ,m♭3
ij } are the pivots inL(m♭1

ij ) ×

L(m♭1
ij ) and inL(m♭2

ij ) × L(m♭2
ij ) respectively,{m♭1

ij , m♭2
ij , m♭3

ij } blocksM ′, a
contradiction.

– Suppose{mij , m
♭1
ij , m♭2

ij } ∈ M ′, then by Lemma 9, a blocking triple containing
three students from{m♭3

ij , m♭4
ij , m♭5

ij , m♭6
ij } blocksM ′, again a contradiction.

By the above discussion, inM ′, mij must get both roommates ranking higher than
m♭1

ij . Finally, if {m♭1
ij , m♭2

ij , m♭3
ij } 6∈ M ′, they form a blocking triple; similarly, if

{m♭4
ij ,m♭5

ij , m♭6
ij } 6∈ M ′, they blockM ′. So we have the lemma. ⊓⊔



We summarize the preferences in Table 2. Note that this time the garbage collectors
also need their own guard players. Letp ∈ Wg

1 ∪ Wg
2 ∪ Dg

1 ∪ Dg
2 , then her/its three

guard playersp♭1, p♭2, p♭3 have the simple lists as follows:

– L(p♭1) = p ≻ p♭2 ≻ p♭3 ≻ · · · (pivot: {p♭2, p♭3})
– L(p♭2) = p ≻ p♭1 ≻ p♭3 ≻ · · · (pivot: {p♭1, p♭3})
– L(p♭3) = p♭1 ≻ p♭2 ≻ · · ·

Table 2.The preference lists of all players in the setX = M1∪M2∪M3∪W
g
1∪W

g
2 ∪W∪Dg

1∪
Dg

2 ∪D. We assume that there exist three triples(mi, wia, dia), (mi, wib, dib), (mi, wic, dic) in
T . Moreover, for any real womanw ∈ W and real dogd ∈ D, letB be the part of the simple list
explicitly spelt out in the table (excluding the “· · · ” part), the linear extension of her/its preference
poset isEπ(B × B) ≻ · · ·

Player Simple Lists Pivot
mi1 ∈ M1 L(mi1)=w

g
i2 ≻ d

g
i2 ≻ w

g
i1 ≻ d

g
i1 ≻ wia ≻ dia ≻ m♭1

i1 ≻ m♭2
i1 ≻ · · · {m♭1

i1 , m♭2
i1}

mi2 ∈ M1 L(mi2)=w
g
i2 ≻ d

g
i2 ≻ w

g
i1 ≻ d

g
i1 ≻ wib ≻ dib ≻ m♭1

i2 ≻ m♭2
i2 ≻ · · · {m♭1

i2 , m♭2
i2}

mi3 ∈ M1 L(mi3)=w
g
i2 ≻ d

g
i2 ≻ w

g
i1 ≻ d

g
i1 ≻ wic ≻ dic ≻ m♭1

i3 ≻ m♭2
i3 ≻ · · · {m♭1

i3 , m♭2
i3}

w
g
i1 ∈ Wg

1 L(wg
i1) = d

g
i1 ≻ mi3 ≻ mi2 ≻ mi1 ≻ w

g,♭1
i1 ≻ w

g,♭2
i1 ≻ · · · {wg,♭1

i1 , w
g,♭2
i1 }

w
g
i2 ∈ Wg

2 L(wg
i2) = d

g
i2 ≻ mi3 ≻ mi2 ≻ mi1 ≻ w

g,♭1
i2 ≻ w

g,♭2
i2 ≻ · · · {wg,♭1

i2 , w
g,♭2
i2 }

d
g
i1 ∈ Dg

1 L(dg
i1) = w

g
i1 ≻ mi1 ≻ mi2 ≻ mi3 ≻ d

g,♭1
i1 ≻ d

g,♭2
i1 ≻ · · · {dg,♭1

i1 , d
g,♭2
i1 }

d
g
i2 ∈ Dg

2 L(dg
i2) = w

g
i2 ≻ mi1 ≻ mi2 ≻ mi3 ≻ d

g,♭1
i2 ≻ d

g,♭2
i2 ≻ · · · {dg,♭1

i2 , d
g,♭2
i2 }

w ∈ W L(w) = π({d|(∗, w, d) ∈ T }) ≻ π({mij |(mi, w, ∗) ∈ T , w ≻mij m♭1
ij}) ≻≻ · · ·

d ∈ D L(d) = π({mij |(mi, ∗, d) ∈ T , d ≻mij m♭1
ij }) ≻ π({w|(∗, w, d) ∈ T }) ≻ · · ·

Lemma 11. Suppose a stable matchingM ′ exists in the derived threesome roommates
instanceΥ ′. Consider the garbage collectorswg

i1, w
g
i2, d

g
i1, d

g
i2 created for manmi ∈

M. Womanwg
i1 and dogdg

i1 must belong to the same triplet1 ∈ M ′ and womanwg
i2

and dogdg
i2 must belong to the same triplet2 ∈ M ′. Moreover, int1 and t2, the third

roommate must be one of the dopplegangersmi1, mi2, andmi3.

Proof. We prove this by establishing the following facts.

Fact G: The garbage collectorswg
i1, w

g
i2, d

g
i1, d

g
i2 never get two men as roommates

in the stable matchingM ′.

Proof: We argue the case ofwg
i1 with two men as roommates; the remaining cases

follow analogous arguments. By Lemma 10, the possible roommates ofwg
i1 can only

be from the set{dg
i1, d

g
i2, mi1, mi2,

mi3}. Suppose{wg
i1, mij , mij′} ∈ M ′. Thenmij has a roommate ranking lower than

m♭1
ij , contradicting Lemma 10.

Fact H: wg
i1 anddg

i2 cannot belong to a triple inM ′; similarly, wg
i2 anddg

i1 cannot
belong to a triple inM ′. Moreover, none of the garbage collectors can get a real woman



w ∈ W and a real dogd ∈ D in M ′

Proof: For a contradiction, suppose thatwg
i1 anddg

i2 belong to the same triple. We
claim that{wg

i1, w
g,♭1
i1 , wg,♭2

i1 } blocksM ′, because of the fact that{wg,♭1
i1 , wg,♭2

i1 } is the
pivot in wg

i1’s preference poset. The other cases follows analogous argument.

By Fact G and Fact H, we only need to consider the remaining possibility that in the
triple t2 = {wg

i2, d
g
i2, p}, where the third roommatep 6∈ {mi1, mi2, mi3}. In this case,

{wg
i2, d

g
2, mi1} blocksM ′. The third roommate in the triplet1 can be argued similarly,

and so we have the lemma. ⊓⊔

By the Lemma 10 and Lemma 11, we establish

Lemma 12. (Sufficiency) If there exists a stable matchingM ′ in the derived three-
some roommates instanceΥ ′, there exists a perfect matchingM in the original three-
dimensional matching instanceΥ .

We need another lemma to show the necessity.

Lemma 13. In a matchingM ′ in the derived threesome roommates problemΥ ′, sup-
pose that the garbage collectors ofmi are matched to two of the dopplegangers of
mi, while the remaining dopplegangermij is matched to a real woman and a real
dog with whommi shares a triple inT in the original three-dimensional matching
instanceΥ . Then there is no blocking triple involving any player in theset X =
M1 ∪M2 ∪M3 ∪Wg

1 ∪Wg
2 ∪W ∪Dg

1 ∪Dg
2 ∪ D.

Proof. We assume that{{mi1, w
g
i2, d

g
i2}, {mi2, w

g
i1, d

g
i1}, {mi3, wic, dic}} ⊂ M . Other

cases follow analogous arguments.

Fact I: There does not exist a blocking triple of the form:{mij , w
g
i1, p

φ1}, {mij , w
g
i2, p

φ2},
{mij , d

g
i1, p

φ3} and {mij , d
g
i2, p

φ4}, wherepφ1 6= dg
i1, pφ2 6= dg

i2, pφ3 6= wg
i1, and

pφ4 6= wg
i2.

Proof: We only discuss the first case. By construction, supposemij prefers{wg
i1, p

φ1},
thenpφ1 must be in the set of{wg

i2, d
g
i1, d

g
i2}. In any of the cases,pφ1 prefers his as-

signed roommates to the combination of{mij , w
g
i1}. This can be observed from the fact

thatwg
i1 always ranks belowpφ1,♭2 (pφ1’s guard player). So,{mij , w

g
i1, p

φ1} cannot be
a blocking triple.

Fact J: The following triples cannot blockM ′: {mi2, w
g
i2, d

g
i2}, {mi3, w

g
i2, d

g
i2},

{mi3, w
g
i1, d

g
i1}.

Proof: This can be observed from the fact that the orders of the three dopplegangers
in the simple lists ofwg

i1 anddg
i1 (and also ofwg

i2, d
g
i2) are reversed.

Note that by Fact I and Fact J, we have ruled out the possibility that a blocking triple
involves the dopplegangers or the garbage collectors.



Fact K: There does not exist a blocking triple involving womanw ∈ W or a real
dogd ∈ D.

Proof: We only consider the first case. By construction, if womanw prefers some
other combination, it can be only two real dogsdφ5 anddφ6, or a real dogdφ7 and a
dopplegangermφ8. In the first case,dφ6 will not prefer the combination of{w, dφ5}, be-
cause of the way we construct the linear extension of its preference poset. So{w, dφ5, dφ6}
cannot be a blocking triple. In the second case,mφ8, being a doppleganger, by Fact I
and Fact J, he cannot be part of a blocking triple. So{mφ8, w, dφ7} cannot be a block-
ing triple.

Combining Fact I, J and K, we prove the lemma. ⊓⊔

Lemma 14. (Necessity) Suppose there is a perfect matchingM in the original three-
dimensional matching instanceΥ . Then there also exists a stable matchingM ′ in the
derived threesome roommates instanceΥ ′.

Proof. We build a stable matchingM ′ in the derived threesome roommates instanceΥ ′

based onM .
Suppose that(mi, wix, dix) ∈ M . Let the doppleganger who listswix anddix above

his guard players to be matched towix anddix, while the other two dopplegangers be
matched to the garbage collectors. Let the three guard players of the garbage collectors
be matched to one another as well. And finally, for the six guard players of a dopple-
gangermij , let {m♭1

ij , m♭2
ij , m♭3

ij } be matched to one another; also{m♭4
ij , m♭5

ij ,m♭6
ij }

should be matched to one another.
By this construction and Lemma 10, it can be seen that none of the guard players

will be part of blocking triples. This, combined with Lemma 13, completes the proof.
⊓⊔

Letting n = |M| = |W| = |D|, we use in all3n dopplegangers,4n garbage
collectors,30n guard players,2n real women and real dogs. Therefore, the reduction
can be done in polynomial time. Checking whether a matching is stable also can be
done inO(n3) time. This, combined with Lemma 12 and Lemma 14, gives us the proof
(the threesome roommates part) of Theorem 3.

Theorem 3. It is NP-complete to decide whether weak stable matchings exist under
theSOCL scheme, for both the stable family and the threesome roommates problems.
Hence, it is also NP-complete to decide whether a weak stablematching exists when
consistent preferences are allowed to contain ties: i.e. the full preferences are relaxed
linear extensions of preference posets.

6 Conclusion and Related Problems

In this paper, we answer the open question of whether the stable family and the three-
some roommates problems are NP-complete if all players haveto provide consistent
preference lists. We introduce a scheme in which players canexpress indifference on



the precondition that their preferences have to be consistent. Under this scheme, a vari-
ety of stabilities are defined and we prove that all lead to NP-complete problems.

Since we have proved that the general cases of stable family and threesome room-
mates are NP-complete, a natural question to ask is whether there are special cases that
allow polynomial time solutions. Actually, a variant of thestable family problem that
can be solved efficiently does exist.

Consider the following scheme. Every player submits two simple lists. A man eval-
uates combinations first by the woman he gets, then by the dog;a woman first by the
man she gets, then by the dog; a dog first by the man it gets, thenby the woman. (Note
the asymmetry). It is not hard to see that we can apply the Gale-Shapley algorithm twice
to get a weak stable matching: letting the men propose to women and then propose to
dogs. Women and dogs make the decision of acceptance or rejection based on their
simple lists of men [2]. Merging the two matchings will give astable matching in the
stable family problem.

However, even a little twist can make the above scheme hard tosolve. Suppose a
man decides first based on the woman he gets and then the dog; a woman first based on
the dog she gets and then on the man; a dog decides first based onthe man it gets then
on the woman. The Gale-Shapley algorithm no longer works [1].

Interestingly, the above scheme is reminiscent of another open problem allegedly
originated by Knuth. Suppose that a man has only a simple listfor women; a woman
has only a simple list for dogs; a dog has only a simple list formen. This problem
is calledcircular stable matching. Its complexity is still unknown. Some interesting
observations on this problem can be found in [1, 3].
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A Proofs of Lemmas in Section 2

Lemma 1 Given any posetQ and any elementq ∈ Q. there exists a linear extensionl
of Q such that ifq||Qq′, thenq ≻l q′.

Proof. We construct a graph whose nodes represent elements ofQ and directed edges
(qi, qj) exist if qj ≻Q qi. We now add directed edges from allq’s incomparable el-
ements toq. We claim the graph is still acyclic. Suppose not. Then a directed cycle
includingq must have been created in the process. But this implies that originally, there
is a path fromq to one of its incomparable elements, which is impossible.

Since the new graph is still acyclic, by the well-known fact that an acyclic graph
allows a linear extension, we prove the lemma. ⊓⊔

Lemma 2 Let l be a strictly-ordered list. Supposel is decomposed into nonempty
contiguous sublists(l1, l2, · · · , lk) such that (1)

⋃k
i=1 li = l, (2) if e ≻li f , thene ≻l f ,

and (3) ife ∈ li, f ∈ lj , i < j, thene ≻l f . Then there exists a linear extension ofl × l
such that all combinations drawn from{li, lj} precede all pairs drawn from{li′ , lj′},
provided thati ≤ j, i′ ≤ j′ and one of the following conditions holds (1)i < i′, (2)
i = i′, j < j′.

Proof. Given any two (not necessarily different) sublistsli and lj , we can build a di-
rected graphGij = (Vij , Eij) in which every vertexv ∈ Vij corresponds to a combi-
nation drawn from listsli andlj. Directed edges inEij represent the precedence order
in the posetli × lj , which is a sub-poset ofl × l. SinceGij is acylic, we have a linear
extensionlGij

of the elements inGij

We now use the extensionslGij
to construct the full extension ofl × l. We string

out all graphsGij horizontally such that the(k2 + k)/2 graphs are ordered in the
same way as defined in the lemma. To be precise, we list the graphs from left to
right asG11, G12, · · · , G1k, G22,G23, · · · ,G2k, · · · , G(k−1)(k−1),G(k−1)k, Gkk and
we can view these graphsGij as if they were some “big” vertices in another graphG.

If in the posetl × l, there exists a combination drawn from lists{li, lj} preceding
another drawn from{li′ , lj′}, we add a directed edge into the graphG from vertexGij

to vertexGi′j′ .
It is not hard to see that all the newly-added edges go from “right to left” across

the(k2 + k)/2 big vertices. This implies that the graphG composed of the big vertices
Gij is acyclic, allowing a linear extension, which can be simplythe way we list the big
vertices. Replacing each big vertex with the linear extension lGij

gives the lemma. ⊓⊔



B Threesome Roommates under the PON scheme

We briefly explain the reduction idea under thePON scheme. Again we give a reduction
from a stable family instanceΥ = (M,W ,D, Ψ) to a threesome roommates instance
Υ ′, assuming that the preferences given inΨ are based on thePON scheme.

Supposing that|M| = n, we create3n dummy players1 m#
1 , m#

2 , · · · , m#
3n such

that every three of them must be matched to one another in a stable matching. To be
precise, given0 ≤ i ≤ n − 1:

– L(m#
3i) = m#

3i+1 ≻ m#
3i+2 ≻ · · ·

– L(m#
3i+1) = m#

3i+2 ≻ m#
3i ≻ · · ·

– L(m#
3i+2) = m#

3i ≻ m#
3i+1 ≻ · · ·

For the players inM∪W ∪D, they need to use these dummy players to pad their
preferences:

– Considerm ∈ M and assume thatW = LW(m), D = LD(m), N = π(M −

{m}). His simple list inΨ ′ is L(m) = W ≻ D ≻ π({m#
i |1 ≤ i ≤ 3n}) ≻ N .

– Considerw ∈ W and assume thatD = LD(w), N = LM(w), W = π(W−{w}).
Her simple list inΨ ′ is L(w) = D ≻ N ≻ π({m#

i |1 ≤ i ≤ 3n}) ≻ W .
– Considerd ∈ D and assume thatN = LM(d), W = LW(d), D = π(D − {d}).

Its simple list inΨ ′ is L(d) = N ≻ W ≻ π({m#
i |1 ≤ i ≤ 3n}) ≻ D.

The correctness arguments of the reduction are similar to those used in Lemma 8
and Theorem 2.

1 The number3n is actually unnecessarily big, but we use it for ease of presentation



C An Example of a Threesome Roommates Instance of Size 4
without Stable Matchings

Table 3. An example of a threesome roommates instance of size 4 such that no stable matching
exists. Note in this case, there is only one possible linear extension of the preference poset.

Player Simple Lists
m♭3

ij m♭6
ij ≻ m♭5

ij ≻ m♭4
ij

m♭4
ij m♭3

ij ≻ m♭6
ij ≻ m♭5

ij

m♭5
ij m♭4

ij ≻ m♭3
ij ≻ m♭6

ij

m♭6
ij m♭5

ij ≻ m♭4
ij ≻ m♭3

ij

D Weak Stability of Stable Family with Strictly-ordered
Consistent Preference Lists under the SOCL scheme

To prove that the existence of weak stable matchings in stable family is NP-complete
under theSOCL scheme, we again resort to the reduction of three-dimensional match-
ing. The setting of the given instanceΥ = (M,W ,D, T ) and the pre-processing step
are the same as we have done in Section 3 and Section 5. Every man mi appears
three times in triples inT ; and we create three dopplegangersmi1, mi2, mi3, and four
garbage collectorswg

i1, w
g
i2, d

g
i1, d

g
i2. The basic idea is still to use a set of guard players

to restrict the possible family members of a dopplegangermij in a stable matching.
What complicates things is that we need to tailor a more involved gadget to suit our
purpose.

The gadget we need, like the one we used in Section 5, is a stable family instance
Υ †

ij without stable matchings. Thankfully, such an instance is given to us in the paper of
Boros et al. [1] and is recreated in Table 4.

It can be checked that ifm♭3
ij is removed fromΥ †

ij , then there is a stable matching

M † = {(m♭1
ij , w♭1

ij , d♭1
ij ), (m♭2

ij , w♭2
ij , d♭2

ij )}. Our plan is to embedΥ †
ij into the derived

stable family instanceΥ ′ so thatm♭3
ij has to be absent from the embedded instanceΥ †

ij

in a stable matching ofΥ ′.
We now introduce three more guard playersm♭0

ij , w♭0
ij , d♭0

ij so that in a stable match-
ing M ′ in Υ ′, m♭0

ij can be matched to(w♭3
ij , d♭3

ij ). Suppose that(mi, wix, dix) ∈ T . The
preference of a dopplegangermij along with his twelve guard players are as follows.

– LW(mij) = wg2
ij ≻ wg1

ij ≻ wix ≻ w♭0
ij ≻ · · ·

LD(mij) = dg2
ij ≻ dg1

ij ≻ dix ≻ d♭0
ij ≻ · · ·

(pivot: (w♭0
ij , d♭0

ij ))

– LW(m♭0
ij ) = w♭3

ij ≻ · · ·

LD(m♭0
ij ) = d♭3

ij ≻ · · ·



– LM(w♭0
ij ) = mij ≻ m♭3

ij ≻ · · ·

LD(w♭0
ij ) = d♭0

ij ≻ · · ·

(pivot: (m♭3
ij , d♭0

ij ))

– LM(d♭0
ij ) = mij ≻ m♭3

ij ≻ · · ·

LW(d♭0
ij ) = w♭0

ij ≻ · · ·

(pivot: (m♭3
ij , w♭0

ij ))

– LW(m♭3
ij ) = w♭0

ij ≻ X ≻ · · ·

LD(m♭3
ij ) = d♭0

ij ≻ Y ≻ · · ·

(whereX andY are the simple lists ofm♭3
ij in Υ †

ij.)

Moreover in the linear extension of posetLW(m♭3
ij )×LD(m♭3

ij ), we make(w♭0
ij , d♭0

ij ) ≻

Eπ({w♭0
ij } × Y ) ≻ Eπ({w♭0

ij } × (LD(m♭3
ij ) − {d♭0

ij ∪ Y }) ≻ Eπ(X × {d♭0
ij }) ≻

F ≻ · · · ), whereF is the same linear extension ofX × Y given inΥ †
ij .

Such a construction is allowed because of Lemma 2.
– LM(w♭3

ij ) = X ≻ m♭0
ij ≻ · · ·

LD(w♭3
ij ) = Y ≻ · · ·

(whereX andY are the simple lists ofw♭3
ij in Υ †

ij .)

Moreover, let the linear extension ofLM(w♭3
ij ) × LD(w♭3

ij ) beF ≻ Eπ({m♭0
ij }) ×

Y ≻ · · · , whereF is the same linear extension ofX × Y given inΥ †
ij .

– LM(d♭3
ij ) = X ≻ m♭0

ij ≻ · · ·

LW(d♭3
ij ) = Y ≻ · · ·

(whereX andY are the simple lists ofd♭3
ij in Υ †

ij .)

Moreover, let the linear extension ofLM(d♭3
ij ) × LD(d♭3

ij ) beF ≻ Eπ({m♭0
ij } ×

Y ) ≻ · · · , whereF is the same linear extension ofX × Y given inΥ †
ij .

– For the remaining guard playersp ∈ {m♭1
ij , w♭1

ij , d♭1
ij , m♭2

ij , w♭2
ij , d♭2

ij }, assume that

her/his/its simple lists inΥ †
ij areX andY respectively. For the new simple lists

of p in the derived instanceΥ ′, we attach all other players to the end ofX andY ,
respectively. Moreover, in the linear extension of the preference poset, we make the
extension of the (subposet)X × Y identical to the one given inΥ †

ij , moreover, the
linear extension ofX × Y precede all other elements.

Lemma 15. In a matchingM ′ in the derived stable family problem instanceΥ ′, if the
guard playerm♭3

ij is not matched to(w♭0
ij , d♭0

ij ), a triple containing three members from

the set{m♭1
ij , m♭2

ij , m♭3
ij , w♭1

ij , w♭2
ij , w♭3

ij , d♭1
ij , d♭2

ij , d♭3
ij } blocks the stability ofM ′. Con-

versely, ifM ′ contains the following triple:{(m♭1
ij , w♭1

ij , d♭1
ij ), (m♭2

ij , w♭2
ij , d♭2

ij ),

(m♭0
ij , w♭3

ij , d♭3
ij ), (m♭3

ij , w♭0
ij , d♭0

ij )}, moreover,mij is matched to a woman and a dog

ranking higher thanw♭0
ij and d♭0

ij respectively, then there is no blocking triple involv-
ing any of the twelve guard players ofmij .



Proof. Suppose thatm♭3
ij is not matched to(w♭0

ij , d♭0
ij ). We first rule out the possibility

thatm♭3
ij is matched to one of them. W.l.o.g., let(m♭3

ij , w♭0
ij , dφ) ∈ M ′, wheredφ 6= d♭0

ij .
Then(m♭3

ij , w♭0
ij , d♭0

ij ) blocksM ′, as stated in the lemma.
So now we can assume thatm♭3

ij is matched to two players strictly ranking below
w♭0

ij andd♭0
ij respectively. We have two possible scenarios:

– All nine guard players of{m♭1
ij , w♭1

ij , d♭1
ij , m♭2

ij , w♭2
ij , d♭2

ij , m♭3
ij , w♭3

ij , d♭3
ij } are matched

to one another inM ′. This situation is identical to a matchingM †
ij in Υ †

ij . Since,

Υ †
ij allows no stable matching, at least one blocking triple involving three out of

these nine guard players emerges to blockM †
ij , and alsoM ′.

– If some of these guard players are not matched to one another,then the situation is
identical to a matchingM †

ij in which at least three guard players (one from each

type of{M,W ,D}) are left unmatched in the instanceΥ †
ij . By the linear extensions

we have constructed, they would prefer one another and form ablocking triple to
M †

ij , and also toM ′.

For the second part of the lemma, we can observe the followingfacts:

– (w♭0
ij , d♭0

ij ) dominates all other elements in the linear extension ofm♭3
ij ’s preference

poset. Hencem♭3
ij has no incentive to go for any other players.

– (m♭3
ij , d♭0

ij ) is the pivot inw♭0
ij ’s preference poset. Hence, the only better combination

for w♭0
ij is (mij , d

♭0
ij ). But by the statement of the lemma,mij gets family members

ranking higher thanw♭0
ij andd♭0

ij respectively, hence(mij , w
♭0
ij , d♭0

ij ) cannot be a
blocking triple. The same argument can be applied tod♭0

ij . So bothw♭0
ij andd♭0

ij are
not part of a blocking triple.

– Consider womanw♭3
ij . If she forms a blocking triplet with other players, there

are two possibilities. (1) She gets a better man int. Such a man cannot bem♭3
ij ,

as we argued previously. It can be verified that neitherm♭1
ij nor m♭2

ij prefers the
combination ofw♭3

ij with any other dog player. (2) She gets the same manm♭0
ij but

a better dog, which is eitherd♭1
ij or d♭2

ij . It can be checked that neitherd♭1
ij nor d♭2

ij

prefers the combination ofw♭3
ij andm♭0

ij (because of the way we construct the linear
extensions of their preference posets).
The same argument can be applied to dogd♭3

ij . Also,m♭0
ij is getting his best possible

combination. So he has no incentive to leavew♭3
ij andd♭3

ij either.
– The remaining players in the set{m♭1

ij , w♭1
ij , d♭1

ij , m♭2
ij , w♭2

ij , d♭2
ij } do not form block-

ing triples, as can be easily verified. And this completes theproof of the second
part of the lemma. ⊓⊔

Lemma 16. In a stable matchingM ′ of Υ ′, mij must have two players as family mem-
bers ranking higher thanw♭0

ij andd♭0
ij in his simple lists, respectively.

Proof. The following case analysis shows thatmij must get two family members rank-
ing higher thanw♭0

ij andd♭0
ij respectively.



Table 4. An instance (wheren = 3) of the stable family problem under the SOCL scheme that
disallows any stable matching.

Player Simple Lists Full Preference
m♭1

ij LW(m♭1
ij ) = w♭1

ij ≻ w♭2
ij ≻ w♭3

ij w♭1
ij d♭2

ij ≻ w♭1
ij d♭1

ij ≻ w♭1
ij d♭3

ij ≻ w♭2
ij d♭2

ij ≻ w♭2
ij d♭1

ij ≻ w♭2
ij d♭3

ij ≻

LD(m♭1
ij ) = d♭2

ij ≻ d♭1
ij ≻ d♭3

ij w♭3
ij d♭2

ij ≻ w♭3
ij d♭1

ij ≻ w♭3
ij d♭3

ij

m♭2
ij LW(m♭1

ij ) = w♭2
ij ≻ w♭3

ij ≻ w♭1
ij w♭2

ij d♭2
ij ≻ w♭2

ij d♭1
ij ≻ w♭2

ij d♭3
ij ≻ w♭3

ij d♭2
ij ≻ w♭3

ij d♭1
ij ≻ w♭3

ij d♭3
ij ≻

LD(m♭2
ij ) = d♭2

ij ≻ d♭1
ij ≻ d♭3

ij w♭1
ij d♭2

ij ≻ w♭1
ij d♭1

ij ≻ w♭1
ij d♭3

ij

m♭3
ij LW(m♭1

ij ) = w♭1
ij ≻ w♭2

ij ≻ w♭3
ij w♭1

ij d♭2
ij ≻ w♭1

ij d♭1
ij ≻ w♭1

ij d♭3
ij ≻ w♭2

ij d♭2
ij ≻ w♭2

ij d♭1
ij ≻ w♭2

ij d♭3
ij ≻

LD(m♭2
ij ) = d♭2

ij ≻ d♭1
ij ≻ d♭3

ij w♭3
ij d♭2

ij ≻ w♭3
ij d♭1

ij ≻ w♭3
ij d♭3

ij

w♭1
ij LD(w♭1

ij ) = d♭1
ij ≻ d♭2

ij ≻ d♭3
ij d♭1

ij m♭2
ij ≻ d♭1

ij m♭1
ij ≻ d♭1

ij m♭3
ij ≻ d♭2

ij m♭2
ij ≻ d♭2

ij m♭1
ij ≻ d♭2

ij m♭3
ij ≻

LM(w♭1
ij ) = m♭2

ij ≻ m♭1
ij ≻ m♭3

ij d♭3
ij m♭2

ij ≻ d♭3
ij m♭1

ij ≻ d♭3
ij d♭3

ij

w♭2
ij LD(w♭2

ij ) = d♭2
ij ≻ d♭3

ij ≻ d♭1
ij d♭2

ij m♭2
ij ≻ d♭2

ij m♭1
ij ≻ d♭2

ij m♭3
ij ≻ d♭3

ij m♭2
ij ≻ d♭3

ij m♭1
ij ≻ d♭3

ij m♭3
ij ≻

LM(w♭1
ij ) = m♭2

ij ≻ m♭1
ij ≻ m♭3

ij d♭1
ij m♭2

ij ≻ d♭1
ij m♭1

ij ≻ d♭1
ij d♭3

ij

w♭3
ij LD(w♭3

ij ) = d♭1
ij ≻ d♭2

ij ≻ d♭3
ij d♭1

ij m♭2
ij ≻ d♭1

ij m♭1
ij ≻ d♭1

ij m♭3
ij ≻ d♭2

ij m♭2
ij ≻ d♭2

ij m♭1
ij ≻ d♭2

ij m♭3
ij ≻

LM(w♭3
ij ) = m♭2

ij ≻ m♭1
ij ≻ m♭3

ij d♭3
ij m♭2

ij ≻ d♭3
ij m♭1

ij ≻ d♭3
ij d♭3

ij

d♭1
ij LM(d♭1

ij ) = m♭2
ij ≻ m♭3

ij ≻ m♭1
ij m♭2

ij w♭2
ij ≻ m♭2

ij w♭1
ij ≻ m♭2

ij w♭3
ij ≻ m♭3

ij w♭2
ij ≻ m♭3

ij w♭1
ij

LW(d♭1
ij ) = w♭2

ij ≻ w♭1
ij ≻ w♭3

ij m♭3
ij w♭3

ij ≻ m♭1
ij w♭2

ij ≻ m♭1
ij w♭1

ij ≻ m♭1
ij w♭3

ij

d♭2
ij LM(d♭2

ij ) = m♭1
ij ≻ m♭2

ij ≻ m♭3
ij m♭1

ij w♭2
ij ≻ m♭1

ij w♭1
ij ≻ m♭1

ij w♭3
ij ≻ m♭2

ij w♭2
ij ≻ m♭2

ij w♭1
ij

LW(d♭2
ij ) = w♭2

ij ≻ w♭1
ij ≻ w♭3

ij m♭2
ij w♭3

ij ≻ m♭3
ij w♭2

ij ≻ m♭3
ij w♭1

ij ≻ m♭3
ij w♭3

ij

d♭3
ij LM(d♭3

ij ) = m♭1
ij ≻ m♭2

ij ≻ m♭3
ij m♭1

ij w♭2
ij ≻ m♭1

ij w♭1
ij ≻ m♭1

ij w♭3
ij ≻ m♭2

ij w♭2
ij ≻ m♭2

ij w♭1
ij

LW(d♭3
ij ) = w♭2

ij ≻ w♭1
ij ≻ w♭3

ij m♭2
ij w♭3

ij ≻ m♭3
ij w♭2

ij ≻ m♭3
ij w♭1

ij ≻ m♭3
ij w♭3

ij

– If mij gets(wφ1, dφ2) and (at least) one of them ranks lower thanw♭0
ij andd♭0

ij

respectively. Then by the fact that(w♭0
ij , d♭0

ij ) is the pivot,mij must prefer them,
and so do they him, creating a blocking triple toM ′, a contradiction.

– Suppose thatmij gets only one ofw♭0
ij andd♭0

ij as family members. We claim that
(m♭3

ij , w♭0
ij , d♭0

ij ) is a blocking triple. This follows from the fact that(m♭3
ij , d♭0

ij ) and
(m♭3

ij , w♭0
ij ) are pivots inw♭0

ij ’s andd♭0
ij ’s preference posets respectively.

– Suppose(mij , w
♭0
ij , d♭0

ij ) ∈ M ′. Thenm♭3
ij cannot get(w♭0

ij , d♭0
ij ) in M ′ and we can

apply Lemma 15 to showM ′ is unstable.

By the above discussion, inM ′, mij must get both family members ranking higher
thanw♭0

ij andd♭0
ij respectively, and this gives us the lemma. ⊓⊔

We now summarize the preferences of the players in the setX = M1 ∪ M2 ∪
M3 ∪Wg

1 ∪Wg
2 ∪W ∪Dg

1 ∪Dg
2 ∪D in Table 5. As can be seen, their preferences are

similar to those we used in Section 3. The major difference isthat now each garbage
collector also needs her/its own guard players. Consider any garbage collectorp ∈
{Wg

1 ∪W
g
2 ∪D

g
1∪D

g
2}. We introduce the symbolsm⋆(p), w⋆(p), andd⋆(p) to represent

her/its three associate guard players. Their purpose will be clear in the proofs below.
When we create the linear extension of the preference poset of a player inX =

M1 ∪M2 ∪M3 ∪ Wg
1 ∪Wg

2 ∪ Dg
1 ∪ Dg

2 , supposing thatY andZ are those players
ranking at least as high as their guard players, we let all elements inY × Z precede all
other elements (using Lemma 2) in the linear extensions.



Lemma 17. Suppose that a stable matchingM ′ exists in the derived stable family in-
stanceΥ ′. Consider the garbage collectorswg

i1, w
g
i2, d

g
i1, d

g
i2 created for manmi ∈ M.

Thenwg
i1 and dg

i1 belong to the same triplet1 ∈ M ′ and wg
i2 and dg

i2 belong to the
same triplet2 ∈ M ′. Moreover, int1 and t2, the third family member must be one of
the dopplegangersmi1, mi2, mi3.

Proof. We argue first for the case ofwg
i2. Supposet2 = (mφ1, wg

i2, d
φ1) anddφ1 6= dg

i2.
There are two subcases.

– If dφ1 = d⋆(wg
i2) andmφ1 6= m⋆(wg

i2), then(m⋆(wg
i2), w

⋆(wg
i2), d

⋆(wg
i2)) blocks

M ′, a contradiction.
– If dφ1 = d⋆(wg

i2) andmφ1 = m⋆(wg
i2), then(mi1, w

g
i2, d

g
i2) blocksM ′, again a

contradiction.
– If dφ1 6= d⋆(wg

i2), then(m⋆(wg
i2), w

g
i2, d

⋆(wg
i2)) blocksM ′. (This is because the

combination of the garbage collectors (m⋆(wg
i2), d

⋆(wg
i2)) is the pivot ofwg

i2’s lin-
ear extension). So we have another contradiction.

Thus we havedφ1 = dg
i2. If mφ1 6∈ {mi1, mi2, mi3}, then(mi1, w

g
i2, d

g
i2) blocks

M ′.
The case oft1 being composed ofwg

i1, dg
i1 and another dopplegangermij follows

analogous argument. Therefore, we have the lemma. ⊓⊔

By the previous two lemmas, we establish

Lemma 18. (Sufficiency) If there exists a stable matchingM ′ in the derived stable
family problem instanceΥ ′, there exists a perfect matchingM in the original three-
dimensional matching instanceΥ .

We need another lemma to show the necessity.

Lemma 19. In a matchingM ′ in the derived stable family problem instanceΥ ′, sup-
pose the garbage collectors ofmi are matched to two of the dopplegangers ofmi, while
the remaining dopplegangermij is matched to a real woman and a real dog with whom
mi shares a triple inT in the original three-dimensional instanceΥ . Then there is no
blocking triple in which the dopplegangersmi1, mi2,mi3, are involved.

Proof. We assume that{(mi1, w
g
i2, d

g
i2), (mi2, w

g
i1, d

g
i1), (mi3, wic, dic)} ⊂ M ′. Other

cases follow analogous arguments.
We claim that there does not exist a blocking triple of the form (mij , w

g
i1, d

φ1),
(mij , w

g
i2, d

φ2), (mij , w
φ3, dg

i1), and (mij , w
φ4, dg

i2) wheredφ1 6= dg
i1, dφ2 6= dg

i2,
wφ3 6= wg

i1, andwφ4 6= wg
i2. We only consider the first case. By the way we construct

the linear extension of the preference poset ofwg
i1, she will prefer her original combi-

nation(mi2, d
g
i1) over such a combination. Hence,(mij , w

g
i1, d

φ1), wheredφ1 6= dg
i1,

cannot blockM ′.
So we only need to consider the three following potential blocking triples:

(mi2, w
g
i2, d

g
i2), (mi3, w

g
i2, d

g
i2), (mi3, w

g
i1, d

g
i1). It can be easily verified that they do not

blockM because that the order of the three dopplegangers in the simple lists ofwg
i1 and

dg
i1 (and alsowg

i2, d
g
i2) are reversed. ⊓⊔



Lemma 20. (Necessity) Suppose that there is a perfect matchingM in the original
three-dimensional matching instanceΥ . Then there also exists a stable matchingM ′ in
the derived stable family instanceΥ ′.

Proof. We build a stable matchingM ′ in the derived stable family instanceΥ ′ based
onM .

Suppose that(mi, wix, dix) ∈ M . Let the doppleganger who listswix anddix above
his guard players to be matched towix anddix, and the other two dopplegangers be
matched to the garbage collectors. The twelve guard playersof mij are matched to one
another as follows:{(m♭1

ij , w♭1
ij , d♭1

ij ), (m♭2
ij , w♭2

ij , d♭2
ij ), (m♭0

ij , w♭3
ij , d♭3

ij ), (m♭3
ij , w♭0

ij , d♭0
ij )};

for any garbage collectorp ∈ Wg
1 ∪Wg

2 ∪Dg
1 ∪Dg

2 , we make her/its three guard players
(m⋆(p), w⋆(p), d⋆(p)) a triple.

By Lemma 15, it can be seen that none of the guard players of dopplegangers will
form blocking triples. Similarly, by Lemma 19, the dopplegangers will not be involved
in blocking triples either. Also, since all garbage collectors are matched to players rank-
ing higher than their guard players, their guard players also will not form blocking
triples either. Combining the above facts, we complete the proof of the lemma. ⊓⊔

Letting n = |M| = |W| = |D|, we use in all3n dopplegangers,4n garbage
collectors,48n guard players,2n real women and real dogs. Therefore, the reduction
can be done in polynomial time. Checking whether a matching is stable also can be
done inO(n3) time. We conclude the stable family part of Theorem 3.



Table 5.The preference lists of all players in the setX = M1∪M2∪M3∪W
g
1∪W

g
2 ∪W∪Dg

1∪
Dg

2 ∪D. We assume that there exist three triples(mi, wia, dia), (mi, wib, dib), (mi, wic, dic) in
T . Forp ∈ {Wg

1 ∪Wg
2 ∪Dg

1 ∪Dg
2}, their linear extension should guarantee that all elementsin

Y × Z precede all other elements, whereY andZ are those players ranking at least as high as
their guard players in their simple lists.

Player Simple Lists Pivot
mi1 ∈ M1 LW (mi1)=w

g
i2 ≻ w

g
i1 ≻ wia ≻ w♭0

i1 ≻ · · · (w♭0
i1 , d♭0

i1)

LD(mi1) = d
g
i2 ≻ d

g
i1 ≻ dia ≻ d♭0

i1 ≻ · · ·

mi2 ∈ M2 LW (mi2)=w
g
i2 ≻ w

g
i1 ≻ wib ≻ w♭0

i2 ≻ · · · (w♭0
i2 , d♭0

i2)

LD(mi2) = d
g
i2 ≻ d

g
i1 ≻ dib ≻ d♭0

i1 ≻ · · ·

mi3 ∈ M3 LW (mi3)=w
g
i2 ≻ w

g
i1 ≻ wic ≻ w♭0

i3 ≻ · · · (w♭0
i3 , d♭0

i3)

LD(mi3) = d
g
i2 ≻ d

g
i1 ≻ dic ≻ d♭0

i3 ≻ · · ·

w
g
i1 ∈ Wg

1 LM(wg
i1) = mi3 ≻ mi2 ≻ mi1 ≻ m⋆(wg

i1) ≻ · · · (m⋆(wg
i1), d

⋆(wg
i1))

LD(wg
i1) = d

g
i1 ≻ d⋆(wg

i1) ≻ · · ·

w
g
i2 ∈ Wg

2 LM(wg
i2) = mi3 ≻ mi2 ≻ mi1 ≻ m⋆(wg

i2) ≻ · · · (m⋆(wg
i2), d

⋆(wg
i2))

LD(wg
i2) = d

g
i2 ≻ d⋆(wg

i2) ≻ · · ·

d
g
i1 ∈ Dg

1 LM(dg
i1) = mi1 ≻ mi2 ≻ mi3 ≻ m⋆(dg

i1) ≻ · · · (m⋆(dg
i1), w

⋆(dg
i1))

LW (dg
i1) = w

g
i1 ≻ w⋆(wg

i1) ≻ · · ·

d
g
i2 ∈ Dg

2 LM(dg
i2) = mi1 ≻ mi2 ≻ mi3 ≻ m⋆(dg

i2) ≻ · · · (m⋆(dg
i2), w

⋆(dg
i2))

LW (wg
i2) = w

g
i2 ≻ w⋆(wg

i2) ≻ · · ·

w ∈ W LM(w) = · · ·
LD(w) = · · ·

d ∈ D LM(d) = · · ·
LW (d) = · · ·

m⋆(w) LW (m⋆(w)) = w ≻ w⋆(w) ≻ · · · (w⋆(w), d⋆(w))
w ∈ {wg

i1, w
g
i2} LD(m⋆(w)) = d⋆(w) ≻ · · ·

w⋆(w) LM(w⋆(w)) = m⋆(w) ≻ · · ·
w ∈ {wg

i1, w
g
i2} LD(w⋆(w)) = d⋆(w) ≻ · · ·

d⋆(w) LM(d⋆(w)) = m⋆(w) ≻ · · · (m⋆(w), w⋆(w))
w ∈ {wg

i1, w
g
i2} LW (d⋆(w)) = w ≻ w⋆(w) ≻ · · ·

m⋆(d) LW (m⋆(d)) = w⋆(d) ≻ · · · (w⋆(d), d⋆(d))
d ∈ {dg

i1, d
g
i2} LD(m⋆(d)) = d ≻ d⋆(d) ≻ · · ·

w⋆(d) LM(w⋆(w)) = m⋆(d) ≻ · · · (m⋆(d), d⋆(d))
d ∈ {dg

i1, d
g
i2} LD(w⋆(w)) = d ≻ d⋆(d) ≻ · · ·

d⋆(d) LM(d⋆(d)) = m⋆(d) ≻ · · ·
d ∈ {dg

i1, d
g
i2} LW (d⋆(d)) = d⋆(d) ≻ · · ·
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