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Two’s Company, Three’s a Crowd: Stable Family and
Threesome Roommates Problents

Chien-Chung Huang

Dartmouth College
villars@cs.dartmouth.edu

Abstract. We investigate Knuth's eleventh open question on stablemrais.
In the stable family problem, sets of women, men, and doggyaen, all of
whom state their preferences among the other two groupsgohkis to orga-
nize them into family units, so that no three of them have tioenmtive to desert
their assigned family members to form a new family. A simjpoblem, called
the threesome roommates problem, assumes that a groupsoigeeach with
their preferences among the combinations of two othergpare partitioned into
triples. Similarly, the goal is to make sure that no threespes want to break up
with their assigned roommates.

Ng and Hirschberg were the first to investigate these twolprob. In their for-
mulation, each participant provides a strictly-orderest tf all combinations.
They proved that under this scheme, both problems are Neden Their pa-
per reviewers pointed out that their reduction exploitonsistenpreference lists
and they wonder whether these two problems remain NP-cdeiblereferences
are required to be consistent. We answer in the affirmative.

In order to give these two problems a broader outlook, we edssider the pos-
sibility that participants can express indifference, oa tlondition that the pref-
erence consistency has to be maintained. As an example opeg® a scheme in
which all participants submit two (or just one in the roomasatase) lists ranking
the other two groups separately. The order of the combinaii® decided by the
sum of their ordinal numbers. Combinations are tied wherstims are equal. By
introducing indifference, a hierarchy of stabilities camdefined. We prove that
all stability definitions lead to NP-completeness for exigte of a stable match-
ing.
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1 Problem Definition

Knuth proposed twelve open questions on the stable matphiddem [9]. The eleventh
guestion asks whether the well-studied stable marriagel@mo[4] can be generalized
to the case of three parties, women, men, and dogs. In therpap call this problem
the stable familyproblem and refer generically to all participants in thislgem as
“players.” Roughly speaking, given sets of women, men, amgikdall of whom state
their preferences among the other two groups, the goal isganize them into family
units so that there is nblocking triple three players each preferring one another to
their assigned family members. A problem in a similar veihjch we call thethree-
some roommatgzroblem, assumes that students are to be assigned to the dormitory
bedrooms in some college. They state their preferencegaidimbinations of two other
persons. The goal is to partition them into sets of size 3hSugartition (matching) is
said to be stable if no three persons each prefer the othéngitcassigned roommates.

As Knuth does not specify any precise definition of “prefesshand “blocking
triples,” one can conceive a number of ways to define the tvablpms. One possi-
ble formulation is that each player submits a strictly-oedepreference list, ranking
all possible combinations that she/hel/it can get in a matghive call such a scheme
strictly-ordered-complete-lisSOCL) scheme. In this setting, Ng and Hirschberg [10]
proved that both problems are NP-complete.

At the end of their paper, Ng and Hirschberg mentioned theit tieviewers pointed
out their reduction allows preference to eonsistent For example, mamn might
rank (w1, dy) higher than(ws, dy), but he also ranksws, d2) higher than(ws, dz). In
other words, he does not consistently prefer womarover womanw, (nor the other
way around). Independently, Subramanian [11] gave annatise NP-completeness
proof for stable family, but his reduction also uses incstesit lists.

The reviewers of Ng and Hirschberg wondered whether thesgotablems remain
NP-complete if inconsistency is disallowed. To answer tpen question and to mo-
tivate some variants problems we will define, we introduce tibtion ofpreference
posetsandsimple lists In stable family, assuming that each player has two sinmigie |
in which two different types of players are ranked sepayatelpreference poset is a
product poset of the two simple lists. In such a poset, thebdoation (w,,d;) pre-
cedes another combinatidms, d2) only if w; ranks at least as high as, andd; at
least as high ads in the simple lists. If neither combination precedes theegtthey
are incomparable. Similarly, in threesome roommates, thepence poset is the prod-
uct poset of the one simple list with itself. By this notiohetquestion raised by the
reviewers of Ng and Hirschberg can be rephrased as followdettheSOCL scheme,
if every player has to submit a preference list which Igaar extensiorof her/his/its
preference poset, are the stable family and the threesconemnates still NP-complete?
We answer in the affirmative.

In an attempt to give these two problems a broader outlookher allow players
to express indifference by giving full preference lists tning ties. In particular, to
capture the spirit of maintaining consistency in the prefiees, we stipulate that the full
list must be aelaxed linear extensioaf a preference poset: strict precedence order in
the poset has to be observed in the relaxed linear exterminincomparable elements
in the poset can be tied.



We propose the following scheme to make the above concepteten Suppose that
a player submits two simple lists (or just one in the roommatese). We create a full
list, ranking the combinations based on the sums of theinatshumbers. For example,
for manm, the combination of his rank-2 woman and rank-5 dog is as gmoithat of
his rank-4 woman and rank-3 dog; while both of them are iofettie combination of
his top-ranked woman and his top-ranked dog. We call suclhense precedence-by-
ordinal-numberPON) scheme. Th&€ON scheme produces full preference lists which
are relaxed linear extensions of preference posets. Afsocan envisage an even more
flexible scheme. For example, instead of giving “ranks,” pfeyers can provide “rat-
ings” of other players. The order of the combinations candaded by the sum of the
ratings; two combinations are tied only when the sums ofrttagings are equivalent.
Setting theoretical concerns aside for a moment, the almhenses are probably more
practicable whem is large, because a player only has to provide list® 0f) length,
while under theSOCL scheme, they have to give strictly ordered lists of €i@?).

By allowing indifference, we can define 4 different types @ddking triples and,
based on them, build up a hierarchy of stabilities. (Thigdrighy is similar to that
constructed by Irving in the context of 2-party stable matgh [7].)

— Weak Stable Matching: a blocking triple is one in which alleth players of the
blocking triple strictly prefer the other two members in thiple over their assigned
family members (roommates).

— Strong Stable Matching: a blocking triple is one in whicheddt two players of
the blocking triple strictly prefer the other two playerstie triple to their assigned
family members (roommates), while the remaining playerlmamdifferent or also
strictly prefer the other two players in the triple.

— Super Stable Matching: a blocking triple is one in which asleone player of
the blocking triple strictly prefers the other two playersthe triple to her/his/its
assigned family members (roommates), while the remainiageps can be indif-
ferent or also strictly prefer the other two players in thplé.

— Ultra Stable Matching: a blocking triple is one in which dir¢e players in the
triple are at least indifferent to the others.

Note that if ties are not allowed in the full preference ljsts., theSOCL scheme,
then blocking triples can only be of degree 3. Thus there @arily one type of sta-
bility. For presentational reason, in this case, we reféheostability under th&OCL
scheme as the weak stability.

Our Results and Paper Roadmap We will prove in the paper that, if full prefer-
ence lists are (relaxed) linear extensions of preferensetgothe problem of deciding
whether weak/strong/super/ultra stable matchings exisiH-complete in both the sta-
ble family problem and the threesome roommates problem.r&duction techniques
are inspired by Ng and Hirschberg’s, although the conststeequirement in the pref-
erences makes our construction more involved. In presgatim result, instead of di-
rectly answering the open question posed by Ng and Hirsgiso@viewers by studying
weak-stability, we make a detour to first study strong/slyttea stability. Introducing



them first helps us to explain our intuition behind the mormptex reduction for the
former problem.

As is well-known, the stable marriage and the stable rooramaroblems can
be solved inO(n?) time, by the Gale-Shapley algorithm [4] and by the Irvingcalg
rithm [6], respectively. Unfortunately, our results, adpwith Ng and Hirschberg and
Subramanian’s, indicate that attempts to efficiently sthestable matching problem
in generalized cases of three (or more) parties are unlitelye fruitful. This is not
surprising, as in theoretical computer science, the fine tietweerP andNP is often
drawn between the numbers two and three.

We organize the paper as follows. In Section 2, we presergssacy notation and
some basic lemmas on the properties of posets; Section 8ptbe NP-completeness
of strong/super/ultra stable matchings in the stable fampibblem under thd®ON
scheme; Section 4 presents a reduction to transform a gtahily problem to a three-
some roommate problem, thereby establishing the NP-cderas of strong/super/ultra
stable matchings in the latter; Section 5 considersSECL scheme in threesome
roommates and exhibits another reduction to show the NPptieness of (weak) sta-
ble matching, thereby answering the open question poseldebgrtonymous reviewers
of Ng and Hirschberg. Section 6 concludes and discussdsddksues.

2 Preliminaries

We useM, W, D to indicate the sets of men, women, and dogs in stable famhiéy;
students in threesome roommates are denotéd &s stable family,L,(p) denotes the
simple list of playem on the players of type € { M, W, D}. For examplel,y (m) is
the simple list of mamn among women/V. In threesome roommates, we simply write
L(m), wherem € R, dropping the subscript.

In general, we use the notationto denote the precedence order (in either posets or
in linear lists). For example, supposing thgtanks higher thap; in the listl, we write
p;i =1 pj. Inaposet), two elements;, g; either one precedes the other, which we write
¢ > g; Org; >¢q g;, or they are incomparable, which is expressed;#sq;. The
notation:- is also used to express explicitly the order of players insiheple lists. For
example, we writd.(p) = ¢ > r > -- - to show that playep prefers player to player
r. Note also that the notation- denotes the remaining players in arbitrary order.

We say a blocking triple is of degrégif i players strictly prefer the triple while the
remaining3—i players are indifferent. Unless stated otherwise, in ttielar when we
say some triple “blocks,” it is always a blocking triple ofgiee 3. We use the notation
rp(g) to indicate the rank of on playerp’s simple list.

A preference poset constructed from listeindi, is written ag; x [5. To be precise,
given listsi; andl, and the posely x lo, supposing thafp;,p;}, {pi:,pjs} € li x lo,
then{p;, p;} =1, x1, {pir,pj} only if (1) p; =1, pir,pj = pjr, OF (2)pj =1, Pjr,Pi =
piry OF (3)p; =1, pir,p; >1, Pjs. The notationt(X) means an arbitrary permutation
of elements in the seX. E,(I; x l3) is an arbitrary linear extension of the preference
posetl; x Is.



In a poset, we call an elemenpavot if in the linear extension of the poset we will
create, this element precedes all its incomparable elesn&ny element can be a pivot,
as will be shown by the lemma below.

Lemma 1. Given any posef) and any element € @, there exists a linear extension
of @ such that ifg||oq’, theng >=; ¢'.

The next lemma will be useful when we present the reductiorttfe threesome
roommates problem.

Lemma 2. Let! be a strictly-ordered list. Suppose thas decomposed into nonempty
contiguous sublistd;, I, - - - , ;) such that (1)\)2“:1 I, =1,()ife >, f,thene -, f,
and (3)ife € I;, f € 15,4 < j, thene >, f. Then there exists a linear extensiori of /
such that all combinations drawn froffi;, I, } precede all pairs drawn fronfl;s, l;: },
prowded thatz < 4,4 < j and one of the following conditions holds @Lx ¢ ; (2)
i=1i,7<j.

The proofs of the two lemmas can be found in the appendix.

3 Reducing Three-dimensional Matching to Stable Family

In this section, we focus on the NP-completeness of straaigesimatching under the
PON scheme. Similar results hold for super stable and ultralestatatchings by a
straightforward argument and will be discussed at the enlisfection.

Our reduction is from the three-dimensional matching peahlone of the 21 NP-
complete problems in Karp’s seminal paper [8]. The problastance is given in the
form?” = (M, W,D,T), whereT C M x W x D. The goal is to decide whether
a perfect matching\t C 7 exists. This problem remains NP-complete even if every
playerinM U W U D appears exactly 2 or 3 times in the triplesio{5].

We first explain the intuition behind our reduction. Suppgsthat manm; ap-
pears in three tripleém;, w;q, diq ), (M, wip, dip ), (M, Wi, di) In T, we create three
dopplegangersm;, m;2, m;3 in the derived stable family problem instan@é. We
also create four garbage collectots), , d?,, w?,, d%,. Each dopplegangen;; puts a
woman-dog pair, with whom mam; shares a triple, and the garbage collectors on top
of his two simple lists. The goal of our design is that in a Eabatching, exactly one
doppleganger will be matched to a woman-dog pair with whepshares a triple irf,
while the other two dopplegangers will be matched to garlmaijlectors. In the case
that there are only two triples ifi containing marm;, we artificially make a copy of
one of the triples, making the total number of triples thimag treat him as described
above.

Now, we will refer to the set of dopplegangers./as;, M-, M3, the set of garbage
collectors asVy{, Wy, D7, Dj and the original set of real women and real dogglad.
Collectively, we refer to them a& = M; UMUM3zUW{ UWIUWUD{UD;UD.

To realize our plan we mtroduce two gadgets The first isdhsets of “dummy
players:m® w? d¥ m¥ w¥, d¥, m¥ w¥, df. Their preferences are such that they
must be matched to one another in a stable matching. To bseréeor; € {1, 2,3},



- Lw(m?) =w?l = Lp(m?)=df ~ -
- Lyw?)=m? = Lpwl) =df ~-
— Lm(df)y=mf = Ly(df) = f>

These nine dummy players are used to “pad” the preferenisedisother players.
Their purpose will be clear shortly.

Another gadget we need is a set of “guard players” for eaclpldganger inM; U
My UMs. They will make sure that in a stable matching, a dopplegamggwill only
get a woman-dog pair with whomy; shares a triple ir¥” or those garbage collectors.
As an example consider the doppleganggr. He has six associated guard players,
m2l, wil, dit,mb3 wi?, d27 and their preferences are summarized below:

—Lw(mzl)_w12>wﬂ>wm>wzl>w11>wfﬁ>w§£>w§£>

Lp(miy) = d?) = d%) > dig = d22 = &} = d¥ = dff = df ~

— Lw(m}}) = w}} = -+, Lp(m}}) = djj >
Lw(m}) = w} »= -, Lp(m}}) —dif
—LM(wgll):mi1>-mH>- LD( ) d >—d#
Laq(wi?) = my = mb3 = - (w 2) = d?f - d#
—LM(dE%):mi1>m5}>“' (11)—wz1>w#>“'
La(d?) =mig = mi3 = - Lyy(d}) = wi? = wf = -

The following case analysis proves that, in a stable matchity, m;; will get only
players from the sefw?, , w,, w;q, dJ;, d%, dia }-

— Suppose that;; gets two players ranking below?; andd’} respectively. It can be
observed that for both?}, d’1, the best man is;;. Therefore, they would prefer
m;; and so does he them, inducing a blocking triplé/f6, a contradiction.

— Suppose thatn;; gets a womanw € {w;q, w?;, wi} and a dogl ranking below
d’1. In this case, we can be sure thatannot bed? or df or df, since their
preferences guarantee that they will only be matched tor chinamy players. So,
T'mgy (w)—"_rmil (d) > 10, Whilermil (wgll)—i_rmil (dﬂ) =9, Causmqmil’ i1711’ dE%)
to become a blocking triple. This example explains why wedrtee'pad” the sim-
ple lists ofm,;; with dummy players.

The case that;;, gets adodl € {d;,, d-;’l, dJ,} and a womanw ranking lower than
{ follows analogus argumentgy;1, wi,, d%) will become a blocking triple.

- Suppose thatn;; gets only one of the players from the det’}, w??, d’}, dE%
Without loss of generality, we assume that;,, w?|,d?), whered?® # d’i, is
part of the matching. For womanm?}, dogd® cannot be the dummy playeltf.
Therefore;r,i (mi1) + 7, (d%) > 4 > 3 = 100 (m3]) + 17, (d7)). Similarly
for dzf, vy (m1) + g1 (wii) = 3, which is better than whatever combination

it can get. Therefore, we have thab’}, w?}, d>}) constitutes a blocking triple to
M. This example shows why we need to pad the preferene€lofd’! (and also
w’?, d?%) with dummy players.



— Suppose thatn;; getsw’! andd’}. Note thatw?! = w?? andd’? > d’!. There-
fore, m;; is indifferentto the combinations ofv’? and d’?, sincer,,,, (w’l) +
P (1) = 9 = 70, (W23) 4 7y, (d2F). Additionally, w??, d°7 strictly prefer
m;1. Hence(m;y, w’?, d°?) constitutes a blocking triple of degree 2 A¢’. This
explains why we need two sets of guard players to guaranédéhte doppleganger
will “behave” in a stable matching.

Again, the case that;; getsw’? andd’? follows analogus arguments.

The other two dopplegangers;», m;3 also have six associated guard players for
each; they, along with their associated guard players, bisnidar preferences to guar-
antee thatn;; andm;s will only get garbage collectors or the woman-dog pairs with
whom m; shares triples. The only difference in the lists is that andm;s replace
Wi, dig With wyy, d;p,, and withw;,.., d;., respectively, in their simple lists. For a sum-
mary of the simple lists of members in the st see Table 1. It should be noted
that wf,,d?, (and alsow?,,d?,) rank the three dopplegangers in reverse order. This
trick guarantees that the dopplegangers will not form bilegkriples with the garbage
collectors, defeating our purpose. For example, suppose, w;., d;,) is part of the
matching, we want to avoim;, w?,,d?,) to becoming a blocking triple. It can be
easily verified that itvf; andd?; are matched ten;, or m;3, such a blocking triple will
not be formed.

Table 1.The simple lists of all players in the s& = M; UM2UMsUW{ UWS UWUDI U
D§ UD. We assume that there exist three triples,;, wiq, dia), (M4, Wi, div), (M4, Wic, dic) I
7.

Player Simple Lists
ms1 € My Lw(mi1)=w?, = wl] = wiq > wil = wi - wf& -~ wjé -~ wf e
Lp(mi1) = d% = d% = diog = di3 = &2 = df = df = df = ---
ms2 € My Lw(maz)=wi, = wd, = wip = wiy = w3 - wf& -~ wjé - wf e
Lp(mig) = d% = d¥ = di = d23 = d23 = d¥ = dff = df - -
ms3 € My Lyy(miz)=wiy > wf) = wic > wi - wis - w# -~ wf - wf o
wj, € WY La(wdy) =ma > maz = muz > -
Lpw?)=d% = df =df =d¥f ~ ...
dj, € DY Lm(dSy) = miz = mag = ma1 = - -
Lw(d4) = wé) = wi = wl = wl ~ -
wi, € Wi Lp(wih) = mar > Mg > Mz > -+
Lp(w%) =d% = dff = df =d¥ ...
df, € D3 La(ddy) = miz > maa > max > - -
Lw(d%) = wé = wi = wf = wl ~ -
we W LM(w) — ...
Lo(w) =---
deD Lam(d) =
Lw(d) =




Finally, garbage collectors also use dummy players to pad simple lists, to
avoid the awkward situation that some doppleganger is redttha real woman and a
garbage collector dog (or a real dog and a garbage collecioram). How this arrange-
ment works will be clear in the proof below.

Lemma 3. Suppose a stable matchidd’ exists in the derived stable family problem
instanceY”. The following facts hold id/’:

— Fact A: The three sets of dummy players are matched to ondé@not

— Fact B: For each doppleganger,;; € M; U My U Mg, the ranks of his family
members are at least as high as 3 in his simple lists.

— Fact C: The six associated guard players of each dopplegamge € M; UM, U
M3 are matched to one another.

Proof. Fact A follows directly from construction. Fact B is true as Wave argued in
the case analysis before. Fact C is true because if the glererp are not matched to
one another, they will blocRZ’, unlessw}}, 2} or w}?, d;? are matched ten; in M’,
but this is impossible because of Fact B. a

Lemma 4. Suppose a stable matchidd’ exists in the derived stable family problem
instanceY”. Consider the garbage collectots, , df,, wf,, d, created for mann;
M. We must have thatf,, d?, belong to the same triple; and thatwy,, d7, belong
to the same triple, in M’. Moreover, int; andts, the man player must be one of the
dopplegangersn;, m;2 andms.

Proof. We will prove this lemma by progressively establishing tbkkofving facts.
Fact D: w?, anddy, must belong to the same triplgin M.

Proof: For a contradiction, suppose thaf, andd?, are in different triples in\/’.
We claim that(m;1, wi,, d,) forms a blocking triple. It is obvious that,;; andwy,
prefer such a triple. Now let the man and woman partner&pbem? andw? # wf,;
then by Fact A in Lemma 3,45 (w) > 5. We have thatgs (mi1) + rqs (wh) = 4 <
6 < 7y, (m®) + Tqe, (w?). Sod?, will also preferm;; andw?,, forming a blocking
triple with them toA/’. This proof also shows why we need to pad the preferences of
the garbage collectors.

Fact E: wy; anddy; must belong to the same triplein M’.

Proof: For a contradiction, suppose than?®!, w?,,d?') and (m??, w??,d%,) are
triples in M’. There exists at least one dopplegangefrin;, m;2, m;3} preferring the
combination ofw?, andd?, (since at most one doppleganger can be matched’jo
anddy,.) Let such a doppleganger be;;. Then by Fact A in Lemma s, (mij) +
Two (d)) <4 <6 <y (m®) + T, (d¥?); and similarly,rgs (mi;) + rqs (w};) <
4 <6 <rge (m??) +rge (w??), implying that(m;;, wf, , df; ) blocks M.



Fact F: w, andd?, must be matched to one of the doppleganger¥irand so are
wf, andd?,.

Proof: If w{, andd{, are not matched to a dopplegangemef, then any dopple-
gangerm,; will prefer the combination of them over his family membecsusing
(m;j, wi,, dfy) to block M. A similar argument applies to the casewf, anddy,,
giving the lemma. a

By the previous two lemmas, we have established the coesstaf the reduction
on one side.

Lemma 5. (Sufficiency) If there exists a stable matchiify in the derived stable
family problem instanc&”, there exists a perfect matching in the original three-
dimensional matching instange

To show the necessity, we need to prove one more lemma.

Lemma 6. In a matchingM’ in the derived stable family problem instan®é sup-
pose that dummy players are matched to one another. Suptiserfthat the garbage
collectors ofm,; are matched to two of the dopplegangers, while the remaidopple-
gangerm,; is matched to a real woman and a real dog with whaemshares a triple
in 7 in the original three-dimensional matching instarifeThen there is no blocking
triple in which the dopplegangers;;, m;2, andm;s are involved.

Proof. We assume thatm1, w?, d%), (mi, w, d%), (mis, wie, dic) € M'. Other
cases follow analogous arguments. We claim that there daexist a blocking triple of
the form (m;;, w, d®), (myj, wh,d??), (m;;, w?3,d?), and (m;;, w?*, d%,) where
d® £ d?), d*? + df,, w?? # w?, andw?* # wf,. We only argue the first case. Since
d?t ¢ {df ,df,d} }, we haver,s (d%) > 5 > 3 = 1,0 (d%) + 7,9 (mi2). There-
fore, w?, has no incentive to join the combinationsaf;; andd?!. So we only need to
consider the three following potential blocking triplés;s, w,, d%,),

(mis, wiy, dl), (mis, wd;, d?)). It can be easily verified that they do not blok’ be-
cause the orders of the three dopplegangers in the simpefia), andd?; (and also
wy, anddy,) are reversed. O

Lemma 7. (Necessity) Suppose that there is a perfect matchirig the original three-
dimensional matching instand& There also exists a stable matchiif in the derived
stable family problem instanc¥'.

Proof. We build a stable matchind/’ in 7’ as follows. Let the dummy players

{mf, wf, df}, 1 < j < 3, be matched to one another. Given any doppleganger
let his guard playergm?}, w}}, d)t}, {m}? w?, d’?} be matched to one another as
well. Furthermore, suppose that;, w;., d;.) € M. Let the doppleganger who lists
w;, andd;, above his guard players be matchedutg@ andd;,, while the other two
dopplegangers be matched to the garbage collectors. Bgahgruction, it can be seen
that none of the guard players and dummy players will be gartadocking triple. This,
combined with Lemma 6, completes the proof. a0



Suppose that in the given three-dimensional matchingnest#, |M| = |[W| =
|D| = n. Then in the derived instan®, we use in alBn dopplegangers,8n guard
players,4n garbage collector9n real women and real dogs, and 9 dummy players.
Their preferences (in the form of simple lists) can be geteerin O(n?) time. There-
fore, this is a polynomial-time reduction. Also, given angptching, we definitely can
check its stability inD(n?) time. Combining the two facts with Lemma 5 and Lemma 7,
we can conclude:

Theorem 1. It is NP-complete to decide whether strong stable matchaxisg under
thePON scheme. Therefore, the question of deciding existencemafsttable matching
is also NP-complete when the full preference lists are best, i.e., when they are
relaxed linear extensions of preference posets.

Super Stability and Ultra Stability It can be observed that throughout the proof, all
arguments involving blocking triples use those of degre@t only exception is the
occasion that we argue that a doppleganger cannot be matziésiguard players in
a stable matching. To recall, supposing that;;, w?}, dg;) is part of a matching, then
(mij,wg]?, d;f-) is a blocking triple of degree 2. (Or if the latter is part obtmatch-
ing, the former is a blocking triple of degree 2). Therefovey reduction only uses
blocking triples of degree 2 or 3; both are still blockingptés with regard to super
stability and ultra stability. Moreover, when we argue theisg-stability of matchings
in the reduction, we never allow blocking triples of degremr degree 1 to exist. There-
fore, essentially, our reduction has also established thedimpleteness of super stable

matchings and ultra stable matchings.

4 Threesome Roommates with Relaxed Linear Extensions of
Preference Posets

In this section, we exhibit a reduction of stable family tcessome roommates, thereby
establishing the NP-completeness of strong/super/ultdales matchings in the latter
problem. Instead of thON scheme, we use the more general scheme in which any
relaxed linear extension of preference posets is allowedchidose to use this scheme
because the involved reduction technique has a differamrflBlonetheless, we do have
another reduction for thBeON scheme, whose idea is sketched in the appendix.

Let an instance of stable family problemBe= (M, W, D, ¥), where? represents
the preferences of the players .ivt U W U D. We create an instance of threesome
roommates” = (R’,¥’) by copying all players inM U W U D into R’. Regarding
the preferences i#t’, we first build up the simple lists of all players.

— Supposen € M, L(m) = Ly(m) = Lp(m) > 7(M — {m}).
— Supposav € W, L(w) = Lp(w) = Ly(w) = 71(W — {w}).
— Supposel € D, L(d) = Lapm(d) = Ly (d) > (D — {d}).

In words, a man lists all women and then all dogs, based régplyoon their origi-
nal order in his simple lists it#. He then attaches other fellow men in arbitrary order to
the end of his list. Women and dogs have analogous arrandsineheir simple lists.



Having constructed the simple lists, we still need to buddsistent relaxed linear
extensions. By Lemma 2, we can construct them as follows:

— Considerm € M and assume thdl’ = Lyy(m),D = Lp(m),N = 71(M —
{m}). His relaxed linear extension i, (W x W) = X = E. (W x N) =
E.(DxD) > E.(DxN)» E.(N x N),whereX is the original relaxed linear
extension of mamn’s preference poset given ih.

— Considerw € W and assume thd® = Lp(w), N = Lay(w), W = 7(W —{w}).
Her relaxed linear extension i, (D x D) =Y »= E(DxW) »= Ex(N xN) >
E.(N xW) = E.(W x W), whereY is the original relaxed linear extension of
womanw’s preference poset given ih.

— Considerd € D and assume tha&f = Lq(d), W = Lyw(d),D = (D —{d}). Its
relaxed linear extension g7, (N x N) = Z = E (N x D) = E,(W x W) >
E.(W x D) = E.(D x D), whereZ is the original relaxed linear extension of
dogd’s preference poset given ih.

To prove that the reductiolf to 7” is valid, we will rely heavily on the following
technical lemma.

Lemma 8. In the derived instanc&”, if a stable matching\/’ exists, every triple in
M’ must contain a man, a woman, and a dog. Moreover, supposertfaainatching
M" in 7’ in which each player gets two other types of players as roamsnghen a
blocking triple cannot contain two (or three) players of game type.

Proof. For the first part, we argue case by case.

1. If {m,w;,w;} € M’, there exists another man’ who can get neither a woman-
woman combination nor a woman-dog combination. By consitacm’ would
prefer any woman-dog combination to his assigned roommiatdg’. Similarly,
there exists a dog’ who gets another fellow dog in/’. Such a dog would pre-
fer a man-woman combination to its assigned roommate¥ inFinally, woman
w,; andw, would prefer dog-man combination. Therefore, béth’, w;,d’} and
{m/,w;,d} block M’, a contradiction.

2. If {m,m;,m;} € M’, then there exists a womanwho gets a fellow woman in
M’ and a dogl who gets a fellow dog id/’. Thus, womanv would prefer a dog-
man combination and dag would prefer a man-woman combination. Therefore,
{m,w,d},{m;,w,d},{m;,w,d} block M’, a contradiction.

3. All other cases can be argued similarly.

For the second part, suppose that matching has the stated property. Given any
manm, by our construction, if there is a blocking triple contaigin and in which there
are two players of the same type, the only possibility of @kilog triple is{m, w;,w,}.
However, neithetw; norw; would prefer such a triple, because in our construction, for
a woman, a dog-man combination is better than a man-womabioation. The other

potential blocking triples not involving men follow analmgs arguments, thus giving
us the lemma. O

It is straightforward to use Lemma 8 to prove our reductioa i&lid one.



Theorem 2. Deciding whether strong/super/ultra stable matchingstexi the three-
some roommates problem is NP-complete when full prefellesisare consistent, i.e.,
when they are relaxed linear extension of preference posets

5 Weak Stability of Threesome Roommates with Strictly-ordeed
Consistent Preference Lists

In this section, we investigate the complexity of the thoes roommates problem un-
der theSOCL scheme, with the proviso that full preference lists mustthbietdinear
extensions of preference posets. We prove that under thesrse, both the the stable
family problem and the threesome roommates problem are dfplete, thereby an-
swering the open question posed by the anonymous reviefsigsand Hirschberg. We
could have shown the stable family problem is NP-completews®d this fact and the
reduction given in the previous section to show threesorommates is NP-complete.
However, our reduction for the former problem needs to relyacrather complicated
gadget. On the other hand, using a similar idea, the lattaslpm has a simpler gad-
get, thus we present a direct reduction for the latter. Ferfthmer problem, a formal
NP-completeness proof can be found in the appendix.

The basic idea is similar to the one we used in Section 3. Si@fwt the given
three-dimensional matching instanc@is= (M, W, D, T), whereZ C M x W x D,
moreover, every element it UW U D appears 2 or 3 times . We will transform it
into a threesome roommates instafite= (R, ¥’). We also pre-process the instance
Y so that every man itM appears in exactly three triples Bt

Every manm; WiII have three dopplegangers;, m;2, m;3, two womenw?, , w,
and two dogsl?, , d%, as garbage collectors. Supposing that, ww, dm) is one of the
triples given in7, a doppleganger;; in his simple list rankso?,, d%,, wf, , d?,, wiz, d;y
the highest, followed by his associated guard players. Tyedifference is how to
design the guard players’ preferences so thgtwill not get any players ranking below
them (or among them) in a stable matching.

We introduce the following gadget. Léfﬂj be a roommate instance of only 4 stu-

dentsmz?, m}, m;}, andm;?, such that no stable matchings existd]h An example

of such an instance can be found in Table 3 in the appendix.
Given such an instancélT if mb?’ is “removed” fromTjj, we surely have a stable
matching,{{m??, m??, m’%}}. On the other hand, if2?? “exists,” then any matching

of Tjj will have at least one blocking triple. Our plan is to embeel whstancérgj into
the derived instanc#®”’ so that ifmb?’ is not removed then a blocking triple involving
b
three members from the sﬁm” , m%‘, m;3, m? %} arises.
We now explain more precisely what we mean by remov'mtg and embedding
TT into 7. First, we need two more guard playersl andmb2 to make sure thaty;;

WI|| get two players from the sefw?”, w; , wi,, dff, d}, w}. This can be achived
by the simple lists and proper ch0|ces of pivots. RecaII thpivot is an element that
dominates all its incomparable elements in the construaiedr extension.



— L(mgj) = wiy = dly = wi; = df, >-wu>-dm>-m >—m -
(p|vot {m”, ,,})

—L( ) mw>mi?2->mi7.3>---

(plvot {m3,mz})
- L(m? ) m17>m33>m?§’>---
(p|vot {m”, EJ??})

- L(m Z-j) = U b= mﬁf > X3 > ---, whereXj3 is the original simple list ofnz;’-’ in
the instancd’;\,. The linear extension of posé(m"3) x L(m??)is {m”, m?} -
E. ((m - mbz) X X3) > Er ((mbl - mbz) x (L(m? 3) — {X3 Um Um ) >~
B (X ><X3) > E (X3 x (L(m )—{X3Um Um ) = E,r((L( 2;)—
{X3U m by m 24 x (L(m? ) — {X3 U m ty m )). (Such an extension is
allowed because of Lemma 2 )

- L(ml) = X4 = -+, L(m}) = X5 = -+, L(m)%) = X¢ > ---, where

X4, X5, X are the original simple lists of.2!, m?, andm?$ in TT respectrvely

The Ilnearextensron at(m b4)><L( )|sE (X4><X4) srmrlarly, the lin-

ear extension of,(m” )>< L(m b‘)) andL( 9) x L(m? )areE (X5 x X5) >~

andE, (X x Xg) > respectlvely (Such exten3|ons are allowed because of
Lemma 2.)

Ideally, in a stable matching af’, m;; will be matched to two players ranking
higher tharm?}, and{m}}, m?2, m??} and{m?!, m2?>, m2%} will be part of the match-
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ing. Then mb?’ in this sense is removed” fromjj, because{m”, b2} are his favorite
roommates, 'he has no incentive to leave them to go for memh)dmﬁj, m?2, m29}.
On the other hand, ifn}? cannot get{m”,m';f-} in a matching, thenn}? will be

matched to members from the s{eh”, E?, Ef} and/or some other students rank-
ing below them, disrupting the stability of the embeddedanseTjj, and hence also
Y. This intuition is captured by the following lemma.

Lemma 9. InamatchingM’in 7", if the guard playem is not matched tdm” , mbf

ablocking triple containing three members fromthe{setj,m Lom?2 mi3 mit mie mbl

Z]’ 13 137 13 13?

blocks M’. Conversely, |f{mw, EJQ, 21, {m”, 275, Z]} € M, then there is no

blocking triple involving any of the six guard playersiof;.

Proof. We first consider the casmb3 gets one of{mw, b2} in M’. Without loss of
generality, supposemu, 3, m®} € M'. There are two subcases (Wl = m;,
then{m;;, m}, m??} blocksM’; (2) if m?® # m;, then{m}}, m’?, m?3} blocksM’.

So we have three more cases. 7(ril,j is matched toa student from the $et” , mw , m';f

and another student not from the et} m}2, m2%, m22, m? } (2) m?? is matched
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two students neither of whom is in the s{et';}, m?2,mit mi> miS}. (3) mb3 is matched

b6
to two students from the se@tn” , m” N0
— In the first case, by our construction, all four perseﬁnﬁ; m';;‘, m” ,m} 6} prefer

all the combinations of one another to their assigned rootano, any three of
them will constitute a blocking triple td/’.



— Inthe second case and the third case, three students frofmtfjerm?, m?, m?$

are matched to one another. The situation is identical tbvtleshave a matching
M; in the instance’; (in which the fourth person is left unmatched). Singe
does not allow stable matching, a blocking triple must etddtlock ;. By our
construction, such a blocking triple blockg’ as well. This completes the first part

of the lemma.

The second part of the lemma follows from the fact t{mﬁ;, mgg.} dominates all
other elements |m"3’s preference posdt(m’ ) x L(m ), hencem';f will not form a
blocking triple with anyone else. Finally, sm@%” will not be part of a blocking triple,
the three guard players’!, m??, m?$ find one another ranks the highest in their simple
lists (hence also in their full preference lists). They waidit form a blocking triple with
one another, nor with other players. This completes thefproo a

Now we will explain how the guard players guarantee that gptigangern,;; will
only get players ranking higher than them in a stable magchiry™.

Lemma 10. In a stable matchingl/’ of Y/, m;; must have two players as room-
mates ranking higher thamb1 in his simple listL(m;;). Moreover, the two triples

{m2} m22 m? i and{mm, } must be part of the stable matchifg'.

Zj’ Zj’ Zj’

Proof. The following case analysis shows that; must get two roommates ranking
higher thanm?}.

— If m;; gets{m?', m??} and (at least) one of them ranks lower thal}, then either

{mzjvmzj}”L(mu)XL m”){m¢ md)Q} Or{mgglv } >_L(1n”)><L (mij) {mel m¢2}

For both cases, sme@n”, } is the pivot in the linear extension d@f(m;;) x
L(m;j), m;; will prefer the comb|nat|or1[m”, } Similarly, formbl andmif,
the combination ofn;; and the other ranks the hlghest in the I|near extension of
their preference posets. Therefofey;;, m’}, m??} blocks M’

— Suppose thatn;; gets only one otn';.jl- and m';f as roommate inV/’. We argue
separately.

e Suppose thafm,;, m}}, m?3} € M’ or {m;;,m??,m}?} € M, then

177 U’

{mij, m2}, m2? }blocksM’ a contradiction.

. Suppose{m”, mit mf;} e M’ or {m;j,m ”, m{} € M, wheremf; #
U, then becausém”, } and {m”, } are the plvots inZ(m 1) X
L(m}}) and inL(m}?) x L( ’2) respectlvely{m m??, m23} bIocksM’
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contradlct|on
— Suppose{m;;, 571, b2} e M, then by Lemma 9, a blocking triple containing

three students fron{lm” , m?j, m?f, m? ?} blocks M’, again a contradiction.

By the above discussion, i/’, m,; must get both roommates ranking higher than

m?}. Finally, if {m?}, m}2, m?3} ¢ M’, they form a blocking triple; similarly, if

{mw,mw,m o1 ¢ M’ they blockM’. So we have the lemma. O



We summarize the preferences in Table 2. Note that this timgarbage collectors

also need their own guard players. et W{ U W U DY U
p" have the simple lists as follows:

guard playerg®!, p°?

= L) =p = p% = p - (pivot: {p”, p))
- L(pr) =p=p 1b> P = (pivot: {p’!, p*°})
- L) =p"t = p? -

Table 2.The preference lists of all players in the $ét= M UM UMsUWJUWSUWUDJU

D3, then herlits three

DJ UD. We assume that there exist three triples, wiq, dia), (M4, Wi, dib), (M, Wic, dic) I
7. Moreover, for any real womam € VW and real dogl € D, let B be the part of the simple list
explicitly spelt out in the table (excluding the-“ ” part), the linear extension of her/its preference

posetisE, (B x B) =

Player Simple Lists Pivot

mi1 € My |L(mi1)=wd, = d% = w?) = d% = wia = dia > mJ3 > m?f - {m2, m3}
mig € My |L(ma)—w?y = d% = wd, = d? >wzb>dzb>m2 >-ng - {m3, m22
miz € M L(mz,):wf2 = d% = w = dY - wie = dic - MYy = mIE - - {m2%, m22
wd eW! |L(wl) =dJ = miz = mia = mi1 >~ wfl’bl - wf{” e f{bl,wf{”}
wd, € Wi |L(wh) = de = Mg = man = ma1 = wh = wh? - {wd w?
d% € DY |L(d%) = wd, = mi1 = maz = maz > d 2 - d% - {a*, d%;%}
d%, € DY |L(d%) = w? = mi1 = maz = muz = d% 1 - d; ” {d5t %%}
weW  |L(w) =x{d|(x,w d)GT})>-7T({mU|(mZ,w *)GT W m,, MY )»m

deD L(d) = 7({mu|(mi, *,d) € T,d =m,, m Z] ) = m({w|(*,w,d) € T}) =

Lemma 11. Suppose a stable matchidg’ exists in the derived threesome roommates
instanceY”. Consider the garbage collectots!,, wf,, d?,, d, created for mann; €
M. Womanw;, and dogd;, must belong to the same tripte € M’ and womarnw?,
and dogd?, must belong to the same triple € M’. Moreover, int; andt,, the third
roommate must be one of the dopplegangeys, m;», andm;s.

Proof. We prove this by establishing the following facts.

Fact G: The garbage collectors,, w?,, dJ,, d7, never get two men as roommates

in the stable matching/’.

Proof: We argue the case af?, with two men as roommates; the remaining cases
follow analogous arguments. By Lemma 10, the possible roatesnofw?, can only

be from the sefd?,, d%,, m;1, m;2,

mlg} Supposgwy,, mi;, m;j} € M'. Thenm,; has a roommate ranking lower than

contradicting Lemma 10.

Z]’

Fact H: w?, andd?, cannot belong to a triple id/’; similarly, w{, andd?, cannot
belong to a triple inM’. Moreover, none of the garbage collectors can get a real woma




w € W and areal dogl € D in M’

Proof: For a contradiction, suppose thaf, andd?, belong to the same triple. We
claim that{w?, , w%;"", w%;"*} blocks M’, because of the fact thét?;’!, w?%’?} is the
pivot in w?;'s preference poset. The other cases follows analogousrengiu

By Fact G and Fact H, we only need to consider the remainingibpitiy that in the
triple to = {wY,, d%,, p}, where the third roommate ¢ {m;1, mi2, m;3}. In this case,
{w,, d§, mi1} blocksM’. The third roommate in the triple can be argued similarly,
and so we have the lemma. O

By the Lemma 10 and Lemma 11, we establish

Lemma 12. (Sufficiency) If there exists a stable matchihf in the derived three-
some roommates instan@®, there exists a perfect matchidg in the original three-
dimensional matching instange

We need another lemma to show the necessity.

Lemma 13. In a matchingM’ in the derived threesome roommates problEmsup-
pose that the garbage collectors of; are matched to two of the dopplegangers of
m;, while the remaining dopplegangen;; is matched to a real woman and a real
dog with whomm; shares a triple in7 in the original three-dimensional matching
instance?. Then there is no blocking triple involving any player in thet X =
My UMy UMz UW] UWS UWUDY] UDS UD.

Proof. We assume that{m1, w?, d%}, {mi, wl), d¥, }, {mis, wic, dic} } € M. Other
cases follow analogous arguments.

Fact I: There does not exist a blocking triple of the forfm; ;, w?,, p?'}, {m.;, wh, p®?},
{mj,d?;,p?®} and {m.;, d%, p®*}, wherep?! # dJ,, p®? # d%, p**> # w?,, and
p¢4 5& w'gz-
K2

Proof: We only discuss the first case. By construction, supposerefers{w?,, p'},
thenp?! must be in the set ofw?,,d?,, d%}. In any of the caseg®! prefers his as-
signed roommates to the combination{ef;;, w?, }. This can be observed from the fact
thatw?, always ranks below?! 2 (p®!'s guard player). Sofm;;, wf,, p*'} cannot be
a blocking triple.

Fact J: The following triples cannot block?”: {mz, w¥,, d?%,}, {mis, wi,, d%},
{mis, wi), &, }.

Proof: This can be observed from the fact that the orders of thettopplegangers
in the simple lists ofv?, andd?, (and also otw?,, d,) are reversed.

Note that by Fact | and Fact J, we have ruled out the posgiMfilétt a blocking triple
involves the dopplegangers or the garbage collectors.



Fact K: There does not exist a blocking triple involving womare W or a real
dogd € D.

Proof: We only consider the first case. By construction, if womaprefers some
other combination, it can be only two real dog® andd®®, or a real dog/?” and a
dopplegangem®®. In the first casej?® will not prefer the combination ofw, d*°}, be-
cause of the way we construct the linear extension of itspeefice poset. Spw, d*®, d*%}
cannot be a blocking triple. In the second casé?, being a doppleganger, by Fact |
and Fact J, he cannot be part of a blocking triple {8¢%, w, d*7} cannot be a block-
ing triple.

Combining Fact I, J and K, we prove the lemma. a0

Lemma 14. (Necessity) Suppose there is a perfect matcliihgn the original three-
dimensional matching instan@. Then there also exists a stable matchig in the
derived threesome roommates instafite

Proof. We build a stable matchindy/’ in the derived threesome roommates instalice
based on/.

Suppose thaim;, wi,, di,) € M. Letthe doppleganger who lisis,, andd;, above
his guard players to be matched¢q, andd;,, while the other two dopplegangers be
matched to the garbage collectors. Let the three guard fd@afehe garbage collectors
be matched to one another as well. And finally, for the six dydayers of a dopple-
gangerm;;, let {m}}, m}? m}?} be matched to one another; al§p}},m??,m?$
should be matched to one another.

By this construction and Lemma 10, it can be seen that nonkeeoftiard players
will be part of blocking triples. This, combined with Lemma,Xompletes the proof.

O

Lettingn = |[M| = [W| = |D|, we use in all3n dopplegangersin garbage
collectors,30n guard players2n real women and real dogs. Therefore, the reduction
can be done in polynomial time. Checking whether a matchéngtable also can be
done inO(n?) time. This, combined with Lemma 12 and Lemma 14, gives us thefp
(the threesome roommates part) of Theorem 3.

Theorem 3. It is NP-complete to decide whether weak stable matchinigs erder
the SOCL scheme, for both the stable family and the threesome roocesnmabblems.
Hence, it is also NP-complete to decide whether a weak stabtehing exists when
consistent preferences are allowed to contain ties: i.e.ftil preferences are relaxed
linear extensions of preference posets.

6 Conclusion and Related Problems

In this paper, we answer the open question of whether théesfamily and the three-
some roommates problems are NP-complete if all players t@ypeovide consistent
preference lists. We introduce a scheme in which playerseganess indifference on



the precondition that their preferences have to be comgidtinder this scheme, a vari-
ety of stabilities are defined and we prove that all lead toddPplete problems.

Since we have proved that the general cases of stable familyteieesome room-
mates are NP-complete, a natural question to ask is whétber &re special cases that
allow polynomial time solutions. Actually, a variant of tktable family problem that
can be solved efficiently does exist.

Consider the following scheme. Every player submits twopdintists. A man eval-
uates combinations first by the woman he gets, then by thealagiman first by the
man she gets, then by the dog; a dog first by the man it getspthdre woman. (Note
the asymmetry). Itis not hard to see that we can apply the-Shépley algorithm twice
to get a weak stable matching: letting the men propose to wamne then propose to
dogs. Women and dogs make the decision of acceptance otiogjdased on their
simple lists of men [2]. Merging the two matchings will givesgable matching in the
stable family problem.

However, even a little twist can make the above scheme hasdlt@. Suppose a
man decides first based on the woman he gets and then the dogyanvirst based on
the dog she gets and then on the man; a dog decides first batieel iman it gets then
on the woman. The Gale-Shapley algorithm no longer works [1]

Interestingly, the above scheme is reminiscent of anothengroblem allegedly
originated by Knuth. Suppose that a man has only a simpléolistfomen; a woman
has only a simple list for dogs; a dog has only a simple listrfan. This problem
is calledcircular stable matchinglts complexity is still unknown. Some interesting
observations on this problem can be found in [1, 3].
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A Proofs of Lemmas in Section 2

Lemma 1 Given any posef) and any elemenf € Q. there exists a linear extension
of @ such that ifg||q¢’, theng =; ¢'.

Proof. We construct a graph whose nodes represent elemed)saotl directed edges
(gi,q;) exist if ¢; =¢o ¢;. We now add directed edges from alé incomparable el-
ements tog. We claim the graph is still acyclic. Suppose not. Then acti@ cycle
includingq must have been created in the process. But this implies tiggnally, there
is a path fromy to one of its incomparable elements, which is impossible.

Since the new graph is still acyclic, by the well-known fdtattan acyclic graph
allows a linear extension, we prove the lemma. a

Lemma 2 Let! be a strictly-ordered list. Suppogds decomposed into nonempty
contiguous sublistf1, o, - - - , ) such that (1)\);“:1 I, =1,(2)ife =, f,thene —; f,
and (3) ife € [;, f € 1,7 < j, thene >; f. Then there exists a linear extension of [
such that all combinations drawn frofi;, /; } precede all pairs drawn fronfl;/, ; },
provided thati < 5,7’ < j' and one of the following conditions holds (@@L x i’, (2)
i=1i,5<j.

Proof. Given any two (not necessarily different) sublistsand/;, we can build a di-
rected grapl,; = (Vi;, E;;) in which every vertexw € V;; corresponds to a combi-
nation drawn from list$; and/;. Directed edges itl;; represent the precedence order
in the poset; x I;, which is a sub-poset dfx [. SinceG,; is acylic, we have a linear
extensiong,, of the elements ir;;

We now use the extensioiig,; to construct the full extension éfx I. We string
out all graphsG;; horizontally such that thék? + k)/2 graphs are ordered in the
same way as defined in the lemma. To be precise, we list thengriipm left to
right asGiy, Gz, -+, Gk, G2, Gas, -+ Gagy -+, Ge—1)(k—1)5 G (k—1)k> Grr @nd
we can view these graplds;; as if they were some “big” vertices in another graph

If in the poset x [, there exists a combination drawn from ligés, I;} preceding
another drawn fron{/;., ;- }, we add a directed edge into the graplfrom vertexG;
to vertexG/ .

It is not hard to see that all the newly-added edges go froghtrto left” across
the (k2 + k) /2 big vertices. This implies that the graghcomposed of the big vertices
G  is acyclic, allowing a linear extension, which can be sintply way we list the big
vertices. Replacing each big vertex with the linear exmat, ; gives the lemma. O



B Threesome Roommates under the PON scheme

We briefly explain the reduction idea under tH@N scheme. Again we give a reduction
from a stable family instanc®& = (M, W, D, ¥) to a threesome roommates instance
Y’, assuming that the preferences giveiare based on theON scheme.

Supposing thatM| = n, we create3n dummy players mfﬁ, mf, e ,m?n such
that every three of them must be matched to one another irb&estzatching. To be

precise, giver) < i <n — 1:

#N #
- L(m;;;) = m3z‘+7; = m3i+7i o
- L(m?%zﬂ) = mg#i+2 *;ngi e
= L(m% o) =m3, = mi 4 =

For the players it U W U D, they need to use these dummy players to pad their
preferences:

— Considerm € M and assume thdl/ = Lyy(m),D = Lp(m),N = 71(M —
{m}). His simple listin¥’ is L(m) = W = D = n({m? |1 <i <3n}) = N.

— Considerw € W and assume thd® = Lp(w), N = Ly(w), W = 7(W —{w}).
Her simple listin?’ is L(w) = D = N = n({m|1 <i < 3n}) = W.

— Considerd € D and assume tha¥ = Ly (d), W = Lyw(d),D = n(D — {d}).
Its simple listin®’ is L(d) = N = W »= z({m?|1 <i < 3n}) = D.

The correctness arguments of the reduction are similardsetlused in Lemma 8
and Theorem 2.

! The numbeBn is actually unnecessarily big, but we use it for ease of piegien



C An Example of a Threesome Roommates Instance of Size 4
without Stable Matchings

Table 3. An example of a threesome roommates instance of size 4 sathahstable matching
exists. Note in this case, there is only one possible ling@nsion of the preference poset.

Player |Simple Lists
b3
ij
[z b3

b4

b6 b5
miy = mp; = mi;

b6 b5

ij m;; - My, - m;;
mEj mZ}l > mEj > mZJG
b6 b5 b4 b3

D Weak Stability of Stable Family with Strictly-ordered
Consistent Preference Lists under the SOCL scheme

To prove that the existence of weak stable matchings inestalohily is NP-complete
under theSOCL scheme, we again resort to the reduction of three-dimeakioatch-
ing. The setting of the given instante= (M, W, D, T) and the pre-processing step
are the same as we have done in Section 3 and Section 5. Eve@rynmappears
three times in triples irf ; and we create three dopplegangers, m;2, m;3, and four
garbage collectors?,, w?,, d?,, dJ,. The basic idea is still to use a set of guard players
to restrict the possible family members of a doppleganggrin a stable matching.
What complicates things is that we need to tailor a more iresblgadget to suit our
purpose.

The gadget we need, like the one we used in Section 5, is a&dtahlly instance
T;fj without stable matchings. Thankfully, such an instancéuvsrgto us in the paper of
Boros et al. [1] and is recreated in Table 4.

It can be checked that m';? is removed fromﬁj , then there is a stable matching
Mt = {(m2h wit, d2), (m2, w2, d22)}. Our plan is to embed’. into the derived
stable family instanc&” so thatm';j?’ has to be absent from the embedded instaij"(f‘e
in a stable matching df”.

We now introduce three more guard players’, w??, 422 so that in a stable match-
ing M’ in Y, m39 can be matched tav}?, d??). Suppose thatm;, wi,, diz) € 7. The
preference of a doppleganger;; along with his twelve guard players are as follows.

= Ly(mij) = wi? = wil = wiy = wl) = -+
Lp(mij) = &} = d2} = di = d3) > -+
(pivot: (w??, d;9))

= Ly(m9) = wi? >~ -

L) = d



(pivot: (m52,d29))
L (d9) = w9 = -+
(pivot: (mf?, wfjo))
— Lyw(mi) =wl? = X = -
Lpmi3) =d? =Y = -
(whereX andY are the simple lists oan;” in Tjj.)

Moreover in the linear extension of posiatv(mgf) x Lp (m%’?), we make(w%?, dz?) -
E-({w?} x Y) = En({w} x (Lp(m2?) — {d2 UY}) = En(X x {d%}) =
F = -..), whereF is the same linear extension &f x Y given inTjj.
Such a construction is allowed because of Lemma 2.

= Lp(w}?) =X = m - -
Lp(i) =Y > -
(whereX andY are the simple lists af?? in Tjj.)

)

Moreover, let the linear extension &fy((w??) x Lp(w}?) be F = E.({m}%}) x
Y > ---, whereF is the same linear extension &f x Y given inTjj.
b3\ _ b0
= Lpm(d) =X =mj =
Lw(d) =Y = -
(whereX andY are the simple lists (11';73 in Tjj.)

Moreover, let the linear extension @fy((d}?) x Lp(d}?) be F = E.({m}9} x
Y') = ---, whereF is the same linear extension &f x Y given inTiTj.

— For the remaining guard playefse {m}}, w}, d;}, m}? w}?, d;?}, assume that
her/his/its simple lists ir‘T;fj are X andY respectively. For the new simple lists
of p in the derived instanc#&”, we attach all other players to the endXfandY’,
respectively. Moreover, in the linear extension of the prefice poset, we make the
extension of the (subposeX) x Y identical to the one given iilfjj, moreover, the
linear extension o x Y precede all other elements.

Lemma 15. In a matching)’ in the derived stable family problem instarit§ if the
guard playerm?? is not matched t¢uw??, d;9), a triple containing three members from

170 Yij
the set{m?},m??, m2? wil, w?? w??, d’}, d’?,d’3} blocks the stability of\/’. Con-

versely, if)’ contains the following triple{(m?}, w?}, d2}), (m}2, wi?, d2?),

(m39, w3, d23), (m3, w??, d??)}, moreover,m,; is matched to a woman and a dog
ranking higher thanw';;J and d‘;g’ respectively, then there is no blocking triple involv-
ing any of the twelve guard players of;;.



Proof. Suppose thatn)? is not matched tquw??, d??). We first rule out the possibility

thatm?? is matched to one of them. W.l.o.g., let??, w}?,d?) € M’, whered? # d29.
Then(m}?, w9, d}9) blocks M, as stated in the lemma.
So now we can assume thatj’ is matched to two players strictly ranking below

wE;? andd;*-;? respectively. We have two possible scenarios:
— Allnine guard players ofm}}, w}}, 2}, m3? w2, di? m}3, w3, d;?} are matched
to one another inV/’. This situation is identical to a matchidgjj in TJJ Since,
Tjj allows no stable matching, at least one blocking triple iviviy three out of

these nine guard players emerges to blMg, and alsalM/’.
— If some of these guard players are not matched to one antitlearthe situation is
identical to a matching\/ljj in which at least three guard players (one from each

type of{ M, W, D}) are left unmatched in the instan]f%. By the linear extensions
we have constructed, they would prefer one another and fdolocking triple to
M, and also tal/”.
For the second part of the lemma, we can observe the follofaicts:

— (w';g-’, d‘;g’) dominates all other elements in the linear extensicnmgifs preference
poset. Hencengf has no incentive to go for any other players.

- (mE;’-’, d??) is the pivot inw??’s preference poset. Hence, the only better combination
for w?? is (mij, dg;?). But by the statement of the lemma,; gets family members

ranking higher thano?9 andd}? respectively, hencém,;, w’?,d;?) cannot be a
blocking triple. The same argument can be applied’fo So bothw?? andd;? are
not part of a blocking triple.

— Consider Womanugf. If she forms a blocking triple with other players, there

are two possibilities. (1) She gets a better man.iBuch a man cannot be';f

as we argued previously. It can be verified that neitzln@jr nor mﬁf prefers the
combination ohug*j” with any other dog player. (2) She gets the same m%but
a better dog, which is eithef ! or d’?. It can be checked that neithé}! nor d;?
prefers the combination @&573 andm%J (because of the way we construct the linear
extensions of their preference posets).
The same argument can be applied to d?g Also, m';g’ is getting his best possible
combination. So he has no incentive to Iem@ anddﬁf- either.

— The remaining players in the sgtn}!, w?!, &2}, m?2, w??, d??} do not form block-
ing triples, as can be easily verified. And this completespituof of the second
part of the lemma. a

Lemma 16. In a stable matching/’ of Y/, m;; must have two players as family mem-
bers ranking higher tham;g’;? anddE;? in his simple lists, respectively.

Proof. The following case analysis shows thag; must get two family members rank-
ing higher thanw?? andd;? respectively.



Table 4. An instance (where. = 3) of the stable family problem under the SOCL scheme that
disallows any stable matching.

Player Simple Lists Full Preference
b1 b1\ _— b1 b2 b3 b1 752 b1 ;H1 b1 753 b2 72 b2 HT b2 b3
Lp(m})) =d} = di} = d3 wiid? = widll = wild)
b2 b1y _— b2 b3 b1 b2 752 b2 h1 b2 753 b3 b2 b3 HT b3 b3
b3 b1y _ b1 b2 b3 b1 b2 b1 ;H1 b1 b3 b2 752 b2 1 b2 H3
Lp(mi;) =di5 = dij > di; wydls = wiidly = wlid
b1 b1 b1 b2 b3 b1 D2 bI_ D1 b1 D3 b2 2 b2 b1 b2 b3
La(wi}) =miZ = ml} = mi3 d3m?? = d3ml) = d33d3?
b2 b2 b2 b3 b1 b2 D2 b2 D1 b2 D3 b3 b2 b3, b1 b3, D3
Lm(wi}) =mi = mi} = mi dimy: = diimy) - dydis
b3 b3 b1 b2 b3 b1, b2 b1, b1 b1, b3 b2, b2 b2 b1 b2 b3
L (wfj?’) = mﬁ - m%l - m?? dﬁf’msz - dﬁ’mﬁ; - d??dﬁf
b1 b1y _— b2 b3 b1 b2, b2 b2 b1 b2, b3 b3, b2 b3, b1
A o i s gl T T T T T T
T
T gy Ty R S R - A
S
b3 b2 b1 b3 b2 b3 b3, b2 b3, bl b3, b3
Lw(dj) = wij = wi; > w;; M W5 = MW7 = MW = M w.;

— If my; gets(w?',d*?) and (at least) one of them ranks lower thaff andd;
respectively. Then by the fact théw’?, d;9) is the pivot,m;; must prefer them,
and so do they him, creating a blocking tripleX, a contradiction.

— Suppose that;; gets only one oiu?? andd?? as family members. We claim that

(m33, w3V, d2?) is a blocking triple. This follows from the fact than??, d;9) and

(¥} ? ¥} )
(m33, w}?) are pivots inw??'s andd;9's preference posets respectively.
— Supposgm;j, w??, d29) € M'. Thenm}? cannot getw??, d;9) in M’ and we can

apply Lemma 15 to show/’ is unstable.

By the above discussion, ', m;; must get both family members ranking higher
thanw?? andd;*-;? respectively, and this gives us the lemma. a0

We now summarize the preferences of the players in theXset M; U M5 U
Mz UW{ UW3j uWwuD{UDJUD in Table 5. As can be seen, their preferences are
similar to those we used in Section 3. The major differendhas now each garbage
collector also needs her/its own guard players. Considgrgambage collectop €
{W{uwduD{UD]}. We introduce the symbolts*(p), w*(p), andd* (p) to represent
herl/its three associate guard players. Their purpose witllear in the proofs below.
When we create the linear extension of the preference pdseptayer inX =
My UMy UMz UWY UWy UD] U D, supposing thal” and Z are those players
ranking at least as high as their guard players, we let athefds inY” x Z precede all
other elements (using Lemma 2) in the linear extensions.




Lemma 17. Suppose that a stable matching’ exists in the derived stable family in-
stancel”. Consider the garbage collectors), , wy,, d?,, dJ, created for mann; € M.
Thenw?, anddy, belong to the same tripley € M’ and wf, and df, belong to the
same triplet, € M’. Moreover, int; andt,, the third family member must be one of
the dopplegangersi;1, m;a, m;3.

Proof. We argue first for the case aff,. Supposé, = (m®!, wf,, d*) andd? # d?,.
There are two subcases.

— If d?* = d*(wf,) andm®' # m*(w,), then(m* (wh), w*(wh), d*(ws,)) blocks
M', a contradiction.

— If d?' = d*(wh) andm® = m*(w?), then(m;1, wi, d%) blocks M’, again a
contradiction.

— If d? # d*(w}), then(m* (wh), wlh, d* (w?)) blocks M. (This is because the
combination of the garbage collectors{(w?,), d*(w?,)) is the pivot ofw?,’s lin-
ear extension). So we have another contradiction.

Thus we havel®t = d%,. If m®! & {m;1, mia, miz}, then(m;1, w, d%,) blocks
M.

The case of; being composed aof?,, Y, and another doppleganget;; follows
analogous argument. Therefore, we have the lemma. a

By the previous two lemmas, we establish

Lemma 18. (Sufficiency) If there exists a stable matchihff in the derived stable
family problem instanc&”, there exists a perfect matching in the original three-
dimensional matching instan@e

We need another lemma to show the necessity.

Lemma 19. In a matchingM’ in the derived stable family problem instantg sup-
pose the garbage collectorsof; are matched to two of the dopplegangersaf while
the remaining doppleganges;; is matched to a real woman and a real dog with whom
m; shares a triple in7 in the original three-dimensional instan@& Then there is no
blocking triple in which the dopplegangeis;, m;2, m;3, are involved.

Proof. We assume that(m;1, wi,, d%), (mia, wy, %)), (mis, wie, d;c)} € M’. Other
cases follow analogous arguments.

We claim that there does not exist a blocking triple of therfaim,;, w?,, d*!),
(mijvwg25d¢2)! (mij7W¢3vd?1)' and (mi.jvw¢4vdzg2) where ¢! # dzgl' a # d? ’
w? #£ w?, andw®* # wf,. We only consider the first case. By the way we construct
the linear extension of the preference poset§f, she will prefer her original combi-
nation (m;2, d7,) over such a combination. Henden;;, w?,, d?'), whered®! # d?,,
cannot blockM”.

So we only need to consider the three following potentiatkilog triples:

(Mg, wiy, ddy), (Mg, wih, d%y), (mas, wl), d7)). It can be easily verified that they do not
block M because that the order of the three dopplegangers in théeslists ofw?, and
dJ, (and alsaw?,, d,) are reversed. o



Lemma 20. (Necessity) Suppose that there is a perfect matchihgn the original
three-dimensional matching instante Then there also exists a stable matchiigin
the derived stable family instan@g.

Proof. We build a stable matching/’ in the derived stable family instand& based
onM.

Suppose thaim;, w;., d;,) € M. Letthe doppleganger who lisis, andd;, above
his guard players to be matchedg, andd;,, and the other two dopplegangers be
matched to the garbage collectors. The twelve guard plafers; are matched to one
another as followsf (m}}, wi}l, d21), (m32, w2, d32), (m39,wi?, d23), (m?3,w}?, d9)};
for any garbage collectgr € W{ UWj UD{ UD5, we make her/its three guard players
(m*(p), w* (p), d*(p)) a triple.

By Lemma 15, it can be seen that none of the guard players qflégangers will
form blocking triples. Similarly, by Lemma 19, the dopplegers will not be involved
in blocking triples either. Also, since all garbage coltastare matched to players rank-
ing higher than their guard players, their guard players &gl not form blocking
triples either. Combining the above facts, we complete thefof the lemma. a

Lettingn = |[M| = [W| = |D|, we use in all3n dopplegangersin garbage
collectors,48n guard players2n real women and real dogs. Therefore, the reduction
can be done in polynomial time. Checking whether a matchéngtable also can be
done inO(n?) time. We conclude the stable family part of Theorem 3.



Table 5.The preference lists of all players in the $ét= M UM UMsUWJUWSUWUDJU

D§ UD. We assume that there exist three triples, wia, dia), (Mi, Wi, dip ), (M, Wic, dic) IN
T.Forp € {W{ UWS U D7 U D]}, their linear extension should guarantee that all elemients
Y x Z precede all other elements, whérfeand Z are those players ranking at least as high as
their guard players in their simple lists.

Player Simple Lists Pivot
m;1 € My Ly (mi1)=wi, = wd = wiq > wd - - (w??, d29)
Lp(mii) = d% = d%) = dia = d2? =
mi2 € Mo Ly (mi2)=wi, = wi = wip, = wiY — - (w3, d29)
Lp(mip) = d% = d%) = dip = d*;
mi3 € Ms L (ma3)—w?y = w9 = wie = w)y > - (w3, d9)
LD(mig) =dy = d?) > dic = d3 >
wf € WY Lm(wfy) =maz >~ miz > My > m*(U)fl) = ((m(wi), d (wi)))
LD( 11)—d?1>d*( )>
wi € Wi LM( b)) = Mz = miz = M m*(wiy) = - [(m*(why), d" (w)))
Lo(ufh) = dfy > d*(ufy) = -
dj, € DY LM (dgl) =ma1 = maz = mag = m*(df;) - (m*(dfy), w*(df))
wld) = wl) = w (wy) = -
di, € D3 m(dy) = mir = maz = mas = m*(d3,) > (m*(df), w*(df,))
w(wh) = wa = w*(wh) = -
w e W LM(w)
LD(w) =
deD o) =
L(d) = ---
m*(w) Ly (m*(w)) = w » w*(w) = (w*(w), d* (w))

w € {wjy, wh}

W (w)

w e {w},w,}  |Lp(w*(w)) =d"(w) >

d*(w) Lm(d*(w)) =m*(w) = (m* (w), w*(w))
w € {wf,wi,} Ly (d*(w)) = w > w*(w) >

m*(d) Ly (m*(d)) = w*(d) > - (w*(d),d"(d))

d € {d}y, dis}

w*(d)

d e {d,d%)} Lp(w* (w)) = d = d*(d) =
4 (d) I (@ () = m*(d) = -
d € {d},,d},} Lw(d*(d)) = d*(d) ~
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