
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Computer Science Technical Reports Computer Science 

5-26-2007 

Dumbots: Unexpected Botnets through Networked Embedded Dumbots: Unexpected Botnets through Networked Embedded 

Devices Devices 

Kwang-Hyun Baek 
Dartmouth College 

Sergey Bratus 
Dartmouth College 

Sara Sinclair 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr 

 Part of the Computer Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Baek, Kwang-Hyun; Bratus, Sergey; and Sinclair, Sara, "Dumbots: Unexpected Botnets through Networked 
Embedded Devices" (2007). Computer Science Technical Report TR2007-591. 
https://digitalcommons.dartmouth.edu/cs_tr/298 

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital 
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/298?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Dumbots: Unexpected Botnets through Networked Embedded Devices

Kwang-Hyun Baek, Sergey Bratus, Sara Sinclair, Sean W. Smith

Dartmouth College Computer Science
Technical Report TR2007-591

May 26, 2007

Abstract

Currently, work on botnets focuses primarily on PCs. However, as lightweight computing devices with
embedded operating systems become more ubiquitous, they present a new and very disturbing target
for botnet developers. In this paper, we present both an empirical demonstration on a widely deployed
multimedia box, as well as an evaluation of the deeper potential of these dumbots.

1 Introduction

When it comes to subverting networked machines for distributed use (such as creating botnets), the primary
arena tends to be commodity personal computers. We see this tendency from both the attack and defense
perspectives: a malicious attacker building a botnet targets PCs, and system administrators focus their
defense on these same machines (both because they are a primary target and because they are vital to the
day-to-day operations of the organization).

What qualities of commodity PCs make them so attractive to botnet developers? We posit the following
characteristics are essential for botnet devices.

• Ubiquity: There are an estimated 900 million PCs currently in use today, with over 230 million (about
25%) in the United States [3]. This means that an attacker has a huge number of target nodes spread
throughout the world for creating a massive distributed network of bots.

• Insecurity: Most of these machines, especially those located in home environments, are administered
by average users without a specialized knowledge of security principles or best practices. As a result,
many of these machines are vulnerable to known attacks, even in enterprise environments.

• Availability: Most of this machines are on for long periods of time, and remain online via a broadband
internet connection. Furthermore, these machines are usually not burdened with intense computation
or network traffic by their owners, so they are both accessible and available for use by an attacker
without the owner noticing.

The community also focuses defense efforts on PCs because they are the visible, tangible manifestation of
computing today. Users consciously touch them, run programs on them, and (potentially) install patches.
Thanks to continuing attacks and mass media coverage, the risk and urgency of PC security is probably part
of everyone’s consciousness now.

This focus on commodity PCs diverts attention from another fruitful arena for attackers: networked
embedded systems. We compare them to PCs according to the three characteristics we presented earlier:

• Ubiquity: We see small networked computers with lightweight or embedded operating systems in
all sorts of scenarios: in grocery stores, factories, automobiles, hospitals, power substations, and in
unexpected areas of the home and office.

1



• Insecurity: We know that these devices suffer from a variety of existing security vulnerabilities (see
Section 2).

• Availability: Finally, most of these networked embedded devices, once deployed, are meant to be
always connected and powered on.

We argue that devices that integrate invisibly into our lives are more susceptible to attack because the need
to protect them has not yet become part of the mass consciousness—when it comes to computing, these
devices are invisible.

If embedded or lightweight networked systems are ubiquitous, vulnerable, and available, what prevents
them from becoming a target for attackers developing botnets? As more and more attention is drawn to the
security of PCs, will future attackers turn to these lightweight devices to satisfy their needs?

In this paper, we consider the possibility of botnets composed of embedded systems. We describe a
practical instantiation: how we have remotely transformed off-the-shelf media systems (widely deployed at
our university and elsewhere) into general-purpose devices under our control, and the implications of the
botnets we could create with these devices. By subverting an unexpected, ’invisible’ networked system, we
expose a new arena for botnet development—and defense.

2 Related Work

As we noted, much of the research on botnets has been subverting desktop PCs for use in DDoS attacks
(e.g., [9]). More recently, researchers have noted the ability of bots to spy on the PCs’ owners [12]; when
aggregated, the personal data harvested from an entire botnet could prove very valuable to the attacker.
(Indeed, there exist online markets where criminals can rent or buy the use of botnets because the aggregated
information is so valuable [13, 1, 21].)

Researchers have identified vulnerabilities in a variety of embedded systems, particularly in enterprise
environments [17]. The deployment of RFID technology in supply chains presents serious concerns for
security and privacy [8]. The sensitive nature of networked patient care equipment and power supply devices
in the electric infrastructure have also brought attention to their security; Koopman notes that these devices
are extremely cost-sensitive, and cutting corners on security can lead to big market advantages [16].

A number of recent Blackhat and Defcon talks have been devoted to devices surreptitiosly placed in
enterprise environments by penetration testers or attackers. The associated techniques make use of the fact
that a familiar entertainment or appliance device does not attract undue attention (at least not until after
the damage has been done). Devices featured include a modified version of the DreamCast game console [11]
and a sniffer disguised as a UPS device [19]. Similar work has been done to subvert innocuous devices, such
as printers, that are already a visible part of the enterprise computing environment, [10, 7]. That work
showed some of the ways in which a device with limited capabilities could be targeted as an entrypoint for
an attacker or a passive observer in an organization. (In contrast, in our paper we discuss the ease with
which a large number of those devices could be subverted and used in aggregate to create a much larger,
scarier threat than a one-off version).

Su et al. discussed subverting modern mobile phones using worms that spread through Bluetooth [20].
However, mobile phones are different from the media systems we are considering in several ways. Their
threat model often targets the mobile phones themselves, such as the personal information stored in the
phone, whereas we are trying to use our media system as a launching point to access data on other devices.
Moreover, mobile phones do not use IP for routing (with few exceptions that use 802.11); thus, it is harder
to use them to attack the infrastructure that uses IP routing, which is most prevalent today. Finally, mobile
phones are mobile and dynamic. Thus, it may be challenging for the botmasters to administer them since it
is hard to predict their location and targets.

SCADA (Supervisory Control and Data Acquisition) systems have been another area of intense security
research [6] in recent years. SCADA systems are used in a variety of critical infrastructures around the
country, including in most utilities, such as power and water. However, much of the concern with SCADA

2



security is not focused on the actual embedded devices deployed as part of the system, but rather on the
protocols by which those devices relay their data to central servers, or the servers from which the system is
controlled. Instead of examining security concerns in systems that include embedded devices, we consider
in this paper the security problems that the embedded devices themselves present to the system.

3 Our Work: Dumbots

In this section, we discuss the work that we have done as part of a collaborative security initiative to
evaluate a particular lightweight device prevalent on our local network. Here and in the rest of the paper,
we consider “embedded devices” to be special-purpose computers that have limited computation, storage,
and/or input/output capabilities. Through our exploitation of this one type of device in an easy-to-reproduce,
scalable way, and our subsequent exploration of its capabilities as a member of a botnet (particularly, its
capabilities within its context of an enterprise environment), we will show that embedded devices could easily
become the hosts of the next generation of botnets.

3.1 The Environment

Exploring our local infrastructure, we noticed a multimedia box quietly lurking in the corners. (Out of
courtesy to collaborators who let us have access to a few sample boxes, we will not reveal here the specific
purpose of these boxes, nor the specific vendor.) Our university has deployed approximately 450 of these
boxes, across different subnets in the dorms and administrative buildings (we discuss the details of their
network configuration in Section 4). The boxes are equipped with comparatively slower processor (compared
to that of commodity PCs) and 100 MBit Ethernet interface, and an NVRAM flash memory chip where the
OS image is stored. These systems are meant to be deployed on the network, “as is”, and require minimal
administration.

Upon analysis, we discovered found that each of the multimedia boxes contains the following:

• a custom Linux 2.4 kernel,

• a custom BusyBox1 shell,

• a minimal web server for web-based configuration,

• a telnet server for remote management,

• a set of update scripts,

• and a copy of wget, which is used by the update scripts to download the upgrades.

The boot loader process unpacks the root filesystem from the image stored in NVRAM and mounts it on
a ramdisk. The free space on the ramdisk is limited to around a hundred kilobytes. Even though there is
around tens of megabytes of free space in the flash drive, we have found that writing to the flash drive and
not restoring the flash drive back to the original state prevented the device from booting again, an apparent
integrity protection measure to prevent tampering with the stored OS image.

3.2 Subversion

We now explain in detail how we gained the control of these boxes and how we made the necessary network
tools available in the multimedia boxes to turn them into powerful bots.

1BusyBox is a UNIX shell replacement designed for small and embedded systems that combines tiny versions of many common
UNIX utilities into a single small executable. More information about BusyBox can be obtained at http://www.busybox.net/.

3



Telnet We saw the first opportunity of attacking the box when we discovered that the boxes are running
a telnet server for remote management. We found the box’s default password on the Internet2 and was able
to gain root access to the box. Because the boxes mount a read-only image from its flash drive on each
boot, any changes to the root password are reverted back to the default password upon each reboot. The
vendor may have wanted a way to revert to the default password if the administrator forgets the password
he set for the box. Another reason for this can be that, lacking keyboards and displays, these boxes can
only configured via a network connection—and the goal to minimize end-enterprise administration pushes
this task to the remote vendor.

Installing Network Penetration Tools We wanted to put powerful network tools such as tcpdump and
arp-sk in our media boxes. As we expected, most non-essential tools and libraries did not exist on the box,
except wget and a minimal version of ping. However, after finding out the processor type, we were able
to cross-compile most of the tools remotely and download the tools onto the box using wget. Moreover,
although the box lacked chmod to add execution bits to the downloaded files (wget strips the execution
bit), we were able to preserve execution bits of the downloaded binaries using tar since tar preserves the
permission bits 3.

Nevertheless, due to the limited storage available in the media box, even though we were able to cross-
compile most of the tools we needed, we were not able to put these tools in the media box. The media box
had only about 20 kilobytes of free space in the ramdisk. The contents of the flash drive are protected via
signature-based integrity protection. During our analysis, we found that writing to the flash drive made the
device unbootable.

Storage and NFS Fortunately, the media’s kernel also included support for mounting the Network File
System (NFS). We simply exported the directory containing all the cross-compiled tools to the media boxes.
Making the tools available this way enabled us to quickly add and remove new tools to all media boxes. The
NFS support also enabled us to add virtually unlimited storage to the multimedia boxes: We made our tools
to store all their logs directly in the NFS mount. In Section 4.3, we discuss how mounting NFS affects our
performance. We found that the box’s performance is good enough for most of our attacks even when we
use NFS to store tcpdump log.

The Tools We Used Our goal was, using remote network access to deployed boxes, to transform these
multimedia boxes into platforms for sniffing, intercepting, relaying, and injecting traffic. We found that the
Linux 2.4 kernel included the support for the BPF packet capture and filtering architecture [15], as well as
support for raw sockets.

This enabled us to use the libpcap [14] library for packet sniffing and the libnet [18] library for shaping
and injecting arbitrary packets. Using these two popular libraries, we were able to make the following tools
available in the multimedia boxes:

• arp-sk for Address Resolution Protocol (ARP) poisoning attack to sniff and impersonate the local
gateway on our switched subnets,

• fragrouter for packet forwarding and custom packet filtering,

• dsniff for targeted password sniffing and man-in-the-middle attacks,

• socat and netcat to create and forward SSL connections in and out of the box,

• and finally, tcpdump to log the sniffed traffic.
2In another application domain, the power grid, we’ve seen one vendor actually brag about how their products are more

secure because their default passwords are slightly less obvious—and include a nice summary table of brands, models, and
default passwords, to prove the point.

3Another way of adding executable bit is cp -p /bin/ls /tmp/cmd; cat tool > /tmp/cmd. Also note that ld-linux.so,
which can be used to load arbitrary ELF-formatted file into memory, is not available in our boxes.

4



These tools allowed us a significant degree of control over the local subnets where each box was placed.

Normal Operation When we enhance the media boxes with our network tools, we do not modify NVRAM,
nor kill any processes, nor modify the kernel. Indeed, we were able to use the media box for its normal
functionality while we were connected to it remotely. As a consequence, we do not expect users to notice
when our dumbots are in operation.

4 The Potential of Dumbots

Having described how we transform a deployed media box into a “dumbot,” we now describe some applica-
tions for a botnet obtained from systematically transforming all of them.

4.1 Controlling the Local Network

With the network tools available on each one of our multimedia boxes, we can achieve a considerable degree
of control over the LANs on which they are placed. In particular, these boxes are typically placed next to
the users’ desktops, connected to the ports of the same switched environment, and are actually in the same
broadcast domain as these desktops. From the attacker’s perspective, the policy of putting each desk on its
own switch LAN complicates getting access to each user’s PC. However, deploying an “invisible” media box
next on each desk, next to the PC, provides one-stop shopping to get around this obstacle. (The media box
also prevents us from having to worry about how to discover and exploit vulnerabilities in a wide variety of
user PCs with varying configurations and defenses.)

We consider some specific examples:

1. Sniffing. The media box can sniff traffic on its local subnet. Since our network is switched, this
requires interposing our box between the target and its local gateway. We achieve this by a two-way
ARP poisoning attack combined with packet forwarding transparently to the victim, and use arp-sk
and Linux kernel IP stack packet forwarding (also supported by the box’s kernel and enabled via
/proc/sys/net/ipv4/ip forward).

Since, in general, media boxes are expected to be deployed inside the firewall of an organization
and close to the target machines, the media box bot will be able to thwart some standard network
confidentiality measures such as Virtual Private Networks (VPNs).

2. Traffic Manipulation. The box can actively manipulate the traffic to and from the victim–e.g., by
filtering, faking, or mangling it. We use a patched version of fragrouter together with arp-sk to
achieve this attack.

Some of the victim’s outgoing traffic such as centrally logged alerts can be quietly dropped or modified
on the fly, and outgoing packets can be fragmented to evade known detection rules. Responses to
the victim’s DNS queries can be spoofed (we used dnsspoof, a part of the dsniff suite for our
spoofing). Higher level protocol traffic can be transparently redirected with socat, creating and efficient
filter/proxy combination.

3. Simple DDoS. The media boxes can generate TCP connection attempts, such as HTTP requests, to
overload a local or a remote server. Since these boxes are within the enterprise firewall, they can
mount a local DDoS attacks that, if mounted from outside, a border firewall or IDS might suppress.
Furthermore, in a more sophisticated scenario, it can be used to overload a local Intrusion Detection
System or other network activity monitor.

Considering that these boxes will be distributed throughout the organization’s subnets and likely expected
to retain their capability to download updates, they will be well-poised to take advantage of subnet-wide
trust relationships. For example, they can be used to “shadow” desktop machines otherwise protected by
firewalls or router access control lists.

5



4.2 Global Tasks for the Botnet

Various publications analyze the uses of botnets in online crime (e.g., [13, 1] and many others). Our dumbots
easily lend themselves to these types of applications as well. They may scan remote machines for services or
vulnerabilities; relay network attacks, to hide the origin of the attack; carry out low-bandwidth application
logic attacks such as sending specially crafted requests or queries; intercept or interfering with confidential
traffic within the organization; extrude data (especially in the presence of bandwidth monitoring rules in the
IDS, watching traffic to and from target machines but not for ubiquitously deployed commodity devices);
and forward spam. They may also enable traditional botnet applicatons, such as private IRC channel control
and instant messaging.

Given their prevalence in university environments, our dumbots could also be used to systematically spoof
illegal music download requests from every user PC on campus, which would add some interesting wrinkles
to RIAA legal action.

4.3 Performance

Having established the general feasibility of using our media boxes as nodes of a botnet, we now estimate
their performance for various uses that such a botnet can be realistically put to.

We limit our discussion to a botnet of dumbots deployed throughout a single organization. Although
one can expect organizationally and geographically diverse botnets of embedded devices to become feasible
(perhaps even in the near future), this is not yet the case today. Thus one of the major features of a typical
botnet, diverse distribution of its nodes through multi-domain IP space, is not a part of our scenario, and we
will not consider botnet activities associated with typical for-profit botnets that exploit the difficulty for their
targets to block a large part of the geographically diverse nodes. In particular, we will not consider outward
DDoS by bandwidth consumption, since the worst that can happen is that our dumbots will saturate the
organization’s own link.

Instead, we concentrate on the damage that a botnet of dumbots can do primarily within the organization.
We consider the case of dumbots distributed throughout the organizational network and sharing it with
desktops, servers, printers, network equipment etc.

We consider two use cases:

• case 1 Internal DoS attack on a target within the organization, and

• case 2 Targeted sniffing of communications, not immediately obvious to the victim.

Despite the perceived weakness of a dumbot platform, such as limited CPU power and memory, we
demonstrate that it can in fact be an efficient traffic generator for case 1, and a traffic forwarder (since
sniffing on a switched network involves forwarding packets between the sniffed parties, such as a desktop or
a printer and the LAN gateway, and will be immediately obvious if sniffed sessions grind to a halt or slow
down to a crawl because of the sniffer’s insufficient capacity to handle the traffic flowing through it) for case
2. For this, we measure the performance of our individual dumbot and compare it with that of a typical
laptop.

We compare our media box with a laptop configured with Pentium M 1.86GHz processor and 1 GB of
RAM, and a Gigabit ethernet network card. Despite the fact that our media boxes have a weaker CPU than
the laptop, we show that the network performance of each box is good enough to be used for a powerful net.

Rate of HTTP Requests To demonstrate the DoS capability of each media box, we wrote a simple
program that tries to make HTTP requests to a remote server as fast as possible, using wget. We ran the
same program on a laptop to compare it with the media box’s performance. The laptop was able to make
94.34 requests per second, whereas the media was able to make 37.88 requests per second. Given the limited
computational power that is available in the media box, we found the media box to be more capable than
we had first thought.

6



no tools arp-sk, ipforward arp-sk, ipforward, 
tcpdump, NFS

arp-sk, fragrouter

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

7571.27 7551.67 7566.02

3080.26

5252.21

4221.04

2744.59

949.6

Laptop

Dumbot

T
C

P
 T

h
ro

ug
hp

u
t 

in
 K

B
/s

ec

Figure 1: Throughput measurement between a remote sever and a dumbot. As a comparison, we also show
the throughput measurement between a remote server and a laptop. We demonstrate how running each
network tool affects the throughput between a remove server and a dumbot. The measurement ”no tools”
shows the maximum throughput a dumbot could obtain in this particular connection. The measurement ”arp-
sk, ipforward” shows the throughput when the dumbot mounts a man-in-the-middle attack using arp-sk
and ipfoward. The measurement ”arp-sk, ipforward, tcpdump, NFS” shows the throughput when the
dumbot mounts a man-in-the-middle attack and records the captured traffic in an NFS mount. Finally,
the measurement ”arp-sk, fragrouter” shows the throughput when the dumbot uses fragrouter instead of
kernel ipforward, to filter and mangle the traffic between the victim and remote server.

Throughput Measurement We used the ttcp tool for estimating the maximum bandwidth between a
bot and a remote server beyond the local gateway. First, we measured the throughput between the media
box and the remote server without running any network tools as a comparison. Similarly, we also measured
the throughput between a laptop and a remote server as a comparison. We then ran the tools to show
the performance effect they had. To demonstrate a simple man-in-the-middle attack, we used arp-sk with
Kernel-level IP fowarding 4. We compare this simple man-in-the-middle attack to the case when we ran
tcpdump and logged the sniffed data in the NFS-mounted storage in order to demonstrate the media box’s
sniffing capability. Finally, the last entry in the graph shows when the media box is manipulating the traffic
using fragrouter. Figure 1 shows the result in kilobytes per second.

Discussion As we expected, as we ran more sophisticated attack, the media box’s throughput degraded
much more drastically than the laptop’s due to the limited computational resources that is available in the
media box. Despite this weakness, the media boxes have several advantages over the traditional PCs. As we
briefly discussed earlier, these media boxes are constantly powered on and connected to the network. Even

4/proc/sys/net/ipv4/ip forward.

7



when the user presses the power button, the device is still powered on and remotely accessible. On the other
hand, more PCs are now laptops; thus, they are powered down or disconnected from the network when not
in use. Moreover, these media boxes receive less scrutiny from the administrators because of their limited
computational resources, the static nature of the media box, and the small number of services that runs on
the box. For example, an organization usually has some central security mechanism in place to protect the
systems that are owned by the organization—e.g., automatic patch update, anti-virus software, distributed
firewall, etc. However, most of these security mechanisms are aimed more towards commodity PCs and
servers, and they are not suitable for protecting embedded devices. Finally, since all the media boxes have
the exact same hardware and software stack, once an attacker successfully attacks one of these media boxes,
he can easily attack all the boxes of the same kind he can find.

In the Large A back-of-the-envelope estimate of our botnet capability shows that its maximum bandwidth
at its present size of approximately 450 nodes would add up to a theoretical maximum of around 18Gbits/sec
(the maximum for a single node being 40Mbits/sec). Of course, they will never achieve this maximum, for
many reasons – for example, being within the same organization, they will at most overload its outgoing
“pipe”.

When we consider overall bandwidth, an enterprise network of these dumbots does not compare to to
geographically well-spread PC-based botnets of over 10,000 nodes with actual bandwidth consumption ca-
pacity over 10GBits/sec, However, recent industry white papers suggest that actual botnets attacks show a
trend toward specialization and targeting specific application logic and architecture rather than raw DDoS,
needing fewer nodes5. The position of these media boxes within enterprise infrastructure makes our dumbots
valuable asset for staging such an attack scenario.

5 Countermeasures

Clearly, the threat of botnets on embedded devices is a real one. How can we work to combat the problems
that result in device vulnerability? What can we do to reduce the risk we currently face?

Network Infrastructure One way to limit the risk of embedded device compromise is to control the flow
of data to and from that device over the network.

For example, an enterprise could put the embedded devices in a separate Virtual LAN (VLAN) and
isolate it from other parts of the internal network that carry sensitive data. However, most homes and small
businesses do not have the infrastructure or expertise to support VLANs—and users expect such boxes to
“just work” once plugged into the wall network socket. More simply, an organization might deploy a firewall
in the devices to block all traffic between them and the outside world—but many of these devices rely on the
ability to contact other parties or to “phone home” for their basic functionality, such as receiving software
updates or new data.

Better Key Management We could instead examine the authentication used between an embedded
device and its control server, particularly the way in which the two manage authentication keys; the door
to our exploitation of our dumbots was a default root password. If all remotely-accessible services were
protected by a strong authenticator, it would be much harder to subvert the devices. Generating strong,
unique authenticators and distributing them throughout a large organization is a very difficult task, however;
the key management and deployment literature is rich with schemes and analysis, particularly in the domain
of sensor networks [5], [4]. Furthermore, our dumbots are still powerful enough to support public-key

5“As a result [of DDoS solution deployment], custom-tailored attacks to web-servers’ application logic and back-end infras-
tructure are emerging. These attacks rely less on bandwidth and more on logical and architectural weaknesses of the site’s
themselves. Since individual bot- power is high in these cases, attackers find they can use smaller botnets, without hiding the
true IP addresses of the bots.”, The Prolexic Zombie Report, http://www.prolexic.com/zr/jan2007.pdf

8



operations; having dumbots authenticate remote upates via SSH based on a baked-in public key would be
feasible and a significant improvement.

Better Awareness On a higher level, what makes our dumbots possible is the fact that commodity
embedded systems, with exploitable software, are being deployed throughout enterprise infrastructure—
but by being specialized devices, rather than “computers,” they tend to fall below the radar of system
administrators and security officers. (Indeed, one the main reasons we wrote this paper is to help change
that.)

We could also consider scenarios in which devices fetch updates at a regular basis instead of having them
pushed from the server, which would only require the devices to know the server’s key, but this method
reduces flexibility of the system and may not be useful in all scenarios.

6 Conclusion

The threat that botnets pose today are a challenge to researchers and industry specialists; combating these
networks of malicious computers consumes resources in many domains. We believe that the next frontier for
botnet developers may be lightweight embedded devices, which are ubiquitous but largely “invisible” in our
day-to-day lives. We view our subversion of media boxes as one case among many possible instantiations.
In particular, we note that embedded device developers are increasingly turning to generalized commodity
software, particularly operating systems, for a low-cost way to get their products to market; customization
always results in a higher price. In the case we examined, the developers had not disabled unnecessary
functionality in an operating system (versions of which are also used on desktop PCs). We posit that this is
the scenario with many modern embedded systems, which means that such devices are inherently susceptible
to the problems that have plagued PCs for years. While we can envision solutions that reduce the risk in
the context of full-fledged PCs with specialized tasks (i.e., SELinux and its strong implementation of the
principle of least privilege via types [2]), we must further explore the extent of these vulnerabilities and
examine the best ways to mitigate them within the constraints under which embedded devices run.

7 Acknowledgement

This work was supported in part by Sun Microsystems, Intel Corporation, and the NSF (CNS-0524695).
The views and conclusions do not necessarily represent those of the sponsors.

References

[1] Paul Bächer, Thorsten Holz, Markus Kötter, and Georg Wicherski. Know your Enemy: Tracking Botnets.
http://honeynet.org/papers/bots/, March 2005.

[2] Lee Badger, Daniel F. Sterne, David L. Sherman, and Kenneth M. Walker. A Domain and Type Enforcement
UNIX Prototype. Computing Systems, 9(1):47–83, 1996.

[3] Computer Industry Almanac, Inc. PCs In-Use Surpassed 900M in 2005, May 2006.

[4] Wenliang Du, Jing Deng, Y.S. Han, Shingang Chen, and P.K. Varshney. A Key Management Scheme for Wireless
Sensor Networks Using Deployment Knowledge. In Infocom, volume 1, page 597, March 2004.

[5] Laurent Eschenauer and Virgil D. Gligor. A Key-Management Scheme for Distributed Sensor Networks. In CCS
’02: Proceedings of the 9th ACM Conference on Computer and Communications security, pages 41–47, 2002.

[6] John D. Fernandez and Andres E. Fernandez. Scada systems: vulnernabilities and remediation. Journal of
Computing Sciences in Colleges, 20:160–168, 2005.

[7] FX of Phenoelit. Attacking Networked Embedded Systems. In Black Hat Europe, Amsterdam, August 2003.

[8] Xingxin Gao, Zhe Xiang, Hao Wang, Jun Shen, Jian Huang, and Song Song. An Approach to Security and
Privacy of RFID Systems for Supply Chain. In IEE International Conference on E-Commerce Technology for
Dynamic E-Business, pages 164–168, September 2004.

9



[9] David Geer. Malicious Bots Threaten Network Security. IEEE Computer, 38(1):18–20, 2005.

[10] J.C. Hernandez, J.M. Sierra, A. Gonzalez-Tablas, and A. Orfila. Printers Are Dangerous. In IEEE 35th Inter-
national Carnahan Conference on Security Technology, pages 190–196, October 2001.

[11] Aaron Higbee and Chris Davis. DC Phone Home. In Black Hat USA Security Briefings, August 2002.

[12] Thorsten Holz. Spying with Bots. LOGIN, 30(6):18–23, December 2005.

[13] Nicholas Ianelli and Aaron Hackworth. Botnets as a Vehicle for Online Crime. Technical report, CERT Coordi-
nation Center, December 2005.

[14] V. Jacobson, C. Leres, and S. McCanne. Libpcap. Lawrence Berkeley Laboratory, University of California,
August 1996.

[15] V. Jacobson and S. McCanne. The BSD Packet Filter: A New Architecture for User–Level Packet Capture. In
Proceedings of the Winter 1993 USENIX Conference, January 1993.

[16] Philip Koopman. Embedded System Security. IEEE Computer, 37(7):95–97, July 2004.

[17] Philip Koopman, Jennifer Morris, and Priya Narasimhan. Challenges In Deeply Networked System Survivability.
In NATO Advanced Research Workshop On Security and Embedded Systems, 2005.

[18] Mike D. Schiffman. The Libnet Packet Construction Library.

[19] Spyde1̃, AutoNiN, and Mystic. The UPS (Undetectable Packet Sniffer). In Defcon 11, August 2003.

[20] Jing Su, Kevin K. W. Chan, Andrew G. Miklas, Kenneth Po, Ali Akhavan, Stefan Saroiu, Eyal de Lara, and
Ashvin Goel. A Preliminary Investigation of Worm Infections in a Bluetooth Environment. In Proceedings of
the Workshop on Rapid Malcode (WORM), Fairfax, VA, November 2006.

[21] SwatIt.org. Bots, Drones, Zombies, Worms and Other Things That Go Bump in the Night.
http://swatit.org/bots/, 2003.

10


	Dumbots: Unexpected Botnets through Networked Embedded Devices
	Dartmouth Digital Commons Citation

	tmp.1601412842.pdf.nqFkX

