View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dartmouth Digital Commons (Dartmouth College)

Dartmouth College
Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

3-1-2007

Protein Design by Mining and Sampling an Undirected Graphical
Model of Evolutionary Constraints

John Thomas
Dartmouth College

Naren Ramakrishnan
Virginia Tech

Chris Bailey-Kellogg
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

b Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation

Thomas, John; Ramakrishnan, Naren; and Bailey-Kellogg, Chris, "Protein Design by Mining and Sampling
an Undirected Graphical Model of Evolutionary Constraints" (2007). Computer Science Technical Report
TR2007-587. https://digitalcommons.dartmouth.edu/cs_tr/295

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.


https://core.ac.uk/display/337601362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/295?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Protein Design by Mining and Sampling an Undirected
Graphical Model of Evolutionary Constraints
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John Thomas
Dept. of Computer Science
Dartmouth College
] Hanover, NH 03755
jthomas@cs.dartmouth.edu

ABSTRACT

Evolutionary pressures on proteins to maintain structure
and function have constrained their sequences over time and
across species. The sequence record thus contains valuable
information regarding the acceptable variation and covaria-
tion of amino acids in members of a protein family. When
designing new members of a protein family, with an eye to-
ward modified or improved stability or functionality, it is in-
cumbent upon a protein engineer to uncover such constraints
and design conforming sequences. This paper develops such
an approach for protein design: we first mine an undirected
probabilistic graphical model of a given protein family, and
then use the model generatively to sample new sequences.
While sampling from an undirected model is difficult in gen-
eral, we present two complementary algorithms that effec-
tively sample the sequence space constrained by our protein
family model. One algorithm focuses on the high-likelihood
regions of the space. Sequences are generated by sampling
the cliques in a graphical model according to their likelihood
while maintaining neighborhood consistency. The other al-
gorithm designs a fixed number of high-likelihood sequences
that are reflective of the amino acid composition of the given
family. A set of shuffled sequences is iteratively improved
so as to increase their mean likelihood under the model.
Tests for two important protein families, WW domains and
PDZ domains, show that both sampling methods converge
quickly and generate diverse high-quality sets of sequences
for further biological study.

1. INTRODUCTION

Data mining techniques are now firmly established in bi-
ological data analysis, especially data resulting from high-
throughput screens such as microarrays and genome-wide
deletion screens [4]. From simple clustering of gene expres-
sion profiles [6], researchers are now able to generate system-
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wide perspectives on complex diseases such as cancer [22].
It is a natural step to move from mining existing data, to us-
ing mined models to guide subsequent experiments so as to
clarify ambiguities, resolve inconsistencies, and so forth [9].
Perhaps an even more exciting step is to use mined knowl-
edge generatively, designing new biological and biochemical
entities according to constraints mined from existing data.

This paper develops methods to design new proteins by
first mining a graphical model that captures constraints in a
dataset of existing related proteins, and then sampling from
the model new sequences that satisfy the constraints. To un-
derstand the difficulty of our problem, it is helpful to briefly
review the basics of protein sequence, structure, and func-
tion. A protein is chiefly defined by its primary sequence,
i.e., a string of amino acids (loosely, residues). Different
amino acid types have different biochemical and biophysical
properties; consequently, different primary sequences adopt
different three-dimensional structures and perform different
functions (e.g., catalyzing different reactions). The goal of
protein design is to produce a primary sequence meeting de-
sired characteristics (e.g., specified structure [5, 11] or cat-
alytic activity [16, 14, 19]). This is a difficult problem due
to the complex relationship between the available degrees of
freedom (choices of amino acid types) and their impact on
structure and function—scientists don’t have a good set of
“rules” mapping between sequence and folding, participa-
tion in binding, etc.

Our approach takes as input a family of related proteins
(e.g., the same protein from different organisms) in order to
uncover the sequence constraints underlying them (Fig. 1).
The constraints include both amino acid conservation (com-
mon amino acid types at particular positions in the given
sequences) as well as coupling (common pairs of amino acid
types at pairs of positions). The importance of coupling in-
formation was convincingly demonstrated by Ranganathan
and colleagues, who used it to design new, stably folded [23]
and functional [20] WW domains, and showed that satisfy-
ing the coupling constraints was to some extent both nec-
essary and sufficient for viability. Most other such work
focuses on conservation alone, e.g., designing antimicrobial
peptides by identifying a regular expression grammar under-
lying naturally occurring peptides [17], or designing alpha-
helical folds by simple polar-nonpolar patterning of amino
acid types [10]. Our graphical models naturally encode both
types of constraints, with a compact representation provid-
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Figure 1: Mining and sampling a protein family
model. We are given a set of sequences from a pro-
tein family, in a multiple sequence alignment (i.e.,
each row is a sequence, aligned so that each col-
umn has corresponding residues from the different
sequences). Coupling and conservation constraints
are mined and summarized into a graphical model.
Through its edges, the model captures conditional
independence constraints (e.g., that residue posi-
tions 1 and 8 are coupled, as are 8 and 7, and
that these two couplings serve to relate 1 and 7).
Through its clique potentials (not shown here), the
model captures probability distributions for subsets
of residues. Such a graphical model is then sam-
pled to yield new sequences that obey the underly-
ing constraints of the protein family.

ing a probabilistic semantics.

Although graphical models are an active area of KDD
research (e.g., see [2]), our work is novel in two critical as-
pects: the input to the mining algorithm and the uses for
the mined patterns. We have been developing the first meth-
ods for learning undirected graphical models from multiple
sequence alignments of proteins [24]. Secondly, traditional
applications of undirected graphical models, e.g., in com-
puter vision, remote sensing, and scene modeling, have not
emphasized sampling from these models, and we develop
new methods for the same.

To summarize, our specific contributions are as follows:

1. Formalizing protein design as a two-step process: min-
ing undirected graphical models capturing the essen-
tial constraints underlying a protein family, and using
the models generatively to produce new sequences.

2. Formulating a probabilistic basis (via our graphical
models) for evaluating the quality of new sequences

with respect to satisfaction of protein family constraints.

We demonstrate the ability of this approach to predict
foldedness of a set of previously designed sequences.

3. Developing two new sampling techniques, component
sampling and constrained shuffling, for navigating the
constrained sequence space represented by the mined
models. With case study application to two differ-
ent protein families, we demonstrate that the algo-
rithms converge quickly and generate high-likelihood
sequences, reflective of (but different from) the original
sequences.

2. MINING A GRAPHICAL MODEL
OF RESIDUE COUPLING

A multiple sequence alignment (MSA) organizes a set of
related sequences into a matrix S, such that each row of S
is a sequence, and each column has corresponding residues
(Fig. 1). ‘Gap’ characters are inserted into the sequences
to make the columns line up appropriately. An MSA both
relies upon and reveals correspondence between residues in
the related proteins. We can see conservation constraints in
the columns of S—some columns have particularly biased
distributions of amino acid types. For example, column 2
in the example MSA in Fig. 1 is constrained to only be Y
(Tyrosine). These constraints form the basis for most ex-
isting models of protein families, such as Hidden Markov
Models. We can also see coupling constraints in pairs of
columns of S—for some pairs, not all combinations of amino
acid types (factoring in degree of conservation) are equally
likely. For example, columns 1 and 8 in the MSA of Fig. 1
are coupled. As discussed in the introduction, these pair-
wise terms are critical in designing new proteins that are
folded and functional. While there are experimental meth-
ods available for probing both conservation constraints (e.g.,
Alanine-scanning mutagenesis) and correlation constraints
(e.g., double mutants cycles), we focus here on mining them
from an MSA.

Mining an MSA S of a given protein family can be viewed
as a problem of modeling categorical data [7]. In particular,
we can cast key protein family constraints as instances of
functional dependencies (FDs) in such categorical data. For
instance a strict conservation constraint implies that the FD

— (r2 = ‘Y’)

holds, i.e., two tuples (sequences) from relation S uncondi-
tionally will agree on the right side of the FD, namely that
the second residue is a ‘Y.’ Similarly, coupling constraints,
at the bare minimum, obey the pair of FDs

rL — T8, rs — T1

which states that if two sequences agree on residue r1 (or
rs), then they also agree on the other.

One approach to modeling coupling and conservation in
an MSA is to find all sets of (exact and approximate) FDs
using association rule mining or a correlation mining algo-
rithm (e.g., as done in [25]). However, our goal is not just to
find pairs but to factorize them into a core set of dependen-
cies, and to be able to use the constraints generatively to
sample from the induced space of sequences. Hence a prob-
abilistic model is called for. Toward this end, we model S
by factorizing its amino acid distribution into an undirected
graphical model of residue coupling (GMRC), G = (V, E).
The vertices V' are random variables, one for each column
of S. A vertex captures the observed frequency of each of the
20 amino acids at a position. The edges F encode indepen-
dence relationships—a vertex is conditionally independent of
all other vertices, given its immediate neighbors. GG thereby
defines a pdf Pe(R) on residue types R for its vertices V,
computed by combining scores (“potentials”) for the cliques
in the graph.

Pa(R) = pc(Re) 1

C € cliques(G)

N =

Here, the subscript C restricts to the set of vertices (and



corresponding amino acid types) of clique C. Z is a nor-
malizing factor, and the ¢c are potential functions, such
that

[1o Pe(Re)
HA € cliqueadj(G) Pa (RA)

I[I de®e)= 2

C € cliques(G)

Notice that the potentials are given by the product of marginals

defined over the cliques divided by the product of marginals
defined over the clique adjacencies A, which could be nodes,
edges, or general subgraphs. Thus each potential is either a
conditional or a joint marginal distribution. Since pointwise
as well as joint probabilities are represented, the model gen-
eralize traditional conservation-based approaches to charac-
terizing protein sequences.

We adopt the following estimator for Po(Rc¢), the proba-
bility of a set of amino acid types Rc at a clique.

Pe(Re) fe(Ro) + 23 3)
TSI+

Here fc(Rc) is the frequency, in S, of the set of amino acid
types, |S| is the total number of sequences, |C| is the car-
dinality of the clique, and p is a parameter that weights
the importance of missing data. Notice that even when
a particular clique value does not appear in the MSA, it
still has a positive (but small) probability, thereby enabling
proper factorization according to the Hammersley-Clifford
theorem [12].

The equations above give us the ability to compute se-
quence likelihoods under a given model, and we can now turn
our attention to mining these models. There are two broad
classes of algorithms: score-based and constraint-based. In
the former, we sequentially search over the space of possi-
ble edge additions, greedily adding edges that improve the
score. In the latter, we exploit graphical properties of prob-
abilistic networks, such as d-separation, to first identify a set
of conditional independencies that hold in the dataset, and
then proceed to find a network that obeys these indepen-
dencies. We adopt the former approach due to the sparse
data contexts that underly protein design.

To help pick edges for consideration by our search algo-
rithm, we look for those that cause good decouplings, i.e.,
those whose inclusion helps render sets of residues (condi-
tionally) independent. A direct way to seek decouplers is to
estimate conditional mutual information:

MI(vi,v; | vg) =

Pj(Rij|Rr)
> Pu(R)Y > Pi(Rij|Ry)log Y (4)
R €A* Ri€EAR;EA PRl Bie) P (s | )

where we estimate the conditionals by subsetting residue k
to its most frequently occurring amino acid types (A* C A),
defined as those that appear in at least 15% of the original
sequences in the subset. As discussed [15], such a bound is
required in order to maintain fidelity to the original MSA
and allow for evolutionary exploration. We also ensure that
Py (Ry) distributes probability mass of 1 among just these
indices, in proportion to the number of sequences in each
subset, so that 3°p 4« Pe(Rk) = 1.

Our algorithm greedily and incrementally grows a graph
by, at each step, selecting the best edge—the one that most
reduces the coupling in the graph and is statistically signif-
icant. If, while growing the model, we find that an edge

is statistically insignificant, we can exclude that edge from
consideration and look for other ways to factorize the rela-
tionships. We evaluate an edge’s decoupling effect by com-
paring the total coupling of the graph without the edge vs.
with the edge, scoring each graph as follows.

Score(G) = Z Z

vEV u¢neighbors(v)

MI(u,v | neighbors(v)) (5)

We evaluate the statistical significance of an edge according
to a p-value test for independence:

o1 ({a, b}) — T e T (o)) 2
=3 X e e )

friy{a})-friy ({6}
aEA; bEA; %

Here 7 and j are the vertices of the edge, and fo(Rc¢) is, as
in Eq. 3, the number of occurrences of residue types Rc at
positions C. The first term in the numerator is the actual
number of pairs observed; the second term is the expected
number, if the two residues were independent.

Since the model grows iteratively, the runtime of the al-
gorithm is determined by how many calculations are per-
formed in each iteration. A naive implementation of the al-
gorithm would compute the score for every possible edge at
every iteration. Since there are potentially O(n2) edges and
each edge requires O(n) M1 calculations, this implementa-
tion requires O(n3) computations per iteration. However,
by caching edge scores from previous iterations and only re-
computing when conditioning contexts change (which can
happen to at most O(n) edges per iteration), each iteration
requires only O(nz) M1 computations, yielding a speedup
of O(n).

3. SAMPLING A GRAPHICAL MODEL OF
RESIDUE COUPLING

Sampling from a directed graphical model, i.e., a Bayesian
network, is straightforward; a topological sort of the ver-
tices suggests the order in which values for the random
variables must be generated [3]. Sampling from an undi-
rected graphical model is more difficult, however, due to
the presence of cycles. We present two approaches for sam-
pling an undirected graphical model of residue coupling.
The first method, component sampling, samples new se-
quences according to their likelihood under the model. The
problem of cycles is mitigated by randomly ordering the
cliques in a connected component of the graphical model,
and then sampling from the clique distributions in order,
conditioning each sample on the values chosen for preced-
ing cliques. Component sampling allows for an essentially
unlimited number of sequences to be generated from the
model. The second method, constrained shuffling, on the
other hand, seeks to design a fixed number of sequences
drawn from a fixed pool of amino acids for the residue posi-
tions. Using a Monte Carlo simulation, the amino acids are
permuted column-wise in an attempt to improve the overall
average likelihood of the generated sequences. We discuss
each of these sampling methods in turn.

At an abstract level, our first algorithm, component sam-
pling, is a Gibbs sampler [8] with moves defined over cliques
instead of vertices. At each step in the algorithm, a move
is generated from the current state (a sequence) to a new
state. The central question is how to generate a move. A
move that simply changes the value for a single vertex can



Algorithm 1 ComponentSampling(G)

Algorithm 2 ConstrainedShuffling(G, S)

Input: graphical model of residue coupling G
Output: set of sequences sampled from G
1: S0
2: while not converged do
3:  C « random clique from G, with equal probability
4:  Sc < random AA types Rc, with probability Po(Rc¢)
5 @ <« queue initialized as random permutation of
cliques neighboring C in G
while @ is not empty do
D «— dequeue from @Q
A «— vertices already assigned in D
if A# D then
Sp—a < random AA types Rp_a with proba-
bility Pp—a(Rp—a|Ra)
11: enqueue onto () a random permutation of cliques
neighboring D in G
12: end if
13:  end while
14:  output S
15: end while

._.

get stuck in local minima or, worse, generate sequences that
don’t conform to the model. To avoid this problem, we must
make moves at the level of cliques. Unfortunately, changing
the value of a single clique can cause the clique values to be
invalid for neighboring cliques (cliques that contain one of
the changed vertices). The neighboring cliques must thus be
given new values, conditioned on the original clique value.
These changes can cause invalid values further downstream,
so those cliques must also be sampled, conditioned on all the
values so far. This process of fixing downstream clique val-
ues continues until the entire connected component from the
original clique has been sampled. We named this approach
component sampling to reflect this propagation process.

Algorithm 1 provides the details of our component sam-
pling algorithm. A single move consists of sampling clique
values in a connected component, propagating to neighbor-
ing cliques breadth-first (in random order from each clique).
The process continues until convergence, e.g., enough se-
quences are generated, or their distribution is sufficiently
good.

In order to focus sampling on only the most representative
sequences, we assign zero probability to unobserved clique
values (using p = 0 in Eq. 3). Thus the sampling procedure
can get stuck, with no value remaining for a clique that is
consistent with the values chosen so far. In this case, the
move is rejected. To avoid being systematically stuck, the
order in which the cliques are visited is randomized at each
move. It still is possible to get stuck, but the dead ends are
not systematic and therefore do not cause large deviations
from the true distribution.

The motivation for our second algorithm, constrained shuf-
fling, arises from the desire to study experimentally a small
number of new sequences. One option would be to generate
a large number of sequences using component sampling and
study only the highest scoring sequences. However, these se-
quences may be highly similar to each other (and thus some-
what redundant to test). The goal of constrained shuffling
is to generate a small set of high-likelihood new sequences
that have the same amino acid composition as the original
sequences. That is, each column of the MSA of the new se-

Input: graphical model of residue coupling G mined from
MSA S (size m sequences of n residues)
Output: MSA S’ of sampled sequences
1: & < column-wise permutation of &
2: v« averagesecs Pa(s)
3: while not converged do

4: ¢+ random column € [1,n)]

5:  s,t « random rows € [1,m] s.t. s £ ¢

6: swap S'[s,c] and S'[t, ]

7: v« average,cs Pa(s)

8: if v > v or with probability e’ ~ then
9: accept S’

10:  else

11: undo the swap

12:  end if

13: end while

quences is a permutation of the corresponding column of the
original MSA. Constrained shuffling is a modification of an
approach used by Ranganathan and colleagues [23]. Here,
we adopt their move strategy, but develop an objective func-
tion targeting sequences of high likelihood under a graphical
model.

Algorithm 2 provides the algorithm. The procedure be-
gins by independently shuffling the columns of an MSA.
Then an MCMC process is begun, making moves that swap
the amino acids in two random sequences at a single random
column. Notice this move preserves the same amino acid
composition as the original MSA. The move is accepted if
the average log likelihood of the new sequences is improved.
Otherwise, the move is accepted with probability propor-
tional to the change in score. The procedure continues until
convergence; e.g., a user-specified number of iterations is
reached or the distribution of new sequences is sufficiently
good.

4. RESULTS

Our primary case study is a family of WW domains—
small proteins that assist in protein-protein interactions by
binding to proline-containing targets. These proteins were
the object of a previous protein design studies by Ran-
ganathan and colleagues [23, 20], who provided the follow-
ing:

1. An input dataset of 42 natural WW domains multiply
aligned to 39 residues

2. A set IC of 43 new sequences designed by treating
each residue position independently, sampling from the
amino acid type distribution observed in the input
WW dataset

3. A set CC of 43 new sequences designed by accounting
for coupling in residue positions, by stochastically op-
timizing the sequences to match the coupling statistics
from the input WW dataset

Of the 86 new sequences, only 12—all from CC—were found
to adopt the native fold [23].

We show here that our mining method learns a graphical
model that captures significant constraints in the natural



Figure 2: Parts of the graphical model of residue
coupling mined from a dataset of WW domains with
11 vertices and 11 edges. The remainder of the
model not shown contains 28 more vertices and 24
more edges.

sequences and is able to classify the new IC and CC se-
quences according to foldedness. We then demonstrate that
our sampling methods efficiently generate a wide range of
high-likelihood putative WW domain sequences. To further
validate our method, we illustrate its ability to efficiently
generate new putative members of another protein family—
PDZ domains. The designed putative WW and PDZ se-
quences serve as hypotheses for further biological study.

4.1 Mining a Graphical Model

Our mining algorithm (Sec. 2) learns a graphical model of
residue coupling containing 35 statistically significant edges.
The model consists of 33 cliques: seven 1-cliques (inde-
pendent residues), twenty-one 2-cliques, and five 3-cliques.
Fig. 2 illustrates some of the cliques, such as the 3-clique 1-
11-13, and its neighbor 2-cliques 1-5 and 13-20. The model
encodes many transitive coupling relationships, including a
23-37 coupling mediated by 35. Some residues, such as 14,
remain independent of all other residues. The model con-
tains several non-clique cycles, such as 1-5—20-13.

A key advantage of our probabilistic models is that they
provide a mechanism for evaluating new sequences, by like-
lihood (Eq. 1). We tested the ability of the likelihood to
predict foldedness of the IC and CC sequences (Fig. 3). For
the most part, sequences that adopt the native fold tend to
score higher than those that do not. To quantify this result,
we used the log likelihood as a classifier, and generated an
ROC curve (Fig. 4, blue solid line) by varying the thresh-
old to separate folded from not. The power of this classifier
(area under the ROC curve) is .80 (recall that power of 1 in-
dicates perfect discrimination while power of .5 corresponds
to random guessing). In contrast, a classifier based on con-
servation alone (Fig. 4, red dashed line) has a power of only
.68. By “conservation alone,” we mean that each residue is
independent; the model has no edges.

It is important to note that the classification results are
for sequences that were designed in some sense (conservation
for IC and coupling for CC) to represent the natural WWs.
Thus the model extracts even more information useful in
predicting foldedness. Since the results show that likelihood
under our graphical model is highly predictive of foldedness,
we are justified in applying our sampling algorithms to de-
sign new proteins accordingly.

~100 Xy % XX XX

Log Likelihood

-120 x

Cqgob

CC sequences IC sequences

Figure 3: Log likelihood, under our graphical model,
of the 86 /C and CC sequences. Blue ‘0’s and red ’x’s
indicate those proteins found by Ranganathan and
colleagues to be folded and unfolded, respectively.
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Figure 4: ROC curves for classification of IC' and
CC sequences according to log likelihood under our
graphical model (blue solid line) and by conserva-
tion alone (red dashed line). The false positive rate
is the percentage of sequences predicted to be of na-
tive fold that are not; the true positive rate is the
percentage of sequences predicted to be of native
fold that are.

4.2 Component Sampling

We applied our component sampling method (Algorithm 1)
to generate new putative WW sequences. After a burn-in se-
ries of 88 moves (the number of moves it took to sample each
residue at least once) we generated 10000 new sequences.
The algorithm got “stuck” (unable to make a move) 289
times; in these cases, the move was rejected and sampling
continued by selecting another move.

If sampling worked properly, we would expect the distri-
butions of amino acid types for sets of residues in the gen-
erated sequences to match the distributions in the model.
We measure the extent of agreement as the L2 distance be-
tween the distributions. Fig. 5 illustrates that three different
residue sets from Fig. 2 have very similar distributions to the
model distributions. For the 2-clique 35-37, the L2-distance
is .0125, while for the 3-clique 1-11-13, it is .0235. Even for
the transitive relationship between residues 23 and 37, com-
ponent sampling still generates the correct distribution; the
L2-distance is only .0371.

To measure how quickly the sampling method converges
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Figure 5: Probability distribution over sets of amino
acid types according to the graphical model (blue
‘o’s) and the sequences generated by component
sampling (red ‘x’s) for the 2-clique 35-37 (top), the
3-clique 1-11-13 (middle), and the transitive rela-
tionship between residues 23 and 37 (bottom).

to the model distribution, we monitored at each iteration
the L2 distances for all cliques. Fig. 6 shows that the total

L2 Distance

0 2000 4000 6000 8000 10000
Number of Sequences

Figure 6: Evolution of the total L2 distance (over
all cliques) between the graphical model and the se-
quences generated by component sampling.

L2 distance converges very quickly. After only 100 samples,
the total L2-distance is 1.04; it improves to .37 after 1000
samples and .15 (approximately .004 per clique) after 10000
samples.

In addition to sampling from the model distribution, com-
ponent sampling generates sequences of high likelihood. Fig. 7
shows a histogram of the log likelihood; the mean is —33.48
and the standard deviation 5.02. By comparison to Fig. 3,
we see that even the least likely sequence generated by com-
ponent sampling (log likelihood —52.19) is more likely than
all but one of the 86 IC and CC sequences (mean log likeli-
hood —84.14 and standard deviation 15.12).

The sequences generated by component sampling are also
substantially different from the natural WW domain se-

quences used to learn the model—we aren’t simply re-generating

the input, but in fact exploring the space constrained by the
model. Fig. 8 shows a histogram of the sequence identity for
the new sequences to their most similar natural sequences.
The mean sequence identity is 65.14% and the standard de-
viation 8.06%. This degree of identity is similar to that of
the IC and CC sequences, which have a mean of 60.41%
and a standard deviation of 6.21%. Of the sequences gener-
ated using component sampling, the sequence most similar
to a natural WW domain has a sequence identity of 89.74%
while the designed sequence with the lowest identity has only
41.03% identical residues.

Another way to measure the diversity of the new sequences
is their average sequence identity to the natural WW do-
mains and to each other. Fig. 9 shows a histogram for the
average sequence identity to the natural WW domains. We
again see that the new sequences are quite different from
the natural ones, with a mean average sequence identity of
45.18% and standard deviation of 5.29%. This level of iden-
tity is similar to that of the IC and CC sequences, which
have a mean of 43.75% and standard deviation of 4.09%.
The new sequences are also different from each other, with
an average pairwise identity of 45.47% with standard devi-
ation 11.17%. This is again comparable to the values in IC
and CC of 43.05% and 8.10%. Thus we maintain the level of
novelty of sequences, while increasing their likelihood under
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Figure 7: Log likelihood distribution for the 10000
sequences generated by component sampling.
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Figure 8: Distribution of the sequence identity to
the nearest natural WW domain of the 10000 se-
quences generated by component sampling.
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Figure 9: Distribution of the average sequence iden-
tity to the natural WW domains of the 10000 se-
quences generated by component sampling.

Average Log Likelihood

0 20000 40000 60000 80000 100000
Iteration

Figure 10: Convergence of the average likelihood
score of sequences generated by constrained shuf-
fling. Blue dotted line: final value (—34.69 with stan-
dard deviation of 6.46); red dashed line: natural se-
quences (—32.65 with standard deviation of 4.93).

the model (and, by correlation, the expected likelihood of
folding).

4.3 Constrained Shuffling

We applied the constrained shuffling method to sample
from the graphical model a set of 42 new high-likelihood se-
quences with amino acid types shuffled columnwise from the
input dataset. We ran our algorithm for 100000 iterations.
Fig. 10 shows the convergence of the average log likelihood
of the generated sequences at each iteration. Although the
average log likelihood starts at only —86.52, after 100000
iterations, it reaches —34.69 with standard deviation 6.46,
shown by the dotted line. This value is very close to the av-
erage log likelihood of the natural sequences, —32.65 (with
standard deviation 4.93), shown by the dashed line. After
100000 iterations, constrained shuffling is able to generate
a new set of WW sequences with log likelihoods similar to
those of the natural WW domains.

The sequences generated by constrained shuffling provide
a range of log likelihoods under the model, as shown in
Fig. 11. As was the case for component sampling, the de-
signed sequences have excellent scores: a mean of —34.69
(with standard deviation of 6.46), best of —23.68 and worst
of —48.18. Our sampling method is once again able to pro-
duce higher scoring sequences than the reference IC'and CC
sequences.

To ensure that constrained shuffling isn’t simply recreat-
ing the natural WW domains, we measured the sequence
identity between the designed sequences and their closest
natural neighbors. Fig. 12 shows a histogram of the sequence
identities. As was the case for component sampling, the de-
signed sequences are quite different from the natural WW
domains. The mean sequence identity for the generated se-
quences is 60.56% with a standard deviation of 7.70%. Of
the sequences generated by constrained shuffling, even the
sequence most similar to the natural WW domain sequences
is only 74.36% identical, while the least similar sequence is
only 46.15% similar.
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Number of Sequences
N w B ul (=2} ~

iy
T

0
0.45 0.75

0.5 0.55 0.6 0.65 0.7
Sequence Identity to Nearest Natural WW Domain

Figure 12: Distribution of the sequence identity to
the nearest natural WW domain of the 42 sequences
generated by constrained shuffling.
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Figure 14: Log likelihood, under the model mined
from constrained shuffling sequences, of the 86 IC
and CC sequences.

As we did with the component sampled sequences, we can
measure the average identity of these new sequences to the
natural WW domains and to each other. Fig. 13 shows the
histogram of the average identity of the new sequences to
the natural WW domains. Again, we find that the designed
sequences to be different from the natural sequences, having
a mean average identity of 44.95% and a standard deviation
of 4.92%. The sequences are different from each other, with
an average pairwise identity of 43.60% (standard deviation
9.69%).

4.4 Closing the Loop

If the generated sequences were in fact representative of
the natural ones, we would expect them to generate a similar
model. We call this “closing the loop” —mining a model of
natural sequences, using it to generate new sequences, and
mining a model of the new sequences. To test our ability to
close the loop, we mined a model of the 42 sequences gen-
erated by constrained shuffling. The new model consists of
30 edges, of which 25 are the same as those in the original
model. The 5 different edges in the new model were actu-
ally encoded as transitive relationships in the original model.
The new model is also able to discriminate folded from un-
folded IC and CC sequences, as shown in Fig. 14 (compare
Fig. 3) and Fig. 15 (compare Fig. 4). The power of the new
classifier (area under the ROC curve) is .80, the same power
as the original model, demonstrating a successful closing of
the loop.

45 PDZ Domains

As further validation of our methods, we applied them
to a family of PDZ domains, which, like WW domains,
are small proteins that assist in protein complex forma-
tion. We obtained from PDZBase [1] an MSA of 80 class I
PDZs aligned to 80 residues (class I PDZs recognize ligands
with C-terminal sequences of the form S/T-X-[hydrophobic
residue]). Our mining algorithm learned a graphical model
consisting of 85 statistically significant edges forming 96
cliques. The details of the model are omitted due to lack
of space.

Unlike with WWs, we do not have a negative control (i.e.,
putative PDZs that did not fold). However, since we demon-
strated above with WWs that the likelihood under a model
was highly predictive of foldedness, we hypothesize that new
sequences sampled from the PDZ model merit further bio-
logical study. We focus here on the computational effective-
ness of our sampling algorithms.

We first applied our component sampling method (Al-
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Figure 15: The ROC curve of classification of /C and
CC sequences according to log likelihood under the
graphical model mined from the sequences designed
by constrained shuffling.

gorithm 1) to generate new putative class I PDZ domain
sequences. After a burn-in series of 223 moves (by which
point each residue was sampled at least once), we gener-
ated 10000 new sequences. The algorithm got stuck, and
consequently unwound the samples of a partially completed
move, 1060 times. As with the WW domains, we moni-
tored the convergence of the algorithm in terms of the total
L2 distance, over all cliques, between the model and sam-
pled sequences. Fig. 16 shows that the total L2 distance
converges very quickly: it is 2.42 after only 100 samples,
1.16 after 1000 samples, and .5232 (approximately .0054 per
clique) after 10000 samples.

We also applied the constrained shuffling method (Algo-
rithm 2) to sample a set of 80 new high-likelihood sequences.
We ran the constrained shuffling algorithm for 250000 iter-
ations. We performed more iterations than for the WWs
to account for the larger MSA; our WW MSA is of size 42
sequences X 39 positions, while our PDZ MSA is of size 80
sequences X 80 positions. Nonetheless, Fig. 17 shows that
the average log likelihood for the generated sequences con-
verges quickly. Although the average log likelihood starts
at only —190.01, after 250000 iterations it reaches —101.82
with a standard deviation of 9.08. This value is very close
to the average log likelihood of the natural class I PDZ do-
mains, —93.90 (with a standard deviation of 18.55), and thus
we expect the new proteins to be of high quality biologically.

5. CONCLUSION

We have formulated protein design in terms of first mining
sequences in a protein family to learn “what it means” to be
a member of that family, and then sampling sequence space
as constrained by what we’ve learned about the family. Our
mining algorithm identifies and factorizes conservation and
coupling constraints within family sequences, and our two
sampling methods generate sequences that are of high like-
lihood (but yet new and different) under a model. The sam-
pling methods are complementary—component sampling ex-
plores broadly the high-likelihood portion of sequence space
and can generate a large number of sequences, while con-
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Figure 16: Evolution of the total L2 distance (over
all cliques) between the graphical model and the se-
quences generated by component sampling for class
I PDZ domains.

strained shuffling generates a fixed number of high-likelihood
sequences that adhere to a provided diversity constraint. We
showed the power of our approach by mining and sampling
graphical models for two protein family case studies, WW
domains and class I PDZ domains.

We assume that a designed sequence will be constructed
ab initio, i.e., essentially “printing” the specified amino acid
chain. This is in contrast to, say, employing site-directed
mutagenesis for a small number of selected positions [14,
13], or recombining fragments from existing proteins [19, 21,
26], both of which restrict the available degrees of freedom
in order to simplify the experimental process or make it
applicable on a larger scale. It is interesting future work to
constrain our sampling methods to generate sequences that
can be constructed by these experimental techniques.

Purely sequence-based design is one approach to protein
design; other approaches incorporate additional or alter-
native information. Structure-based approaches (e.g., [5,
11, 16, 14]) employ sophisticated optimization techniques
and biophysical models that predict the energies of possible
amino acid substitutions. Data-driven methods (e.g., [18,
13]) guide design based on experimental measurements of
the effects of amino acid choices. We expect our graphi-
cal models to allow integration of detailed structural and
experimental information and are pursuing that possibility.

Our sampling methods are readily adaptable to focus on
only a subset of residue positions (e.g., near an active site).
In component sampling, treat the non-focus positions as
fixed, and sample only the cliques involving focus positions.
If a particular sequence is desired for the non-focus posi-
tions, then condition the focus clique values accordingly;
otherwise, marginalize out the non-focus positions. In con-
strained shuffling, shuffle and make moves only for the focus
columns.

Overall, the mining and sampling methods presented here
should constitute a valuable tool in the biologist’s toolkit for
computational protein design, and highlight an important
and fertile area for future KDD research.
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score of PDZ sequences generated by constrained
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