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Visualizing Paths in Context 
 

Fabio Pellacini           Lori Lorigo               Geri Gay 

 Dartmouth College   Cornell University                Cornell University 

 

ABSTRACT 
Data about movement through a space is increasingly becoming 

available for capture and analysis. In many applications, this data 
is captured or modeled as transitions between a small number of 
areas of interests, or a finite set of states, and these transitions 
constitute paths in the space. Similarities and differences between 
paths are of great importance to such analyses, but can be difficult 
to assess. In this work we present a visualization approach for 
representing paths in context, where individual paths can be 
compared to other paths or to a group of paths. Our approach 
summarizes path behavior using a simple circular layout, 
including information about state and transition likelihood using 
Markov random models, together with information about specific 
path and state behavior. The layout avoids line crossovers 
entirely, making it easy to observe patterns while reducing visual 
clutter. In our tool, paths can either be compared in their natural 
sequence or by aligning multiple paths using Multiple Sequence 
Alignment, which can better highlight path similarities. We 
applied our technique to eye tracking data and cell phone tower 
data used to capture human movement. 
 
CR Categories and Subject Descriptors: H.5.3 [Information 
Interfaces and Presentation]: User Interfaces 
Additional Keywords: Information Visualization, Social 
Visualization, Time Series Data, Data Stream Visualization 

1 INTRODUCTION 
In a growing number of applications, data is captured or 

modeled as transitions between a small number of areas of 
interest, considered as a finite set of states. These transitions 
constitute paths in some space. Examples of such data range from 
cell phone tower usage to GPS tracking of humans or animals to 
wireless network activity to eye movements across a screen. The 
paths also may consist of semantic rather than physical location-
based state sequences. In much of this data, the state space is 
small and the paths are generally relatively short. It is the 
transitions of the paths themselves that are important, since they 
can help scientists discover movement or usage patterns, or even 
make predictions about next steps at a given point in a path. 

Markov random models in the form of transition probability 
matrices have been used to describe the path transitions [6].  
However, without the help of visualization and means for path 
comparison, the paths are often not well understood. While the 
number of possible states may be small in this class of data, it 
remains difficult to visualize even a single path, let alone multiple 
paths, because visits to each state may be frequent, and hence 
visualization of collections of these paths remains a challenge. 
Furthermore, a possible solution of finding a representative path 
for a given cluster can be either misleading or an 
oversimplification for the data (resulting in data loss or 
nonrealistic paths), particularly when there is variability. 

In this work, we introduce a simple circular layout for 
visualizing these paths with three major benefits. (1) Line 
crossings are avoided entirely to reduce visual clutter or confusion 
that can be otherwise introduced even when viewing a single path, 
which may have many repeat visits and jumps.  (2) Two paths can 

be compared either in their natural sequences or in an optimally 
aligned pairing. The latter relies on multiple sequence alignment 
and can give a more accurate account of paths’ similarities, 
helping to understand how paths are related. (3) A path can be 
compared to a group of paths, revealing that path’s similarities or 
dissimilarities with respect to an entire collection. Markov random 
models assist in showing a collection’s overall behavior together 
with an individual path.   

Our layout design decisions, along with our results from two 
path datasets are described next, following related work. Both of 
these datasets are from domains where the analysis of paths and 
their transitions is important. The first includes a series of eye 
gaze paths on a web page, gathered using an eye tracker, and the 
second describes human movement captured from cell phone 
towers. We then conclude with a summary of our contributions, 
including limitations of our layout as well as natural extensions. 

2 RELATED WORK 
Over time, visualization techniques have demonstrated their 

success at revealing patterns and portraying aggregate information 
efficiently, such as with large data sets. Flow maps [12], have 
been used for over a century, and can be very effective when 
displaying data with a from-to relationship, such as migration, 
traffic and trade data. Physical locations are typically associated 
with flow data, and aggregate behavior is desired. In the class of 
data we are targeting, however, the states may have only abstract 
locations, and the paths often includes repeat visits and cycles. In 
particular, the order of the transitions are important in our data, 
and aggregating paths in the same manner as flow would lose this 
valuable information. 

Animation is another visualization method that conveys 
information about sequential data. Animation has been used to 
visualize paths, software and algorithms [8]. While animation 
displays sequential movements intuitively, it becomes 
increasingly difficult for viewers to place their attention on 
multiple paths, or on additional valuable contextual information, 
such as we desire. Hence, for our task we use a still image 
visualization, while making the path progression clear from start 
to finish.  

Since our target data can be represented as transitions between a 
finite set of states, we also note work on visualizing state 
transition systems by van Ham et. al. [14]. Their work, however, 
was designed for large state spaces where the state machine itself 
is of primary interest, such as program code. Instead, our work 
visualizes collections of paths and makes it easy to find similar 
paths, or path to group similarities and differences.  

Lastly, our circular layout framework described below is 
somewhat similar in design to popular radial layouts [5]. Those 
layouts have been used for tree-like hierarchical networks, placing 
a root node at the circle’s center, branching outward to the node’s 
children in concentric circles [15]. Since our target data consists 
of paths, rather than hierarchical data, it naturally follows that our 
use of the concentric circles differs; in our design, the concentric 
circles represent points in the path rather than hierarchies in the 
network. Furthermore, transitions and path prediction is important 
to our data domains, so circles are also used to indicate transition 
and state likelihoods. 
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Figure 1. Linear (left) and circular (right) layout.

3 LAYOUT DESIGN 
As stated, our goal in this work is to display paths in context. 

Displaying paths involves displaying an ordered sequence of 
states, with transitions between them. At each state, additional 
information may be desirable, such as time spent, depending on 
the dataset of interest. Displaying paths in context involves 
displaying a path with respect to some surrounding data or 
information.  In this work, we provide for the displaying of a path 
as compared to (1) another path, and (2) a group of paths. We 
discuss our approach towards each of these tasks in detail below. 
Each of paths in the examples in this section was taken from the 
eye tracking dataset. 

3.1 Displaying Paths 
When designing a display for paths, we were interested in 

making the path behavior clearly visible, including direction and 
state specific information, and allowing for integration of the path 
display with additional contextual information, discussed later. 
We also leveraged traits of the kind of data we are proposing to 
illustrate, particularly, paths with a small number of areas of 
interest, that are generally relatively short in length. 

Even for our target data class, straightforward graph layout 
algorithms in which nodes are the states and edges are the state 
transitions, result in unclear path behavior, due in part to line 
crossings, but also because paths frequently revisit locations, 
contain cycles, or fluctuate between pairs of states. The confusion 
only intensifies if more than one path is placed on the graph. 
Possible solutions of using color or edge markings to help the 
viewer see the paths are inadequate in these cases.  

We considered two alternative displays, a linear layout and a 
circular layout, shown in Figure 1 using the same path. In these 
examples, there are 10 states, labeled A through L. The linear 
layout is simply a 2 dimensional grid, placing the states, or areas 
of interest, on the vertical axis and plotting the path along the x 
axis, so that the path is viewed left to right. This layout is 
suggestive of a timeline, even though the sequences may or may 
not be modeled according to time. The circular layout arranges the 
states in a circle and utilizes a series of concentric circles 
emanating outward from the circle of states. These concentric 
circles serve as the “timeline” for the path, with the first state in 
the path starting closest to the center (state C). In both layouts, the 

ordering and placement of the states affects the look of the path; 
this ordering can either be arbitrary, determined by the data, or 
chosen to minimize long distance transitions. While we hoped that 
the simpler linear grid would suffice, we found that the circular 
layout was superior. In that layout, it was easier to follow the state 
labels, and see patterns such as state fluctuations, or paths that 
span many states. Also, information about the group of paths, 
described later in 3.2.3 (shown by the differently sized circles near 
the state labels), is easy to follow while still keeping gaze on the 
single path for comparison. Lastly, the circular layout is less 
sensitive to long jumps, as seen in the center of the linear layout, 
requiring at most ½ the circumference to connect any two states. 

3.1.1 Activity vs. Time-Centered Display 
In many domains, activity-centered displays of the paths are 

more interesting than time-centered displays. We distinguish 
activity-centered paths as those which highlight the state sequence 
alone, without respect to what state the path was in at a given time 
along the path. To illustrate this, we place steps along the path, 
which we call satellites, in the same concentric circle, rather than 
moving outward in the circle, if the state did not change. This also 
makes the path more manageable, particularly when it is long, and 
highlights repeated presence in a state. Figure 2, taken from the 
path above, shows a case where the path repeatedly visited state F 
in the sequence, marked by several satellites in a row.  

 

 
Figure 2. Activity-centered repeat satellites. 
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Satellite darkness is used to show additional information about 
a visit to a state, such as time spent in the state in these examples. 
In the sample above, the subject rarely spent a relatively long time 
in any step on the path, noted by a dark black satellite. Edge 
darkness can be used to convey the length of a subsequence in a 
given path, connoting spanning behavior.  In this example, if the 
number of states is at least 3 (the sequence doesn’t bounce back), 
the edge is dark. If it is desirable to show even additional 
information about each step in the path one can use selection 
(mouse click on a satellite) and display relevant values in the very 
center of the circle, or in an additional viewing area.  

3.2 Paths in Context  
Our simple path layout was intentionally designed to allow for 

integration with additional visual components in order to describe 
the path’s context. Context is important for analysis of a path with 
respect to other path behavior or path group behavior. While paths 
can readily be compared according to numeric properties such as 
their lengths, number of states visited, or their average time spent 
in states, it remains challenging to compare are the transitions 
which shape the path as a whole. It is these transitions that allow 
us to make predictions, or to find common subpaths in the data. 
How can we visualize a path’s shape as compared with another 
path or a collection of paths? 

3.2.1 Path to Path Comparison  
In our layout, we allow both the direct comparison of two paths, 

for which plot the paths as “mirror images”, and the ability to 
view a single path in the context of a second path, keeping the 
first path in the forefront, while highlighting the path to path 
similarities. Plotting multiple paths in the same space quickly 
causes clutter and confusion, so we adopted these alternatives. In 
each case, we can display the paths either in their original form, or 
by first aligning them, using pairwise sequence alignment [11], or 
in the case of groups of paths, multiple sequence alignment [1].  
The aligned form helps to better reflect similarities, while the 
natural form remains important for time-dependent data. 

To align paths, we minimize the number of state insertions, 
deletions, or substitutions needed to transform one path into the 
other. That number is also known as the Levenshtein distance [4, 
7] and has been used in quantitative analysis of eye tracking 
scanpaths [5]. For instance, path ABCDEF is paired with path 
BCDEFA as in its original and aligned form. 

ABCDEF ABCDEF – 
    BCDEFA  –BCDEFA 
These paths are in fact similar, and have a Levenshtein distance of 
two. However, in their natural form, no states line up. 

Figure 3 and 4 illustrate a path in the context of a second path, 
using the natural and aligned pairings. Here, dark satellites and 
edges represent state and transition agreement. In our layout, we 
also detect where insertions would have occurred according to the 
alignment and place a connecting line. Notice, the alignment finds 
more similarity, recognizing paths similar in shape, given a small 
number of insertions or deletions. In order to view the entire 
second path, rather than only its similarities, Figure 5 shows the 
paths in the mirror format. Symmetry is easily recognizable, and 
even a quick glance shows the paths’ overall similarity.   

3.2.2 Graphical User Interface Operation 
Our graphical user interface for selecting the paths was also 

designed to make it very easy to find similar paths, since once a 
path is selected, the paths are ordered according to their distance 
from that path, so the user can very quickly browse through the 
paths in order of their similarity. The user can select alignment or  
no alignment, and can select between activity or time centered 
displays. Selection for groups of paths is also available. 

 
Figure 3. Unaligned path to path similarities. 

 
Figure 4. Aligned path to path similarites. 

 
Figure 5. Aligned path to path mirror image comparison. 
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3.2.3 Path to Group Comparison 
The central area of the layout, shown in Figure 6 contains the 

states and labels, and provides information about overall group 
behavior that can be used as a guide while viewing a path. First, 
the size of each state is proportional to the number of visits to that 
state over the entire collection of paths. Next, inside each state, we 
place circles whose size represents the likelihood of transitions to 
the respective states given the current state. For instance, because 
of the placement of two predominant circles inside state C, we see 
that it is highly likely one will next jump to either B or D. We 
capture these transition likelihoods with a first order Markov 
model describing the collection of paths. Hence, when viewing a 
step in a path, one can glance to see how popular that state was, 
and what the most likely next step would have been. Or, since the 
center will not change for a given data set, one can approximate 
average behavior from these transition likelihoods. 

 

 
Figure 6. Markov random models and state labeling. 

 
Figure 7. Path in the context of the collection of paths. 

Second, we can highlight when a path agrees with the group 
behavior, as we did with path to path comparison. We determine 
this using either the first order Markov model, or alternatively a 
second order Markov model, as appropriate for the dataset. Figure 

7 shows the path as compared with the collection. Dark edges 
indicate that the likelihood of the transition is greater than random 
in the model, and satellites are darkened to compare the number of 
satellites in a state with the group average. This allows a user to 
quickly see which paths either agree or disagree with respect to 
some group. To select the group, a user can select any number of 
closest aligned paths, the entire collection, or can use groups 
defined by the data. For instance, the data may be classified 
according to gender, age, or other relevant class. 

4 RESULTS AND DISCUSSION 
Below we discuss our results when applying two different data 

sets to our tool.  

4.1 Eye Tracking Scanpaths 
The first data set we consider comes from eye tracking capture 

of subjects’ eye fixations paths while interacting with the Google 
results page upon performing a Google search query [10]. Eye 
tracking is an important tool for many usability analysts, 
psychologists, and other scientists, and eye gaze paths, or 
scanpaths are of great interest but difficult to analyze [4, 7, 13]. 
Eye tracking heatmaps [3], for example, show an aggregate of 
where people looked but cannot show sequential behavior which 
is important for predicting paths or comparing paths against a 
control group, for example. 

In this domain, scanpaths are typically represented as sequences 
of areas of interests, or states (also called “lookzones”). The 
ability to map pixel gaze coordinates to areas of interest comes 
standard with all major eye tracking software. In this dataset, there 
were 10 areas of interest, one for each of the 10 results returned 
from a Google query. Hence, the scanpaths revealed the order in 
which the query result abstracts were viewed.  We discarded paths 
smaller than length 3, leaving 412 paths as input to our tool. 

4.1.1 Single Paths 

 
Figure 8. Jumping pattern seen between states B and C. 

Viewing single paths in the Google data set, showed clearly the 
behavior of the paths, and also surprisingly highlighted a couple 
of immediate patterns. The first is a jumping pattern, shown in 
Figure 8 by the repeated edges between states B and C. This 
clearly visible was quickly discovered to be prevalent in many of 
the paths. The subject was likely making a decision between the 
search result abstracts for two different web pages before making 
a selection, or clicking on one of them. Visualizing the same paths 
in the linear layout made this discovery less immediate. Second, 



Dartmouth – Computer Science – Technical Report – TR2006-580 

the act of reading, or repeatedly fixating within a given state was 
clearly visible, shown by the presence of many satellites clustered 
together, as along state F in Figure 2. This pattern was noticeable 
in many of the paths. Such predominant kinds of scanpath 
behavior were quickly seen while browsing the paths.  

4.1.2 Paths in Context 
Figures 3, 4, and 5 above showed the comparison of a path to 

another and Figure 7 above showed the same path compared with 
the transition behavior of the entire data set. While certain paths 
had high similarity to others, we quickly observed that the path 
sequences varied considerably across the entire set. In this case, 
the ability find closest paths and to define or distinguish 
subgroups was valuable. Also, it shows that it may not make sense 
to find an “average path” to represent the entire collection, but 
instead there may be multiple clusters of related paths, for which 
an average path is more suitable. For this dataset, the ability to 
view and compare patterns from paths and groups of paths 
provided an understanding that alternative non-visual approaches 
could not. 

 

4.2 MIT Reality Mining Data Set 
Our second data set consists of cell phone tower usage used to 

approximate human movement, made available by the MIT 
Reality Mining project [2]. Data about human or even animal 
movement is more easily captured today, and is important in 
many areas of research such as sensors, wireless networks, and 
HCI.  This subset we use contains proximity data taken for one 
subject over 3 months. The mobile phone towers in that data were 
associated with personally relevant places such as “home”, 
“office”, or “Joe’s house”. The data was first compressed into half 
hour intervals using a sliding window, and a representative state 
for each half hour was chosen. The 10 most visited places served 
as our areas of interest, or state space in this example. We then 
extracted a single path for each day, from which we selected those 
paths whose states all belonged to our state space.  These paths 
constituted roughly 1/3 of the original data. Using our layout, one 
can quickly view the subject’s movement on a given day, compare 
that day against another or multiple days, and see the overall 
behavior for the entire 3 months.  

  
Figure 9. Time-centered path to path comparisons, single (left) and mirror (right) image.  

 
 

 
Figure 10. Activity-centered path to path comparisons, single (left) and mirror (right) image.
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4.2.1 Activity and Time Centered Path Comparison 
In this data set, it is interesting to consider both activity and 

time-centered layouts. The activity-centered paths allow a user to 
compare the general activities that the subject did in a given day 
as inferred from the semantic locations such as home, office, 
restaurant, or a person’s house. The time-centered paths instead 
allow one to compare where a subject was at a given time during 
the day. Alignment provides a natural way to compare the 
activity-centered paths, however, it is less appropriate for time 
centered paths (since resulting insertions and deletions will alter 
the paths’ timelines).  Figures 9 shows the time-centered 
comparisons of two paths using the circular and mirror displays. 
In these paths, we see that the subject spent the majority of his 
time between states A and C, which not surprisingly correspond to 
home and work, or night and day. Figures 10 shows activity-
centered comparisons for another pair of paths. The presence of 
dark edges and satellites in Figure 10 reveals that there is 
considerable agreement of path 1 to path 2.  Looking at the mirror 
image shows that agreement while additionally noting the 
differences. For example, the path on the right spends repeated 
time in state D while that on the left does so in state C. 

Our last example, in Figure 11 below, shows the path with 
respect to the entire collection. The prevalence of transition 
similarities, again depicted as dark edges, suggests that the day 
sequence was typical of that of the entire 3 months. 

 
Figure 11.  Path in the context of the entire collection. 

5 CONCLUSION  
In summary, we have described a simple layout for displaying 

data that is captured or modelled as paths through a small number 
of states, or areas of interests, and for which individual paths, and 
their comparison to others are important. Our layout provides the 
benefits of clearly visualizing paths, without line crossovers, the 
flexibility of selecting paths and groups for comparison, and 
conveys important contextual information using the Markov 
random models for the paths and Multiple Sequence Alignment. 
In our sample data sets, paths are clearly visible, as are their 
similarities with respect to other selected data. The interface itself 
also assists browsing for similarities by ordering paths according 
to their distance to a selected path.  In our test sets, patterns have 
already quickly emerged. For example, in the eye tracking 
collection both jumping and reading behaviors were apparent, and 
transition likelihoods were clearly shown. Our circular layout 
assisted in understanding the combined path and group behavior, 

which was shown to be less apparent in the simpler linear layout. 
In the MIT reality mining data, frequently, paths were well 
aligned, and anomalous days were easily observed as such in the 
context of the entire path set. Our GUI made it easy to find similar 
paths, and recurring patterns.   

So far, visual cues such as color and size were used 
conservatively, making the addition of other information possible 
if it becomes desirable depending on the user or data domain. 
Note, depending upon preference, color could have easily been 
used instead of dark edges, or two colors could have highlighted 
agreement and disagreement in the same manner. Now that we 
have a layout and tool available, a thoughtful user study would be 
valuable. 

We have noted that our design is limited to data with a small 
number of states, and relatively short paths. The states in our 
target data also typically have a semantic meaning, and so the 
state transition behavior is very important in understanding the 
overall data. We have shown examples of such data, and 
discussed several ways in which our layout illustrates the 
important aspects of the state paths and their context. 
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