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Abstract. Novel molecular function can be achieved by redesigning an enzyme’s active site so
that it will perform its chemical reaction on a novel substrate. One of the main challenges for
protein redesign is the efficient evaluation of a combinatorial number of candidate structures.
The modeling of protein flexibility, typically by using a rotamer library of commonly-observed
low-energy side-chain conformations, further increases the complexity of the redesign problem.
A dominant algorithm for protein redesign is Dead-End Elimination (DEE), which prunes the
majority of candidate conformations by eliminatirigid rotamers that provably are not part of

the Global Minimum Energy Conformation (GMEC). The identified GMEC consists of rigid
rotamers (i.e., rotamers that have not been energy-minimized) and is thus referred to as the
rigid-GMEC. As a post-processing step, the conformations that survive DEE may be energy-
minimized. When energy minimization is performed after pruning with DEE, the combined pro-
tein design process becomes heuristic, and is no longer provably accurate: a conformation that
is pruned using rigid-rotamer energies may subsequently minimize to a lower energy than the
rigid-GMEC. That is, the rigid-GMEC and the conformation with the lowest energy among all
energy-minimized conformations (tminimized-GMEGC are likely to be different. While the
traditional DEE algorithm succeeds in not pruning rotamers that are part of the rigid-GMEC, it
makes no guarantees regarding the identification of the minimized-GMEC. In this paper we derive
a novel, provable, and efficient DEE-like algorithm, caliethimized-DEEMinDEE), that guar-
antees that rotamers belonging to the minimized-GMEC will not be pruned, while still pruning a
combinatorial number of conformations. We show that MinDEE is useful not only in identifying
the minimized-GMEC, but also as a filter in an ensemble-based scoring and search algorithm
for protein redesign that exploits energy-minimized conformations. We compare our results both
to our previous computational predictions of protein designs and to biological activity assays of
predicted protein mutants. Our provable and efficient minimized-DEE algorithm is applicable in
protein redesign, protein-ligand binding prediction, and computer-aided drug design.

A revised version of this paper will appear in the Proceedings of the Tenth Annual International Conference on
Research in Computational Molecular Biology (RECOMB), Venice Lido, Italy, April 2006.
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1 Introduction

1.1 Computational Protein Design

The ability to engineer proteins has many biomedical applications. Novel molecular
function can be achieved by redesigning an enzyme'’s active site so that it will perform
its chemical reaction on a novel substrate. A number of computational approaches to the
protein redesign problem have been reported. To improve the accuracy of the redesign,
protein flexibility has been incorporated into most previous structure-based algorithms
for protein redesign [35, 13, 12, 11, 1, 25, 20, 14, 32]. In [24], a number of bound
and unbound structures are compared, and the conclusion is drawn that only a small
number of residues undergo conformational change, and that the structural changes are
primarily side-chains, and not backbone. Hence, many protein design algorithms use
a rigid backbone and model side-chain flexibility with a rotamer library, containing a
discrete set of low-energy commonly-observed side-chain conformations [21, 28]. The
major challenge for protein redesign algorithms is the efficient evaluation of the expo-
nential number of candidate protein conformations, resulting not only from mutating
residues along the peptide chain, but also by employing these discrete rotamer libraries.
The development of pruning conditions capable of eliminating the majority of muta-
tion sequences and conformations in the early, and less costly, redesign stages has been
crucial.

Non-ensemble-based algorithms for protein redesign are based on the assumption
that protein folding and binding can be accurately predicted by examining the GMEC.
Since identifying the GMEC using a model with a rigid backbone, a rotamer library,
and a pairwise energy function is known to be NP-hard [27], different heuristic ap-
proaches (random sampling, neural network, and genetic algorithm) have been pro-
posed [35, 13, 12, 11, 22]. A provable and efficient deterministic algorithm, which
has become the dominant choice for non-ensemble-based protein design, is Dead-End
Elimination (DEE) [6, 15]. DEE reduces the size of the conformational search space
by eliminatingrigid rotamers that provably are not part of the GMEC. Most important,
since no protein conformation containing a dead-ending rotamer is generated, DEE pro-
vides a combinatorial factor reduction in computational complexity. Complexity can be
further reduced through the use of an A* branch-and-bound algorithm to enumerate
conformations in order of increasing energy [16].

When energy minimization is performed after pruning with DEE, the process be-
comes heuristic, and is no longer provably accurate: a conformation that is pruned us-
ing rigid-rotamer energies may subsequently minimize to a structure with lower energy
than the rigid-GMEC. Therefore, the traditional DEE conditions are not valid for prun-
ing rotamers when searching for the lowest-energy conformation among all energy-
minimized rotameric conformations (tlmeinimized-GMEQ. In this paper we derive a
novel, provable, and efficient DEE-like algorithm, calletihimized-DEEMinDEE),
that guarantees that rotamers belonging to the minimized-GMEC will not be pruned,
while still enjoying a combinatorial pruning factor for rotamers that are provably not
part of the minimized-GMEC. The extension of the DEE framework to include energy
minimization is useful not only in identifying the minimized-GMEC, but also as a filter



in an ensemble scoring method for protein redesign based on energy-minimized con-
formations (such a&™ [17, 18]).

1.2 NRPS Redesign and<*

Traditional ribosomal peptide synthesis is complemented by non-ribosomal peptide
synthetase (NRPS) enzymes in some bacteria and fungi. NRPS enzymes consist of
several domains, each of which has a separate function. Substrate specificity is gen-
erally determined by the adenylation (A) domain [33, 3, 31]. Among the products of
NRPS enzymes are natural antibiotics (penicillin, vancomycin), antifungals, antivirals,
immunosuppressants, and antineoplastics. The redesign of NRPS enzymes can lead to
the synthesis of novel NRPS products, such as new libraries of antibiotics [2].

The main techniques for NRPS enzyme redesigrdareain-swapping34, 30, 7,

23, 19],signature sequencd83, 8, 3], andactive site manipulation from a structure-
based mutation search utilizing ensemble docKthg K* method [17, 18]). A review

of these methods and a discussion of the advantages of structure-based redesign (the
K™ method) over the other two techniques can be found in [17, 18].

The K* algorithm [17, 18] has been demonstrated for NRPS redesign, but is a
general algorithm that is, in principle, capable of redesigning any proféinis an
ensemble-based scoring technigue that uses a Boltzmann distribution to compute parti-
tion functions for the bound and unbound states of a protein. The ratio of the bound to
the unbound patrtition function is used to compute a provably-good approximafign (
to the binding constant for a given sequence. A volume and a steric filter are applied in
the initial stages of a redesign search to prune the majority of the conformations from
more expensive evaluation. The number of evaluated conformations is further reduced
by a provables-approximation algorithm. Protein flexibility is modeled footh the
proteinandthe ligand using energy-minimization and rotamers [17, 18].

1.3 Contributions of the Paper

Boltzmann probability implies that low-energy conformations are more likely to be as-
sumed than high-energy conformations. The motivation behind energy minimization is
therefore well-established and algorithms that incorporate energy minimization often
lead to more accurate results. However, if energy minimization is perfoafeicprun-
ing with DEE, then the combined protein design process is heuristic, and not provable;
we demonstrate that a conformation pruned using rigid-rotamer energies may subse-
quently minimize to surpass the putative rigid-GMEC.

We derive a novel, provable, and efficient DEE-like algorithm, caitédimized-
DEE (MinDEE), that guarantees that no rotamers belonging to the minimized-GMEC
will be pruned. We show that our method is useful not only(dn identifying the
minimized-GMEC (a non-ensemble-based method), but(&lsas a filter in an ensem-
ble-based scoring and search algorithm for protein redesign that exploits energy-mini-
mized conformations. We achieye) by implementing a MinDEEA* algorithm in a
search to switch the binding affinity of the Phe-specific adenylation domain of the non-
ribosomal peptide synthetase Gramicidin Synthetase A (GrsA-PheA) towards Leu. The



latter goal(b) is achieved by implementing MinDEE as a combinatorial filter in a hy-
brid algorithm, combiningd* search and our previous work & [17, 18]. For brevity,

we will henceforth refer to this algorithm as thybrid MinDEE-K* algorithm. The
Hybrid MinDEE-K* algorithm has two stages. 1) the MinDEE filter provably prunes
the majority of conformations, and 2) remaining conformations are generated in or-
der of increasing lower bounds on their minimized energies usinglthieranch-and-
bound search. As each conformation is generatedi hyit is energy-minimized and
added to the partition function. The partition function approximation algorithm halts
the A* search as soon as the nekt conformation’s lower-energy bound exceeds a
computed threshold. The resulting method is a provably-accurate approximation algo-
rithm to compute partition functions and subsequently binding constants for protein-
ligand binding. Our new algorithm prunes a combinatorial number of conformations,
an improvement over the constant-factor speedup in the origiriglL 7, 18]. The ex-
perimental results, based on a 2-point mutation search on the 9-residue active site of the
GrsA-PheA enzyme, confirm that the new Hybrid MinDEEE- algorithm has a much
higher pruning efficiency than the original* algorithm. Moreover, it takes onig0
seconddor MinDEE to determine which rotamers can be provably pruned. We make
the following contributions in this paper:

1. Derivation of minimized-DEE (MinDEE), a novel, provable, and efficient DEE-like
algorithm that incorporates energy minimization, with applications in both non-
ensemble- and ensemble-based protein redesign. Analogously to the extensions to
traditional DEE [6, 15, 9, 26], we also derive extensions to MinDEE to improve its
pruning efficiency;

2. Introduction of a MinDEEA* algorithm that identifies the minimized-GMEC and
returns a set of low-energy conformations;

3. Introduction of a hybrid MinDEEK™* ensemble-based scoring and search algo-
rithm, improving on our previous work oK* [17, 18] by replacing a constant-
factor with a combinatorial-factor provable pruning condition;

4. Derivation of provably-accurateapproximation algorithms for partition function
computation; and

5. The use of our novel algorithms in a redesign mutation search for switching the
substrate specificity of the NRPS enzyme GrsA-PheA; we compare our results to
previous computational predictions of protein designs and to biological activity
assays of predicted protein mutants.

2 Derivation of the Minimized-DEE Criterion

2.1 The Original DEE Criterion

In this section we briefly review theaditional-DEEtheorem [6, 26, 10, 15]. Tradition-
al-DEE refers to the original DEE, which is not provably correct when used in a search
for the minimized-GMEC. Our notation is chosen to remain consistent with previous
work. The total energyF .., of a given rotameric-based conformation can be written
ask, =Ey+ >, E(i,)+>, 2j>i E(i,, js), whereE, is the template self-energy

4



Fig. 1. Energy-Minimized DEE. Without energy minimization the swapping of rotamerfor

i (Panel A to Panel B) leaves unchanged the conformations and self and pairwise energies of
residuesi andk. When energy minimization is allowed, the swapping of rotameor rotamer

i+ (Panel C to Panel D) may cause the conformations of resiflaedk to minimize (i.e., move)

to form more energetically favorable interactions (from the faded to the solid conformations in
Panels C and D).

(i.e., backbone energies or energies of rigid regions of the protein not subject to rotamer-
based modeling),- denotes rotamer at position:, E(i,) is the self energy of rotamer
i, (the intra-residue and residue-to-template energies)Fdid j,) is the non-bonded
pairwise interaction energy between rotamgrand j,;. The rotamers assumed in the
rigid-GMEC are written with a subscript. Thereforei, is the rotamer assumed in
the rigid-GMEC at position. The following two bounds are then noted: for allj
(i # ), max Biy, js) > B(ir, jo) andmin E(ig, js) < Elig, jg), whereR; is the set

S j S j

of allowed rotamers for residye For clarity, we will not includeR; in the limits of the
max andmin terms, since it will be clear from the notation from which sehust be
drawn. The DEE criterion for rotamey is defined as:

E(iy) + Y _min E(ir, js) > E(ie) + ) max B(ir, ji). (1)
J#i J#i

Any rotameri,. satisfying the DEE criterion (Eq. 1) is provably not part of the rigid-
GMEC (i, # i4), and is considered ‘dead-ending.’ Extensions to this initial DEE crite-
rion allow for additional pruning while maintaining correctness with respect to identi-
fying the rigid-GMEC [6, 15, 9, 10, 26].

2.2 DEE with Energy Minimization: MinDEE

We now derive generalized DEE pruning conditions which can be used when search-
ing for the minimized-GMEC. The fundamental difference between traditional-DEE
and MIinDEE is that the former enjoys significant independence among multiple en-
ergy terms during a rotamer swap. For example, when conformations are not energy-
minimized, changing rotamey. to i; does not affect the energy terByj); however,

when energy minimization is allowed, the value of this energy term ofengeas

the rotameric conformations. and j, minimize from their initial rotameric confor-
mations (Fig. 1). Therefore, to be provably correct, one must account for a range of



possible energies. The conformation of a residue may change during energy minimiza-
tion, however we constrain this movement to a region of conformation space called a
voxel[36, 29] to keep one rotamer from minimizing into another. In this framework, the
voxel V(i,.) for rotameri,. is simply all conformations of residuewithin a +6 range
around each rotamer dihedral when starting from the rotaimeiWe similarly define

the voxelV(i,, js) for the pair of rotamers,. andj; to be the region of conformation
spaceV(i,) x V(js). Next, we can define themaximumminimum andrangeof voxel
energies:

Eg(iy) = max E(z), Eg(i,) = min E(z), Eg(i;) = Eg(ir) — Eg(iy).
z€V(ir) z€V(ir)

Analogous definitions exist for pairwise terms (Fig. 4 in the Appendix). For a given

protein, we define @otamer vectorA = (A4, As, ---, A,) to specify the rotamer
at each of then residue positionsA; = r when rotamer- is assumed by residue
i. We then define theonformation vectord® = (A3, AS,---, A?) such thatA? is

the conformation of residug¢in the voxel-constrained minimized conformation, i.e.,
A? € V(A;) and

A* = (A} AS, - AN = argmin E(B) (2
B=(B1,B2,,Bn)€]T, V(4;)

whereE'(B) is the energy of the system specified by conformation veBtdror the
energy-minimized conformation starting from rotamer vectigrwe define the self-
energy of rotamet, asEg (i,|A) = E(A?) and the pairwise interaction energy of the
rotamer pairi,, js as Eg (ir, js|A) = E(A}, A7) where E(A?) is the self-energy of
residuei in conformationA? and E (A3, A%) is the pairwise energy between residues
i andj in conformations4? and A7. We can then express the minimized energylof
E_(A)as:

B, (A) = Bv + 3 EolirlA) + 30> Eolir js|A). 3)

i j>i

Let G represent the rotamer vector that minimizes into the minimized-GMEC and
E,(G) be the energy of the minimized-GMEC. L€, _.;, be the rotamer vecta#
where rotamet,, is replaced with;. We know thattZ,. (G, —.;,) > E,.(G), so we can
pull residuei out of the two summations, obtaining:

Ey + Eo (it|Giy—i,) + ; Eo (it 4g|Giy—i,) + ; Eo(JglGiy—iy)
J#i J#i
+ Z Z E@(jgakg|Gig—>it) > Ey +E®(ig|G)

j#i ki k>]
+ZE®(7:gajg|G)+ ZEQ(jg|G)+ Z Z E@(jgvkg‘G)- (4)
J#i J#i J#i kFi,k>j
The E;. terms (Sec. 2.1) correspond to the rigid portion of the molecule; they are
independent of rotamer choice, are equal, and can be canceled. We make the following

! The voxel space for each rotamer can be multi-dimensional, depending on the number of
dihedrals. The largest number of dihedrals for a single rotame¢Asg and Lys).



trivial upper and lower-bound observations:

Eo(it|A) < Eg(ir); Eo(ir, jglA) < max E@(Ztajs) 5)
Eo(jglA) < Eg(jg); Eol(ig: kglA) < E@(Jg,k )i (6)
Eg(ig) < E(ig|A); SHEI}% Eg(ig,js) < Eo(ig, jglA); (7)
E@(jg) < E@(jg|A)§ Ee(jg,kg) < E@(jgvkg‘A)- (8)

Substituting Egs. (5-8) into Eqg. (4), we obtain:

Eg (i) + > maXEEB(lth) + Z Ege(jg) + > > Eo(igky) >

j#i S JA kFiLk>]
Eg(ig) + > min Eg (ig, js) + ZEe(Jg)Jr > > Eeligkg). (9
VE) J#LkFi k>

We now define the MinDEE criterion for rotama&rto be:

Eg(iv) + 3 min Eg (i, js) — Yo max Eg(js) — >0 >0 max Ep(js, ku) >

j#i S j#i S J#i k#ik>5 S
Eg(ir) + 3 max Eg (it js)- (10)
J#i

Proposition 1. When Eg. (10) holds, rotamér is provably not part of the minimized-
GMEC.

Proof. When Eq. (10) holds, we can substitute the left-hand side of Eq. (10) for the first
two terms of Eq. (9), and simplify the resulting equation to:

Eg (i) + 3 min Eg(ir, js) = > max Eg(js) = > > max Eg(js, ku)

j#i 8 Jj#i J#i k#ik>5 S%
+ Z Eo(ig) + > X Eoligky) > Es(ig) + > mlnE@(lmJb) (11)
JFLkFLE>] j#i °

We then substitute the following two boun¥s, mSaXE® (Js) = 22;4 Eoliy) and
E#i Zk#’bj %iXEfa(js’ku) > Zj# Zk#bj E5(jg, kg) into Eq. (11) and re-
duce:

E5 (i —l—ZmlnE@(zr,]S) > Eg(ig —I—ZmlnE@(zg,jS) (12)
J#i J#i
Thus, when the MinDEE pruning condition Eq. (10) holds# i, and we can provably
eliminate rotamet, as not being part of the energy-minimized GMEC. ad

The most significant difference between traditional-DEE and MIinDEE is the ac-
counting for possible energy changes during minimization, which are incorporated
through the introduction of the term}s;; max E (j5) and ), >~ max Eg (js, ku).

Using precomputed energy bounds, the MinDEE pruning condition (Eqg. 10) can be
computed as efficiently as the traditional-DEE pruning condition (Eq. 1). The MinDEE



framework can be used whenever a bound on a pairwise energy function can be ob-
tained and is therefore not critically dependent upon the particular energy function or
type of minimization employed.

In this section, we presented a generalization of traditional-DEE, to obtain an initial
pruning criterion for MinDEE. We have also generalized the extensions to traditional-
DEE pruning [6, 15, 9, 10, 26] for MinDEE, see Appendix A.

3 Minimized-DEE/A* Search Algorithm (Non-Ensemble-Based
Redesign)

3.1 Traditional-DEE with A*

In [16], an A* branch and bound algorithm was developed to compute a humber of
low-energy conformations for a single mutation sequence (i.e., a single protein). In this
algorithm, traditional-DEE was first used to reduce the number of side-chain confor-
mations, and then surviving conformations were enumerated in order of conformation
energy by expanding sorted nodes of a conformatiorttree.

The following derivation of the DEE* combined search closely follows [16].
The A* algorithm scores each node in a conformation tree using a scoring function
f = g+ h, whereg is the cost of the path from the root to that node (the energy of all
self and pairwise terms assigned through defpdindh is an estimate (lower bound) of
the path cost to a leaf node (a lower bound on the sum of energy terms involving unas-
signed residues). The value gfat depthd) can be expressed gs— Zle(E(ir) +

> 11 Elir,js)). The lower bound: can be written ag = 3", | E;, wheren

is the total number of flexible residues afy = min(E(js) + Ele E(iy, js) +
ZZ>]. min E(js, k,,)). The A* algorithm maintains a list of nodes (sorted yand

in each iteration replaces the node with the smalfesalue by an expansion of the
children of that node. This process of expansion is continued until the node with the
smallestf value is a leaf node. This leaf node corresponds to a fully-assigned con-
formation and is returned by the algorithm. To reduce the branching factor of the
conformation tree, the DEE algorithm is used to preprocess the set of allowed ro-
tamers. If more than one low-energy conformation is to be extracted from the A*
search, the DEE criterion must be modified. If low-energy conformations wiihjin

of the GMEC are to be returned by the DEE/A* search, then the DEE criterion must
be modified to only eliminate rotamers that are provably not part of any conforma-
tion within E,, of the GMEC. The original DEE criterion (Eq.1) is thus changed to:
Eiy) — E(ir) + 32,4 msinE(iT,js) — D mgLXE(it,js) > Ey.

3.2 MInDEE with A*

The traditional-DEEA* algorithm [16] can be extended to include energy minimization
by substituting our newly derived MinDEE (Sec. 2.2) for traditional-DEE. So that no

21n a conformation tree, the rotamers of flexible residue represented by the branches at
depth:. Internal nodes of a conformation tree represent partially-assigned conformations and
each leaf node represents a fully-assigned conformation (see Fig. 3 in [18, p. 745]).



conformations withinE,, of the energy-minimized GMEC are pruned, the MinDEE
equation (Eg. 10) becomes:

E@(ir) + Z minE@(iT,js) - E m;%XE®(jS) - Z Z maXE@(js’k;u)

j#i 8 Jj#i Jj#ik#ik>5 S%
—Eg (i) — > mEXE@(it,js) > By, . (13)
J#i

We modify the definition of thel* functionsg andh to use the minimum energy terms
Es5(iy) andEg(iy, js) in place of E(i,.) and E (i, js). Thus, we have:

d d n
9= Z(E@(Zr) + Z E@(irvjs))v h = Z Ej7 (14)
1=1 j=i+l j=d+1
where
d n
Ej - Hlsll’l E@(JS) + ;Ee(lr,js> + kgl mulnEG(j& ku) : (15)

A lower bound on the minimized energy of the partially-assigned conformation is given
by g, while a lower bound on the minimized energy for the unassigned portion of the
conformation is given by.. Thus, the MinDEEA* search generates conformations in
order of increasingpwer boundson the conformation’sninimizedenergy.

We combine our modified MinDEE criterion (Eqg. 13) with the modifi¢t func-
tions (Egs. 14-15) in a provable search algorithm for identifying the minimized-GMEC
and obtaining a set of low-energy conformations. First, MinDEE prunes the majority
of the conformations by eliminating rotamers that are provably not withjnof the
minimized-GMEC. The remaining conformations are then generated in order of in-
creasingower boundson their minimized energies. The generated conformations are
energy-minimized and ranked in terms of increasioualminimized energies.

The MInDEE/A* search must guarantee that upon completion all conformations
within £, of the minimized-GMEC are returned. Since in the algorithm conforma-
tions are returned in order of increasing lower bounds on the minimized energies, the
minimized-GMEC may not be among the top conformations if the lower bound on its
energy does not rank high. We therefore derive the following condition for halting the
MinDEE/A* search. LeB(s) be the lower bound on the energy of conformatiqsee
Appendix B, which describes how lower energy bounds are precomputed for all rotamer
pairs) and letr,,, be the current minimum energy among the minimized conformations
returned so far in thel* search.

Proposition 2. The MinDEEA* search can be halted once the lower bouB(t:) on

the energy of the next conformatierreturned byA*, satisfiesB(¢c) > E,, + FEy.

The set of returned conformations is guaranteed to contain every conformation whose
energy is withink,, of the energy of the minimized-GMEC. Moreover, at that point in
the search, the conformation with enerfy, is the minimized-GMEC.



Proof. Let E(s) be the actual energy of a minimized conformatiorLet Y be the

set containing conformation (the next conformation returned by*) and all confor-
mations not yet returned. SincE* returns conformations order of increasing lower
bounds on the energy, we know thats) > B(s) > B(c) for any conformatiors € Y.
Thus, if B(¢) > E,, + E,, holds, thenE(s) > E,, + E,,. Hence, no conformations

in Y have energies withiii,, of the energy of the minimized-GMEC, proving that all
conformations withinF,, of the minimized-GMEC energy have already been returned.
Moreover, note that at that point in the search, the conformation with erngrgis
actually the minimized-GMEC. O

Using both MinDEE and4* search together, our algorithm obtains a combinator-
ial pruning factor by eliminating the majority of the conformations, which makes the
search for the minimized-GMEC computationally feasible. The MinDEEIgorithm
incorporates energy minimization with provable guarantees, and is thus more capable
of returning conformations with lower energy states than traditional-DEE.

4 Hybrid MinDEE- K™ Algorithm (Ensemble-Based Redesign)

We now present an extension and improvement to the oridiffallgorithm [17, 18]
by using a version of the MinDEE criterion plus* branch-and-bound search. The
K* ensemble-based scoring function approximates the protein-ligand binding constant
with the following quotientK™* = qu;L , whereg,., , ¢,., andg, are the partition func-
tions for the protein-ligand complex, the free (unbound) protein, and the free ligand,
respectively. A partition function over a set (ensemble) of conformatiofiss defined
asq = ) cgexp(—E,/RT), whereE, is the energy of conformatios, 7" is the
temperature in Kelvin, an® is the gas constant. In a nai¥é* implementation, each
partition function would be computed by a computationally-expensive energy mini-
mization of all rotamer-based conformations. However, because the contribution to the
partition function of each conformation is exponential in its energy, only a subset of the
conformations significantly contribute to the partition function value. By identifying
and energy-minimizingnly the significantly-contributing conformations, a provably-
accuratez-approximation algorithm substantially improved the algorithm’s efficiency
[17, 18]. In this section we illustrate how the newly-derived MinDEE dricalgorithms
can be used to generate and minimindy those conformations that contribute signifi-
cantly to the partition function, and hence, for which energy minimization is required.
The MInDEE criterion must be used in this algorithm becauseHitiescoring func-
tion is based orenergy-minimized¢onformations. Since pruned conformations never
have to be examined, the Hybrid MinDEE?* algorithm provides a combinatorial im-
provement in runtime over the previously described constant-faetmproximation
algorithm [17, 18] (where a lower-bound eachconformation’s minimum energy was
quickly examined to determine if full energy minimization was required).

The MInDEE criterion (Eq. 10) can prune rotamers across mutation sequtBges.
pruningacrossmutations with MinDEE, we risk pruning conformations that could oth-
erwise contribute substantially to the computed partition functions, thus violating our

8 A mutation sequencspecifies an assignment of amino-acid type to each residue in a protein.
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provably-good approximation to the full partition functions (Sec. 4.1). Hence, we derive
a modified version of MinDEE, calle8ingle-SequenddinDEE (SSMinDER, that is
capable of pruning rotamers only within a single mutation sequence. The MIinDEE cri-
terion (Eq. 10) is valid for SSMinDEE; the only distinction is that the set of rotamers for
each residue position consists only of the rotamers for the amino acid type of the given
residue in the current mutation sequence, rather than of the rotamers for all possible
amino acid types for that residue, as is the case withrthktiple-sequence minimized-
DEE described in Sec. 2.2.

4.1 Efficient Partition Function Computation Using A* Search

Using the A* algorithm with SSMIinDEE, we can generate the conformations of a
rotamerically-based ensemble in order of increasing lower bounds on the conforma-
tion’s minimized energy. We can efficiently compute the lower bound on a conforma-
tion’s energy as a sum of precomputed pairwise minimum energy terms (see Appen-
dix B). As each conformation is generated from the conformation tree, we compare
its lower boundB(c) on the conformational energy to a movistpp-thresholdand
stop theA* search onceB(c¢) becomes greater than the threshold. Hiealgorithm
guarantees that all remaining conformations will have minimized energies above the
stop-threshold. We now prove that a partial partition functjprtomputed using only
those conformations with energies below (i.e., better than) the stop-threshold will lie
within a factor ofe of the true partition function. Thus,q¢* is anc-approximation tay,
ie,q* > (1—¢e)g.

Since the application of the MinDEE criterion (Eq. 10) for each rotainesquires
that the corresponding minimum energy terms be accessed, we can easily piggyback
the computation of a lower bourfg; . on the energy of all conformations that contain a
pruned rotamei,.:

B, = Ey + Eg(iy) + Y _ min Eg (js) + > min Eg (ir, js)

j#i j#i
+Z Z r?iunEG(jsaku)'
G#i ki k>)

Let £, be the minimum lower energy bound among all conformations containing
at least one pruned rotaméf, = min; g B;,_, whereS is the set of prunetbtamers
E, can be precomputed during the MinDEE stage and prior toithsearch. Lep* be
the partition function computed over the gef prunedconformationsso thatp* <
kexp(—E,/RT), where|P| = k. Also, letX be the set of conformations not pruned
by MIinDEE and letg* be the partition function for the top. conformations already
returned byA*; let ¢’ be the partition function for the conformations that have not yet
been generated, all of which have energies alfoyeso thatq’ < nexp(—FE;/RT);
note that X | = m+n. Finally, letp = 1= . We can then guarantee amapproximation
to the full partition functiony using:

Proposition 3. If the lower boundB(c) on the minimized energy of tiie: + 1) con-
formation returned byA* satisfiesB(c) > —RT (In(¢*p — kexp(—E,/RT)) — Inn),
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then the partition function computation can be halted, wjthguaranteed to be an
g-approximation to the true partition functiop that is,¢* > (1 — ¢)q.

Proof. The full partition functiory is computed using all conformations in bathand
X:

g=q +q +p". (16)
Thus,
g <q*+nexp(—E/RT) + kexp(—E,/RT). (17)
Hence, if
g > (1 —¢)(q* +nexp(—E:/RT) + kexp(—E,/RT)), (18)

theng* > (1 — ¢)q. Solving Eq. (18) forE;, we obtain the desired stop-threshold:
—RT (In(q*p — kexp(—E,/RT)) —lun) < E,. (29)

We can halt the search once a conformation’s energy lower bound becomes greater
than the stop-threshold (Eqg. 19), since théris already arz-approximation tg;. O

The application of the MinDEE criterion gives a combinatorial-factor speedup by
caching the minimum lower energy bound for the set of all pruned conformations. Since
the conformations pruned by MinDEE can potentially contribute significantly to the
partition function, we bound their contribution, thus guaranteeing a provably-accurate
approximation to the full partition function. The conformation tree could, in principle,
be reduced by pruning arbitrary subset of the rotamers, so long as a guarantee on the
accuracy is still maintained through a bound on the contribution of the pruned confor-
mations. However, in practice, the amount of pruning and the resulting approximation
accuracy depend omhich rotamers are chosen for pruning. Using MinDEE to deter-
mine the set of pruned rotamers guarantees that the pruned conformations will have high
lower energy bounds by requiring that no conformations withijinof the minimized-
GMEC energy are pruned (Eg. 13), whereas an arbitrary rotameric set could easily con-
tain conformations with very good (i.e., low) energies. Proposition 3 turns pruning with
MInDEE into a provable heuristic. Note thdt} the magnitude op* is determined by
the lower energy bounds of the pruned conformations,2artde number of conforma-
tions thatA* must extract to guarantee a provably-accurate approximation to the parti-
tion function depends on the magnitudepdf By using MinDEE pruning instead of an
arbitrary set of rotamers, we increase the pruning efficiency. Since conformations that
contain steric clashes do not contribute to the partition function for the given mutation
sequence, we can further redyeeby including in P only the pruned conformations
whose lower energy bound does not contain a rotameraiwatysclashes sterically
(such a reduction i, and hencek;, can be computed during the MinDEE phase, since
rotamers whose precomputed minimum-energy bounds indicate steric clashes, neces-
sarily imply that all conformations containing these rotamers are also steric clashes).

If at some point in the search, the stop-threshold condition has not been reached
and there are no remaining conformations fgrto extract & = 0), thenq’ = 0 by
definition, and; = ¢* + p*. Hence, ifg*p > kexp(—FE,/RT), theng* > (1 —¢)(¢* +
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kexp(—E,/RT)), sog* > (1 — ¢)q is already ar-approximation tay; otherwise, we
have
¢ = (1=96)(¢" + kexp(—E,/RT)), (20)

for some approximation accurady> . Thus, the set of pruned rotamers must be re-
duced to guarantee the desired approximation accuracy. To assure ¢hegpiroxima-

tion is achieved when the search is repeated, a subset &f pnened conformations

in P must be re-introduced into the computation. Ldte the number of conforma-
tions from P (the set of pruned conformations) that are not to be pruned, such that
p* < (k —1)exp(—E,/RT). We will conservatively assume that theonformations

do not contribute tay*, although they no longer contribute p6 either. At the end of

the second mutation search, we must have

¢ = (1 —e)(q" + (k=) exp(—E,/RT)). (21)

Solving for I, we obtain the following condition, which guarantees the desired
approximation accuracy:

ap
l>k— 22
- exp(—FE,/RT)’ (22)

where agairp = = . Note that are-approximation may be achieved before all con-
formations have been extracted; Eq. (22) guarantees such an accuracy when all non-
pruned conformations have been extracted4ly To guarantee that at leasbut of
the k pruned conformations will be allowed during the repeated computation, we can
choose a subsé} of the rotamers pruned by MinDEE, such that not prunihgeeps
at least additional conformations.

Proposition 3 represents amtra-mutationenergy filter (Fig. 2) for pruning within
a single mutation sequence. We now derive a provably-accurate partition-function ap-
proximation for pruningacrossmutation sequences.

4.2 Inter-Mutation Filter

We first review some of the definitions from [17, 18]. The main motivation for the
inter-mutation filter is that we must compute provably-accurate scores only for the top
fraction of the mutation sequences. We+et [0, 1] be a parameter that defines the set
of mutation sequences for which arapproximation is to be computed. We require that
an e-approximation be guaranteed for a mutation sequérmdy whenk > vK,
where K is the score for sequenéeand K is the best score observed so far in the
search. Wherny = 1.0, ane-approximation is guaranteed only for the best-scoring
K* mutation sequence; = 0.0 computes are-approximation for allK* mutation
sequences. Let us assume tHathas already generated the firstconformations and
that there arex remaining conformations that have not been generated yet. We use
the definitions for¢’, p*, E,, andk from Proposition 3 above. We assume that we
have already computeg, using the intra-mutation filter only (Proposition 3), and now
describe how to efficiently compute , .

We define the score for th&" mutation sequence to bg; = q%i while K =

O;qig . We letq?, be the partial partition function for the bound protein-ligand state,
P L
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Initialize: n « Number of Rotameric Conformationg: < 0
while (n > 0)
¢ < GetNextAStarConf()
if B(¢) < —RT (In(q*p — kexp(—E,/RT)) — Inn)
q" — ¢" +exp (—ComputeMinEnergy(c)/RT)
n«—n-—1
else Returny*
if ¢"p < kexp(—E,/RT)
RepeatSearch(q*, p, k, E,)
else Returm*

Fig. 2. Intra-Mutation Filter for Computing a Partition Function with Energy Minimiza-

tion Using the A* Search ¢* is the running approximation to the partition function. The func-
tion B(-) computes the energy lower bound for the given conformation (see Appendix B). The
functionComputeMinEnergy(-) returns a conformation’s energy after energy minimization. The
functionGetNextAStarConf () returns the next conformation from the A* search. The function
RepeatSearch(-) sets up and repeats the mutation search #-approximation is not achieved
after the generation of all* conformations; the search is repeated at most once. Upon comple-
tion, ¢* represents ag-approximation to the true partition functignsuch thag* > (1 — ¢)q.

computed from then already-generated conformations. We defifje= % Finally,
P

lety = max (’yngqP, q;Lp) andp = .
Proposition 4. If the lower boundB(c) on the minimized energy of then + 1)t
conformation returned byl * satisfiesB(c¢) > —RT(In(¢) — kexp(—E,/RT)) —Inn),
then the partition function computation can be halted, with guaranteed to be as-
approximation to the true partition functiog),, for a mutation sequence whose score
K7 satisfiesK > yK}.

Proof. Since the ligand is invariant throughout the seaigh= °q, . Let us assume
that we have a sequence for whiglf > K holds. Thus,

QPL Z ,7 quL ,
4r4, °qr°q,
G > 7Kl - (23)
First, we note again that
¢’ < nexp(—Ei/RT); (24)
p* < kexp(—E,/RT). (25)
From the definition of;,., , we obtain
dpy, = q:L + q/ + p*~ (26)
Now, if
nexp(—FE;/RT) + kexp(—E,/RT) < eK!~q,, (27)
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then by Egs. (24) and (25) we have

¢ +p* <eKlvg,, (28)
and by Eq. (23),
¢ +p"<eqp, (29)
and finally, by Eq. (26), we obtain
q;L > (1 - 8)qPLa (30)

which is the definition of the partition functiosrapproximation. Thus, if Eq. (27)
holds, then we will have ag-approximation to the true partition functian, . Solving
Eq. (27) forE;, we obtain the stop-threshold:

E; > —RT (In (veK}q, — kexp(—E,/RT)) —Inn) . (31)

The first conformation that has an energy above the stop-threshold (Eqg. 31) halts the
partition function computation, since we already have-approximation. Thus, com-
bining Eg. (31) and thantra-mutation stop-threshold (Eqg. 19), our stopping condition
for the computation of,., becomes

B(c) > —RT (In (¢ — kexp(—E,/RT)) —Ilnn), (32)

wherey = max (veKlq,, q%, p) and B(:) is the lower bound on the minimized
energy of a conformation. O

If the desired approximation accuracy is not achieved at the end of the mutation
search, after all conformations have been extracted hywe can modify Eq. (22) to
incorporate the inter-mutation filter, obtaining the number of conformafidrem P
(the set of pruned conformations) that must be allowed in the repeated search:

l>k— L.
exp(—FE,/RT)

We have derived the stop-threshold that guaranteesagproximation to the parti-
tion function when conformations are generated in ordémareasinglower bounds on
the conformation’s energy. This generalizes the inter-mutation proof in [17, 18] which
is valid when the energy lower bounds for all of the conformations are evaluated. We
should note that Eq. (32) was derived assuniifjg> v K holds, so we can guarantee
an e-approximation tag,, only for this case. Wheil; < K, then we might not
obtain anc-approximation for the given mutation sequence, but we do not require a
provably-good approximation for such low-scoring sequences.

Similarly to [17, 18], we defindfi* = —qip(f to be ans-approximation to the full

pP1L

score of a mutation sequence (the score if the full partition functions are used, instead of
the partial ones) wheR* € [Ki*(l —€) #Ki*]. If K7 > ~K} holds for a mutation

’1l—e
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sequenceé, then by Proposition 4., > ¢%, > (1 —¢)q,, . Also, sinceg,, is already
computed using Proposition @, > ¢ > (1 —¢)q,.. SinceK; = qu , we have
P

1

KA1 —¢)< K*
Z( E)— 1—176

Thus, the algorithm guarantees thatsaapproximation to the fulscoreis computed
whenK} > vK}.

4.3 Algorithm

We now have all the necessary tools for our ensemble-based Hybrid MinOE&-
gorithm. The volume filter (see Sec. 5) in the origidat is applied first to eliminate
under- and over-packed mutation sequences; this is followed by the combinatorial SS-
MInDEE filter and theA* energy filter using the-approximation algorithms in Sec. 4.1

and 4.2 (see Table 1), which improve on the mere constant-factor speedup provided
by the energy filter in the originak™ [17, 18]. By implementing a steric filter (see
Sec. b), similar to the one in [17, 18], as a part of #ifesearch, we prevent some high-
energy conformations (corresponding to steric clashes) with good lower bounds from
being returned byd*, gaining an additional combinatorial speedup. Only the confor-
mations that pass all of these filters are energy-minimized and used in the computation
of the partition function for the conformational ensemble. Finally, Kiescore for a

given mutation is computed as the ratio of the bound and unbound partition functions:
K* = quL Our Hybrid MinDEEK ™ algorithm efficiently prunes the majority of

the mutation sequences and conformations from more expensive evaluation, while still
giving provable guarantees about the accuracy of its score predictions.

5 Methods

Structural Model. Our structural model is the same as the one used in the original
K* [17, 18]. In our experiments, the structural model consists of the 9 active site
residues (D235, A236, W239, T278, 1299, A301, A322, 1330, C331) of GrsA-PheA
(PDB id: 1AMU) [4], the steric shell (the 30 residues with at least one atom within 8
A of a residue in the active site), the amino acid substrate, and the AMP cofactor. The
steric shell facilitates the computation of the energy between the active site residues and
neighboring regions of the protein (thesidue-to-templatenergy) and constrains the
movement of the active site residues to only sterically-allowable conformations relative
to the body of the PheA protein. The residues of the active site modeled as flexible
using rotamers and subject to energy minimization include: 235D, 236A, 239W, 278T,
2991, 301A, 322A, 330I, and 331C. The steric shell includes all residues not modeled as
flexible and that contain at least one atom withif 8f the active site. The steric shell
residues include: 186Y, 188l, 190T, 210L, 213F, 214F, 230A, 234F, 237S, 238V, 240E,
243M, 279L, 300T, 302G, 303S, 320I, 321N, 323Y, 324G, 325P, 326T, 327E, 328T,
329T, 332A, 333T, 334T, 515N, and 517K. In 1AMU [4], and also in [17, 18], residues
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235D and 517K make H-bonds to the amino acid backbone of the ligand, thereby sta-
bilizing the substrate in a productive orientation for catalysis. Flexible residues are rep-
resented by rotamers from the Lovetlal. rotamer library [21]. Each rotameric-based
conformation is minimized using steepest-descent minimization (see Appendix B) and
theAMBER energy function (electrostatic, vdW, and dihedral energy terms) [37, 5].
Energy Precomputation for Lower Bounds, B(-). The MinDEE criterion (Eqg. 10)

uses both min and magxecompute@nergy terms to determine which rotamers are not
part of the minimized-GMEC. There is no need to re-compute the min and max energies
every time Eqg. (10) is evaluated. See Appendix B for a detailed discussion.
Approximation Accuracy. We use arz-value 0f0.03, thus guaranteeing that the com-
puted partial partition functions will be not less thar% of the corresponding full
partition functions. We use a value @01 for ~, which requires that corred™* scores

be computed for all mutation sequences whose score is at most two orders of magnitude
less than the best score.

Filters. Volume filter Mutation sequences that are over- or under-packed by more
than 33 compared to the wildtype PheA are pruné&iteric filter Conformations

in which a pair of atoms’ vdW radii overlap by more thanil.ﬁrior to minimization

are prunedSequence-space filtéFhe active site residues are allowed to mutate to the
set (GAVLIFYWM) of hydrophobic amino acid$/inDEE: We use an implementation

of the MinDEE analog to the simple coupled Goldstein criterion ([9] and Fig. 4d in the
Appendix).

6 Results and Discussion

In this section, we compare the results of GMEC-based protein redesign without (tradi-
tional-DEE/A*) and with (MinDEEA*) energy minimization. We also compare the
redesign results when energy minimization is used without (MinDEEANnd with
(Hybrid MinDEE-K*) conformational ensembles. We further compare our ensemble-
based redesign results both to our previous computational predictions of protein designs
and to biological activity assays of predicted protein mutants.

6.1 Comparison to Biological Activity Assays

Similarly to [17, 18], we simulated the biological activity assays of L-Phe and L-Leu
against the wildtype PheA enzyme and the double mutant T278M/A301G [33]. In [33],
T278M/A301G was shown to have the desired switch of specificity from Phe to Leu by
performing activity assays. The activity for both the wildtype and the mutant protein
sequences was normalized, so that the substrate with the larger activity was assigned
a specificity of100%, while the other substrate was assigned specificity relative to the
first one. The wildtype PheA had a specificity1@f0% for Phe and approximatel§’%

for Leu; the double mutant had a specificity18§00% for Leu and approximatelg0%

for Phe. The computed Hybrid MinDEE- normalized scores qualitatively agreed
with these results, showing the desired switch of specificity for T278M/A301G. The
wildtype sequence had a normaliz&d score 0fl00% for Phe and).01% for Leu; the
double mutant had a normalized scord ©6% for Leu and20% for Phe.
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Table 1. Conformational Pruning with Hybrid MinDEE- K ™. The initial number of confor-
mations for the GrsA-PheA 2-residue Leu mutation search is shown with the number of confor-
mations remaining after the application of volume, single-sequence minimized-DEE, steric, and
energy (withA™) pruning. TheA* energy filter is based on theapproximation algorithms in

Secs. 4.1 and 4.2. The pruning factor represents the ratio of the number of conformations present
before and after the given pruning stage. The pruning-% (in parentheses) represents the percent-
age of remaining conformations eliminated by the given pruning stage.

Conf. RemainingPruning Factor (%)
Initial 6.8 x 10° -
Volume Filter | 2.04 x 108 3.33 (70.0)
SSMInDEE Filter  8.83 x 10° 23.12 (95.7)
Steric Filter 5.76 x 10° 1.53 (34.7)
A* Energy Filten  2.78 x 10° 20.7 (95.2)

6.2 Comparison to Traditional-DEE

For comparison, the simple coupled Goldstein traditional-DEE criterion [9] was used
in a redesign search for changing the specificity of the wildtype PheA enzyme from
Phe to Leu, using the experimental setup in Sec. 5. A comparison to the rotamers in the
minimized-GMEC A236M/A322M (Sec. 6.3), revealed tRaif thesed rotamers were

in fact prunedby traditional-DEE. As an example, the minimized-GMEC was energy-
minimized from a conformation that included rotarig21] of Met at residue 236. This
particular rotamery angles—177°, 180°, and 75°) was pruned by traditional-DEE.

We then energy-minimized A236M/A301G, the rigid-GMEC obtained by traditional-
DEE/A* and determined that its energy was higher (by apgkcal/mol) than the en-
ergy for the minimized-GMEC obtained by MinDEE/. Moreover, a total of 04 dif-

ferent conformations minimized to an energy lower than the minimized rigid-GMEC
energy. These results confirm our claim that traditional-DEE is not provably-accurate
with energy-minimization; they also show that conformations pruned by traditional-
DEE may minimize to a lower energy state than the rigid-GMEC.

6.3 Redesign for Leu

Hybrid MinDEE- K* The experimental setup for Leu redesign with Hybrid MinDEE-
K* is as described in Sec 5. The 2-point mutation search took approximatakyurs
on a cluster of 24 processors. OBy% of the mutation sequences passed the volume
filter, while MinDEE pruned ovef5% of the remaining conformations. The use of
the e-approximation algorithms reduced the number of conformations that had to be
subsequently generated and energy-minimized by an additional factor of twenty (see
Table 1). A brute-force version of Hybrid MinDEE= that did not utilize any of the
filters, would take approximately 2,450 times longer (appx. 1,023 days) for the same
experimental setup for redesign.

An initial comparison to the originak™ results showed only a small overlap be-
tween the top-ranking mutations for Hybrid MinDEE* and the originalk*[17, 18].
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Since the two algorithms use different energy-minimization modules (see Appendix B),
we then applied the better Hybrid MinDEE* minimization scheme to the original

K*, in order to facilitate a fair comparison. Both the mutation-sequence rankings and
the scores for a given mutation sequence are very similar for the two algorithms: the
top 19 sequences are identical, while all of the ttipsequences for Hybrid MinDEE-

K* can be found in the tog0 sequences foK™*, and vice versa,; the trend is similar

for the remaining sequences, as well. This fact shows that, all other factors being equal,
both algorithms converge to very similar results, despite the different (but still provably-
accurate) filters used.

The two top-scoring sequences are A301G/I330W and A301G/I330F for both Hy-
brid MinDEE-K™* and the originalK™*. These novel mutation sequences were tested in
the wetlab and were shown to have the desired switch of specificity from Phe to Leu
[17, 18]. Moreover, the other known successful redesign T278M/A301G [33] is ranked
4*h by both Hybrid MinDEE#* and the modified version of the originAl* algorithm
(this sequence was rankéd®™ by the unmodified originak* in [17, 18]). Further-
more, all of the topl 7 Hybrid MinDEE-K* sequences contain the mutation A301G,
which is found in all known native Leu adenylation domains [3]. These results show
that our algorithms can give reasonable predictions for redesign.

To compare the efficiency of the two algorithms, we measured the number of fully-
evaluated conformations, since the full energy minimization of the conformations is the
most computationally-expensive part of both algorithms. The modified origjiriadl-
gorithm fully-evaluated approximateB0% more conformations than tHe78 x 10°
conformations fully evaluated by Hybrid MinDEE= (see Table 1). Thus, Hybrid
MinDEE-K™* is much more efficient at obtaining the desired results.

MinDEE/ A* We now discuss results from our non-ensemble-based experiments us-
ing MinDEE/A*. To redesign the wildtype PheA enzyme so that its substrate speci-
ficity is switched towards Leu, we used the experimental setup described in Sec. 5. The
MInDEE filter on the bound protein:ligand complex prun2ib out of the421 pos-

sible rotamers for the active site residues, reducing the number of conformations that
were subsequently supplied #* by a factor of 2,330. We then extracted and mini-
mized all conformations over the 2-point mutation sequences using‘tisearch until

the halting condition defined in Proposition 2 was reachedFfpr= 8.5 kcal/mol. A

total of813 conformations, representidg unique mutation sequences, had actual min-
imized energies withig.5 kcal/mol of the minimized-GMEC energy, which confirms
that a mutation sequence can be found in multiple low-energy states. The top-ranked
MinDEE/A* mutation sequence is A236M/A322M; the minimized-GMEC is obtained
from this sequence. The entire redesign process took approximdtdhys on a single
processor, with more thai20, 000 extracted conformations before the search could be
provably halted. Thus, the provable accuracy of the results comes at the cost of this
computational overhead, since the number of extracted conformations is much larger
than the actual number of conformations wittil), of the minimized-GMEC energy.
Note, however, that a redesign effort without a MinDEE filter and a provably-accurate
halting condition would be computationally infeasible.
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Fig. 3. Distribution of Mutations. The distribution of the mutation types for the top 40 mutation
sequences fqA) MInDEE/A™ and(B) Hybrid MinDEE-K™ algorithms is shown as the fraction

of each mutating type for each active site residue. The types and frequencies for the mutations are
quite different for the two methods, which indicates that the difference in the information content
for non-ensemble and ensemble-based algorithms can be substantial. The variability of mutation
types for each active site residuei88 (types per residue, for the residues that were mutated at
least once in the given mutation sequences) for MinDEE#nd3.86 for Hybrid MinDEE-K ™,
suggesting the existence of multiple beneficial mutation types for the mutated residues.

Like A301G/I330W and A301G/I330F, the tdpMinDEE/A* sequences are un-
known in nature. To assess the switch of specificity from Phe to Leu for the novel mu-
tation sequences, we extracted the minimum-energy conformation for theSé ¢op
binding sequences. Each of théseonformations was then energy-minimized when
bound to Phe. Whereas the Leu-bound energies were negative and low, the correspond-
ing Phe-bound energies were positive and high. Thus, the top mutation sequences rep-
resented by their minimum energy conformation are predicted to bind more stably to
Leu than to Phe, as desired.

Only 9 of the45 MIinDEE/A* mutation sequences passed the volume filter of Hybrid
MinDEE-K*. Moreover, onlys of the MinDEE/A* sequences could be found in the top
40 Hybrid MinDEE-K™* sequences, indicating that ensemble-scoring yields substan-
tially different predictions from single-structure scoring using the minimized-GMEC,
where only the minimizethioundstate of asingleconformation is considered (see Fig.

3). We can conclude that, currently, MinDEE appears useful as a filter in the Hybrid
MinDEE-K* algorithm; however, the incorporation of additional information, such as

a comparison to negative design (the energies to bind the wild-type substrate), may
promote MinDEE as a valuable stand-alone non-ensemble-based algorithm for protein
redesign.

7 Limitations and Extensions

The MInDEE criterion can efficiently prune a large number of the possible conforma-
tions (see Sec. 6.3). However, because of the use of min and max energy terms, the prun-
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ing efficiency of MinDEE cannot be as high as that of traditional-DEE. This trade-off
in efficiency results from the provable guarantees that MinDEE can (while traditional-
DEE cannot) make when energy minimization is employed. An increase of the pruning
capabilities of MinDEE would require the derivation and computation of tighter upper
and lower energy bounds. Since (with a rigid backbone) the conformational changes
due to switching the identity of a single rotamer should decrease in magnitude as the
proximity to the modified rotamer decreases, it may also be possible to increase the
pruning factor by scaling the terms in the MinDEE condition (Eq. 10), depending on
the proximity of the residues involved.

8 Conclusions

When energy-minimization is required, the traditional-DEE criterion makes no guar-
antees about pruning rotamers belonging to the minimized-GMEC. In contrast, a ro-
tamer is only pruned by MIinDEE if it is provably not part of the minimized-GMEC.
We showed experimentally that the minimized-GMEC can minimize to lower energy
states than the rigid-GMEC, confirming the feasibility and significance of our novel
MinDEE criterion. When used as a filter ensemble-basedkdesign, MinDEE effi-
ciently reduced the conformational and sequence search spaces, leading both to predic-
tions consistent with previous redesign efforts and novel sequences that are unknown in
nature. Our Hybrid MinDEEK™* algorithm showed a significant improvement in prun-

ing efficiency, as compared to the origingl* algorithm. Redesign searches for two
other substrates, Val and Tyr, have also been performed, confirming the generality of
our algorithms.

Protein design using traditional-DEE uses neither ensembles nor rotamer minimiza-
tion. In our experiments, we reported the relative benefits of incorporating ensembles
and energy-minimization into a provable redesign algorithm. A major challenge for pro-
tein redesign algorithms is the balance between the efficiency and accuracy with which
redesign is performed. While the ability to prune the majority of mutation/conformation
search space is extremely important, increasing the accuracy of the model is a prerequi-
site for successful redesign. It would be interesting to implement finer rotamer sampling
and more accurate (and hence more expensive) energy functions, remove bias in the ro-
tamer library by factoring the Jacobian into the partition function over torsion-angle
space, and incorporate backbone flexibility. An accurate and efficient algorithm for re-
designing natural products should prove useful as a technique for drug design.
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APPENDIX

In Appendix A, four extensions to thminimized-DEEcriterion are presented along
with the corresponding extensions to tineditional-DEE criterion. Appendix B pro-
vides details on energy precomputation for computing the lower energy ba@(nds

A Extensions to DEE with Energy Minimization

An excellent review of the advanced pruning techniques used in the extensions to the
traditional-DEE pruning conditions appears in [26]. These methods allow more individ-
ual rotamers to be pruned during DEE and extend the DEE criterion to identify dead-
ending rotamer pairs. For example, the proper use of Dead-Ending Pairs [15] (Fig. 4i)
allows additional rotamers to be identified as being dead-ending and thus not part of the
GMEC. Analogously to Sec 2.2, we have derivathimized-DEE equivalents Dead-
Ending Pairs (Fig. 4j) and for 3 other advanced pruning techniques from traditional-
DEE; see Fig. 4 for a summary.

B Energy Precomputation for Lower Bounds

We first derive a lower bound for the energy of a minimized conformation, similarly
to [17, 18]. We then present improvements on the energy precomputation algorithm, as
compared to [17, 18].

B.1 Computing a Lower Bound on Minimized Energies

In our structural model, (Sec. 5), some residues are treated as rigid, while others have
a rigid backbone but flexible side-chains. Lebe the number of flexible residues in

our system. Letd be a(h + 1) x (h + 1) precomputed residue-indexed energy matrix
that describes the energy interactions of a given residui¢hin itself (A4;q), with the
backbone 4;), and with other residuesA(;); the matrix elementl, is reserved for

the energy interactions between the atoms of the backbone only. Weltgrta be the
templateenergy,Ay; is theresidue-to-templatenergy,A;, is theintra-residueenergy,
andA;; is thepairwiseenergy for residué. The energy of the system can be computed

as
Es=Ap+ Y Au+> Ao+ > Ay (33)

i<h i<h i<h i<j<h

To compute the energy of minimizedconformation, we use a matrix/, whose
elements are analogous to the elementd dfut the precomputed energies correspond
to the energy-minimized structure. If we obtain tbever bound=on the energy terms
in M and store these bounds in a matfix then we can define the lower boufit;,,
on the energy of a minimized system as

Emin = Doo + ZDOi + ZDiO + Z Z D;;. (34)

i<h i<h i<h i<j<h
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Traditional-DEE

@ EGir) — B(ir) + 3 min B(ir, o) — 3 max B, js) > 0 6]
(© E(ir) — E(ir) + Z%imsin (E(ir, js) ]—il?(it,js)) >0 9]
(e)E(ir) — I:ZLT CoE(is,) + J%Z msin (E(ir,js) - Z:ELT CwE(itm,js)> >0 [9]
@ BGr) = E(i) + % (min (Bir,go) = Ei1,3.))) + (Blir ho) = E(irs b)) > 0 [26]
O B = B + 3w Bl i = 3w Bog ] h) >0 [6,15]

Minimized-DEE
(b) Es (ir) — Eg(it) + > min Eg (ir, js) — Y max Eg(it, js)

J#L S g#i ¢
~ Y maxEo(js) - Y X max Bo(js, ku) > 0
j#i° JFi kFik>j S

(d) Es(ir) — Ee (i) — > max Ep(js) — > Y. max Eg(Js, ku)
I iFi kALk>j S

+ 3 min (Ee (ir, js) — Es (it js)) > 0

JFi
(0 Eol(ir) = > CuBgliy,)— > maxEo(fs) — > > maxEy(fs, ku)
e=1,T iEi S 7 ki k> SU
+ >~ min (Ee(imjs) - > CuBEg(iv,,js) | >0
j#£i ° z=1,T
(h) Es(ir) — Ea (i) — > max Eg(js) — > > max Eg(js, ku)
iF s i ki k> S

+ X (min (B (ir,js) — E@(iujs))) + (Eg(ir, hv) — Eg(it, hy)) > 0;
i<k, j#ih S
O Folins) = B + 32 min o (gl ) = 3 s P (gl o)
1,7 2,7
- E maxE@(ht) — Z Z maxE®(ht,kw) >0
h#i,j ¢ h#i,j k#i,j,k>h bW

Fig. 4. Dead-End Elimination Pruning Conditions. A summary of the previously described
traditional-DEE pruning conditions (top) and our newly derived minimized-DEE pruning condi-
tions (bottom). (a) is the initial criterion for traditional-DEE [6], and (b) is the generalization
for minimized-DEE (Eq. 10). Theimple (d) andgeneral coupledf) minimized-DEE prun-

ing conditions are analogous (resp.) to the correspon@ialgisteinpruning conditions (c, e)

of traditional-DEE [9]. General Goldstein (e), in traditional-DEE, compares the energy of
to a weighted average of the interaction energies anibrzandidate pruning rotametrs, .

C, > 0 is the weight given to the energy computed using rotafper The traditional con-
formational splitting criterion [26] and the analogous MinDEE condition are given in (g) and
(h), respectively. In the minimized-DEE generalization (j) of traditional Dead-Ending Pairs (i),
Eo (lirjs]) = Eo (ir)+ Eo (js) + Eo (ir, js) (i # 7). Eo ([irjs], hi) = Eo (ir, hi)+Eo (js, ht)

(i,7 # h) whereEy € { Eg, Eg }.
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The computation ofZ,,;, can be done in tim&(h?) with a precomputed pairwise
energy matrix. The use of a precomputed residue-indexed lower-bound pairwise energy
matrix avoids the computation 6f(a?) energy terms, where > h is the total number
of atoms in the system.

The precomputed energy matrix in the origiét is indexed over all residuesd
over all rotamers for each residue, since the same rotamer can be in several different
conformations, depending on the type of the neighboring residues (see Sec. 2.2). Thus,
for a system with flexible residues ang: rotamers for each residue, we precompute
a(hm+1) x (hm + 1) residue-indexed lower-bound pairwise energy matriwhose
elements/y, Voi, Vio, andV;; are analogous to the elementslof

To compute the lower bounds on the minimized template, intra-residue, residue-to-
template, and pairwise energy terms, we allow rotamers to assume the best possible
conformation for the given relative system (template, self-, or pairwise). However, the
movement of the rotamer dihedrals is constrained to a hypercuboid region of conforma-
tion space, called woxel[36, 29], so that one rotamer will not minimize into another.
We use a voxel of-9° for eachy angle.

B.2 Application of the Pairwise Energy Matrix

Energy precomputation is employed both for pruning with MinDEE (Sec. 2.2) and for
the e-approximation algorithms (Secs. 4.1 and 4.2). The MinDEE criterion (Eq. 10)
uses both the lower- and the upper-bound (Appendix B.3) precomputed energy terms
to determine which rotamers are not part of the energy-minimized GMEC. Thus, there
is no need to re-compute the minimum and maximum energies every time Eq. (10) is
evaluated.

Both the intra- and inter-mutation filters (Propositions 3 and 4, respectively) require
that a lower bound on the energy-minimized conformation be computed. For this pur-
pose, a lookup in the lower-bound pairwise energy matrix is performed and the terms
involved in the given conformation are added, analogously to Eq. (34). The computation
of a lower bound on the energy of a conformation permits a subset of the conformations
to be pruned before the computationally-expensive full energy-minimization stage. The
full energy minimization of a given system requires the simultaneous minimization of
all of the flexible residues for the system, a much more costly process than the pairwise
minimization performed for the precomputations. Moreover, once the pairwise matri-
ces are precomputed, they can be used in any mutation search that involves the same
residues. Thus, in a protein-ligand system, a redesign for a different ligand requires the
re-computation only of the terms involving the ligand.

B.3 Algorithm Improvements

Analogously to the definition of matri¥> in Appendix B.1, we define the matrik
to be the residue-indexed upper-bound pairwise energy matrix, which facilitates the
computation of theipper-bound?,,, .. on themaximizecenergy of a system:

Emaszoo+ZF0i+ZFio+Z Z Fij. (35)

i<h i<h i<h i<j<h
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Analogously to the definition of/ (see Appendix B.1), when we index over all ro-
tamers for all residues, we can define the: + 1) x (hm + 1) residue-indexed upper-
bound pairwise energy matrid, whose element&y, Uy;, U;o, andU;; are upper-
bounds on the corresponding energy terms.

The original K* algorithm [17, 18] used a steepest-descent minimization scheme
to precompute lower-bound energy matrices. To improve the minimization results, we
1) refined the implementation of the steepest-descent algorithm? jaimiplemented
a random sampling with steepest descent algorithm that explores the energy landscape
within a voxel better than the local steepest-descent algorithm. Empirically, however,
the computed minimum energy bounds using multiple random-sampling starting points
appear to be over-optimistic and present a worse approximation to the actual confor-
mation energies. The resulting lower bourigsfrom multiple minimization starting
points are necessarily at least as low as the corresponding lower bigudsputed by
minimizing only from the center of the voxels, < I;. Choosing a good starting point
for the energy minimization of &ull conformation that could use the additional infor-
mation of the pairwisé,, bounds is a difficult task, since the different addends involved
in the computation of,,, (analogous to Eq. 34) may actually result from incompatible
starting points. Moreover, using multiple starting points fidt energy-minimization
is computationally infeasible (see Appendix B.2). Thus, using multiple minimization
starting points for lower-bounds computation in fact increases the gap between lower
bounds and actual energies (i.e., the lower bounds are less achievable). As a result, the
g-approximation algorithms (Secs. 4.1 and 4.2) require the full minimization of a larger
number of conformations before the provable halting conditions (Propositions 3 and 4)
are reached. Hence, we chose to compute the pairwise minimum energy bounds using
steepest-descent minimization starting at the center of the voxel space.

While min energies may appear as a natural concept, the computation of max en-
ergies presents both conceptual and practical challenges. A simple maximization algo-
rithm cannot be used, since most rotamer systems will maximize into a steric clash,
which would make max bounds biophysically inapplicable. Moreover, energy func-
tions, such asmMBER [37, 5], are not well-defined for high energies. However, max
bounds are used only in the MinDEE framework, where, indireatipimizedconfor-
mations are compared to determine which ones are provably not the minimized-GMEC.
We can thus think of the max energy for a given rotamer system as the worst minimiza-
tion this system can achieve. Hence, we chose to compute max energies @ ),
whereM is the set of energies obtained by steepest-descent minimization from multi-
ple starting points (max of mins). In all our experiments we u#drandomly-chosen
starting points per voxel.
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