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Abstract. Novel molecular function can be achieved by redesigning an enzyme’s active site so
that it will perform its chemical reaction on a novel substrate. One of the main challenges for
protein redesign is the efficient evaluation of a combinatorial number of candidate structures.
The modeling of protein flexibility, typically by using a rotamer library of commonly-observed
low-energy side-chain conformations, further increases the complexity of the redesign problem.
A dominant algorithm for protein redesign is Dead-End Elimination (DEE), which prunes the
majority of candidate conformations by eliminatingrigid rotamers that provably are not part of
the Global Minimum Energy Conformation (GMEC). The identified GMEC consists of rigid
rotamers (i.e., rotamers that have not been energy-minimized) and is thus referred to as the
rigid-GMEC. As a post-processing step, the conformations that survive DEE may be energy-
minimized. When energy minimization is performed after pruning with DEE, the combined pro-
tein design process becomes heuristic, and is no longer provably accurate: a conformation that
is pruned using rigid-rotamer energies may subsequently minimize to a lower energy than the
rigid-GMEC. That is, the rigid-GMEC and the conformation with the lowest energy among all
energy-minimized conformations (theminimized-GMEC) are likely to be different. While the
traditional DEE algorithm succeeds in not pruning rotamers that are part of the rigid-GMEC, it
makes no guarantees regarding the identification of the minimized-GMEC. In this paper we derive
a novel, provable, and efficient DEE-like algorithm, calledminimized-DEE(MinDEE), that guar-
antees that rotamers belonging to the minimized-GMEC will not be pruned, while still pruning a
combinatorial number of conformations. We show that MinDEE is useful not only in identifying
the minimized-GMEC, but also as a filter in an ensemble-based scoring and search algorithm
for protein redesign that exploits energy-minimized conformations. We compare our results both
to our previous computational predictions of protein designs and to biological activity assays of
predicted protein mutants. Our provable and efficient minimized-DEE algorithm is applicable in
protein redesign, protein-ligand binding prediction, and computer-aided drug design.

A revised version of this paper will appear in the Proceedings of the Tenth Annual International Conference on

Research in Computational Molecular Biology (RECOMB), Venice Lido, Italy, April 2006.

DARTMOUTHCOMPUTERSCIENCE TECHNICAL REPORT 2006-570
http://www.cs.dartmouth.edu/reports/abstracts/TR2006-570

? These authors contributed equally to the work.
?? Corresponding author,Bruce.R.Donald@dartmouth.edu . This work is supported by

grants to B.R.D. from the National Institutes of Health (R01 GM-65982), and the National
Science Foundation (EIA-0305444).



1 Introduction

1.1 Computational Protein Design

The ability to engineer proteins has many biomedical applications. Novel molecular
function can be achieved by redesigning an enzyme’s active site so that it will perform
its chemical reaction on a novel substrate. A number of computational approaches to the
protein redesign problem have been reported. To improve the accuracy of the redesign,
protein flexibility has been incorporated into most previous structure-based algorithms
for protein redesign [35, 13, 12, 11, 1, 25, 20, 14, 32]. In [24], a number of bound
and unbound structures are compared, and the conclusion is drawn that only a small
number of residues undergo conformational change, and that the structural changes are
primarily side-chains, and not backbone. Hence, many protein design algorithms use
a rigid backbone and model side-chain flexibility with a rotamer library, containing a
discrete set of low-energy commonly-observed side-chain conformations [21, 28]. The
major challenge for protein redesign algorithms is the efficient evaluation of the expo-
nential number of candidate protein conformations, resulting not only from mutating
residues along the peptide chain, but also by employing these discrete rotamer libraries.
The development of pruning conditions capable of eliminating the majority of muta-
tion sequences and conformations in the early, and less costly, redesign stages has been
crucial.

Non-ensemble-based algorithms for protein redesign are based on the assumption
that protein folding and binding can be accurately predicted by examining the GMEC.
Since identifying the GMEC using a model with a rigid backbone, a rotamer library,
and a pairwise energy function is known to be NP-hard [27], different heuristic ap-
proaches (random sampling, neural network, and genetic algorithm) have been pro-
posed [35, 13, 12, 11, 22]. A provable and efficient deterministic algorithm, which
has become the dominant choice for non-ensemble-based protein design, is Dead-End
Elimination (DEE) [6, 15]. DEE reduces the size of the conformational search space
by eliminatingrigid rotamers that provably are not part of the GMEC. Most important,
since no protein conformation containing a dead-ending rotamer is generated, DEE pro-
vides a combinatorial factor reduction in computational complexity. Complexity can be
further reduced through the use of an A* branch-and-bound algorithm to enumerate
conformations in order of increasing energy [16].

When energy minimization is performed after pruning with DEE, the process be-
comes heuristic, and is no longer provably accurate: a conformation that is pruned us-
ing rigid-rotamer energies may subsequently minimize to a structure with lower energy
than the rigid-GMEC. Therefore, the traditional DEE conditions are not valid for prun-
ing rotamers when searching for the lowest-energy conformation among all energy-
minimized rotameric conformations (theminimized-GMEC). In this paper we derive a
novel, provable, and efficient DEE-like algorithm, calledminimized-DEE(MinDEE),
that guarantees that rotamers belonging to the minimized-GMEC will not be pruned,
while still enjoying a combinatorial pruning factor for rotamers that are provably not
part of the minimized-GMEC. The extension of the DEE framework to include energy
minimization is useful not only in identifying the minimized-GMEC, but also as a filter
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in an ensemble scoring method for protein redesign based on energy-minimized con-
formations (such asK∗ [17, 18]).

1.2 NRPS Redesign andK∗

Traditional ribosomal peptide synthesis is complemented by non-ribosomal peptide
synthetase (NRPS) enzymes in some bacteria and fungi. NRPS enzymes consist of
several domains, each of which has a separate function. Substrate specificity is gen-
erally determined by the adenylation (A) domain [33, 3, 31]. Among the products of
NRPS enzymes are natural antibiotics (penicillin, vancomycin), antifungals, antivirals,
immunosuppressants, and antineoplastics. The redesign of NRPS enzymes can lead to
the synthesis of novel NRPS products, such as new libraries of antibiotics [2].

The main techniques for NRPS enzyme redesign aredomain-swapping[34, 30, 7,
23, 19],signature sequences[33, 8, 3], andactive site manipulation from a structure-
based mutation search utilizing ensemble docking(theK∗ method [17, 18]). A review
of these methods and a discussion of the advantages of structure-based redesign (the
K∗ method) over the other two techniques can be found in [17, 18].

TheK∗ algorithm [17, 18] has been demonstrated for NRPS redesign, but is a
general algorithm that is, in principle, capable of redesigning any protein.K∗ is an
ensemble-based scoring technique that uses a Boltzmann distribution to compute parti-
tion functions for the bound and unbound states of a protein. The ratio of the bound to
the unbound partition function is used to compute a provably-good approximation (K∗)
to the binding constant for a given sequence. A volume and a steric filter are applied in
the initial stages of a redesign search to prune the majority of the conformations from
more expensive evaluation. The number of evaluated conformations is further reduced
by a provableε-approximation algorithm. Protein flexibility is modeled forboth the
proteinandthe ligand using energy-minimization and rotamers [17, 18].

1.3 Contributions of the Paper

Boltzmann probability implies that low-energy conformations are more likely to be as-
sumed than high-energy conformations. The motivation behind energy minimization is
therefore well-established and algorithms that incorporate energy minimization often
lead to more accurate results. However, if energy minimization is performedafterprun-
ing with DEE, then the combined protein design process is heuristic, and not provable;
we demonstrate that a conformation pruned using rigid-rotamer energies may subse-
quently minimize to surpass the putative rigid-GMEC.

We derive a novel, provable, and efficient DEE-like algorithm, calledminimized-
DEE (MinDEE), that guarantees that no rotamers belonging to the minimized-GMEC
will be pruned. We show that our method is useful not only in(a) identifying the
minimized-GMEC (a non-ensemble-based method), but also(b) as a filter in an ensem-
ble-based scoring and search algorithm for protein redesign that exploits energy-mini-
mized conformations. We achieve(a) by implementing a MinDEE/A∗ algorithm in a
search to switch the binding affinity of the Phe-specific adenylation domain of the non-
ribosomal peptide synthetase Gramicidin Synthetase A (GrsA-PheA) towards Leu. The
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latter goal(b) is achieved by implementing MinDEE as a combinatorial filter in a hy-
brid algorithm, combiningA∗ search and our previous work onK∗ [17, 18]. For brevity,
we will henceforth refer to this algorithm as theHybrid MinDEE-K∗ algorithm. The
Hybrid MinDEE-K∗ algorithm has two stages. 1) the MinDEE filter provably prunes
the majority of conformations, and 2) remaining conformations are generated in or-
der of increasing lower bounds on their minimized energies using theA∗ branch-and-
bound search. As each conformation is generated byA∗, it is energy-minimized and
added to the partition function. The partition function approximation algorithm halts
theA∗ search as soon as the nextA∗ conformation’s lower-energy bound exceeds a
computed threshold. The resulting method is a provably-accurate approximation algo-
rithm to compute partition functions and subsequently binding constants for protein-
ligand binding. Our new algorithm prunes a combinatorial number of conformations,
an improvement over the constant-factor speedup in the originalK∗ [17, 18]. The ex-
perimental results, based on a 2-point mutation search on the 9-residue active site of the
GrsA-PheA enzyme, confirm that the new Hybrid MinDEE-K∗ algorithm has a much
higher pruning efficiency than the originalK∗ algorithm. Moreover, it takes only30
secondsfor MinDEE to determine which rotamers can be provably pruned. We make
the following contributions in this paper:

1. Derivation of minimized-DEE (MinDEE), a novel, provable, and efficient DEE-like
algorithm that incorporates energy minimization, with applications in both non-
ensemble- and ensemble-based protein redesign. Analogously to the extensions to
traditional DEE [6, 15, 9, 26], we also derive extensions to MinDEE to improve its
pruning efficiency;

2. Introduction of a MinDEE/A∗ algorithm that identifies the minimized-GMEC and
returns a set of low-energy conformations;

3. Introduction of a hybrid MinDEE-K∗ ensemble-based scoring and search algo-
rithm, improving on our previous work onK∗ [17, 18] by replacing a constant-
factor with a combinatorial-factor provable pruning condition;

4. Derivation of provably-accurateε-approximation algorithms for partition function
computation; and

5. The use of our novel algorithms in a redesign mutation search for switching the
substrate specificity of the NRPS enzyme GrsA-PheA; we compare our results to
previous computational predictions of protein designs and to biological activity
assays of predicted protein mutants.

2 Derivation of the Minimized-DEE Criterion

2.1 The Original DEE Criterion

In this section we briefly review thetraditional-DEEtheorem [6, 26, 10, 15]. Tradition-
al-DEE refers to the original DEE, which is not provably correct when used in a search
for the minimized-GMEC. Our notation is chosen to remain consistent with previous
work. The total energy,E

T
, of a given rotameric-based conformation can be written

asE
T

= Et′ +
∑

iE(ir) +
∑

i

∑
j>iE(ir, js), whereEt′ is the template self-energy
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Fig. 1. Energy-Minimized DEE. Without energy minimization the swapping of rotamerir for
it (Panel A to Panel B) leaves unchanged the conformations and self and pairwise energies of
residuesj andk. When energy minimization is allowed, the swapping of rotamerir for rotamer
it (Panel C to Panel D) may cause the conformations of residuesj andk to minimize (i.e., move)
to form more energetically favorable interactions (from the faded to the solid conformations in
Panels C and D).

(i.e., backbone energies or energies of rigid regions of the protein not subject to rotamer-
based modeling),ir denotes rotamerr at positioni, E(ir) is the self energy of rotamer
ir (the intra-residue and residue-to-template energies), andE(ir, js) is the non-bonded
pairwise interaction energy between rotamersir andjs. The rotamers assumed in the
rigid-GMEC are written with a subscriptg. Thereforeig is the rotamer assumed in
the rigid-GMEC at positioni. The following two bounds are then noted: for alli, j
(i 6= j), max

s∈Rj

E(it, js) ≥ E(it, jg) andmin
s∈Rj

E(ig, js) ≤ E(ig, jg), whereRj is the set

of allowed rotamers for residuej. For clarity, we will not includeRj in the limits of the
max andmin terms, since it will be clear from the notation from which sets must be
drawn. The DEE criterion for rotamerir is defined as:

E(ir) +
∑
j 6=i

min
s
E(ir, js) > E(it) +

∑
j 6=i

max
s
E(it, js). (1)

Any rotamerir satisfying the DEE criterion (Eq. 1) is provably not part of the rigid-
GMEC (ir 6= ig), and is considered ‘dead-ending.’ Extensions to this initial DEE crite-
rion allow for additional pruning while maintaining correctness with respect to identi-
fying the rigid-GMEC [6, 15, 9, 10, 26].

2.2 DEE with Energy Minimization: MinDEE

We now derive generalized DEE pruning conditions which can be used when search-
ing for the minimized-GMEC. The fundamental difference between traditional-DEE
and MinDEE is that the former enjoys significant independence among multiple en-
ergy terms during a rotamer swap. For example, when conformations are not energy-
minimized, changing rotamerir to it does not affect the energy termE(js); however,
when energy minimization is allowed, the value of this energy term maychangeas
the rotameric conformationsir and js minimize from their initial rotameric confor-
mations (Fig. 1). Therefore, to be provably correct, one must account for a range of
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possible energies. The conformation of a residue may change during energy minimiza-
tion, however we constrain this movement to a region of conformation space called a
voxel[36, 29] to keep one rotamer from minimizing into another. In this framework, the
voxel V(ir) for rotamerir is simply all conformations of residuei within a±θ range
around each rotamer dihedral when starting from the rotamer1 ir. We similarly define
the voxelV(ir, js) for the pair of rotamersir andjs to be the region of conformation
spaceV(ir)× V(js). Next, we can define themaximum, minimum, andrangeof voxel
energies:

E⊕(ir) = max
z∈V(ir)

E(z), E	(ir) = min
z∈V(ir)

E(z), E�(ir) = E⊕(ir)− E	(ir).

Analogous definitions exist for pairwise terms (Fig. 4 in the Appendix). For a given
protein, we define arotamer vectorA = (A1, A2, · · · , An) to specify the rotamer
at each of then residue positions;Ai = r when rotamerr is assumed by residue
i. We then define theconformation vectorA• = (A•1, A

•
2, · · · , A•n) such thatA•i is

the conformation of residuei in the voxel-constrained minimized conformation, i.e.,
A•i ∈ V(Ai) and

A• = (A•1, A
•
2, · · · , A•n) = argmin

B=(B1,B2,···,Bn)∈
Qn

i=1 V(Ai)

E(B) (2)

whereE(B) is the energy of the system specified by conformation vectorB. For the
energy-minimized conformation starting from rotamer vectorA, we define the self-
energy of rotamerir asE�(ir|A) = E(A•i ) and the pairwise interaction energy of the
rotamer pairir, js asE�(ir, js|A) = E(A•i , A

•
j ) whereE(A•i ) is the self-energy of

residuei in conformationA•i andE(A•i , A
•
j ) is the pairwise energy between residues

i andj in conformationsA•i andA•j . We can then express the minimized energy ofA,
E

T
(A) as:

E
T
(A) = Et′ +

∑
i

E�(ir|A) +
∑

i

∑
j>i

E�(ir, js|A). (3)

Let G represent the rotamer vector that minimizes into the minimized-GMEC and
E

T
(G) be the energy of the minimized-GMEC. LetGig→it be the rotamer vectorG

where rotamerig is replaced withit. We know thatE
T
(Gig→it

) ≥ E
T
(G), so we can

pull residuei out of the two summations, obtaining:

Et′ + E�(it|Gig→it
) +

∑
j 6=i

E�(it, jg|Gig→it
) +

∑
j 6=i

E�(jg|Gig→it
)

+
∑
j 6=i

∑
k 6=i,k>j

E�(jg, kg|Gig→it
) ≥ Et′ + E�(ig|G)

+
∑
j 6=i

E�(ig, jg|G) +
∑
j 6=i

E�(jg|G) +
∑
j 6=i

∑
k 6=i,k>j

E�(jg, kg|G). (4)

TheEt′ terms (Sec. 2.1) correspond to the rigid portion of the molecule; they are
independent of rotamer choice, are equal, and can be canceled. We make the following

1 The voxel space for each rotamer can be multi-dimensional, depending on the number of
dihedrals. The largest number of dihedrals for a single rotamer is4 (Arg and Lys).
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trivial upper and lower-bound observations:

E�(it|A) ≤ E⊕(it); E�(it, jg|A) ≤ max
s∈Rj

E⊕(it, js); (5)

E�(jg|A) ≤ E⊕(jg); E�(jg, kg|A) ≤ E⊕(jg, kg); (6)

E	(ig) ≤ E�(ig|A); min
s∈Rj

E	(ig, js) ≤ E�(ig, jg|A); (7)

E	(jg) ≤ E�(jg|A); E	(jg, kg) ≤ E�(jg, kg|A). (8)

Substituting Eqs. (5-8) into Eq. (4), we obtain:

E⊕(it) +
∑
j 6=i

max
s
E⊕(it, js) +

∑
j 6=i

E⊕(jg) +
∑
j 6=i

∑
k 6=i,k>j

E⊕(jg, kg) ≥

E	(ig) +
∑
j 6=i

min
s
E	(ig, js) +

∑
j 6=i

E	(jg) +
∑
j 6=i

∑
k 6=i,k>j

E	(jg, kg). (9)

We now define the MinDEE criterion for rotamerir to be:

E	(ir) +
∑
j 6=i

min
s
E	(ir, js)−

∑
j 6=i

max
s
E�(js)−

∑
j 6=i

∑
k 6=i,k>j

max
s,u

E�(js, ku) >

E⊕(it) +
∑
j 6=i

max
s
E⊕(it, js). (10)

Proposition 1. When Eq. (10) holds, rotamerir is provably not part of the minimized-
GMEC.

Proof. When Eq. (10) holds, we can substitute the left-hand side of Eq. (10) for the first
two terms of Eq. (9), and simplify the resulting equation to:

E	(ir) +
∑
j 6=i

min
s
E	(ir, js)−

∑
j 6=i

max
s
E�(js)−

∑
j 6=i

∑
k 6=i,k>j

max
s,u

E�(js, ku)

+
∑
j 6=i

E�(jg) +
∑
j 6=i

∑
k 6=i,k>j

E�(jg, kg) > E	(ig) +
∑
j 6=i

min
s
E	(ig, js). (11)

We then substitute the following two bounds
∑

j 6=i max
s
E�(js) ≥

∑
j 6=iE�(jg) and∑

j 6=i

∑
k 6=i,k>j max

s,u
E�(js, ku) ≥

∑
j 6=i

∑
k 6=i,k>j E�(jg, kg) into Eq. (11) and re-

duce:
E	(ir) +

∑
j 6=i

min
s
E	(ir, js) > E	(ig) +

∑
j 6=i

min
s
E	(ig, js). (12)

Thus, when the MinDEE pruning condition Eq. (10) holds,ir 6= ig and we can provably
eliminate rotamerir as not being part of the energy-minimized GMEC. ut

The most significant difference between traditional-DEE and MinDEE is the ac-
counting for possible energy changes during minimization, which are incorporated
through the introduction of the terms

∑
j max

s
E�(js) and

∑
j

∑
k max

s,u
E�(js, ku).

Using precomputed energy bounds, the MinDEE pruning condition (Eq. 10) can be
computed as efficiently as the traditional-DEE pruning condition (Eq. 1). The MinDEE
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framework can be used whenever a bound on a pairwise energy function can be ob-
tained and is therefore not critically dependent upon the particular energy function or
type of minimization employed.

In this section, we presented a generalization of traditional-DEE, to obtain an initial
pruning criterion for MinDEE. We have also generalized the extensions to traditional-
DEE pruning [6, 15, 9, 10, 26] for MinDEE, see Appendix A.

3 Minimized-DEE/A∗ Search Algorithm (Non-Ensemble-Based
Redesign)

3.1 Traditional-DEE with A∗

In [16], anA∗ branch and bound algorithm was developed to compute a number of
low-energy conformations for a single mutation sequence (i.e., a single protein). In this
algorithm, traditional-DEE was first used to reduce the number of side-chain confor-
mations, and then surviving conformations were enumerated in order of conformation
energy by expanding sorted nodes of a conformation tree.2

The following derivation of the DEE/A∗ combined search closely follows [16].
TheA∗ algorithm scores each node in a conformation tree using a scoring function
f = g + h, whereg is the cost of the path from the root to that node (the energy of all
self and pairwise terms assigned through depthd) andh is an estimate (lower bound) of
the path cost to a leaf node (a lower bound on the sum of energy terms involving unas-
signed residues). The value ofg (at depthd) can be expressed asg =

∑d
i=1(E(ir) +∑d

j=i+1E(ir, js)). The lower boundh can be written ash =
∑n

j=d+1Ej , wheren

is the total number of flexible residues andEj = min
s

(E(js) +
∑d

i=1E(ir, js) +∑n
k>j min

u
E(js, ku)). TheA∗ algorithm maintains a list of nodes (sorted byf ) and

in each iteration replaces the node with the smallestf value by an expansion of the
children of that node. This process of expansion is continued until the node with the
smallestf value is a leaf node. This leaf node corresponds to a fully-assigned con-
formation and is returned by the algorithm. To reduce the branching factor of the
conformation tree, the DEE algorithm is used to preprocess the set of allowed ro-
tamers. If more than one low-energy conformation is to be extracted from the A*
search, the DEE criterion must be modified. If low-energy conformations withinEw

of the GMEC are to be returned by the DEE/A* search, then the DEE criterion must
be modified to only eliminate rotamers that are provably not part of any conforma-
tion within Ew of the GMEC. The original DEE criterion (Eq.1) is thus changed to:
E(ir)− E(it) +

∑
j 6=i min

s
E(ir, js)−

∑
j 6=i max

s
E(it, js) > Ew.

3.2 MinDEE with A∗

The traditional-DEE/A∗ algorithm [16] can be extended to include energy minimization
by substituting our newly derived MinDEE (Sec. 2.2) for traditional-DEE. So that no

2 In a conformation tree, the rotamers of flexible residuei are represented by the branches at
depthi. Internal nodes of a conformation tree represent partially-assigned conformations and
each leaf node represents a fully-assigned conformation (see Fig. 3 in [18, p. 745]).
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conformations withinEw of the energy-minimized GMEC are pruned, the MinDEE
equation (Eq. 10) becomes:

E	(ir) +
∑
j 6=i

min
s
E	(ir, js)−

∑
j 6=i

max
s
E�(js)−

∑
j 6=i

∑
k 6=i,k>j

max
s,u

E�(js, ku)

−E⊕(it)−
∑
j 6=i

max
s
E⊕(it, js) > Ew . (13)

We modify the definition of theA∗ functionsg andh to use the minimum energy terms
E	(ir) andE	(ir, js) in place ofE(ir) andE(ir, js). Thus, we have:

g =
d∑

i=1

(E	(ir) +
d∑

j=i+1

E	(ir, js)), h =
n∑

j=d+1

Ej , (14)

where

Ej = min
s

E	(js) +
d∑

i=1

E	(ir, js) +
n∑

k=j+1

min
u
E	(js, ku)

 . (15)

A lower bound on the minimized energy of the partially-assigned conformation is given
by g, while a lower bound on the minimized energy for the unassigned portion of the
conformation is given byh. Thus, the MinDEE/A∗ search generates conformations in
order of increasinglower boundson the conformation’sminimizedenergy.

We combine our modified MinDEE criterion (Eq. 13) with the modifiedA∗ func-
tions (Eqs. 14-15) in a provable search algorithm for identifying the minimized-GMEC
and obtaining a set of low-energy conformations. First, MinDEE prunes the majority
of the conformations by eliminating rotamers that are provably not withinEw of the
minimized-GMEC. The remaining conformations are then generated in order of in-
creasinglower boundson their minimized energies. The generated conformations are
energy-minimized and ranked in terms of increasingactualminimized energies.

The MinDEE/A∗ search must guarantee that upon completion all conformations
within Ew of the minimized-GMEC are returned. Since in theA∗ algorithm conforma-
tions are returned in order of increasing lower bounds on the minimized energies, the
minimized-GMEC may not be among the top conformations if the lower bound on its
energy does not rank high. We therefore derive the following condition for halting the
MinDEE/A∗ search. LetB(s) be the lower bound on the energy of conformations (see
Appendix B, which describes how lower energy bounds are precomputed for all rotamer
pairs) and letEm be the current minimum energy among the minimized conformations
returned so far in theA∗ search.

Proposition 2. The MinDEE/A∗ search can be halted once the lower boundB(c) on
the energy of the next conformationc returned byA∗, satisfiesB(c) > Em + Ew.
The set of returned conformations is guaranteed to contain every conformation whose
energy is withinEw of the energy of the minimized-GMEC. Moreover, at that point in
the search, the conformation with energyEm is the minimized-GMEC.
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Proof. Let E(s) be the actual energy of a minimized conformations. Let Y be the
set containing conformationc (the next conformation returned byA∗) and all confor-
mations not yet returned. SinceA∗ returns conformationsin order of increasing lower
bounds on the energy, we know thatE(s) ≥ B(s) ≥ B(c) for any conformations ∈ Y .
Thus, ifB(c) > Em + Ew holds, thenE(s) > Em + Ew. Hence, no conformations
in Y have energies withinEw of the energy of the minimized-GMEC, proving that all
conformations withinEw of the minimized-GMEC energy have already been returned.
Moreover, note that at that point in the search, the conformation with energyEm is
actually the minimized-GMEC. ut

Using both MinDEE andA∗ search together, our algorithm obtains a combinator-
ial pruning factor by eliminating the majority of the conformations, which makes the
search for the minimized-GMEC computationally feasible. The MinDEE/A∗ algorithm
incorporates energy minimization with provable guarantees, and is thus more capable
of returning conformations with lower energy states than traditional-DEE.

4 Hybrid MinDEE- K∗ Algorithm (Ensemble-Based Redesign)

We now present an extension and improvement to the originalK∗ algorithm [17, 18]
by using a version of the MinDEE criterion plusA∗ branch-and-bound search. The
K∗ ensemble-based scoring function approximates the protein-ligand binding constant
with the following quotient:K∗ = q

P L

q
P

q
L

, whereq
P L

, q
P

, andq
L

are the partition func-

tions for the protein-ligand complex, the free (unbound) protein, and the free ligand,
respectively. A partition functionq over a set (ensemble) of conformationsS is defined
as q =

∑
s∈S exp(−Es/RT ), whereEs is the energy of conformations, T is the

temperature in Kelvin, andR is the gas constant. In a naiveK∗ implementation, each
partition function would be computed by a computationally-expensive energy mini-
mization of all rotamer-based conformations. However, because the contribution to the
partition function of each conformation is exponential in its energy, only a subset of the
conformations significantly contribute to the partition function value. By identifying
and energy-minimizingonly the significantly-contributing conformations, a provably-
accurateε-approximation algorithm substantially improved the algorithm’s efficiency
[17, 18]. In this section we illustrate how the newly-derived MinDEE andA∗ algorithms
can be used to generate and minimizeonly those conformations that contribute signifi-
cantly to the partition function, and hence, for which energy minimization is required.
The MinDEE criterion must be used in this algorithm because theK∗ scoring func-
tion is based onenergy-minimizedconformations. Since pruned conformations never
have to be examined, the Hybrid MinDEE-K∗ algorithm provides a combinatorial im-
provement in runtime over the previously described constant-factorε-approximation
algorithm [17, 18] (where a lower-bound oneachconformation’s minimum energy was
quickly examined to determine if full energy minimization was required).

The MinDEE criterion (Eq. 10) can prune rotamers across mutation sequences.3 By
pruningacrossmutations with MinDEE, we risk pruning conformations that could oth-
erwise contribute substantially to the computed partition functions, thus violating our

3 A mutation sequencespecifies an assignment of amino-acid type to each residue in a protein.
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provably-good approximation to the full partition functions (Sec. 4.1). Hence, we derive
a modified version of MinDEE, calledSingle-SequenceMinDEE (SSMinDEE), that is
capable of pruning rotamers only within a single mutation sequence. The MinDEE cri-
terion (Eq. 10) is valid for SSMinDEE; the only distinction is that the set of rotamers for
each residue position consists only of the rotamers for the amino acid type of the given
residue in the current mutation sequence, rather than of the rotamers for all possible
amino acid types for that residue, as is the case with themultiple-sequence minimized-
DEEdescribed in Sec. 2.2.

4.1 Efficient Partition Function Computation Using A∗ Search

Using theA∗ algorithm with SSMinDEE, we can generate the conformations of a
rotamerically-based ensemble in order of increasing lower bounds on the conforma-
tion’s minimized energy. We can efficiently compute the lower bound on a conforma-
tion’s energy as a sum of precomputed pairwise minimum energy terms (see Appen-
dix B). As each conformationc is generated from the conformation tree, we compare
its lower boundB(c) on the conformational energy to a movingstop-thresholdand
stop theA∗ search onceB(c) becomes greater than the threshold. TheA∗ algorithm
guarantees that all remaining conformations will have minimized energies above the
stop-threshold. We now prove that a partial partition functionq∗ computed using only
those conformations with energies below (i.e., better than) the stop-threshold will lie
within a factor ofε of the true partition functionq. Thus,q∗ is anε-approximation toq,
i.e.,q∗ ≥ (1− ε)q.

Since the application of the MinDEE criterion (Eq. 10) for each rotamerir requires
that the corresponding minimum energy terms be accessed, we can easily piggyback
the computation of a lower boundBir on the energy of all conformations that contain a
pruned rotamerir:

Bir
= Et′ + E	(ir) +

∑
j 6=i

min
s
E	(js) +

∑
j 6=i

min
s
E	(ir, js)

+
∑
j 6=i

∑
k 6=i,k>j

min
s,u

E	(js, ku).

Let E0 be the minimum lower energy bound among all conformations containing
at least one pruned rotamer,E0 = minir∈S Bir , whereS is the set of prunedrotamers.
E0 can be precomputed during the MinDEE stage and prior to theA∗ search. Letp∗ be
the partition function computed over the setP of prunedconformations, so thatp∗ ≤
k exp(−E0/RT ), where|P | = k. Also, letX be the set of conformations not pruned
by MinDEE and letq∗ be the partition function for the topm conformations already
returned byA∗; let q′ be the partition function for then conformations that have not yet
been generated, all of which have energies aboveEt, so thatq′ ≤ n exp(−Et/RT );
note that|X| = m+n. Finally, letρ = ε

1−ε . We can then guarantee anε-approximation
to the full partition functionq using:

Proposition 3. If the lower boundB(c) on the minimized energy of the(m+ 1)st con-
formation returned byA∗ satisfiesB(c) ≥ −RT (ln(q∗ρ− k exp(−E0/RT ))− lnn),
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then the partition function computation can be halted, withq∗ guaranteed to be an
ε-approximation to the true partition functionq, that is,q∗ ≥ (1− ε)q.

Proof. The full partition functionq is computed using all conformations in bothP and
X:

q = q∗ + q′ + p∗. (16)

Thus,
q ≤ q∗ + n exp(−Et/RT ) + k exp(−E0/RT ). (17)

Hence, if

q∗ ≥ (1− ε)(q∗ + n exp(−Et/RT ) + k exp(−E0/RT )), (18)

thenq∗ ≥ (1− ε)q. Solving Eq. (18) forEt, we obtain the desired stop-threshold:

−RT (ln(q∗ρ− k exp(−E0/RT ))− lnn) ≤ Et. (19)

We can halt the search once a conformation’s energy lower bound becomes greater
than the stop-threshold (Eq. 19), since thenq∗ is already anε-approximation toq. ut

The application of the MinDEE criterion gives a combinatorial-factor speedup by
caching the minimum lower energy bound for the set of all pruned conformations. Since
the conformations pruned by MinDEE can potentially contribute significantly to the
partition function, we bound their contribution, thus guaranteeing a provably-accurate
approximation to the full partition function. The conformation tree could, in principle,
be reduced by pruning anarbitrary subset of the rotamers, so long as a guarantee on the
accuracy is still maintained through a bound on the contribution of the pruned confor-
mations. However, in practice, the amount of pruning and the resulting approximation
accuracy depend onwhich rotamers are chosen for pruning. Using MinDEE to deter-
mine the set of pruned rotamers guarantees that the pruned conformations will have high
lower energy bounds by requiring that no conformations withinEw of the minimized-
GMEC energy are pruned (Eq. 13), whereas an arbitrary rotameric set could easily con-
tain conformations with very good (i.e., low) energies. Proposition 3 turns pruning with
MinDEE into a provable heuristic. Note that:1) the magnitude ofp∗ is determined by
the lower energy bounds of the pruned conformations, and2) the number of conforma-
tions thatA∗ must extract to guarantee a provably-accurate approximation to the parti-
tion function depends on the magnitude ofp∗. By using MinDEE pruning instead of an
arbitrary set of rotamers, we increase the pruning efficiency. Since conformations that
contain steric clashes do not contribute to the partition function for the given mutation
sequence, we can further reducep∗ by including inP only the pruned conformations
whose lower energy bound does not contain a rotamer thatalwaysclashes sterically
(such a reduction inP , and hence,k, can be computed during the MinDEE phase, since
rotamers whose precomputed minimum-energy bounds indicate steric clashes, neces-
sarily imply that all conformations containing these rotamers are also steric clashes).

If at some point in the search, the stop-threshold condition has not been reached
and there are no remaining conformations forA∗ to extract (n = 0), thenq′ = 0 by
definition, andq = q∗+ p∗. Hence, ifq∗ρ ≥ k exp(−E0/RT ), thenq∗ ≥ (1− ε)(q∗+
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k exp(−E0/RT )), soq∗ ≥ (1− ε)q is already anε-approximation toq; otherwise, we
have

q∗ ≥ (1− δ)(q∗ + k exp(−E0/RT )), (20)

for some approximation accuracyδ > ε. Thus, the set of pruned rotamers must be re-
duced to guarantee the desired approximation accuracy. To assure that anε-approxima-
tion is achieved when the search is repeated, a subset of thek pruned conformations
in P must be re-introduced into the computation. Letl be the number of conforma-
tions fromP (the set of pruned conformations) that are not to be pruned, such that
p∗ ≤ (k − l) exp(−E0/RT ). We will conservatively assume that thel conformations
do not contribute toq∗, although they no longer contribute top∗ either. At the end of
the second mutation search, we must have

q∗ ≥ (1− ε)(q∗ + (k − l) exp(−E0/RT )). (21)

Solving for l, we obtain the following condition, which guarantees the desiredε-
approximation accuracy:

l ≥ k − q∗ρ

exp(−E0/RT )
, (22)

where againρ = ε
1−ε . Note that anε-approximation may be achieved before all con-

formations have been extracted; Eq. (22) guarantees such an accuracy when all non-
pruned conformations have been extracted byA∗. To guarantee that at leastl out of
thek pruned conformations will be allowed during the repeated computation, we can
choose a subsetQ of the rotamers pruned by MinDEE, such that not pruningQ keeps
at leastl additional conformations.

Proposition 3 represents anintra-mutationenergy filter (Fig. 2) for pruning within
a single mutation sequence. We now derive a provably-accurate partition-function ap-
proximation for pruningacrossmutation sequences.

4.2 Inter-Mutation Filter

We first review some of the definitions from [17, 18]. The main motivation for the
inter-mutation filter is that we must compute provably-accurate scores only for the top
fraction of the mutation sequences. We letγ ∈ [0, 1] be a parameter that defines the set
of mutation sequences for which anε-approximation is to be computed. We require that
an ε-approximation be guaranteed for a mutation sequencei only whenK∗

i ≥ γK∗
o ,

whereK∗
i is the score for sequencei andK∗

o is the best score observed so far in the
search. Whenγ = 1.0, an ε-approximation is guaranteed only for the best-scoring
K∗ mutation sequence;γ = 0.0 computes anε-approximation for allK∗ mutation
sequences. Let us assume thatA∗ has already generated the firstm conformations and
that there aren remaining conformations that have not been generated yet. We use
the definitions forq′, p∗, E0 , andk from Proposition 3 above. We assume that we
have already computedq

P
using the intra-mutation filter only (Proposition 3), and now

describe how to efficiently computeq
P L

.
We define the score for theith mutation sequence to beK∗

i = q
P L

q
P

q
L

, whileK∗
o =

oq
P L

oq
P

oq
L

. We letq∗
P L

be the partial partition function for the bound protein-ligand state,
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Initialize: n← Number of Rotameric Conformations;q∗← 0
while (n > 0)

c← GetNextAStarConf()
if B(c) ≤ −RT (ln(q∗ρ− k exp(−E0/RT ))− ln n)

q∗← q∗ + exp (−ComputeMinEnergy(c)/RT )
n← n− 1

else Returnq∗

if q∗ρ < k exp(−E0/RT )
RepeatSearch(q∗, ρ, k, E0)

else Returnq∗

Fig. 2. Intra-Mutation Filter for Computing a Partition Function with Energy Minimiza-
tion Using the A* Search. q∗ is the running approximation to the partition function. The func-
tion B(·) computes the energy lower bound for the given conformation (see Appendix B). The
functionComputeMinEnergy(·) returns a conformation’s energy after energy minimization. The
functionGetNextAStarConf() returns the next conformation from the A* search. The function
RepeatSearch(·) sets up and repeats the mutation search if anε-approximation is not achieved
after the generation of allA∗ conformations; the search is repeated at most once. Upon comple-
tion, q∗ represents anε-approximation to the true partition functionq, such thatq∗ ≥ (1− ε)q.

computed from them already-generated conformations. We defineK†
o =

oq
P L

oq
P

. Finally,

letψ = max
(
γεK†

oqP
, q∗

P L
ρ
)

andρ = ε
1−ε .

Proposition 4. If the lower boundB(c) on the minimized energy of the(m + 1)st

conformation returned byA∗ satisfiesB(c) ≥ −RT (ln(ψ−k exp(−E0/RT ))− lnn),
then the partition function computation can be halted, withq∗

P L
guaranteed to be anε-

approximation to the true partition functionq
P L

for a mutation sequence whose score
K∗

i satisfiesK∗
i ≥ γK∗

o .

Proof. Since the ligand is invariant throughout the search,q
L

= oq
L

. Let us assume
that we have a sequence for whichK∗

i ≥ γK∗
o holds. Thus,

q
P L

q
P
q

L

≥ γ
oq

P L

oq
P

oq
L

,

q
P L

≥ γK†
oqP

. (23)

First, we note again that

q′ ≤ n exp(−Et/RT ); (24)

p∗ ≤ k exp(−E0/RT ). (25)

From the definition ofq
P L

, we obtain

q
P L

= q∗
P L

+ q′ + p∗. (26)

Now, if
n exp(−Et/RT ) + k exp(−E0/RT ) ≤ εK†

oγqP
, (27)
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then by Eqs. (24) and (25) we have

q′ + p∗ ≤ εK†
oγqP

, (28)

and by Eq. (23),
q′ + p∗ ≤ ε q

P L
, (29)

and finally, by Eq. (26), we obtain

q∗
P L

≥ (1− ε)q
P L
, (30)

which is the definition of the partition functionε-approximation. Thus, if Eq. (27)
holds, then we will have anε-approximation to the true partition functionq

P L
. Solving

Eq. (27) forEt, we obtain the stop-threshold:

Et ≥ −RT
(
ln

(
γεK†

oqP
− k exp(−E0/RT )

)
− lnn

)
. (31)

The first conformation that has an energy above the stop-threshold (Eq. 31) halts the
partition function computation, since we already have anε-approximation. Thus, com-
bining Eq. (31) and theintra-mutation stop-threshold (Eq. 19), our stopping condition
for the computation ofq

P L
becomes

B(c) > −RT (ln (ψ − k exp(−E0/RT ))− lnn) , (32)

whereψ = max (γεK†
oqP

, q∗
P L
ρ) andB(·) is the lower bound on the minimized

energy of a conformation. ut

If the desired approximation accuracy is not achieved at the end of the mutation
search, after all conformations have been extracted byA∗, we can modify Eq. (22) to
incorporate the inter-mutation filter, obtaining the number of conformationsl from P
(the set of pruned conformations) that must be allowed in the repeated search:

l ≥ k − ψ

exp(−E0/RT )
.

We have derived the stop-threshold that guarantees anε-approximation to the parti-
tion function when conformations are generated in order ofincreasinglower bounds on
the conformation’s energy. This generalizes the inter-mutation proof in [17, 18] which
is valid when the energy lower bounds for all of the conformations are evaluated. We
should note that Eq. (32) was derived assumingK∗

i ≥ γK∗
o holds, so we can guarantee

an ε-approximation toq
P L

only for this case. WhenK∗
i < γK∗

o , then we might not
obtain anε-approximation for the given mutation sequence, but we do not require a
provably-good approximation for such low-scoring sequences.

Similarly to [17, 18], we defineK̃∗
i =

q∗
P L

q∗
P

q
L

to be anε-approximation to the full

score of a mutation sequence (the score if the full partition functions are used, instead of

the partial ones) wheñK∗
i ∈

[
K∗

i (1− ε), 1
1−εK

∗
i

]
. If K∗

i ≥ γK∗
o holds for a mutation
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sequencei, then by Proposition 4,q
P L

> q∗
P L

≥ (1− ε)q
P L

. Also, sinceq
P

is already
computed using Proposition 3,q

P
> q∗

P
≥ (1− ε)q

P
. SinceK∗

i = q
P L

q
P

q
L

, we have[
K∗

i (1− ε) ≤ K̃∗
i ≤

1
1− ε

K∗
i

]
.

Thus, the algorithm guarantees that anε-approximation to the fullscoreis computed
whenK∗

i ≥ γK∗
o .

4.3 Algorithm

We now have all the necessary tools for our ensemble-based Hybrid MinDEE-K∗ al-
gorithm. The volume filter (see Sec. 5) in the originalK∗ is applied first to eliminate
under- and over-packed mutation sequences; this is followed by the combinatorial SS-
MinDEE filter and theA∗ energy filter using theε-approximation algorithms in Sec. 4.1
and 4.2 (see Table 1), which improve on the mere constant-factor speedup provided
by the energy filter in the originalK∗ [17, 18]. By implementing a steric filter (see
Sec. 5), similar to the one in [17, 18], as a part of theA∗ search, we prevent some high-
energy conformations (corresponding to steric clashes) with good lower bounds from
being returned byA∗, gaining an additional combinatorial speedup. Only the confor-
mations that pass all of these filters are energy-minimized and used in the computation
of the partition function for the conformational ensemble. Finally, theK∗ score for a
given mutation is computed as the ratio of the bound and unbound partition functions:
K∗ = q

P L

q
P

q
L

. Our Hybrid MinDEE-K∗ algorithm efficiently prunes the majority of

the mutation sequences and conformations from more expensive evaluation, while still
giving provable guarantees about the accuracy of its score predictions.

5 Methods

Structural Model. Our structural model is the same as the one used in the original
K∗ [17, 18]. In our experiments, the structural model consists of the 9 active site
residues (D235, A236, W239, T278, I299, A301, A322, I330, C331) of GrsA-PheA
(PDB id: 1AMU) [4], the steric shell (the 30 residues with at least one atom within 8
Å of a residue in the active site), the amino acid substrate, and the AMP cofactor. The
steric shell facilitates the computation of the energy between the active site residues and
neighboring regions of the protein (theresidue-to-templateenergy) and constrains the
movement of the active site residues to only sterically-allowable conformations relative
to the body of the PheA protein. The residues of the active site modeled as flexible
using rotamers and subject to energy minimization include: 235D, 236A, 239W, 278T,
299I, 301A, 322A, 330I, and 331C. The steric shell includes all residues not modeled as
flexible and that contain at least one atom within 8Å of the active site. The steric shell
residues include: 186Y, 188I, 190T, 210L, 213F, 214F, 230A, 234F, 237S, 238V, 240E,
243M, 279L, 300T, 302G, 303S, 320I, 321N, 323Y, 324G, 325P, 326T, 327E, 328T,
329T, 332A, 333T, 334T, 515N, and 517K. In 1AMU [4], and also in [17, 18], residues
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235D and 517K make H-bonds to the amino acid backbone of the ligand, thereby sta-
bilizing the substrate in a productive orientation for catalysis. Flexible residues are rep-
resented by rotamers from the Lovellet al. rotamer library [21]. Each rotameric-based
conformation is minimized using steepest-descent minimization (see Appendix B) and
theAMBER energy function (electrostatic, vdW, and dihedral energy terms) [37, 5].
Energy Precomputation for Lower Bounds, B(·). The MinDEE criterion (Eq. 10)
uses both min and maxprecomputedenergy terms to determine which rotamers are not
part of the minimized-GMEC. There is no need to re-compute the min and max energies
every time Eq. (10) is evaluated. See Appendix B for a detailed discussion.
Approximation Accuracy. We use anε-value of0.03, thus guaranteeing that the com-
puted partial partition functions will be not less than97% of the corresponding full
partition functions. We use a value of0.01 for γ, which requires that correctK∗ scores
be computed for all mutation sequences whose score is at most two orders of magnitude
less than the best score.
Filters. Volume filter: Mutation sequences that are over- or under-packed by more
than 30̊A3 compared to the wildtype PheA are pruned;Steric filter: Conformations
in which a pair of atoms’ vdW radii overlap by more than 1.5Å prior to minimization
are pruned;Sequence-space filter: The active site residues are allowed to mutate to the
set (GAVLIFYWM) of hydrophobic amino acids;MinDEE: We use an implementation
of the MinDEE analog to the simple coupled Goldstein criterion ([9] and Fig. 4d in the
Appendix).

6 Results and Discussion

In this section, we compare the results of GMEC-based protein redesign without (tradi-
tional-DEE/A∗) and with (MinDEE/A∗) energy minimization. We also compare the
redesign results when energy minimization is used without (MinDEE/A∗) and with
(Hybrid MinDEE-K∗) conformational ensembles. We further compare our ensemble-
based redesign results both to our previous computational predictions of protein designs
and to biological activity assays of predicted protein mutants.

6.1 Comparison to Biological Activity Assays

Similarly to [17, 18], we simulated the biological activity assays of L-Phe and L-Leu
against the wildtype PheA enzyme and the double mutant T278M/A301G [33]. In [33],
T278M/A301G was shown to have the desired switch of specificity from Phe to Leu by
performing activity assays. The activity for both the wildtype and the mutant protein
sequences was normalized, so that the substrate with the larger activity was assigned
a specificity of100%, while the other substrate was assigned specificity relative to the
first one. The wildtype PheA had a specificity of100% for Phe and approximately7%
for Leu; the double mutant had a specificity of100% for Leu and approximately40%
for Phe. The computed Hybrid MinDEE-K∗ normalized scores qualitatively agreed
with these results, showing the desired switch of specificity for T278M/A301G. The
wildtype sequence had a normalizedK∗ score of100% for Phe and0.01% for Leu; the
double mutant had a normalized score of100% for Leu and20% for Phe.
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Table 1. Conformational Pruning with Hybrid MinDEE- K∗. The initial number of confor-
mations for the GrsA-PheA 2-residue Leu mutation search is shown with the number of confor-
mations remaining after the application of volume, single-sequence minimized-DEE, steric, and
energy (withA∗) pruning. TheA∗ energy filter is based on theε-approximation algorithms in
Secs. 4.1 and 4.2. The pruning factor represents the ratio of the number of conformations present
before and after the given pruning stage. The pruning-% (in parentheses) represents the percent-
age of remaining conformations eliminated by the given pruning stage.

Conf. RemainingPruning Factor (%)
Initial 6.8× 108 -

Volume Filter 2.04× 108 3.33 (70.0)
SSMinDEE Filter 8.83× 106 23.12 (95.7)

Steric Filter 5.76× 106 1.53 (34.7)
A∗ Energy Filter 2.78× 105 20.7 (95.2)

6.2 Comparison to Traditional-DEE

For comparison, the simple coupled Goldstein traditional-DEE criterion [9] was used
in a redesign search for changing the specificity of the wildtype PheA enzyme from
Phe to Leu, using the experimental setup in Sec. 5. A comparison to the rotamers in the
minimized-GMEC A236M/A322M (Sec. 6.3), revealed that2 of these9 rotamers were
in fact prunedby traditional-DEE. As an example, the minimized-GMEC was energy-
minimized from a conformation that included rotamer5 [21] of Met at residue 236. This
particular rotamer (χ angles−177◦, 180◦, and75◦) was pruned by traditional-DEE.
We then energy-minimized A236M/A301G, the rigid-GMEC obtained by traditional-
DEE/A∗ and determined that its energy was higher (by appx.5 kcal/mol) than the en-
ergy for the minimized-GMEC obtained by MinDEE/A∗. Moreover, a total of104 dif-
ferent conformations minimized to an energy lower than the minimized rigid-GMEC
energy. These results confirm our claim that traditional-DEE is not provably-accurate
with energy-minimization; they also show that conformations pruned by traditional-
DEE may minimize to a lower energy state than the rigid-GMEC.

6.3 Redesign for Leu

Hybrid MinDEE- K∗ The experimental setup for Leu redesign with Hybrid MinDEE-
K∗ is as described in Sec 5. The 2-point mutation search took approximately10 hours
on a cluster of 24 processors. Only30% of the mutation sequences passed the volume
filter, while MinDEE pruned over95% of the remaining conformations. The use of
the ε-approximation algorithms reduced the number of conformations that had to be
subsequently generated and energy-minimized by an additional factor of twenty (see
Table 1). A brute-force version of Hybrid MinDEE-K∗ that did not utilize any of the
filters, would take approximately 2,450 times longer (appx. 1,023 days) for the same
experimental setup for redesign.

An initial comparison to the originalK∗ results showed only a small overlap be-
tween the top-ranking mutations for Hybrid MinDEE-K∗ and the originalK∗[17, 18].
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Since the two algorithms use different energy-minimization modules (see Appendix B),
we then applied the better Hybrid MinDEE-K∗ minimization scheme to the original
K∗, in order to facilitate a fair comparison. Both the mutation-sequence rankings and
the scores for a given mutation sequence are very similar for the two algorithms: the
top 19 sequences are identical, while all of the top40 sequences for Hybrid MinDEE-
K∗ can be found in the top40 sequences forK∗, and vice versa; the trend is similar
for the remaining sequences, as well. This fact shows that, all other factors being equal,
both algorithms converge to very similar results, despite the different (but still provably-
accurate) filters used.

The two top-scoring sequences are A301G/I330W and A301G/I330F for both Hy-
brid MinDEE-K∗ and the original-K∗. These novel mutation sequences were tested in
the wetlab and were shown to have the desired switch of specificity from Phe to Leu
[17, 18]. Moreover, the other known successful redesign T278M/A301G [33] is ranked
4th by both Hybrid MinDEE-K∗ and the modified version of the originalK∗ algorithm
(this sequence was ranked12th by the unmodified originalK∗ in [17, 18]). Further-
more, all of the top17 Hybrid MinDEE-K∗ sequences contain the mutation A301G,
which is found in all known native Leu adenylation domains [3]. These results show
that our algorithms can give reasonable predictions for redesign.

To compare the efficiency of the two algorithms, we measured the number of fully-
evaluated conformations, since the full energy minimization of the conformations is the
most computationally-expensive part of both algorithms. The modified originalK∗ al-
gorithm fully-evaluated approximately30% more conformations than the2.78 × 105

conformations fully evaluated by Hybrid MinDEE-K∗ (see Table 1). Thus, Hybrid
MinDEE-K∗ is much more efficient at obtaining the desired results.

MinDEE/ A∗ We now discuss results from our non-ensemble-based experiments us-
ing MinDEE/A∗. To redesign the wildtype PheA enzyme so that its substrate speci-
ficity is switched towards Leu, we used the experimental setup described in Sec. 5. The
MinDEE filter on the bound protein:ligand complex pruned206 out of the421 pos-
sible rotamers for the active site residues, reducing the number of conformations that
were subsequently supplied toA∗ by a factor of 2,330. We then extracted and mini-
mized all conformations over the 2-point mutation sequences using theA∗ search until
the halting condition defined in Proposition 2 was reached, forEw = 8.5 kcal/mol. A
total of813 conformations, representing45 unique mutation sequences, had actual min-
imized energies within8.5 kcal/mol of the minimized-GMEC energy, which confirms
that a mutation sequence can be found in multiple low-energy states. The top-ranked
MinDEE/A∗ mutation sequence is A236M/A322M; the minimized-GMEC is obtained
from this sequence. The entire redesign process took approximately14 days on a single
processor, with more than120, 000 extracted conformations before the search could be
provably halted. Thus, the provable accuracy of the results comes at the cost of this
computational overhead, since the number of extracted conformations is much larger
than the actual number of conformations withinEw of the minimized-GMEC energy.
Note, however, that a redesign effort without a MinDEE filter and a provably-accurate
halting condition would be computationally infeasible.
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Fig. 3. Distribution of Mutations. The distribution of the mutation types for the top 40 mutation
sequences for(A) MinDEE/A∗ and(B) Hybrid MinDEE-K∗ algorithms is shown as the fraction
of each mutating type for each active site residue. The types and frequencies for the mutations are
quite different for the two methods, which indicates that the difference in the information content
for non-ensemble and ensemble-based algorithms can be substantial. The variability of mutation
types for each active site residue is2.38 (types per residue, for the residues that were mutated at
least once in the given mutation sequences) for MinDEE/A∗ and3.86 for Hybrid MinDEE-K∗,
suggesting the existence of multiple beneficial mutation types for the mutated residues.

Like A301G/I330W and A301G/I330F, the top5 MinDEE/A∗ sequences are un-
known in nature. To assess the switch of specificity from Phe to Leu for the novel mu-
tation sequences, we extracted the minimum-energy conformation for these top5 Leu-
binding sequences. Each of these5 conformations was then energy-minimized when
bound to Phe. Whereas the Leu-bound energies were negative and low, the correspond-
ing Phe-bound energies were positive and high. Thus, the top mutation sequences rep-
resented by their minimum energy conformation are predicted to bind more stably to
Leu than to Phe, as desired.

Only9 of the45 MinDEE/A∗ mutation sequences passed the volume filter of Hybrid
MinDEE-K∗. Moreover, only5 of the MinDEE/A∗ sequences could be found in the top
40 Hybrid MinDEE-K∗ sequences, indicating that ensemble-scoring yields substan-
tially different predictions from single-structure scoring using the minimized-GMEC,
where only the minimizedboundstate of asingleconformation is considered (see Fig.
3). We can conclude that, currently, MinDEE appears useful as a filter in the Hybrid
MinDEE-K∗ algorithm; however, the incorporation of additional information, such as
a comparison to negative design (the energies to bind the wild-type substrate), may
promote MinDEE as a valuable stand-alone non-ensemble-based algorithm for protein
redesign.

7 Limitations and Extensions

The MinDEE criterion can efficiently prune a large number of the possible conforma-
tions (see Sec. 6.3). However, because of the use of min and max energy terms, the prun-
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ing efficiency of MinDEE cannot be as high as that of traditional-DEE. This trade-off
in efficiency results from the provable guarantees that MinDEE can (while traditional-
DEE cannot) make when energy minimization is employed. An increase of the pruning
capabilities of MinDEE would require the derivation and computation of tighter upper
and lower energy bounds. Since (with a rigid backbone) the conformational changes
due to switching the identity of a single rotamer should decrease in magnitude as the
proximity to the modified rotamer decreases, it may also be possible to increase the
pruning factor by scaling the terms in the MinDEE condition (Eq. 10), depending on
the proximity of the residues involved.

8 Conclusions

When energy-minimization is required, the traditional-DEE criterion makes no guar-
antees about pruning rotamers belonging to the minimized-GMEC. In contrast, a ro-
tamer is only pruned by MinDEE if it is provably not part of the minimized-GMEC.
We showed experimentally that the minimized-GMEC can minimize to lower energy
states than the rigid-GMEC, confirming the feasibility and significance of our novel
MinDEE criterion. When used as a filter inensemble-basedredesign, MinDEE effi-
ciently reduced the conformational and sequence search spaces, leading both to predic-
tions consistent with previous redesign efforts and novel sequences that are unknown in
nature. Our Hybrid MinDEE-K∗ algorithm showed a significant improvement in prun-
ing efficiency, as compared to the originalK∗ algorithm. Redesign searches for two
other substrates, Val and Tyr, have also been performed, confirming the generality of
our algorithms.

Protein design using traditional-DEE uses neither ensembles nor rotamer minimiza-
tion. In our experiments, we reported the relative benefits of incorporating ensembles
and energy-minimization into a provable redesign algorithm. A major challenge for pro-
tein redesign algorithms is the balance between the efficiency and accuracy with which
redesign is performed. While the ability to prune the majority of mutation/conformation
search space is extremely important, increasing the accuracy of the model is a prerequi-
site for successful redesign. It would be interesting to implement finer rotamer sampling
and more accurate (and hence more expensive) energy functions, remove bias in the ro-
tamer library by factoring the Jacobian into the partition function over torsion-angle
space, and incorporate backbone flexibility. An accurate and efficient algorithm for re-
designing natural products should prove useful as a technique for drug design.
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APPENDIX
In Appendix A, four extensions to theminimized-DEEcriterion are presented along
with the corresponding extensions to thetraditional-DEE criterion. Appendix B pro-
vides details on energy precomputation for computing the lower energy boundsB(·).

A Extensions to DEE with Energy Minimization

An excellent review of the advanced pruning techniques used in the extensions to the
traditional-DEE pruning conditions appears in [26]. These methods allow more individ-
ual rotamers to be pruned during DEE and extend the DEE criterion to identify dead-
ending rotamer pairs. For example, the proper use of Dead-Ending Pairs [15] (Fig. 4i)
allows additional rotamers to be identified as being dead-ending and thus not part of the
GMEC. Analogously to Sec 2.2, we have derivedminimized-DEE equivalentsto Dead-
Ending Pairs (Fig. 4j) and for 3 other advanced pruning techniques from traditional-
DEE; see Fig. 4 for a summary.

B Energy Precomputation for Lower Bounds

We first derive a lower bound for the energy of a minimized conformation, similarly
to [17, 18]. We then present improvements on the energy precomputation algorithm, as
compared to [17, 18].

B.1 Computing a Lower Bound on Minimized Energies

In our structural model, (Sec. 5), some residues are treated as rigid, while others have
a rigid backbone but flexible side-chains. Leth be the number of flexible residues in
our system. LetA be a(h+ 1)× (h+ 1) precomputed residue-indexed energy matrix
that describes the energy interactions of a given residuei within itself (Ai0), with the
backbone (A0i), and with other residues (Aij); the matrix elementA00 is reserved for
the energy interactions between the atoms of the backbone only. We termA00 to be the
templateenergy,A0i is theresidue-to-templateenergy,Ai0 is theintra-residueenergy,
andAij is thepairwiseenergy for residuei. The energy of the system can be computed
as

ES = A00 +
∑
i≤h

A0i +
∑
i≤h

Ai0 +
∑
i≤h

∑
i<j≤h

Aij . (33)

To compute the energy of aminimizedconformation, we use a matrixM , whose
elements are analogous to the elements ofA, but the precomputed energies correspond
to the energy-minimized structure. If we obtain thelower boundson the energy terms
in M and store these bounds in a matrixD, then we can define the lower boundEmin

on the energy of a minimized system as

Emin = D00 +
∑
i≤h

D0i +
∑
i≤h

Di0 +
∑
i≤h

∑
i<j≤h

Dij . (34)
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Fig. 4. Dead-End Elimination Pruning Conditions. A summary of the previously described
traditional-DEE pruning conditions (top) and our newly derived minimized-DEE pruning condi-
tions (bottom). (a) is the initial criterion for traditional-DEE [6], and (b) is the generalization
for minimized-DEE (Eq. 10). Thesimple (d) andgeneral coupled(f) minimized-DEE prun-
ing conditions are analogous (resp.) to the correspondingGoldsteinpruning conditions (c, e)
of traditional-DEE [9]. General Goldstein (e), in traditional-DEE, compares the energy ofir
to a weighted average of the interaction energies amongT candidate pruning rotamersitx .
Cx ≥ 0 is the weight given to the energy computed using rotameritx . The traditional con-
formational splitting criterion [26] and the analogous MinDEE condition are given in (g) and
(h), respectively. In the minimized-DEE generalization (j) of traditional Dead-Ending Pairs (i),
E♦([irjs]) = E♦(ir)+E♦(js)+E♦(ir, js) (i 6= j), E♦([irjs], ht) = E♦(ir, ht)+E♦(js, ht)
(i, j 6= h) whereE♦ ∈ {E	, E⊕ }.

25



The computation ofEmin can be done in timeO(h2) with a precomputed pairwise
energy matrix. The use of a precomputed residue-indexed lower-bound pairwise energy
matrix avoids the computation ofO(a2) energy terms, wherea� h is the total number
of atoms in the system.

The precomputed energy matrix in the originalK∗ is indexed over all residuesand
over all rotamers for each residue, since the same rotamer can be in several different
conformations, depending on the type of the neighboring residues (see Sec. 2.2). Thus,
for a system withh flexible residues andm rotamers for each residue, we precompute
a (hm+ 1)× (hm+ 1) residue-indexed lower-bound pairwise energy matrixV whose
elementsV00, V0i, Vi0, andVij are analogous to the elements ofD.

To compute the lower bounds on the minimized template, intra-residue, residue-to-
template, and pairwise energy terms, we allow rotamers to assume the best possible
conformation for the given relative system (template, self-, or pairwise). However, the
movement of the rotamer dihedrals is constrained to a hypercuboid region of conforma-
tion space, called avoxel[36, 29], so that one rotamer will not minimize into another.
We use a voxel of±9◦ for eachχ angle.

B.2 Application of the Pairwise Energy Matrix

Energy precomputation is employed both for pruning with MinDEE (Sec. 2.2) and for
the ε-approximation algorithms (Secs. 4.1 and 4.2). The MinDEE criterion (Eq. 10)
uses both the lower- and the upper-bound (Appendix B.3) precomputed energy terms
to determine which rotamers are not part of the energy-minimized GMEC. Thus, there
is no need to re-compute the minimum and maximum energies every time Eq. (10) is
evaluated.

Both the intra- and inter-mutation filters (Propositions 3 and 4, respectively) require
that a lower bound on the energy-minimized conformation be computed. For this pur-
pose, a lookup in the lower-bound pairwise energy matrix is performed and the terms
involved in the given conformation are added, analogously to Eq. (34). The computation
of a lower bound on the energy of a conformation permits a subset of the conformations
to be pruned before the computationally-expensive full energy-minimization stage. The
full energy minimization of a given system requires the simultaneous minimization of
all of the flexible residues for the system, a much more costly process than the pairwise
minimization performed for the precomputations. Moreover, once the pairwise matri-
ces are precomputed, they can be used in any mutation search that involves the same
residues. Thus, in a protein-ligand system, a redesign for a different ligand requires the
re-computation only of the terms involving the ligand.

B.3 Algorithm Improvements

Analogously to the definition of matrixD in Appendix B.1, we define the matrixF
to be the residue-indexed upper-bound pairwise energy matrix, which facilitates the
computation of theupper-boundEmax on themaximizedenergy of a system:

Emax = F00 +
∑
i≤h

F0i +
∑
i≤h

Fi0 +
∑
i≤h

∑
i<j≤h

Fij . (35)
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Analogously to the definition ofV (see Appendix B.1), when we index over all ro-
tamers for all residues, we can define the(hm+ 1)× (hm+ 1) residue-indexed upper-
bound pairwise energy matrixU , whose elementsU00, U0i, Ui0, andUij are upper-
bounds on the corresponding energy terms.

The originalK∗ algorithm [17, 18] used a steepest-descent minimization scheme
to precompute lower-bound energy matrices. To improve the minimization results, we
1) refined the implementation of the steepest-descent algorithm, and2) implemented
a random sampling with steepest descent algorithm that explores the energy landscape
within a voxel better than the local steepest-descent algorithm. Empirically, however,
the computed minimum energy bounds using multiple random-sampling starting points
appear to be over-optimistic and present a worse approximation to the actual confor-
mation energies. The resulting lower boundslm from multiple minimization starting
points are necessarily at least as low as the corresponding lower boundsls computed by
minimizing only from the center of the voxels,lm ≤ ls. Choosing a good starting point
for the energy minimization of afull conformation that could use the additional infor-
mation of the pairwiselm bounds is a difficult task, since the different addends involved
in the computation oflm (analogous to Eq. 34) may actually result from incompatible
starting points. Moreover, using multiple starting points forfull energy-minimization
is computationally infeasible (see Appendix B.2). Thus, using multiple minimization
starting points for lower-bounds computation in fact increases the gap between lower
bounds and actual energies (i.e., the lower bounds are less achievable). As a result, the
ε-approximation algorithms (Secs. 4.1 and 4.2) require the full minimization of a larger
number of conformations before the provable halting conditions (Propositions 3 and 4)
are reached. Hence, we chose to compute the pairwise minimum energy bounds using
steepest-descent minimization starting at the center of the voxel space.

While min energies may appear as a natural concept, the computation of max en-
ergies presents both conceptual and practical challenges. A simple maximization algo-
rithm cannot be used, since most rotamer systems will maximize into a steric clash,
which would make max bounds biophysically inapplicable. Moreover, energy func-
tions, such asAMBER [37, 5], are not well-defined for high energies. However, max
bounds are used only in the MinDEE framework, where, indirectly,minimizedconfor-
mations are compared to determine which ones are provably not the minimized-GMEC.
We can thus think of the max energy for a given rotamer system as the worst minimiza-
tion this system can achieve. Hence, we chose to compute max energies asmax(M),
whereM is the set of energies obtained by steepest-descent minimization from multi-
ple starting points (max of mins). In all our experiments we used200 randomly-chosen
starting points per voxel.
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