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Combinatorial Theorems about Embedding Trees on the Real Line ∗

Amit Chakrabarti † Subhash Khot ‡

October 2005

Dartmouth Computer Science Technical Report TR2005-560

Abstract

We consider the combinatorial problem of embedding a tree metric into the real line with low
distortion. For two special families of trees — the family of complete binary trees and the
family of subdivided stars — we provide embeddings whose distortion is provably optimal, up
to a constant factor. We also prove that the optimal distortion of a linear embedding of a tree
can be arbitrarily low or high even when it has bounded degree.

1 Introduction

For a variety of reasons, both mathematical and computational, the study of finite metric spaces
has been the focus of much recent research. The most important questions in this study have
centered around the issue of embedding a finite metric space into a given target space, preserving
all distances up to a small factor, called the distortion of the embedding (for a precise definition,
see Section 2). Embeddings with low distortion into low dimensional Minkowski spaces have proven
particularly important, their study having led to the best known algorithms for multicommodity
flow [LR88, LLR94], nearest neighbor searching [IM98], data clustering [LLR94] and several other
computational problems.

It has been known for a while that a special class of metric spaces, called tree metrics, admit
embeddings of much better quality than worst case metrics. For example, an n-point tree metric
can be embedded isometrically (i.e., without distortion) into a O(lgn)-dimensional Minkowski
space [LLR94]. Moreover, for a given d, it can be embedded into d-dimensional Euclidean space
with distortion Õ(n1/(d−1)) [G99]. In light of this, it is natural to consider embeddings of tree
metrics into a one dimensional space.

The one dimensional space is the most basic Minkowski space; in this case, all Minkowski
norms are equal and we can speak of this space simply as the real line. We shall refer to an
embedding with the real line as target space as a linear embedding. In this paper, we shall be
concerned with the distortion of linear embeddings of tree metrics. A seemingly related concept
is the dilation (sometimes also called the bandwidth) of trees, which has been studied for special

∗Some of this work was done while the authors were at Princeton University. Work supported in part by NSF
Grant CCR-96-23768 and ARO Grant DAAH04-96-1-0181.

†Department of Computer Science, Dartmouth College, Hanover, NH 03755.
‡College of Computing, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, GA 30332.
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classes of trees [D85, HKMU98]. However, the notion of dilation ignores the metric defined by a
tree; in particular, a low dilation embedding may contract a distance in the tree metric quite badly
and could therefore lead to a high distortion embedding.

We note at the outset that a uniform distortion bound for all tree metrics is not too interesting.
Indeed, it is very easy to show that every n-vertex tree has a linear embedding with distortion
O(n) and that this is optimal in the worst case (Theorem 2.7). Therefore, in this paper, we take
the point of view that non-trivial distortion bounds, both lower and upper, for special families of
trees are of interest. With this in mind, we informally state our main results.

• The complete binary tree with n vertices has a linear embedding of distortion O(n/ lgn) and
this bound is easily shown to be optimal (Theorem 3.2).

• The tree consisting of
√
n paths of length

√
n each, all emanating from a common vertex

(henceforth called the “subdivided star”), has a linear embedding of distortion O(n3/4) (The-
orem 4.1).

• The above distortion upper bound is in fact optimal; we know of no straightforward argument
that establishes a lower bound stronger than Ω(n1/2) (Theorem 5.3).

• A bound on the maximum degree cannot tell us much about the optimal distortion of linear
embeddings. The proofs of the two previous results can be generalized to show that even
with maximum degree 3 (and thus, even when restricted to binary trees), any function in
Ω(1) ∩O(n) can be made the optimal distortion for some tree (Theorem 6.1).

We would like to emphasize that these are combinatorial results, rather than algorithmic ones,
such as a result on how to efficiently compute or estimate the optimal distortion of a given tree. To
the best of our knowledge, all algorithmic work on embedding metrics into a line has concentrated
on average distortion [R03, BDG+05], whereas we focus on the more classical notion on worst-
case distortion. Combinatorial results are often at the heart of the analysis of corresponding
algorithmic results. Therefore, we hope that our results, or the ideas behind their proofs, find
eventual application in algorithms.

The remainder of this paper is organized as follows. In Section 2 we formally define the relevant
concepts and prove a few easy general results on linear embeddings of trees. In Section 3 we describe
a linear embedding of complete binary trees and analyze its distortion. In Section 4 we do the same
for the “subdivided star.” In Section 5 we prove that the upper bound established in Section 4 is
in fact optimal. We end with a couple of “miscellaneous” results, in Section 6.

2 Definitions and Preliminaries

All logarithms are to base 2. Our target metric space, the real line, will be denoted by R. The
vertex set of a tree T will be denoted by V(T). For u, v ∈ V(T), we shall denote by dT (u, v) the
number of edges in the unique path from u to v in T , and shall call this quantity the distance
between u and v in T . It is clear that this distance is a metric on the vertices of T .

Definition 2.1 An embedding ϕ of a finite metric space M into a (not necessarily finite) target
metric space N is an injective function ϕ : M−→ N . For any such ϕ we define

C(ϕ) = max
u,v∈M

u6=v

dM(u, v)

dN (ϕ(u), ϕ(v))
, E(ϕ) = max

u,v∈M
u6=v

dN (ϕ(u), ϕ(v))

dM(u, v)
, D(ϕ) = C(ϕ)E(ϕ).
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We call C(ϕ) the contraction, E(ϕ) the expansion and D(ϕ) the distortion of the embedding ϕ.

Definition 2.2 A linear embedding of a tree T is an injective function ϕ : V(T) −→ R where the
target space R is understood to have the metric d(x, y) = |x− y| for x, y ∈ R.

A linear embedding ϕ of a tree is said to be contractionless if C(ϕ) = 1. Since by rescaling we
can always turn any embedding into a contractionless embedding, without affecting its distortion,
we only consider contractionless embeddings henceforth and worry only about their expansions.
From now on, linear embeddings will be tacitly assumed to be contractionless.

Lemma 2.3 In any linear embedding ϕ of a tree T , the edges suffer the maximum expansion. In
other words,

E(ϕ) = max
u,v∈V(T)

u,v adjacent

|ϕ(u) −ϕ(v)|.

Proof: This is immediate from the triangle inequality. 2

We shall now associate an embedding with every ordering of the vertices of T . This is done by
mapping the first vertex in the ordering to 0 and then mapping each successive vertex to as small
a positive real number as possible, keeping in mind that the embedding must be contractionless.

Definition 2.4 Given an ordering of the vertices of a tree T by a sequence U = (u0, u1, u2, . . .),
ui ∈ V(T), we define an embedding ψU by

ψU(u0) = 0,

ψU(ui) = max
0≤j<i

(
ψU(uj) + dT (ui, uj)

)
, for i ≥ 1.

We call ψU the linear embedding associated with U.

Note: Let s(ui) := dT (ui−1, ui) be called the shift of the vertex ui. The triangle inequality on dT

allows us to replace the second equation with

ψU(ui) = ψU(ui−1) + s(ui), for i ≥ 1.

It is clear that for any ordering of the vertices, the embedding obtained in this manner is the one
with least expansion, amongst all embeddings that arrange the vertices on the line according to
that ordering.

Definition 2.5 An ordering U is called a connected ordering if the subtree induced by the vertices
in every prefix of U is connected.

For a connected ordering U, it is clear that for each i > 0 there exists a unique j < i such that
ujui is an edge of T . We shall call the vertex uj the predecessor of ui and denote it by p(ui). For
vertices u and v, we write u ≺ v if u precedes v in the ordering U. From Lemma 2.3 we have

D(ψU) = E(ψU) = max
i>0

∑
v: p(ui)≺ v�ui

s(v). (1)

Note that the functions p and s, and the relation ≺, all depend on the connected ordering U.
We now prove a few preliminary general results about linear embeddings of trees.
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Definition 2.6 Let ϕ be an embedding of a tree T and let S ⊆ V(T). The span of S under ϕ is
defined to be

max
v∈S

ϕ(v) − min
v∈S

ϕ(v).

The span of ϕ is defined to be the span of V(T).

Theorem 2.7 Every n-vertex tree has a linear embedding with span at most 2n, and hence with
distortion at most 2n = O(n). This is optimal in the worst case.

Proof: The proof is by induction on n. Let T be a tree with n + 1 vertices. Let u be a leaf on T
and let v be the vertex adjacent to it. Consider a linear embedding of T \ {u} and move each vertex
lying to the right of v in this embedding by a distance of 2. Then embed u at a distance 1 to the
right of v. The resulting embedding of T is easily seen to be contractionless because the embedding
of T \ {u} was, and its span is the old span plus 2.

For the optimality, note that the star K1,n−1 on n vertices cannot be linearly embedded with
distortion less than n. 2

Theorem 2.8 Any linear embedding of an n-vertex tree has distortion at least (NT (v, r) − 1)/2r,
for any vertex v and any positive integer r. Here NT (v, r) denotes the number of vertices of T at
distance at most r from v.

Proof: By contractionlessness, the set of vertices of T at distance at most r from v has span at
least NT (v, r) − 1. Therefore, some two vertices in this set are a distance of at least NT (v, r) − 1

apart in the embedding. But this pair is at a distance of at most 2r in T . 2

3 The Complete Binary Tree

Let B = B(k) denote the complete binary tree with n = 2k−1 vertices. In this section we describe an
ordering of the vertices of B and bound from above the distortion of the corresponding embedding.
We begin with a useful lemma.

Lemma 3.1 The embedding corresponding to the symmetric ordering of the vertices of B(k) has
span at most 2k+1 ≤ 3n.

Proof: Let sk be the span in question. Clearly s2 = 2 and sk+1 = 2sk + 2k for k ≥ 2. A simple
inductive argument shows that sk ≤ 2k+1 − 3k. 2

In the remainder of this section, we assume for the sake of simplicity that k is a power of 2;
it will be clear that everything works for general k as well. For v a vertex of B, let Bv denote the
subtree of B rooted at v and let r be the root of B. Let visit and mark(v) be a procedure that
outputs the vertices of Bv in symmetric order, and “marks” these vertices too. Let Btop denote the
complete binary tree obtained by taking only levels 0 through lg k of B (the root being of level 0),
so that Btop has k leaves. When looping over a set of vertices, it is assumed that the vertices are
examined from left to right.
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output vertices of Btop in symmetric order;
for i := 1 to k/2 do begin

for v := leftmost 2^(i+1) unmarked vertices at level (i + lg k) do
visit and mark(v);

for v := the remaining vertices at level (i + lg k) do
output(v);

end;

Note that the ordering U that this procedure outputs is not a connected ordering. However,
Lemma 3.1 makes the distortion of ψU quite simple to analyze.

By Lemma 2.3, we only need to upper bound the expansion under ψU of the edges of B.
By Lemma 3.1, the expansion of an edge of Btop is at most 6k < O(n/ lgn). Since each call
to the procedure visit and mark above marks a subtree with at most (2k−lg k−1 − 1) vertices,
Lemma 3.1 also implies that an edge with both end points marked suffers an expansion of at most
2k−lg k = 2k/k = O(n/ lgn).

For any other edge e, suppose it connects level i − 1 + lg k to level i + lg k, where i ≥ 1. Let
S0 be the set of leaves of Btop and for 1 ≤ i ≤ k/2 let Si denote the set of unmarked vertices at
level i+ lg k. The set of vertices that, in the embedding ψU, lie between the end points of edge e is
the union of a subset of Si−1 ∪ Si and the vertices of at most 2i+1 marked subtrees, each rooted at
level i+ lg k. The distance between two adjacent marked subtrees in the embedding is at most 2k.
From Lemma 3.1 we can infer that the span of the images of the vertices in Si is at most 12|Si|.
Thus, the expansion suffered by e is at most

2i+1
(
2k+

2k−i+1

k

)
+ 12|Si−1| + 12|Si|.

But from the definition of Si we get the recurrence |Sj+1| = 2|Sj| − 2
j+2 and |S0| = k, solving which

gives |Si| = 2i(k− 2i). Now, an easy application of differential calculus shows that

|Si| ≤
2 lg e
e

· 2k/2.

Thus, the above expression for the expansion of e is at most

k · 2i+2 +
2k+2

k
+ 26 · 2k/2.

Recalling that i ≤ k/2 we see that this expression is in O(n/ lgn). Therefore, D(ψU) = O(n/ lgn).

Theorem 3.2 The complete binary tree with n nodes can be linearly embedded with distortion
O(n/ lgn), and this bound is tight.

Proof: The upper bound follows from the above discussion, since ψU is a suitable embedding. For
the lower bound, we simply apply Theorem 2.8 with r = lgn. 2

4 The Subdivided Star: An upper bound

Consider the tree T = Tn which consists of d
√
ne paths P1, P2, . . . , Pd

√
ne emanating from a common

vertex. Each path consists of d
√
ne edges. The paths are vertex disjoint except for the one common
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end point. This tree will be called the “subdivided star” with parameter n. Note that it is indeed
a subdivision of a star. Also, it has Θ(n) vertices, maximum degree d

√
ne and diameter Θ(

√
n).

We shall call the paths P1, P2, . . . the branches of T .
For ease of notation let’s assume that n = m4 for some positive integer m. It will be clear that

our asymptotic results hold in the case of general n as well. Let us denote the common end point of
the branches by v0. For 1 ≤ i, j ≤ m2, let vij denote the vertex on branch Pi which is at a distance
j from v0. It will sometimes be convenient to let vi0 = v0 for all i.

In this section we describe an embedding of the tree T , by presenting a certain ordering of the
vertices of T and then using the ordering-embedding correspondence from Definition 2.4. We then
upper bound the distortion of this embedding.

Suppose we have a procedure visitpath(i,j) that outputs the sequence of vertices vij, vi,j+1, . . . , vi,m2

on the branch Pi. Let output(i,j) be a procedure that simply outputs one vertex vij. Let σ be
the sequence of vertices that the following code fragment outputs:

output the vertex v0;
for k := 1 to m do begin

for i := (k-1)*m + 1 to k*m do
visitpath(i, k);

for i := k*m + 1 to m*m do
output(i, k);

end;

Clearly σ gives a connected ordering. Consider the embedding ψσ. We claim that D(ψσ) =

O(m3) = O(n3/4).
Before we begin the proof of this claim, let us augment the code fragment that produces σ

with some calls to a procedure color(i,j,c) which “colors” the vertex vij with the color c. The
symbols red and blue are used in the augmented code fragment below to denote the two distinct
colors we use.

output the vertex v0;
for k := 1 to m do begin

for i := (k-1)*m + 1 to k*m do begin
visitpath(i, k);
if i + 1 <= m*m then

color(i + 1, k, red);
end;
for i := k*m + 1 to m*m do begin

output(i, k);
if i + 1 <= m*m then

color(i + 1, k, blue)
else

color(k*m + 1, k + 1, blue);
end;

end;

We are now ready to prove our claim.

Theorem 4.1 The embedding ψσ satisfies D(ψσ) = O(n3/4).

Proof: We make four observations, each verifiable simply by studying the code fragment.
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1. For any vertex v, other than v0, there are O(m3) vertices that lie between p(v) and v in the
sequence σ. Of these, at most O(m2) are blue vertices and at most O(m) are red.

2. For any uncolored vertex v we have s(v) = 1.

3. For any blue vertex v, s(v) ≤ 1 + 2k(v), where k(v) is the value that k had had when v got
colored. Therefore s(v) = O(m).

4. For any red vertex v we have s(v) ≤ diam(T) = O(m2). Indeed, this is true for any vertex,
by definition of s.

The proof follows from these four observations and equation (1). 2

5 The Subdivided Star: A tight lower bound

In this section we show that the upper bound in the previous section is tight up to a constant
factor. Note that an application of Theorem 2.8 cannot give us a bound stronger than Ω(

√
n). We

reemphasize the fact that all our embeddings are required to be contractionless.
Let ϕ be an embedding of T into the real line. Scanning from left to right along the line, we

encounter the images of the vertices of T in some order, say U = (u0, u1, . . . , un). If two vertices
of T , other than v0, are adjacent in the sequence U, not adjacent in T , but lie on the same branch
of T , then we say that the embedding ϕ has a gap. Our first step is to remove all gaps from ϕ and
the following lemma lets us do just that.

Lemma 5.1 There is an embedding ϕ̂ of T that has no gaps and that satisfies D(ϕ̂) ≤ D(ϕ).

Proof: Suppose vij and vik are adjacent in U but j < k − 1. We simply move the images of all
vil with j < l < k so that they lie in between ϕ(vij) and ϕ(vik). This gives us a new candidate
embedding which we call ϕ ′. Assume WLOG that ϕ(vij) < ϕ(vik). We can write out ϕ ′ explicitly:

ϕ ′(vil) = ϕ(vij) + (ϕ(vik) −ϕ(vij)) ·
l− j

k− j
, j < l < k

ϕ ′(v) = ϕ(v), for all other vertices v

We shall show that ϕ ′ is a valid contractionless embedding and that its distortion is no more than
that of ϕ. We say that a vertex v has moved if ϕ ′(v) 6= ϕ(v); note that the only vertices which
have moved are vil with j < l < k. Recall that ϕ was a contractionless embedding and so the ratio

α :=
|ϕ(vik) −ϕ(vij)|

k− j

lies between 1 and D(ϕ). For any pair of distinct vertices u and v, three cases arise:

• If u and v have both moved, then clearly |ϕ ′(u) −ϕ ′(v)| = α · dT (u, v).

• If neither u nor v has moved, then |ϕ ′(u) −ϕ ′(v)| = |ϕ(u) −ϕ(v)|.
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• If u = vil has moved and v has not, assume WLOG that ϕ(v) < ϕ(vij). Then |ϕ ′(u)−ϕ ′(v)| =
|ϕ ′(u)−ϕ(vij)|+ |ϕ(vij)−ϕ(v)| ≥ dT (u, vij)+dT (vij, v) ≥ dT (u, v). Next, the path in T from
u to v must pass either through vij or through vik; WLOG assume that it passes through vik.
Then |ϕ ′(u) − ϕ ′(v)| ≤ |ϕ ′(u) − ϕ(vik)| + |ϕ(vik) − ϕ(v)| ≤ αdT (u, vik) +D(ϕ)dT (vik, v) ≤
D(ϕ)dT (u, v).

Putting these cases together proves that D(ϕ ′) ≤ D(ϕ). By repeatedly eliminating gaps one at a
time in this way, we obtain the required embedding ϕ̂. 2

From now on we discard the original embedding and work with ϕ̂. We redefine ϕ to be ϕ̂
from now on; note that the sequence U would also have changed, we shall mean the new sequence
whenever we refer to U hereafter.

Consider a maximal contiguous subsequence of U whose vertices form a path in T − {v0}. Call
the set of vertices in such a subsequence a segment of T . We also call the singleton set {v0} a
segment. V is thus partitioned into segments. We define the weight W(s) of a segment s to be the
sum of the sizes of all segments, not including v0 but including s, encountered on the path from v0

to s. We denote the set of all segments of T by S(T).
If s and s ′ are distinct segments we write s ≺ s ′ if ϕ(u) < ϕ(u ′) whenever u ∈ s and u ′ ∈ s ′.

Clearly ≺ is a total order on S. By abuse of notation, if s ∈ S and v /∈ s is a vertex of T , we write
s ≺ v if ϕ(u) < ϕ(v) for all u ∈ s. The notation v ≺ s is defined similarly. An edge of T is called a
link if its end points belong to distinct segments.

We say that a branch of T is of type t if the branch contains exactly t segments other than
{v0}. For each integer k, 1 ≤ k ≤ dlgm2e, let Tk denote the subtree of T consisting of exactly those
branches which have type t for some t with 2k−1 ≤ t < 2k. Let bk be the number of branches in
Tk. Let S(Tk), the set of segments of Tk, inherit the total order ≺ from S(T).

Lemma 5.2 Let (u, v) be a link in Tk and suppose v is closer to v0 than u. Then

D(ϕ) ≥
∑

s∈S(Tk): u≺ s� v

2W(s) (2)

if ϕ(u) < ϕ(v), and
D(ϕ) ≥

∑
s∈S(Tk): v� s≺u

2W(s) (3)

otherwise.

Proof: Assume WLOG that ϕ(u) < ϕ(v), the proof is essentially unchanged in the other case.
Let s1 ≺ s2 ≺ · · · ≺ st be the set of segments between u and v, with u ≺ s1 and v ∈ st. Let wi

be the vertex in si that is farthest from the vertex v0. Note that ϕ(w1) < ϕ(w2) < · · · < ϕ(wt).
From our definition of weight, it follows that

dT (v0, wi) = W(si).

Since ϕ has no gaps, for each i ≥ 1, wi+1 is in a different branch of T from wi. Thus

ϕ(wi+1) −ϕ(wi) ≥ dT (wi, v0) + dT (v0, wi+1) = W(si) +W(si+1).

Also
ϕ(w1) −ϕ(u) ≥ dT (u,w1) > dT (v,w1) = W(s1) +W(st),
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since v is closer to v0 than u. Adding up all the inequalities we have just obtained and noting that
wt = v gives

ϕ(v) −ϕ(u) ≥
t∑

i=1

2W(si).

But dT (u, v) = 1. This gives us the desired lower bound on D(ϕ). 2

Let smin and smax be the minimal and maximal elements of S(Tk) according to the total order
≺. Let L be the set of links encountered on the path from a vertex in smin to a vertex in smax. For
each link in L we obtain an inequality, either from (2) or from (3). Summing all these inequalities
gives

|L| ·D(ϕ) ≥
∑

s∈S(Tk)−{smin,smax}

2W(s). (4)

Consider a branch of Tk which contains exactly t segments s0, s1, . . . , st−1 ordered by distance
from v0 in Tk, s0 being closest to v0. Recalling that

∑t−1
i=0 |si| = m2, we obtain

W(s0) +W(s1) + · · ·+W(st−1) =

t−1∑
i=0

(t− i)|si|

≥
t−1∑
i=0

(
(t− i) + |si| − 1

)
≥ m2 + t2/4− 1

≥ m2 + 22(k−1)/4− 1.

Using this fact in (4) gives

|L| ·D(ϕ) ≥ 2bk(m2 + 22(k−1)/4− 1) − 2W(smin) − 2W(smax).

Now consider only those k for which bk ≥ 6. Using W(smin) ≤ m2, W(smax) ≤ m2 and |L| ≤ 2 · 2k

gives
2k+1D(ϕ) ≥ bk(m2 + 22(k−1)/4). (5)

We are now ready to prove our lower bound.

Theorem 5.3 Any embedding ϕ of the subdivided star satisfies D(ϕ) = Ω(n3/4).

Proof: Suppose there is a k such that bk ≥ 2k+1m/16. Then by (5) we would have D(ϕ) ≥
(m/16)(m2 + 22(k−1)/4) ≥ m3/16. Next, suppose there is a k such that bk ≥ m2/2k−dlg me+1.
Then (5) gives us D(ϕ) ≥ bk(m2/2k+1 + 2k−5) ≥ bk · 2k−5 ≥ m2 · 2dlg me−6 ≥ m3/64. We shall now
show that a k of at least one of these two types must exist, which will imply D(ϕ) ≥ m3/64 =

Ω(m3) = Ω(n3/4).
If there is no k of either of these two types, then on the one hand

dlg me∑
k=1

bk <
m

16

dlg me∑
k=1

2k+1 < m2/2,
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and on the other hand

dlg m2e∑
k=dlg me+1

bk <

dlg m2e∑
k=dlg me+1

m2

2k−dlg me+1
≤ m2

(
1

4
+
1

8
+
1

16
+ · · ·

)
≤ m2/2.

Therefore, b1 +b2 + · · ·+bdlg m2e < m
2 which is a contradiction, since by definition this sum equals

m2. This completes the proof. 2

6 Other results

We conclude this paper with two more results on linear embeddings of trees, which we can prove
with the tools developed in the previous section. We view these as negative results; for instance
the first result shows that the maximum degree in a tree does not tell us much about the distortion
of the optimal linear embedding; even if this maximum is restricted to be at most 3, this optimal
distortion can be arbitrarily low or high. The second result shows that our sublinear distortion
embedding of the complete binary tree cannot extend to arbitrary binary trees.

Theorem 6.1 Let f(n) be a nondecreasing function of n with f(n) = Ω(1) and f(n) = O(n).
Then there is a family of trees {Ti}, where Tn has n vertices, with maximum degree 3 and with
the following property. There is a linear embedding of Tn with distortion O(f(n)), and any linear
embedding of Tn has distortion Ω(f(n)).

Proof: Let the tree Tn be a comb with dn/f(n)e teeth, each tooth being a path of length df(n)e
except perhaps one which is of shorter length (in order to make the total Tn an n-vertex tree).
Clearly the maximum degree of Tn is 3. It is very easy to embed Tn in the line with distortion
O(f(n)), simply by embedding the teeth of the comb isometrically and separately. On the other
hand, arguments similar to the ones used in Section 5 prove that any linear embedding of Tn must
have distortion Ω(f(n)).

Details will be provided in the final version of the paper. 2

Corollary 6.2 There is an n-vertex binary tree such that any linear embedding of it has distortion
Ω(n). 2
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los, A. Approximation algorithms for low-distortion embeddings into low-dimensional spaces.
In Proc. 16th Annu. ACM Symp. Discrete Alg., pages 119–128, 2005.

10



[D85] Diks, K. Embeddings of binary trees in lines. Theoretical Comput. Sci., 36(2):319–331, 1985.

[G99] Gupta, A. Embedding tree metrics into low dimensional Euclidean spaces. In Proc. 31st
Annu. ACM Symp. Theory Comput., pages 694–700, 1999.

[HKMU98] Heckmann, R., Klasing, R., Monien, B., Unger, W. Optimal embedding of complete
binary trees into lines and grids. J. Parallel and Distrib. Comput., 49(1):40–56, 1998.

[IM98] Indyk, P., Motwani, R. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proc. 30th ACM Symp. Theory Comput., pages 604–613, 1998.

[LR88] Leighton, T., Rao, S. An approximate max-flow min-cut theorem for uniform multicom-
modity flow problems with applications to approximation algorithms. In Proc. 29th Annu. IEEE
Symp. Found. Comput. Sci., pages 422–431, 1988.

[LLR94] Linian, N., London, E., Rabinovich, Y. The geometry of graphs and some of its algorithmic
applications. In Proc. 35th Annu. IEEE Symp. Found. Comput. Sci., pages 577–591, 1994.

[R03] Rabinovich, Y. On average distortion of embedding metrics into the line and into L1. In
Proc. 35th Annu. ACM Symp. Theory Comput., pages 456–462, 2003.

11


	Combinatorial Theorems about Embedding Trees on the Real Line
	Dartmouth Digital Commons Citation

	tmp.1601066523.pdf.3zPpr

