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Abstract

In this paper, we formalize the concept of tracking in a sensor network and develop a
rigorous theory of trackability that investigates the rate of growth of the number of consistent
tracks given a sequence of observations made by the sensor network. The phenomenon being
tracked is modelled by a nondeterministic finite automaton and the sensor network is modelled
by an observer capable of detecting events related, typically ambiguously, to the states of the
underlying automaton.

More formally, an input string, Z*, of ¢ + 1 symbols (the sensor network observations)
that is presented to a nondeterministic finite automaton, M, (the model) determines a set,
Ha (Z1), of state sequences (the tracks or hypotheses) that are capable of generating the input
string Z'. We study the growth of the size of this set, |Has(Z")|, as a function of the length of
the input string, ¢+ 1. Our main result is that for a given automaton and sensor coverage, the
worst-case rate of growth is either polynomial or exponential in ¢, indicating a kind of phase
transition in tracking accuracy.

The techniques we use include the Joint Spectral Radius, p(X), of a finite set, X, of (0,1)-
matrices derived from M. Specifically, we construct a set of matrices, ¥, corresponding to
M with the property that p(¥) < 1 if and only if |Ha(Z")| grows polynomially in t. We
also prove that for (0,1)-matrices, the decision problem p(X) < 1 is Turing decidable and,
therefore, so is the problem of deciding whether worst case state sequence growth for a given
automaton is polynomial or exponential. These results have applications in sensor networks,
computer network security and autonomic computing as well as various tracking problems of
recent interest involving detecting phenomena using noisy observations of hidden states.
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1 Introduction

This paper studies the problem of tracking a nondeterministic finite automaton using indirect,
possibly noisy, observations of the states that the automaton occupies over time. This kind of
problem arises in many applications of current interest such as tracking using a sensor network,
computer and networks security using various network- and host-based sensors, and autonomic
computing systems in which the goal is to develop systems capable of estimating their own states
from indirect observations. While many such applications use statistical models, our work addresses
so-called weak models which are nondeterministic but not probabilistic. That is, we only consider
what is possible not what is probable.

Research on probabilistic tracking in a sensor network, using tracking formalisms such as
Bayesian maximum likelihood estimation and Multiple Hypothesis Tracking [14], is currently be-
ing investigated by other groups [11]. This paper does not require any probabilistic or statistical
assumptions, thus allowing the results to be applicable to domains in which the estimation of
probabilities is either inappropriate or difficult.

After developing a formal model for tracking a nondeterministic finite automaton, we introduce
the notion of trackaebility. A problem is trackable if the rate of growth of the number of possible
hypotheses, or state sequences, that are consistent with a sequence of observations of the state
machine is subexponential. It is important to differentiate the state estimation problem (namely,
what is the set of states that the model could currently be in) from the state sequence estimation
problem (namely, what are the possible state trajectories over the whole observation time). In this
paper, we are concerned with the latter and we demonstrate that the growth rate of the set of
possible state sequences is either polynomial or exponential.

We now introduce some of the formal constructs which will allow us to develop these ideas
rigorously. Let G = (V, E) be a finite directed graph and Ag be the vertex adjacency matrix
corresponding to the directed edges in F. We identify the graph G with an automaton in which
the vertices represent states and directed edges are the allowable state transitions. Transitions
from a state to itself are allowed so that As can have nonzero diagonal entries. Moreover, there is
a finite set, ®, of possible observable events related to the automaton and a mapping L : V — 2%
of states to subsets of events. The automaton transitions from state to state according to the
allowable transitions determined by F. When the automaton enters a state, say v, one of the
events contained in L(v) C @ is generated and observed.

We call such a construction a weak model by analogy with Hidden Markov Models (HMMs) [13].
Weak models have the structural ingredients of Hidden Markov Models, namely states, state tran-
sitions and observations related to states, but they do not have probabilities associated with those
state transitions and observations. Weak models only describe the possible transitions and possible
associations of transitions to states, without assigning any probabilities to them. Weak models
have been used in a variety of process detection problems [8].

More formally, a weak model is an automaton defined by a quadruple, W = (V, E, L, ®), with
the following properties:

e corresponding to each state (vertex), v € V, is a finite set of possible outputs, L(v) C @,
which are not necessarily unique to that state; that is, L(v) N L(v") # 0 is possible;

e when occupying a state, the underlying automaton generates exactly one of the possible
outputs associated with that state which an external observer can detect.

One weak model, W’ = (V, E’, L/, ®) is a noisy version of another weak model, W = (V, E, L, ®),
written as W < W' if L(v) C L'(v) for all v € V and E C E’. This notion of noise corresponds
to the usual intuitive concept of noise in the sense that an observation, say &, is associated with
a set of states of W’ which are always a superset of the states of W that can be associated with
&, since for every state v € V, £ € L(v) implies £ € L'(v) due to the inclusions L(v) C L'(v).
Additionally, the condition E C E’ states that the legal state transitions of W are a subset of the
state transitions allowed in W’ so that W is a more specific model than W',
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A single observation, £ € ®, of W determines a set of possible states, Hyy (£), trivially defined
by Hw (&) = {v|¢ € L(v)}. The set Hw (£) is a collection of hypotheses about which state the
automaton was in when £ was observed. A pair of consecutive observations, {y&1, determines a set
of pairs of states according to

Hw(&)fl) = {UO'Ul | Vo € Hw(fo), V1 € Hw(fl) and (Uo,’Ul) S E}

This allows a recursive construction of hypotheses for longer sequences of consecutive observations
as follows. Suppose ZT = £o&1...67—1&r are T + 1 consecutive observations of W. Then

Hw (ZT) = { vov1...vr | vov1..vr—1 € Hw (ZT7Y), vr € Hw (ér) and (vr_1,vr) € E}.

Evidently, if W < W' then if follows from the definitions that Hy C Hy- for all observation
sequences because W has more restrictive state transitions and observation-to-state associations.

One of the main results of this paper is that hy (Z) = |Hw (Z7)|, the cardinality of the set
Hw(ZT), grows either polynomially or exponentially in 7. Note that for W < W', we must
have hyw (Z7) < hyw/(Z7), so that the number of hypotheses relative to a sequence of models is
monotonically increasing as the models get noisier in the sense of our definitions above. Accordingly,
if we have a family of weak models, say W < W < W) < .. < W) our results show that there
is an abrupt change in the worst case growth rate of hypotheses, from polynomial to exponential,
as the models get noisier. This abrupt change is a kind of phase transition in the modelling process.

Our main motivation for this work arises in applications in which the basic framework is similar
to that of Hidden Markov Models but without the underlying probabilistic assumptions. That is, in
weak models, state transitions and output-state associations are simply possible or not, as in state
machines, but the outputs are associated with states as in an HMM, and not with state transitions
(edges) as in the usual definition of a state machine. We will use “outputs” and “observations”
synonymously, in the sense that the model produces an output while externally that output is an
observation detectable by an observer.

A weak model as defined above is equivalent to a nondeterministic finite automaton (NDFA)
with at most a polynomial growth in the number of states and state transitions. Another difference
between weak models and the usual definition of finite state machines is that there are no initial
or accepting states in a weak model. This minor difference allows observation of the automaton to
start at any time, not just when the automaton is initialized and to continue indefinitely. In other
words, all states of weak models can be considered initial states and none are accepting states.
Specific relationships between weak models, nondeterministic finite automata, deterministic finite
automata and other constructs are outlined in [18].

In this paper, we investigate the trackability of a weak model; that is, the extent to which a
given sequence of observations or outputs can effectively determine the actual set of state sequences
that could have produced the outputs. Given a sequence of observations, we consider the set of
possible state sequences that could have produced the observed outputs. By analogy with classical
computational complexity theory, we will say that a model is trackable if the size of that set grows
polynomially as a function of the observation sequence length in the worst case for a fixed model.
The model is untrackable if the set grows exponentially in the worst case.

One of the main results of this paper is a proof of the fact that these two cases are the only
ones possible. Specifically, the number of possible state sequences that could have produced an
observation sequence grows either polynomially or exponentially in the worst case output sce-
nario. Furthermore, we demonstrate that the problem of determining whether a given weak model
is trackable or untrackable can be effectively computed, although we are not aware of efficient
(subexponential) algorithms for making that determination.

1.1 Paper Outline and Organization

We study the problem of state sequence growth in weak models by formulating the problem in
terms of matrix norms of sequences of 0-1 matrices. The relevant mathematical machinery we
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invoke involves the notion of the Joint Spectral Radius of a set of matrices. The Joint Spectral
Radius, p(¥), is a quantity introduced by Rota and Strang [16] as a generalization, to a set of
matrices X, of the classical notion of the spectral radius of a matrix. The Joint Spectral Radius is
a quantity that measures the worst-case rate of growth of the norm of products of matrices from
a finite set of real matrices. The concept arises commonly in the study of the boundedness of
time-varying dynamical systems of the form x:11 = Az [9, 4, 20].

We relate the State Sequence Growth Problem to the value of the Joint Spectral Radius p(X)
of a finite set ¥ of (0, 1)-matrices derived from G as above in the simple example, namely from
the possible state transitions and the sensor model. We reduce the question of polynomial versus
exponential rates of growth of the number of hypotheses to the Joint Spectral Radius of a derived
set of matrices as above. In particular we establish that

e In a weak model, the worst-case number of hypotheses consistent with a given sequence of
t observations, grows polynomially if and only if the Joint Spectral Radius of the induced
finite set of (0, 1)-matrices (see Section 4) is less than or equal to 1.

e Conversely, in a weak model the number of hypotheses consistent with a sequence of ¢ ob-
servations grows exponentially if and only if the Joint Spectral Radius of the induced finite
set of (0, 1)-matrices is larger than 1. Namely there are no intermediate rates of growth.

e Finally, unlike the general case for rational matrices, the decision problem p(¥) < 1 for
(0, 1)-matrices is (Turing) solvable. Accordingly, given a weak model, we can decide (in
the Turing sense) whether there exists a family of sequences of observations such that the
number of consistent hypotheses grows at least exponentially or for all families of sequences
of observations the growth is at most polynomial.

In Section 2 we develop some simple examples to illustrate the main concepts and constructs as well
as applications to noisy sensor networks. In Section 3 we present some definitions and results about
the Joint Spectral Radius, p(X), and the Generalized Spectral Radius. In Section 4, we study how
the State Sequence Growth Problem relates to the Joint and Generalized Spectral Radius concepts
and establish our main results. Section 5 contains a summary with several suggestions for future
work. The Appendix contains four examples to illustrate how these ideas apply to different simple
sensor networks and associated object kinematics.

2 Illustrative Examples

2.1 Tracking in a Simple Sensor Network

The framework described above applies to a simple version of tracking an object, say a vehicle or
person, using a network of sensors for example. Figures 1, 2 and 3 are used to illustrate the exam-
ple. The reader is encouraged to consider how these simple ideas apply to other domains as well.
Our interest in this problem arose from the study of effectively using weak models for detecting
and tracking processes in a variety of applications such as computer security [3]|, autonomic com-
puting [15] and object tracking using sensor networks [6]. Examples showing the effects of process
dynamics (the state machine model) and sensor coverage on hypothesis growth are developed in
the Appendix.

In this simple tracking application, the states simply correspond to three rooms and the system
is in one of the three states if an object (a person for example) is currently in the corresponding
room. If a person is in Room 2, for example, the system is in state sy and so on.

Figure 1 also shows the sensor coverage which determines the possible observations that corre-
spond to each state. In Sensor Coverage «, the observation will be 0 if the object is in states s; or
so and the observation will be 1 if the object is in state s3. In Sensor Coverage /3, the observation
is a 1 if the state is s9 and 0 otherwise.
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The model’s states
correspond to an
States of Room 1 Room 2 Room 3 object being in a
the Model State s, State s, State s, room. There are
three rooms and
three states.

The sensor reports
Sensor a 1 if the object
Coverage a is in Room 3

(state s;) and

reports a 0 otherwise

Room 1 Room 2 Room 3
State s, State s, State s,

The sensor reports

a 1 if the object

is in Room 2

(state s,) and

reports a O otherwise

Sensor
Coverage f

Room 1 Room 2 Room 3
State s, State s, State s,

Figure 1: The underlying state space has three states (each corresponding to occupancy of a room
by an object). In Sensor Coverage «, the sensor detects presence in state s3 (room 3) and in Sensor
Coverage 3, the sensor detects presence in state sy (room 2). The sensors report a 0 if no object
is present and a 1 if an object is present (in each of the corresponding states (rooms). The object
moves according to the dynamical models shown in Figure 2.

State s, State s, State s,

Kinematic Model G

State s, State s, State s3

Kinematic Model H

Figure 2: There are two dynamical models, G and H, that define the allowed movement between
states (rooms) of the state space.
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{0} {0} {1} {0} {1} {0}
Weak Model W, Weak Model Wg,

{0} {0} {1} {0} {1} {0}
S S, j S3 S4 Sy 3 S3
Weak Model Wy, Weak Model Wy,

Figure 3: There are four resulting weak models corresponding to the possible combinations of
two different sensor coverages and two different dynamical models. This figure depicts the four
models. In these graphical depictions, the possible sensor reports for each state are shown in braces
connected to the state with a dotted line.

Using the notation introduced above, we have L, (s1) = Lo(s2) = {0} and L,(s3) = {1} while
Lp(s1) = Lp(s3) = {0} and Lg(sz) = {1}.

Figure 2 shows two possible kinematic models for the object moving between the three rooms.
In model G, the object must move between adjacent rooms at each time step. In model H, the
object can stay in rooms 1 and 2 indefinitely or can move from room 1 to room 2, room 2 to room
3 or room 3 to room 2. The object cannot stay in room 3 and cannot move from room 2 to room
1 in model H.

These two kinematic models combined with the two sensor models lead to four weak models as
depicted in Figure 3, namely Waq, Wag, Wha and Wyg.

Now consider an observation, 0, in each of the four weak models. We have hypothesis sets:
Hwe, (0) = {51,582}, Hw,;(0) = {s1,53}, Hwy, (0) = {s1,s2} and Hw,,(0) = {s1,s3}. Suppose
that two consecutive 0’s are observed. We then get hypothesis sets:

HWGQ (00) {5152, 8281}‘7

HWGB (00) = { } = Q)v

Hwy, (00) = {5181, 5182, 5282},

Hwys(00) = {sis1}.

Similarly, Hw,,, (1) = {53}’HWGﬁ(1) = {82}’HWHn (1) = {53}7HWHﬁ(1) = {82} and

Hwe, (10) = {s3s2},
Hwes (10) = {s251,8283},
Hwy, (10) = {s3s2},
Hwy,s(10) = {s2s3}.
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In this article we are concerned about the worst-case growth of the hypothesis sets Hyy. By
inspection, note that

[Hwg,, (01)] [{s152..., $251...}| = 2, (1)
|'HWGﬁ((01)2t)| = |{515251..., 515283, ..., 535283...}| = 21, (2)
[Hw,, (0] = |{515181...51, 5151....5152, §151...515282}| = , (3)
[Hw,s (019 = [{s182....52, 835282...52}| = 2 (4)

where a' for a string @ means repeating the string ¢ times. The hypothesis growth in these cases is
either constant (namely 2), polynomial (namely t), or exponential (namely 2t/2). The reader can
verify that a model like Wy, but with k& additional rooms like s; and s, for which the object can
either stay in a room or move to rooms only on the right leads to a worst-case polynomial growth
of order k. Such an example is worked out in more detail in the Appendix.

It is useful, for an understanding of the matrix formulation that follows below in this paper, to
develop the matrix operations underlying the different hypothesis growths.

The kinematic models G and H can be represented by state transition matrices (or equivalently
node-node adjacency matrices) Ag and Ap:

01 0 11 0
Ag=|1 0 1 , Ag=10 1 1
010 010

The ijth entry of these matrices is 1 if a transition from state ¢ to state j is possible in the model
and 0 if the transition is not possible. Additionally, the sensor report to observation relationships
in Figure 1 can be summarized similarly by

1 0 0 0 00 1 00 0 00
I,O)=[0 1 0| ,I,(1)=[0 0 0| ,Ig0=]0 0 0] ,Ig1)=|0 1 0

0 00 0 0 1 0 0 1 0 00
These matrices have a 1 in the ith diagonal position if the observation could have been generated
while the system is in state ¢ and a 0 in the ¢th diagonal position otherwise.

The relationship between the number of hypotheses and these matrix representations goes as
follows. Suppose that we are dealing with the kinematic model G and the sensor coverage o and
that we observe the sequence of ¢t + 1 observations £y&1&s...&. Let 1 = [lll]T denote the column
vector of all 1’s. Having observed &, the possible states are 171, (&o) where state s; could have
generated that observation if the ith coordinate of the product vector is 1 and state s; could not
have generated that output if the ith coordinate is 0. Now if we next observe &; then the possible
states are determined by

lTIa(go)AGIa(gl)-

In general, let zga(£0&1&2-.-&k) be the row vector whose ith coordinate is the number of
hypotheses (that is, possible state sequences) that end in state s; and that are consistent with the
observations £y ... &,. Then

k+1

260(§0&1& - - Eréii) = 20a(&06182 - Gk) AcTa(r1) = 1T Ta(%0) | [ [ (AcTa(4)))

j=1
A recursive argument easily establishes that if zgo(£0&1&2 - - - &) is as claimed, then

zca(0&1é2 ... &k)Aa

is a row vector representing the number of state sequences consistent with £y ... &, as propagated
to the next time step. Multiplying that vector by I, (£x+1) on the right merely selects the state
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sequences that are further consistent with the observation £, 1. These operations can be thought
of as a prediction step followed by a filtering step, not unlike what is used in Kalman Filtering for
continuous state space filtering.

As an example, consider again model G and sensor coverage o and suppose we observe the
sequence 000. Then the number of hypotheses consistent with those observations is given by the
expression

1171 0 0 01 0 10 0 01 0 100 117
1 01 0 10 1 01 0 101 01 0|=]1] =z25/(000).
1 00 0 01 0 00 0 01 0 00 0 0

Similarly, if we use the kinematic model given by H, then the number of possible state sequences,
or equivalently hypotheses, is given by

T T

1 100 110 100 110 100 1
1 010|011 010|011 01 0/|=1|3] =2a(000).
1 oooflo1o|llooo|]0o1o0]]O0oO00 0

In each case, the ith coordinate of the resulting vector is a count of the number of hypotheses
which are consistent with the given observations and end in the ith state. For example, given the
observations 000, there is only one state sequence in model Wy, that ends in state s;, namely
s15151 while there are three consistent state sequences that end in state so, namely s15152, S15252
and s2s252. There are no consistent state sequences that end in state s; because then the last
observation would have had to have been a 1 not a 0.

The total number of hypotheses (possible state sequences) is clearly given by z1. Moreover,
letting Aq(§;) = Aala (&) we see that the number of hypotheses is given by

t
hWago (Z') = Hwa o (€061 &) = 1T Ta(&) [ | Ac(&)L
j=1

Evidently, the number of hypotheses consistent with an observation sequence is related to the
matrix norm of a product of matrices drawn from a finite set of 0-1 matrices, namely the possible
Ac(&;) as determined by the kinematics of the underlying model and the associated sensor coverage.
It should be noted that, in the general case, if the underlying state space has n states, then the
total number of possible matrices of the form Aq(§;) is 2" since there are 2™ possibilities for I(§),
namely all possible 0-1 possibilities for the diagonal entries.

2.2 An Application to Noisy Sensor Networks

For the purposes of this example, a sensor network is a collection of sensors each of which detects
physical signals in the environment in which they are deployed. For simplicity, suppose the sensors
are binary meaning that they only report either a 0 or a 1 at each sampling time instant, depending
on whether they detect a signal in their neighborhood or not. For example, the sensor network
could consist of acoustic microphones deployed in some geographical region. A single microphone
sensor will report a 0 if it detects no acoustic signal (thresholded typically) and a 1 if it does. At
each sampling instant, the sensor network consisting of this collection of m simple microphones
reports a binary m-vector with as many coordinates as there are sensors.

The set of possible binary vectors is {0,1}™ and the set of subsets of possible binary vectors
is similarly denoted by 2{%1}". Now suppose that a vehicle is moving through the region where
the sensor network (microphones) is deployed. The vehicle’s engine and tires make sounds that
the microphones may or may not detect depending on their proximity to the vehicle and the local
topography and ground cover, among other things.
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Suppose that the region is discretized into n cells with each cell corresponding to a state of the
vehicle in this model. The possible movements between these states then determines the dynamics
of the model, namely the possible state transitions in a given time interval. The state space and
associated dynamics are described by G = (V, E).

The mapping, L, of the n states to the 2{1}" subsets of possible observations effectively
associates a subset of possible sensor reports with each state of the model (in this example, the
discretized location of the vehicle) . This abstraction captures the overall properties of the sensor
network and vehicle model in this example .

Under ideal conditions, we could expect each state to be uniquely identified by an m-tuple
bits, that is the mapping L associates a subset consisting of a single binary vector with each
state. This would correspond to a noiseless sensor network in the sense that there is a one-to-one
correspondence between the states of the system (vehicle location) and possible sensor observations.
Noise can flip some bits in the observed binary m-vector. In such a case, the mapping may no
longer be one-to-one.

Suppose we allow £ bits to be flipped in this way, corresponding with noise in the measurements,
where 0 < k < m. The resulting models, M}, form a hierarchy of weak models, each noisier than
the other.

More formally, consider a weak model M = (V, E, L,2{>1}") where G = (V, E) is a directed
graph capturing the kinematics of the underlying system and L :— ® is a mapping function that
assigns a set of binary m-uples to each state:

L:V —20u™

In ideal conditions (no noise), |L(v)] = 1, for all v € V, and L(u) N L(v) = 0, for u # v. We add
noise by allowing k or fewer bits to flip in the m-tuple during the reporting of the sensors. Noise
level k means that for each state u € V, the set Ly(u) = {y € {0,1}™ | du(L(u),y) < k} is the
set of m-tuples that can be reported by the sensor network when the system is in state u. Here
dy(x,y) is the standard Hamming distance between binary m-vectors x and y.

For each noise level, k, we now have a mapping function, Ly, : V — 2{%1}"™ "according to Ly (u)
defined above, for all uw € V. By varying the noise level k£ we obtain an ordered sequence of weak
models

Wo<W <...< Wy,

where Wy, = (V, E, Ly, 21%13™) is a noisy version of Wy_; = (V, E, Li_1,2{%1™), in the sense
made clear before, and W} is the model in ideal conditions. According to the various concepts we
have introduced, we must have that

hwo (t) < hw, () < ... < hay, ().

Moreover, one of the main results of this paper implies that there is some noise level, k*, for
which Aw, (t) grows polynomially in ¢ if k¥ < k* while hy,. (t) grows exponentially in ¢. It might
be that £* = 0 or k* = m + 1, namely that all such models have hypothesis growth rates that are
either all polynomial or all exponential.

We can also vary the sampling rate at which the sensor network reports its observations. This
can change the possible state transitions of the underlying kinematic model. In particular if
we reduce the sampling frequency, the system might be able to transition between states many
times between consecutive sensor readings. This means adding new transitions to the kinematic
model. Conversely, increasing the sampling frequency might remove some possible transitions and
introduce the possibility of staying in the same state between sensor samples whereas that might
not be possible at a lower sampling frequency.

For the sake of simplicity, let us assume that we can only decrease the sampling frequency
in integer quantities: that is, decrease the sampling by 1/2,1/3, ... from the original given timed
kinematics with the understanding that decreasing the sampling rate by 1/s allows the system to
make as many as s transitions allowed in the underlying kinematic model, G = (V, E). We will
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Figure 4: a) The transitions to exponential growth can be very abrupt (left). b) Transitions to
exponential growth can be gradual, transitioning through a polynomial growth region (right).

simply say that the sampling rate is s if a sample is taken only every s time steps so that there
are s possible state transitions in the underlying state machine.

Varying the sensor noise and changing the sampling rate as above creates a family of weak
models doubly indexed by the noise level, k, and by the sampling rate, s. This collection of weak
models is partially ordered according to the notion of noisy models we introduced above. Note,

Wi.s < Wi o if and only if k < k' and s < s .

With the sampling frequencies discretized and interpreted this way, the partial order is a lattice
where the minimum is determined by the model with noise level 0 and with the fewest possible
number of transitions; whereas the maximum is represented by a fully connected (directed) graph
whose states can emit all the possible m-tuples.

Figures 4a and 4b show how the number of hypotheses can grow both as a function of time,
represented by the different lines in each graph with the number of hypotheses at different times
with represented by a different line and increasing time generally corresponding to higher lines in
the plot, and the Hamming Distance noise metric as defined in the text on the horizontal axis.
The vertical axis is the number of hypotheses. Accordingly, each line, going from left to right
depicts the growth in the number of hypotheses, for a fixed time, as the Hamming Distance noise
measure increases. These examples were taken from randomly generated weak models. A random
but legal observation sequence was generated and then the total number of consistent hypotheses
was computed for that observation sequence.

For a given underlying kinematic model and sensor deployment, we can define strong Nyquist
models to be those models, Wy s for which hw,  (t) = 1 while hw,, ,(t) > 1if &' > k or s’ > s.
Similarly, we can define weak Nyquist models to be those models, W}, for which hyw, () is
bounded by a polynomial while hw,, ,(t) is exponential if X" > k or s’ > s. The analogy with
classical Nyquist sampling theory in signal processing should be apparent.

3 A Review of the Joint Spectral Radius

Let A be a matrix and o(A) be its spectrum. The spectral radius of A is defined by

p(4) = max{|A| | A € o(A)} .
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The Joint Spectral Radius [16] is a generalization of this concept to a set of matrices and is based
on the following well known identity:

. il
p(A) = lim |47

for any norm. Let ¥ be a finite set of matrices in R"*™. Then the Joint Spectral Radius p(X) is
defined by

p(X) = limsup 7 (¥)

k—o0
where, for £ > 1
Pr(2) = sup{||A1Ag - - Ap||V/F - A; e B} .

Furthermore, if the norm satisfies | AB|| < || A - || B|| (that is, an induced norm) then for all £ > 1!

A(E) < 7y(5)
and so

P = lim 5,(%)
Another natural generalization of the notion of spectral radius for a set of matrices is the Gener-
alized Spectral Radius which is defined as

p(X) = liin sup px(2)

where
pr(2) = max{p(AgAp_1---A)VF A, e X}
<

It can be shown that px(X) < p(X) for all k£, [10] and that for any finite set of matrices X,
p(2) = 5(2) [2].

The inequalities pi(X) < p(X) = 5(X) < 9, () can be used to approximate the Joint Spectral
Radius to arbitrary precision. However the crucial problem of determining whether p(X) < 1, for
the case of matrices with real or rational entries was shown to be undecidable by Blondel and
Tsitsiklis [4] who reduced to it the empty word problem in Probabilistic Automata theory, which
was previously known to be undecidable [5,12]. The critical caseis p(3) = 1 because no matter how
close the approximations are, it is not possible to definitively conclude that p(¥) = 1. Additionally,
the computation of approximations is a hard computational problem as was demonstrated by
Tsitsiklis and Blondel also [19, 20]:

Theorem 1 (Tsitsiklis and Blondel) Unless P = NP, the Joint Spectral Radius p({A, B}) of
two (0, 1)-matrices cannot be approzimated by any algorithm that takes as input A, B and a relative
error € and returns a result within relative error € and running in time polynomial in the size of
Y ={A, B} and in the size of €: log(1/e).

4 The Joint Spectral Radius and State Sequence Growth

Let M = (V, E, L, ®) be a weak model and let Z* be a sequence of ¢t + 1 observations. Let A = Ag
be the adjacency matrix of the kinematic specification, G = (V, E), of the state machine M, and let
A(ZY) = 1(&) H;Zl A(&;) as in the example given previously. Then, as defined in the introduction,
the number of possible consistent hypotheses is given by

hat(ZY) = Zeff(fo)-A(fl)---A(&)ej

= 1TA(Z')1
1A(Z") -1l -

! Note that the values pj(X) in general depend on the norm while the limiting value does not.
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Noting that the 1-norm is an induced norm, we have

ha(Z2') = [A(ZY) -1
< JAEI - Lk
< JAEZY]n
< n(laEHi’)
< 0l (2(@)"

where X(®) = {A() | £ € P} U{I(E) | £ € P} which we abbreviate to X for simplicity. Recalling
the definition of the co-norm of a matrix:

n
|Alloo = max > aiy| : 1<i<ny
Jj=1
and the fact that in our case all matrix entries are nonnegative, we have

ha (Z1)

I
=
N

v
==
N NN

Y
=
3
N

Thus
(p(A(Z)N)Y) < har(2") < n(p, (D))"

and, taking the max over Z¢, we get
pe(2)" < har(t) < np(2)° (5)
The reader can verify that

t —_— .
max p(A(Z")) —Afg%@)p( Aj)

which is used in the above. Furthermore,
(P(A(Z))Y)E < pu(B)F < p(R) <B(E)" -

For ¢ very large p,(X) approaches p(X) from above and p;(X) approaches p(3) from below, inde-
pendently of the norm.

It is evident that the growth of the number of hypotheses, hj;(t), depends on whether the
Joint Spectral Radius of ¥ is less than or greater than 1. When it is strictly smaller than 1,
the number of hypotheses is bounded from above by a quantity decreasing exponentially in ¢ and
must therefore be exactly 0 since hys(t) is always a non-negative integer. When the Joint Spectral
Radius is strictly larger than 1, hps(¢) has a lower bound that grows exponentially in ¢ to infinity.

The difficult case therefore is when the Joint Spectral Radius is exactly 1. If p(¥) = 1, the
inequalities in (5) do not provide enough information, because of the indeterminacy in the upper
bound. Specifically, the upper bound in (5) has a factor of the form w(¢)? where w(t) is decreasing
to 1 and ¢ is increasing to infinity.

For example, the number of hypotheses may remain bounded. This is the case when there is
a one-to-one relationship between states and observations. Then each matrix A({) has exactly
one nonzero column. In such cases, p(A(§)) = 1, for all £ and so p(X) < 1 since the product of
two matrices whose only nonzero entries are in one single column is again a matrix whose only
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nonzero entries are in one single column. Also, it is clear that p,(X) = 1 for all ¢. Accordingly, the
inequalities in (5) effectively bound ks (t) by a constant.

We now develop an example where hy;(t) is not bounded although p;(¥) — p(¥) = 1 in the
limit. Let M = (V, E, L, ®) be the weak model defined by the adjacency matrix Ag given below,
where G = (V, E), and the mapping is defined by L : {1,2} — {0,1}, L(:) = {0,1},i=1,2:

Ag = [ - } .
Then .
=0 1]
and so we can see immediately that hps(t) = ||A? - 1]|; = ¢ + 1 which means that the number of

hypotheses grows polynomially. On the other hand it is also true that

4Gl =t +1

and
P (Ag) = ALY = (t+ )Yt — Tast — oo .

That is, the Joint Spectral Radius in this case is exactly 1.

4.1 Rate of growth of the trajectories: polynomial versus exponential

We saw in the previous section that the case p(X) = 1 is critical and can correspond to models
with unbounded hypothesis growth. We start by showing that the rate of growth when p(X) =1
is bounded by a polynomial function whose order is related to the number of states in the system.

Consider a weak model M = (V, E, L, ®),V = {1,2,...,n}, and a sequence of T+1 observations
ZT = (&,&,...,¢7). One way to describe all possible hy(Z7) trajectories in M that are
consistent with Z7 is to use an auxiliary trellis structure. This structure is a (T + 1)-partite graph
defined by T (M, ZT) = ({Xo, X1,...,X7},Y) where X; = {(v,i) | v € V} and ((u,1), (v,j)) €Y
if and only if both j = i+ 1 and (A({;))u,o = 1 (see Figure 5). Essentially the nodes in V are
replicated T' times and the connections between the nodes at time ¢ and those at time ¢ + 1 are
determined by the observation that was made at time ¢ + 1, £41. We can graphically represent
> T = ({Xi}ier+1),Y) by drawing nodes in X, along a vertical direction (columns) and then
replicate the array T times to obtain a lattice network, not unlike those commonly used for Hidden
Markov Models for instance . So, for example, node (u, %) will occur in column ¢ at level u and will
be labelled simply by .

A path, 7, in 7 is a function = : [t1,¢2] — V such that

Vt € [t1,t2 — 1] ((7(2), 1), (n(t +1),t+1)) €Y,
where [t1,t2] := {t1,t1 + 1,...,t2}. It is clear from this construction that
har(ZT) = |{m : [0,T] — V | 7 represents a path in 7 (M, Z7)} |.

The trellis structure, 7, defined above possesses an interesting and useful property described in
the following theorem.

Theorem 2 Let M = (V,E, L, ®) and let T(M, ZT) = ({X;},Y) be a trellis structure as defined
above. Assume that for each node u € V' and for all time intervals, [t1,t2] where 0 <1 <t2 <T,
there exists at most one path m : [t1,t2] — V such that w(t1) = w(t2) = u. Then

har(ZT) = O(T* = |{n : [0,T] — V | 7 represents a path in T(M,Z7)}|) .

2Here we define [k] := {0,1,...,k — 1}.
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0 1 2
T+1 Steps

Figure 5: Trellis structure. The n nodes in X; are drawn along a vertical direction.

Figure 6: At time f, (I,) node r is visited by both 7 and 7’ for the first (last) time.

That is, har(ZT) is bounded by a polynomial in T of order 2n where n is the number of states
(vertices) in the underlying kinematic model, G = (V, E).

Proof. Under the assumptions of the theorem, we will show that for any path = : [0,7] — V,
V ={1,2,...,n}, there is a unique n-tuple of the form:

H(ﬂ—) = ((flyll)’ (f2712)a"'a(fnyln)) )

where f; is the time at which node ¢ € V is visited the first time in 7 and [; is the time at which
node i is visited the last time in 7. We let f; = [; = —1 if node ¢ is never visited and note that
fi =, is entirely possible. By construction, m(f;) = 7(l;) =i and for all t € [0, T]if t < f;ort > ;
then 7(t) # i. We will also denote the u*™™ component of H(7) with (f.(7),l,(r)) so that f,(r) is
time when 7 first visits node u and [, (7) is the time when 7 last visits v with f,(7) = ,(7) = —1
if m never visits u.

Now H(r) is a hash function on paths through the trellis, 7 (M, ZT) = ({X;},Y), with hash
values in ([—1,7] x [-1,T)" = [-1,T]*" = (T + 2)?>" = O(T?"). The proof consists of showing
that the hash function H is actually a 1 —1 (injective) function: that is, there are no hash collisions.

To see this, suppose there are two different paths, m, 7’ : [0,T] — V, that have the same hash
values, H(w) = H(7") = ((f1,11), (f2,12), .., (fn,ln)). Since m and 7" are different, we can define
tm and tpr to be two times that delimit a maximal time interval on which they are different.
Specifically, for all ¢ such that ¢, <t <ty we have 7(t) # 7'(¢) but 7(t,, — 1) = 7'(t,, — 1) and
w(ty + 1) = 7'(tar + 1).

Note that 0 < t,, < tpy < T. In fact, at time ¢ = 0 the two paths start from the same node
since they both visit all nodes for the first time at the same times. Similarly, at time ¢ = T both
paths visit the same node because both paths also visit all nodes for the last time at the same
times.

By construction therefore, at time t = ¢,,, — 1 and ¢ = t3; + 1 the two paths must visit the same
node, say u at time ¢, — 1 and v at time t =t + 1.
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Let r be the node visited by 7 at time ¢); and s the node visited by 7’ at time t,;. Since 7 # 7/
for t € [tm, tar] it must be r # s. This implies that neither r nor s are being visited for the first or
last time by either of the two paths because f,(7) = f-(7') # tar and 1.(7) = I,-(7') # tpr.

Moreover it must be f. < t,, and fs; < t,,,; that is, r and s were visited for the first time before
time t,,, since f,(7) = f-(7') and so w(f,) = 7'(f,) = r while by assumption 7 # 7’ on [t,,, tap]. By
the same argument it must be [, > tp; and I > ¢ty where 7(l,.) = 7'(l,) = r and 7n(ls) = 7'(ls) = s
(see Figure 6).

We now can conclude the proof by constructing two different paths between two equal nodes
(that is, at the same level in the trellis graph) in different instants of time.

Let v be the following path:

vt e 0, — 1] 7(0) = ()
YVt € [frytm — 1] v(t) :=7(t)
o Vi € [tm, tar] Y(t) := 7' (¢)

Ve € [tar + 1,1:] v(t) :=7(t)
o Viet,+1,T] ~v(t) :=n(t)

Clearly 7 # ~y on, at least, [t,,, tar] but both connect r at time f, to itself at time I, so there are two
legal paths connecting a node to itself contradicting the assumptions of the theorem. Therefore,
the hash function must be injective and so there must be no more than (7" +2)?" total paths which
are equivalent to consistent hypotheses.

O
An immediate consequence of the above result is

Corollary 3 Let M = (V,E,L,®) and ¥ = {A(§) | £ € P} U{I() | £ € P} be the associated
set of all the possible transition matrices derived from Ap; and ®. Suppose that any sequence
of observations ZT € ®T induces a trellis structure T(M,ZT) = ({X;}i,Y) that satisfies the
conditions of theorem 2; that is, for each node uw € V' and for all instants of time 0 < t; <t, <T
there ezists at most one path 7 : [t1,t2] — V such that w(t1) = 7(t2). Then p(¥) < 1.

Proof. We saw in the previous section that if p(X) > 1 then the number of hypotheses must grow
exponentially. Taking the contrapositive and remembering that in that case hy(T) = O(T*") we
can conclude that the Joint Spectral Radius cannot be greater than 1. O

It would be interesting to prove the converse also. In other words we would like to show that
if p(X) < 1 then necessarily hp(T) = O(p(T)) where p(T) is a polynomial function in 7.
We start by proving the converse of theorem 2.

Theorem 4 Let M = (V,E,L,®) and Z™ a sequence of Ty + 1 observations. Let T (M, ZT0) =
({X;}:,Y) be the induced trellis structure. Assume that there exists a node u € V and two instants
of time 0 < t1 < to < Ty such that there exist at least two different paths w1, 72 : [t1,t2] — V
satisfying m (t1) = w1 (ta) = ma(t1) = ma(te). Then hpr(T) = Q2°T) for some constant ¢ > 0.
Moreover it must be that p(X) > 1.

Proof. The idea is to build a sequence of observations Z’ by repeatedly concatenating the
subsequence of observations Z"2 = (&, &, 11,...,&,). It should be clear that over every to—t1+1
instants of time the number of paths on the trellis structure at least doubles. So, asymptotically
has(T) is bounded from below by 2¢7 for some ¢ > 0 and infinitely many values of 7.

Let 270 = (&,&1,...,¢ér,) and B = [b; ;] = A(&,) - A(&,41) - .. - A(&,)- Since there are at
least two paths from u to u of length ¢ — ¢; + 1 in the segment of the trellis graph delimited by
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t1 and to it must be that b, , > 2. Consider the following matrix B’ = [b;J] defined by b&,u =2
and b} ; = 0 if i # u or j # u. Obviously p(B’) = 2. Moreover B’ is essentially a matrix that has
nonnegative entries and is component-wise smaller than B and so p(B’) < p(B) since any increase
in one of the entries does not decrease the spectral radius of a positive matrix [7]. Recalling the
definitions and properties of the Generalized Spectral Radius we have

P(E) > pra—t,+1(8) > p(B)Y/ 270F ) > p(p)H/(t2mtifd) > gl/lta=hitl) 5

Letting ¢ = 1/(t2 — t; + 1) > 0 so that 2° > 1, note that the number of hypotheses can be made
to double every to — t; + 1 time steps so that over a period of T time steps, we can get at least
oT/(t2=t1+1) hypotheses over time T as claimed. O

We can now state a complete characterization of the hypothesis growth rates in terms of the
Joint Spectral Radius of X.

Corollary 5 Let M = (V,E,L,®) and X be the set of matrices derived from Ap; and . Then
ha(T) =p(T) if and only if p(X) <1
har(T) = Q2°T)  if and only if p(X) > 1,
where ¢ > 0 and p a polynomial function.

Proof. If p(X) <1 then by Theorem 4 (specifically, its contrapositive) and Theorem 2 it must
be hy(T) = p(T) for p a polynomial (of possibly degree 0). If, on the other hand, p(X) > 1
then by inequality 5 together with the properties of the limit (see also Corollary 3) it must be
ha(T) = Q(27). O

Corollary 5 does not tell us what happens exactly when p(X) = 1 as we have already seen
examples in which hy/(T) = 1 and hp(T) grows as a polynomial.

Lemma 6 Let Zt = (&,,&1,...,&) be a sequence of t + 1 observations,

A(Zum) = A(fu) : A(€u+1) T A(fv)

the transition matriz associated with the subsequence (£,,&ut1,...,&) and A(ZY) = 1(&)-A(Z1Y).
Assume that there exist i and j with i # j, such that

1. el - A(ZY) - ej=c>1,

2. el A(ZY) -e; > 1.
3. el -A(Z')-e; > 1.

Then f(t) := max{el A(Z')e; | Z! € ®'} is unbounded and so is har(t) > f(t).

Proof. Recall that A(Z") is a matrix with nonnegative entries and so
o hu(Z') = |A(Z") - U =17 - A(Z") - 1= 33, ; el A(Z")e; = 32, ;(A(Z"))i5-
o el A(Z') - ej =#{r:[0,t] = V | m path in T(M, Z"), 7(0) =i and 7(t) = j}.
o el A(ZY) - 1=#{r:[0,t] = V | 7 path in T(M, Z"), 7(0) =i and n(t) € V}.
o 1T A(Z") - ej =#{m:[0,t] = V | 7 path in T (M, Z"), 7(0) € V and 7(t) = j}.

Now, let A; = A(Z'*). We will show by induction on k that el I(&)Afe; > ck, el 1(&)AFe; > 1
and el I(&)Afe; > 1. And that will prove that f(t) is not bounded.



The Theory of Trackability — V. Crespi, G. Cybenko, G. Jiang — August 11, 2005 17

e Base: For k = 1, the statement is true by the assumptions of the lemma.

e Induction: Assume that the statement is true for some £ > 1. Recall that I = ZZ:1 eieiT
and using inequality 1 in the lemma’s statement we can write:

el I(&)Af T e; = e I(&)Af - Ae; (6)

> el I(&)AY - T-1(&)Ase; (7)

> el I(&%)Af - (Z €u65> 1(&o)Are; (8)

u=1

> el 1(&)A} - (eie] +eje) - 1(S)Ave; 9)

> el I(¢o)Afe; - e 1(€0)Are; + €] I(&)Afe; - €] I(§0)Are;  (10)

> e I(&)Ave; + €] 1(&0)Afe; (11)

> cH+ck (12)

> ck+1) (13)

The induction hypothesis has been applied in going from (10) to (11) and from (11) to (12).
With similar reasoning we can verify the other two inequalities for k£ + 1.
O

A model that satisfies the conditions of the above lemma is specified by ¥ = {A},i=1,7 =2

and
11
A= [ L } .
Notice that p(X) = 1.
On the other hand, if either condition 2 or 3 of Lemma 6 is false for all ¢, then the number of
trajectories will remain bounded as shown by the model ¥ represented by the following matrix:

1 01
A=10 11
0 0 0

In this case p(X) = p(A4) = 1, has(t) = 4 and condition 3 is not satisfied.

We have seen so far that the growth of ks (t) depends on the Joint Spectral Radius of a finite set
of (0,1) matrices ¥. In particular, has(t) = O(p(t)) if and only if p(X) < 1. In the following we show
that, unlike the general case for real or rational matrices, the problem of deciding whether the Joint
Spectral Radius of a finite set of (0, 1) matrices is less than or equal to 1 is decidable, meaning there
is an effective (although perhaps inefficient) algorithm for answering the question. Consequently
we can decide, given a weak model, whether the number of hypotheses grows polynomially or
exponentially in the worst-case.

Theorem 7 Let X be a finite set of (0,1) matrices of order n. Then p(X) > 1 if and only if
Jw3ik,1 < k < 2™ 4+ 1 such that
egAlejZ s -Aj,cew 2 2 5

for A;, €3 for all i.

Proof. The if-part is immediate since, as in Theorem 4, we can say that

PE) = p(Aj Ay - Ag ) E > 2V > 1
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We need to prove the only-if part. Assume that p(X) > 1. Then there must exist an integer v and
indices j1, j2, . - ., j7 such that eZAlejz < Ajrey, > 2. T < 2" 41 we are done. So, assume that
T>2"+1.

Let 7 [j1, j2, - - -, 7] be the trellis graph determined by the transition matrices A;,, 4;,, ..., A,
in the obvious way: T [j1,j2,...,J7] = ({Xi}i=01,..7,Y), where for all i, X; = {1,2,...,n}
and for all ¢ = 1,..., T, ((u,i — 1),(v,7)) € Y if and only if (4;,)u,» = 1. Then the condition
el Aj Aj, - Ajre, > 2 implies that there are at least two different paths in the trellis that join
node v at time 0 to itself at time 7.

Let IT = {7 : [0,7] — {1,2,...,n} | 7(0) = v,7(T) = v} be the set of all such paths and let
V2 CV be set of nodes that are touched by those paths at time ¢: V; = {n(¢) | = € II}.

Since V; € 2V — {0}, |2V — {0}| = 2" —1 and T > 2" + 1 then by the Pigeonhole principle there
must exist times t,s, 0 <t < s < T, such that V; = V.

Consider the two new trellises 71 = T [j1,72,- - - Jts Jst1s- -+, L) and To = T [Jei1, Je42s - - -5 Jss
obtained by cutting off the portion delimited by the instants of time ¢ and s (72) and then pasting
the external pieces together (77).

Then only the following two cases may arise:

1. |Vz] = 1 so that V; = Vi = {u} for some u. In this case, paths in II restricted to 7; may be
identified. However if this happens to all the paths in II then it must be that there exist at
least two paths in II that are different on [t, s] and so are their restrictions to 75.

2. |V4| > 1 so that there are at least two paths in II that are different at time ¢ and so are their
restrictions to 77.

The idea is now to iterate this cutting process until we obtain a sufficiently small trellis with,
at least, two different paths connecting the same node at the same instants of time. If the first
case occurs then we check whether el A; Aj, -~ Aj e, > 2 or el A;  (Aj ., Aje, > 2. If so
it means that there are at least two paths in II that are different either on [0,¢] or on [s,7T] and
so we take 77 otherwise we take 75 with the assurance that there are at least two different paths
joining node u to itself. In the second case we always take 7;. At each cutting operation we obtain
a trellis that is defined by a strictly shorter product of matrices and on which we can identify at
least two different paths joining the same node at extreme instants of time (beginning and end of
the resulting trellis). So after a finite number of cuts we must obtain a product of at most 2" + 1
matrices that verify the assertion.

To decide the problem it will be enough to consider f(n) = i:{l |X|* alignments of matrices
from the set 3, compute their products and check whether the elements in the main diagonal of
the results are all less than or equal to 1. O

5 Summary and Future Work

This paper has introduced a formal model, called a weak model, for tracking dynamic phenomena
by observing a sequence of noisy observations. Weak models use nondeterministic automata as the
modelling formalism. The worst-case growth of the number of the automaton’s state sequences
that are consistent with a given observation sequence has been shown to be equivalent to the
problem of determining the Joint Spectral Radius of a set of 0-1 matrices. We have shown that
this worst-case growth rate is either polynomial or exponential and that transition can happen
abruptly, illustrating a kind of phase transition in the complexity of the modelling and tracking
problem. We have shown that the decision problem p(¥) < 1 for ¥ a finite set of (0, 1)-matrices is
in fact decidable in a Turing equivalent model of computation, unlike the general problem for sets
of rational matrices which is known to be undecidable.
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The equivalence between deciding whether worst-case hypothesis growth in a given weak model
is polynomial or exponential and the Joint Spectral Radius decision problem suggests some inter-
esting related problems for future work.

For example, generalized Nyquist sampling problems can be formulated in terms of finding
a least-cost sensor coverage which guarantees hypothesis growth that is: a. bounded by 1; b.
bounded by a constant; or ¢c. bounded by a polynomial. The cost function can be articulated
in terms of the combined sensor coverage in various ways. Similarly, we can seek to find a least-
cost weak model variant, given an initial weak model, that achieves a desired hypothesis growth
rate where cost is measured by the modelling effort required to remove possible transitions in the
underlying weak model dynamics.

Another interesting direction for future research is the question of state estimation as it relates
to state sequence estimation, which has been the focus of this paper. The various examples
presented in this paper indicate that the number of state sequences can grow quickly while the
number of actual possible states at any given time can be small or even unique. One possible
formulation of the state estimation problem can be expressed in terms of efficiently computable
and interesting properties of the hypothesis set. Such a property could be, for example, whether any
of the hypothesized state sequences include a transition through specific states of the underlying
automaton. Preliminary work in this direction has been done in [17].
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Appendix

The results of this paper demonstrate that the number of hypotheses for an observation sequence
is a delicate function of the model dynamics and state-to-observation mapping. In this appendix,
we develop a number of simple tracking problems that illustrate the effect of dynamics and sensor
coverage on hypothesis growth.

The different examples are all instances of a general scenario. A ground vehicle moves on a
two-dimensional grid in both vertical and horizontal directions. The grid is abstracted as a matrix
of cells (z,y) that are traversed by the moving vehicle.

The position of the vehicle at any instant of time is specified by the coordinates of the cell that
it is traversing. A number of binary sensors are deployed in the grid region. Each sensor detects
the presence of the vehicle in a cell or in some aggregation of cells. When the vehicle traverses
a monitored cell any sensor that has coverage in that cell emits the coordinates of all the cells
that it covers and those are collected as a single observation. If sensors overlap then traversal of a
cell will trigger all the sensors that cover that cell. The effective observation therefore consists of
the coordinates of the cells that belong to the intersection of all sets of cells corresponding to the
coverage of the triggered sensors.

We consider a number of specific instances of this general scenario. The instances differ ac-
cording to the vehicles’ kinematics and the coverage of the sensors: where the sensors are placed
and the sensors’ ranges (the number and geometry of the cells covered by a sensor). For each of
these instances, we explain the trackability properties, namely the state sequence growth, of the
problem of determining the vehicle’s position given a temporal sequence of sensor observations. A
binary sensor means that the sensor either detects the presence of a vehicle or not. If a sensor does
detect a vehicle, it reports the coordinates of the cells that it covers.

Example 1
e State: Occupied cell (z,y).

e Kinematics: At each time step the vehicle is allowed to move in any of the four possible
vertical or horizontal directions (up, down, left and right). Formally: (z,y) — (x +1,y) or
(z,y) — (z,y=£1). At the border cells of the region, the vehicle can only move to cells within
the region. The vehicle cannot stand still and stay in the same cell for more than one time
step.

e Sensor placement and coverage: Sensors are placed in cells (z,y) with = even and y
odd (see Figure 7, where coordinates (1,1) denote the upper left cell, x is the column index
and y the row index). Sensors cover only the cell in which they are placed. Each sensor
observation is simply a pair, (z,y), of cell coordinates. When the vehicle is in a cell not
covered by a sensor, the observation is called a null observation below to distinguish it from
sensor observations which come from sensors in covered cells.

The following assertions about this tracking instance are true:

1. A sensor observation determines the state exactly. After a sensor observation, there are four
possible states.

2. Let (z,y) be a monitored cell (that is, containing a sensor). There are two ways to move
from (z,y) to (z+ 1,y + 1) (see Fig. 7):

r+1,y+1)
z+1,y+1)

(z,y) = (z+1,y)
(z,y) = (z,y +1)

and so there are four 4-step trajectories from (z,y) to itself consistent with the following
sensor observation sequence: (z,y),(x + 1,y + 1), (x,y). (Note that because there is a null

—
= (
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y y+l

Figure 7: The black cells are monitored by binary sensors.

observation between any pair of sensor observations, this sequence of 3 sensor observations is
technically a sequence of 5 observations.) According to Theorem 4 the worst-case hypothesis
growth is exponential in the number of observations. Even for certain very short sequences
of such observations, the growth is exponential.

Notice that, in this case, the initial state (cell) of the vehicle does not in general affect the com-
plexity of the state estimation problem. However there are certain sequences of observations that
are uniquely associated with a single state sequence. This is the case for example, when the vehicle
starts in a monitored cell and moves along a straight line in one of the allowed directions. Although
the state of the vehicle is ambiguous after a sensor observation, the ambiguity disappears if the
next sensor observation is either two cells away vertically or horizontally from the last observation
(because the vehicle can move only one cell at a time).

One conclusion of this analysis is that the kinematics in this instance are under-constrained for
a vehicle to be trackable (according to our definition of trackable) given the assumed sensors and
their coverage. While the number of state sequences can grow exponentially in time, the error in
the current state estimate is always bounded.

Example 2
e State: Occupied cell (z,y) plus “momentum”.

e Kinematics: The vehicle is allowed to change direction only after taking two steps in the
same direction (up, down, left, right). In other words, at any instant of time the state of the
vehicle is described by the occupied cell together with its momentum, namely whether the
vehicle needs to move up (u1), down (dy), left (I1), right (r1) on this step or is free to change
direction on this step (one of us,ds,l2,72). Formally, the state of the finite state machine
that models these kinematics is a triple (z,y,p) where p € {uy,dy, 71,11, u2,d2, 72,05} and
the transition function is defined by:

(z.y,l1) — (z,y—1,0)
(x,y,m11) — (z,y+1,72)
(x,y,di) — (z+1,y,do)
(z,y,u1) — (2 —1,y,u2)
(x,y,%2) — {(z,y—Lh), (z,y+1,r), (2~ 1y,w), (x+1,y,d1)}
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Here = is a wild-card which can be one of [, r, u, d. The meaning of state (2,2, d;), for example,
is that the vehicle is in cell (2,2) and is required to move down one cell on the next step.
Accordingly, the next cell is uniquely determined, namely (3,2). It is in state (3,2,d2) and
can next move in any direction on the next step. Several successor states are possible because
after two consecutive moves in the same direction the vehicle is allowed to choose one of the
possible four directions (apart from the boundary conditions). The above description of the
transition function must be completed in the obvious way to account for states along the
boundaries (that is, the vehicle cannot move up or left from cell (1,1)).

Sensor placement and coverage: The sensors are placed as before (see Fig. 7) and the
observations are again simple pairs of cell coordinates. There are null observations, as before,
when the vehicle is in an unmonitored cell.

The following assertions about this tracking instance can be made. (Their verification is left to
the reader.)

1.

Every other observation does not necessarily determine the state uniquely any more because
the momentum is not directly observable or uniquely inferable in many cases. However, if
the initial state of the vehicle is (z,y,p) where (x,y) are the (interior) cell coordinates of
a monitored cell then (z,y) will be the sensor observation and there will be no more than
eight states (boundary cells will have fewer than eight) that are consistent with that initial
observation.

If the next sensor observation is either vertically or horizontally related to (z,y), namely
(r £2,y) or (x,y £ 2), there are still 8 possible current states since we do not know a priori
whether the current state has four of the possible x5 or four of the possible *; momentum
coordinates. Of the 8 initial possible states and 8 possible current states there are only
5 hypotheses or state sequences that include those 8 possible initial states and 8 possible
current states consistently.

On the other hand, if the next sensor observation is diagonally related to (x,y), namely one
of (x—1,y—1), (x—1,y+1), (x+1,y—1) or (x+1,y+1), then we know that the direction
must have changed in one of two possible adjacent, but unmonitored, cells. See Figure 8.
This leads to two possible state sequences for any diagonal movement. Further movement
along the same diagonal must be consistent with those two possibilities and so there are no
more hypotheses generated through continued diagonal movement of the vehicle.

The reader can verify that by combining any nontrivial horizontal or vertical movements with
diagonal observations such as outlined above there will never be more than four possible state
sequences for any observation sequence that begins in a monitored cell.

If the initial state of the vehicle is (x,y,p) where (x,y) is not a monitored cell, then there
are about 4N? states consistent with this initial non-observation, where the grid has N x N
cells. (We know it must be in one of the N?/2 cells not being monitored and the momentum
can be any of 8 possible values for interior cells and fewer than 8 for boundary cells.)

There can never be two different state sequences with the same observation sequence that
start and end in the same state of the underlying state machine. Therefore, this example
cannot have exponential hypothesis growth.

The worst-case hypothesis growth in this example is bounded by 4N? on the first time step
and subsequently by 20 on later time steps. Moreover there are possible observation sequences
where the number of hypotheses can oscillate over time (when the first cell is not monitored
and the vehicle moves in a straight line) and other possible observation sequences where the
number of hypotheses is identically 1 (the movement (z,y) to (x +2,y) to (z + 2,y + 2) over
4 time steps is accountable by a unique state sequence in this model).
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Figure 8: The only two paths consistent with observations X, (2,2),X,(3,3),X,...,(n,n), X.
Character X stands for “no-observation”. When the vehicle deviates from this diagonal pattern,
the ambiguity disappears completely.

The conclusion of this analysis is that by trivially constraining the kinematics of the vehicle
relative to Example 1, the problem becomes trackable according to our definition of trackability.
In particular the number of paths consistent with any given sequence of observations greater than
1 is less than or equal to a constant, namely 20, at all times and can in fact oscillate. The number
of possible states if the initial observation is null is about 4N2.

Example 3
e State: As in example 1.

e Kinematics: At each step the vehicle is allowed to make only one of the following moves:
up, right or stay in its current cell. The northern boundary prevents further upward moves
and the right boundary prevents rightward moves. When the upper right corner is reached
the vehicle stays in that cell for all subsequent times.

e Sensors: As in example 1.
We can state the following facts:

1. There is only one trajectory from any state to itself at different instants of time on the trellis
graph. So, asymptotically, the number of hypotheses grows at most polynomially.

2. Curiously if we study the problem over the finite time horizon, ¢ € [0, 7], for T of the same
order as the number of cells in the grid, then we can find sequences of observations that lead
to an exponential growth in the number of hypotheses as long as ¢ < 7. That happens for
example when the vehicle moves up along a diagonal so we cannot distinguish between two
possible unobserved states between two sensor observations along the diagonal. This means
there will be 4 possible state sequences for 3 consecutive sensor observations (that have two
interleaved null observations), 8 state sequences for 4 consecutive sensor observations and so
on. When the vehicle reaches the boundary of the region, this growth ends and the number
of possible hypotheses then remains constant.

This example shows how the asymptotic behavior (in this case bounded) may be very different
from transitional behavior (exponential). Unlike Example 1, the worst-case number of hypotheses
grows exponentially initially but is asymptotically bounded by a constant when the length of the
sequence of observations is sufficiently large.
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Example 4

e State: As in the previous example, Example 3.
e Kinematics: As in the previous example, Example 3.

e Sensors: There is a sensor in each row of the grid and it can only report its row number
which is equivalent to the distance of the vehicle from the northern boundary. Accordingly,
a sensor observation consists of the first of the two coordinates of the cell occupied by the
vehicle. This is clearly modelled in our framework by the mapping, L((x,y)) = x where z is
the sensor report of the sensor in row z.

We can make the following assertions about this example:

1. Because the coordinates of the vehicle cannot decrease, it is impossible to have more than
one trajectory on the trellis graph that joins the same state at different instants of time.
Accordingly, the asymptotic growth of the hypotheses cannot be exponential.

2. We can say more about the finite time behavior of the number of hypotheses. Assume that
the coordinates of the initial cell position of the vehicle are (a,b) and that there are n — 1
cells separating this position from the right border, i.e., (a,b+n — 1) is a cell on the right
border. Consider the following sequence of 1"+ 1 observations: (; = a, for 0 <t < T. Thus,
according to the sensor observations the vehicle is moving horizontally but we do not know
how many times it stays in the same cell along this route. We can count the number of
possible paths in the following way. Let m; be a variable that denotes the number of steps
the vehicle spends in cell (a,b+ i — 1). There is a one-to-one correspondence between the
number of possible paths consistent with the observations, A(T"), and integer solutions to

m+me+...+m, = T+1
m; > 1 for all 7 .

The number of solutions, h(T), can be determined using standard methods from combina-
torics [1]:

T
n—1

h(T) = ( ) =e(1"1).

We can also see that any other possible sequence of 1"+ 1 constant sensor observations will
give rise exactly to the same number of hypotheses.

This is an example of polynomial growth but this growth is over all time since the vehicle can stay
in the same horizontal line indefinitely.
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