
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

8-1-2005

Efficiently Implementing a Large Number of LL/SC Objects Efficiently Implementing a Large Number of LL/SC Objects

Prasad Jayanti
Dartmouth College

Srdjan Petrovic
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Jayanti, Prasad and Petrovic, Srdjan, "Efficiently Implementing a Large Number of LL/SC Objects" (2005).
Computer Science Technical Report TR2005-554. https://digitalcommons.dartmouth.edu/cs_tr/279

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/279?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth Computer Science Technical Report TR2005-554
Efficiently Implementing a Large Number of LL/SC Objects

Prasad Jayanti and Srdjan Petrovic
Department of Computer Science

Dartmouth College
Hanover, NH 03755

spetrovic,prasad@cs.dartmouth.edu

Abstract

Over the past decade, a pair of instructions called load-linked (LL) and store-conditional (SC) have emerged as the
most suitable synchronization instructions for the design of lock-free algorithms. However, current architectures do
not support these instructions; instead, they support either CAS (e.g., UltraSPARC, Itanium) or restricted versions of
LL/SC (e.g., POWER4, MIPS, Alpha). Thus, there is a gap between what algorithm designers want (namely, LL/SC)
and what multiprocessors actually support (namely, CAS or RLL/RSC). To bridge this gap, a flurry of algorithms
that implement LL/SC from CAS have appeared in the literature. The two most recent algorithms are due to Doherty,
Herlihy, Luchangco, and Moir (2004) and Michael (2004). To implement M LL/SC objects shared by N processes,
Doherty et al.’s algorithm uses only O(N+M) space, but is only non-blocking and not wait-free. Michael’s algorithm,
on the other hand, is wait-free, but uses O(N 2+M) space. The main drawback of his algorithm is the time complexity
of the SC operation: although the expected amortized running time of SC is only O(1), the worst-case running time
of SC is O(N2). The algorithm in this paper overcomes this drawback. Specifically, we design a wait-free algorithm
that achieves a space complexity of O(N 2 + M), while still maintaining the O(1) worst-case running time for LL
and SC operations.

Keywords: wait-free algorithms, LL/SC, CAS, ABA problem.

1 Introduction

In shared-memory multiprocessors, multiple processes
running concurrently on different processors cooperate
with each other via shared data structures (e.g., queues,
stacks, counters, heaps, trees). Atomicity of these shared
data structures has traditionally been ensured through the
use of locks. To perform an operation, a process obtains
the lock, updates the data structure, and then releases the
lock. Locking, however, has several drawbacks, includ-
ing deadlocks, priority inversion, convoying, and lack of
fault-tolerance to process crashes.

Wait-free implementations were conceived to over-
come the above drawbacks of locking [11, 19, 24].
A wait-free implementation guarantees that every pro-
cess completes its operation on the data structure in a
bounded number of its steps, regardless of whether other
processes are slow, fast, or have crashed. A weaker form
of implementation, known as non-blocking implementa-
tion [19], guarantees that if a process p repeatedly takes
steps, then the operation of some process (not neces-
sarily p) will eventually complete. Thus, non-blocking
implementations guarantee that the system as a whole
makes progress, but admit starvation of individual pro-
cesses. An even weaker form of implementation, known
as obstruction-free implementation [9], guarantees that
a process completes its operation on the data structure,
provided that it eventually executes for a sufficient num-
ber of steps without interference from other processes.
This progress condition therefore allows for a situation
where all processes starve.

It is a well understood fact that whether lock-free al-
gorithms (i.e., wait-free, non-blocking, or obstruction-
free) can be efficiently designed depends crucially on
what synchronization instructions are available for the
task. After more than two decades of experience
with different instructions, there is growing consensus
among algorithm designers on the desirability of a pair
of instructions known as Load-Link (LL) and Store-
Conditional (SC). The LL and SC instructions act like
read and conditional-write, respectively. More specifi-
cally, the LL instruction by process p returns the value of
the memory word, and the SC(v) instruction by p writes
v if and only if no process updated the memory word
since p’s latest LL. A more precise formulation of these
instructions is presented in Figure 1.

Despite the desirability of LL/SC, no processor sup-
ports these instructions in hardware; instead, they sup-
port either compare&swap, also known as CAS (e.g.,
UltraSPARC [13], Itanium [5]) or restricted versions of
LL/SC (e.g., POWER4 [7], MIPS [26], Alpha [25]). Al-
though the restrictions on LL/SC vary from one archi-

• LL(O) returns O’s value.

• SC(O, v) by process p “succeeds” if and only if
no process performed a successful SC on O since
p’s latest L L on O. If SC succeeds, it changes
O’s value to v and returns true. Otherwise, O’s
value remains unchanged and SC returns false.

• VL(O) returns true if and only if no process per-
formed a successful SC on O since p’s latest L L
on O.

Figure 1: Definitions of operations LL, SC, and VL

• CAS(X, u, v) behaves as follows: if X ’s current
value is u, X is assigned v and true is returned;
otherwise, X is unchanged and false is returned.

Figure 2: Definition of the CAS operation

tecture to another, Moir [23] noted that the LL/SC in-
structions supported by current architectures, henceforth
referred to as RLL/RSC, satisfy at a minimum the se-
mantics stated in Figure 3.

Since CAS suffers from the well-known ABA prob-
lem [3] and RLL/RSC impose severe restrictions on
their use [23], it is difficult to design algorithms based
on these instructions. Thus, there is a gap between
what algorithm designers want (namely, LL/SC) and
what multiprocessors actually support (namely, CAS or
RLL/RSC). This gap must be bridged efficiently, which
gives rise to the following problem:

Design an algorithm that implements LL/SC objects
from memory words supporting either CAS or RLL/RSC
operations. To be useful in practice, the time and space
complexities must be kept small.

The above problem has been extensively studied in
the literature [1, 2, 6, 14, 18, 17, 20, 22, 23]. The most
efficient algorithm for implementing LL/SC from CAS
is due to Moir [23]. His algorithm runs in constant time
and has no space overhead. However, it can only imple-
ment small (e.g., 24 to 32 bit) LL/SC objects, which are
inadequate for storing pointers, large integers and dou-
bles. This size limitation is due to the fact that Moir’s
algorithm stores a sequence number along with the ob-
ject’s value in the same memory word. Since sequence
number could take up to 32 to 40 bits, only 24 to 32 bits
are left for the value field.

1

• RLL/RSC are similar to LL and SC, with two dif-
ferences [23]: (i) there is a chance of RSC failing
spuriously: RSC might fail even when SC would
succeed, and (ii) a process must not access any
shared variable between its RLL and the subse-
quent RSC.

Figure 3: Definition of operations RLL/RSC

Elsewhere, we presented an algorithm that imple-
ments a word-sized LL/SC object from a word-sized
CAS object and registers (e.g., 64-bit LL/SC on a 64-
bit machine) [17]. This algorithm stores a value and a
sequence number in separate memory words, thus en-
abling values to be as big as 64 bits. The algorithm im-
plements both LL and SC in O(1) time and uses O(N)

space, where N is the maximum number of processes
that the algorithm is designed to handle. Although these
space requirements are modest when a single LL/SC ob-
ject is implemented, the algorithm does not scale well
when the number of LL/SC objects to be supported is
large. In particular, in order to implement M LL/SC
objects, the algorithm requires O(N M) space. Further-
more, the algorithm requires that N is known in advance.

The recent algorithms by Doherty, Herlihy,
Luchangco, and Moir [6] and Michael [22] have aimed
to overcome the above two drawbacks. Doherty et al.’s
algorithm [6] uses only O(N + M) space and does not
require knowledge of N , but is only non-blocking and
not wait-free. Michael’s [22] algorithm, on the other
hand, is wait-free and does not require knowledge of N ,
but uses O(N 2 + M) space. The main drawback of this
algorithm is the time complexity of the SC operation:
although the expected amortized running time of SC is
only O(1), the worst-case running time of SC is O(N 2).
The algorithm in this paper overcomes this drawback,
as described below.

We design a wait-free algorithm that achieves a
space complexity of O(N 2 + M), while still maintaining
the O(1) worst-case running time for LL and SC opera-
tions. This algorithm too does not require knowledge of
N . When constructing a large number of LL/SC objects
(i.e., when M = ω(N)), our implementation is the first
to be simultaneously (1) wait-free, (2) time optimal, and
(3) space efficient. Specifically, the algorithm by Do-
herty et al. [6], although more space efficient than ours,
is not wait-free. Michael’s algorithm [22] has the same
space complexity as ours and is wait-free, but is not time
optimal. Other algorithms are either not space efficient

[1, 2, 14, 18, 17, 23], not wait-free [20], or implement
small LL/SC objects [2, 14, 23].

We note that the algorithm in this paper, as well as
the algorithms by Doherty et al. [6] and Michael [22],
implement (the more general) multiword LL/SC object,
i.e., an LL/SC object whose value spans across multiple
machine words (e.g., 512- or 1024-bit LL/SC object).
Many existing applications [1, 4, 16, 15] require sup-
port for such an object. When implementing a W -word
LL/SC object, the time and space complexities increase
by a factor of W , which is also the case with the algo-
rithms of [6] and [22]. Specifically, the space complexity
of our algorithm becomes O((N 2 + M)W), and the time
complexity of LL and SC becomes O(W).

Elsewhere, we presented an algorithm that imple-
ments M W -word LL/SC objects using O(N MW)

space [18]. This algorithm employs a helping scheme by
which processes help each other complete their LL op-
erations. We use a similar helping scheme in the present
paper.

1.1 Related work

The quality of an LL/SC algorithm can be judged by sev-
eral criteria: (1) the maximum size of the object that the
algorithm is capable of implementing (e.g., small, word-
sized, or multiword), (2) the strength of the progress
condition that the algorithm satisfies (obstruction-free,
non-blocking, or wait-free), (3) whether the algorithm
requires explicit knowledge of N , and (4) the time and
space complexities of the algorithm. With these criteria
in mind, we present a comparison of related work in Ta-
ble 1. We used the following notation: M is the number
of implemented LL/SC objects, and N is the number of
processes sharing those objects.

1.2 Correctness condition

The correctness condition that we use in the paper is lin-
earizability [12]. Since this correctness condition is well
known, we only describe it informally here.

A shared object is linearizable if operations applied
to the object appear to act instantaneously, even though
in reality each operation executes over an interval of
time. More precisely, every operation applied to the ob-
ject appears to take effect at some instant between its in-
vocation and completion [12]. This instant (at which an
operation appears to take effect) is called the lineariza-
tion point for that operation. Our algorithms ensure that
the implemented object O is linearizable whenever the
primitive objects from which O is implemented are lin-
earizable.

2

Worst-case
Size of Progress Time Complexity Space Knowledge

Algorithm LL/SC Condition LL SC Complexity of N
1. This paper W -word wait-free O(W) O(W) O((N2 + M)W) not required
2. Israeli and Rappoport [14] small wait-free O(N) O(N) O(N2 + N M) required
3. Anderson and Moir [2], Figure 1 small wait-free O(1) O(1) O(N2 M) required
4. Anderson and Moir [1], Figure 2 W -word wait-free O(W) O(W) O(N 2 MW) required
5. Moir [23], Figure 4 small wait-free O(1) O(1) O(N + M) not required
6. Moir [23], Figure 7 small wait-free O(1) O(1) O(N2 + N M) required
7. Luchangco et al. [20]† 63-bit obstruction-free − − O(N + M) required
8. Jayanti and Petrovic [17] 64-bit wait-free O(1) O(1) O(N M) required
9. Doherty et al. [6] W -word non-blocking − − O((N + M)W) not required
10. Michael [22] W -word wait-free O(W) O(N2 + W)‡ O((N2 + M)W) not required
11. Jayanti and Petrovic [18] W -word wait-free O(W) O(W) O(N MW) required

Table 1: A comparison of algorithms that implement LL/SC from CAS or RLL/RSC.

1.3 Organization for the rest of the paper

We present our main result in two steps. First, we de-
sign an algorithm that implements an array of M LL/SC
objects shared by N processes, where N is known in ad-
vance. Building on this algorithm, we present a more
general algorithm that works without the knowledge of
N . These two algorithms are described in Sections 2
and 3.

2 LL/SC for a known N

Figure 4 presents an algorithm that implements an array
O[0 . . M − 1] of M W -word LL/SC object shared by N
processes. To make the presentation easier to follow, the
algorithm is shown for the case when each process has
at most one outstanding LL operation. Later, we explain
how the algorithm can be trivially modified to handle
any number of outstanding LL operations. We provide
below an intuitive description of the algorithm.

2.1 The variables used

We begin by describing the variables used in the algo-
rithm. BUF[0 . . M + (N + 1)N − 1] is an array of
M +(N +1)N buffers. Of these, M buffers hold the cur-
rent values of objects O[0],O[1], . . . ,O[M − 1], while
the remaining (N + 1)N buffers are “owned” by pro-
cesses, N + 1 buffer by each process. Each process p,
however, uses only one of its N + 1 buffers at any given
time. The index of the buffer that p is currently using is
stored in the local variable mybuf p, and the indices of the
remaining N buffers are stored in p’s local queue Q p.

†This algorithm implements a weaker form of LL/SC in which
an LL operation by a process can cause some other process’s SC
operation to fail.

‡The expected amortized running time for SC is O(W).

Array X[0 . . M − 1] holds the tags associated with the
current values of objects O[0],O[1], . . . ,O[M − 1].
A tag in X[i] consists of two fields: (1) the index of
the buffer that holds O[i]’s current value, and (2) the
sequence number associated with O[i]’s current value.
The sequence number increases by 1 with each success-
ful SC on O[i], and the buffer holding O[i]’s current
value is not reused until some process performs at least
N more successful SC’s (on any O[j]). Process p’s local
variable x p maintains the tag corresponding to the value
returned by p’s most recent LL operation; p will use this
tag during the subsequent SC operation to check whether
the object still holds the same value (i.e., whether it has
been modified). Finally, it turns out that a process p
might need the help of other processes in completing its
LL operation on O. The shared variables Help[p] and
Announce[p], as well as p’s local variables lseq p and
indexp, are used to facilitate this helping scheme. Addi-
tionally, an extra word is kept in each buffer along with
the value. Hence, all the buffers in the algorithm are of
length W + 1.1

2.2 The helping mechanism

The crux of our algorithm lies in its helping mechanism
by which SC operations help LL operations. This help-
ing mechanism is similar to that of [18], but whereas the
mechanism of [18] requires O(N MW) space, the mech-
anism in this paper requires only O((N 2 + M)W) space.
Below, we describe this mechanism in detail.2

A process p begins its LL operation on some object
O[i] by announcing its operation to other processes. It
then attempts to read the buffer containing O[i]’s current
value. This reading has two possible outcomes: either

1The only exception are the buffers passed as an argument to pro-
cedures LL and SC, which are of length W .

2Some of the text to follow has been taken directly from [18].

3

Types
valuetype = array [0 . . W] of 64-bit value
xtype = record seq: (64 − lg (M + (N + 1)N))-bit number; buf: 0 . . M + (N + 1)N − 1 end
helptype = record seq: (63 − lg (M + (N + 1)N))-bit number; helpme: {0, 1}; buf: 0 . . M + (N + 1)N − 1 end

Shared variables
X: array [0 . . M − 1] of xtype; Announce: array [0 . . N − 1] of 0 . . M − 1; Help: array [0 . . N − 1] of helptype
BUF: array [0 . . M + (N + 1)N − 1] of ∗valuetype

Local persistent variables at each p ∈ {0, 1, . . . , N − 1}

mybufp: 0 . . M + (N + 1)N − 1; Qp: Single-process queue; x p : xtype;
lseqp: (63 − lg (M + (N + 1)N))-bit number; indexp: 0 . . N − 1

Initialization
X[k] = (0, k), for all k ∈ {0, 1, . . . , M − 1}

BUF[k] = the desired initial value of O[k], for all k ∈ {0, 1, . . . , M − 1}

For all p ∈ {0, 1, . . . , N − 1}

enqueue(Q p, M + (N + 1)p + k), for all k ∈ {0, 1, . . . , N − 1}

mybufp = M + (N + 1)p + N ; Help[p] = (0, 0, ∗); indexp = 0; lseqp = 0

procedure LL(p, i, retval) procedure SC(p, i, v) returns boolean
1: Announce[p] = i 11: copy ∗v into ∗BUF[mybufp]

2: Help[p] = (++lseqp, 1, mybufp) 12: if ¬CAS(X[i], x p, (x p.seq + 1, mybufp))

3: x p = X[i] 13: return false
4: copy ∗BUF[x p.buf] into ∗retval 14: enqueue(Q p, x p.buf)
5: if ¬CAS(Help[p], (lseqp, 1, mybufp), (lseqp, 0, mybufp)) 15: mybufp = dequeue(Q p)

6: mybufp = Help[p].buf 16: if (Help[indexp] ≡ (s, 1, b))

7: x p = BUF[mybufp][W] 17: j = Announce[indexp]

8: copy ∗BUF[mybufp] into ∗retval 18: x = X[j]
9: return 19: copy ∗BUF[x.buf] into ∗BUF[mybufp]

20: BUF[mybufp][W] = x
21: if CAS(Help[indexp], (s, 1, b), (s, 0, mybufp))

22: mybufp = b
procedure VL(p, i) returns boolean 23: indexp = (indexp + 1) mod N

10: return (X[i] == x p) 24: return true

Figure 4: Implementation of O[0 . . M − 1]: an array of M N -process W -word LL/SC objects

p correctly obtains the value in the buffer or p obtains
an inconsistent value because the buffer is overwritten
while p reads it. In the latter case, the key property of
our algorithm is that p is helped (and informed that it is
helped) before the completion of its reading of the buffer.
Thus, in either case, p has a valid value: either p reads
a valid value in the buffer (former case) or it is handed
a valid value by a helper process (latter case). The im-
plementation of such a helping scheme is sketched in the
following paragraph.

Consider any process p that performs a successful
SC operation. During that SC, p checks whether a sin-
gle process—say, q—has an ongoing LL operation that
requires help. If so, p helps q by passing it a valid value
and a tag associated with that value. (We will see later
how p obtains that value.) If several processes try to
help, only one will succeed. Process p makes a deci-
sion on which process to help by consulting its variable
indexp: if index p holds value j , then p helps process
j . The algorithm ensures that index p is incremented by

1 modulo N after every successful SC operation by p.
Hence, during the course of N successful SC operations,
process p examines all N processes for possible help.
Recall the earlier stated property that the buffer holding
an O[i]’s current value is not reused until some process
performs at least N successful SC’s (on any O[j]). As
a consequence of the above facts, if a process q begins
reading the buffer that holds O[i]’s current value and the
buffer happens to be reused while q still reads it (be-
cause some process p has since performed N successful
SC’s), then p is sure to have helped q by handing it a
valid value of O[i] and a tag associated with that value.

2.3 The roles of Help[p] and Announce[p]

The variables Help[p] and Announce[p] play an im-
portant role in the helping scheme. Help[p] has three
fields: (1) a binary value (that indicates if p needs
help), (2) a buffer index, and (3) a sequence num-
ber (independent from the sequence numbers in tags).

4

Announce[p] has only one field: an index in the range
0 . . M − 1. When p initiates an LL operation on some
object O[i], it first announces the index of that object
by writing i into Announce[p] (see Line 1), and then
seeks the help of other processes by writing (s, 1, b) into
Help[p], where b is the index of the buffer that p owns
(see Line 2) and s is p’s local sequence number incre-
mented by one. If a process q helps p, it does so handing
over its buffer c containing a valid value of O[i] to p by
writing (s, 0, c). (This writing is performed with a CAS
operation to ensure that at most one process succeeds in
helping p.) Once q writes (s, 0, c) in Help[p], p and
q exchange the ownership of their buffers: p becomes
the owner of the buffer indexed by c and q becomes the
owner of the buffer indexed by b. (This buffer manage-
ment scheme is the same as in Herlihy’s universal con-
struction [8].) Before q hands over buffer c to process
p, it also writes a tag associated with that value into the
W th location of the buffer.

2.4 How the helper obtains a valid value

We now explain an important feature of our algorithm,
namely, the mechanism by which a process p obtains a
valid value to help some other process q with. Suppose
that process p wishes to help process q complete its LL
operation on some object O[i]. To obtain a valid value
to help q with, p first attempts to read the buffer con-
taining O[i]’s current value. This reading has two pos-
sible outcomes: either p correctly obtains the value in
the buffer or p obtains an inconsistent value because the
buffer is overwritten while p reads it. In the latter case,
by an earlier stated property, p knows that there exists
some process r that has performed at least N successful
SC operations (on any O[j]). Therefore, r must have al-
ready helped q, in which case p’s attempt to help q will
surely fail. Hence, it does not matter that p obtained an
inconsistent value of O[i] because p will anyway fail in
giving that value to q. As a result, if p helps q complete
its LL operation on some object O[i], it does so with a
valid value of O[i].

2.5 Code for LL

A process p performs an LL operation on some object
O[i] by executing the procedure LL(p, i, retval), where
retval is a pointer to a block of W -words in which to
place the return value. First, p announces its operation
to inform others that it needs their help (Lines 1 and 2).
It then attempts to obtain the current value of O[i] by
performing the following steps. First, p reads the tag
stored in X[i] to determine the buffer holding O[i]’s cur-

rent value (Line 3), and then reads that buffer (Line 4).
While p reads the buffer at Line 4, the value of O[i]
might change because of successful SC’s by other pro-
cesses. Specifically, there are three possibilities for what
happens while p executes Line 4: (i) no process per-
forms a successful SC, (ii) no process performs more
than N − 1 successful SC’s, or (iii) some process per-
forms N or more successful SC’s. In the first case, it is
obvious that p reads a valid value at Line 4. Interest-
ingly, in the second case too, the value read at Line 4
is a valid value. This is because, as remarked earlier,
our algorithm does not reuse a buffer until some process
performs at least N successful SC’s. In the third case,
p cannot rely on the value read at Line 4. However, by
the helping mechanism described earlier, a helper pro-
cess would have made available a valid value (and a tag
associated with that value) in a buffer and written the in-
dex of that buffer in Help[p]. Thus, in each of the three
cases, p has access to a valid value as well as a tag asso-
ciated with that value. Further, as we now explain, p can
also determine which of the three cases actually holds.
To do this, p performs a CAS on Help[p] to try to re-
voke its request for help (Line 5). If p’s CAS succeeds,
it means that p has not been helped yet. Therefore, Case
(i) or (ii) must hold, which implies that retval has a valid
value of O. Hence, p returns from the LL operation at
Line 9.

If p’s CAS on Help[p] fails (Line 5), p knows that
it has been helped, and that a helper process must have
written in Help[p] the index of a buffer containing a
valid value U of O[i] (as well as a tag associated with
U). So, p reads U and its associated tag (Lines 7 and 8),
and takes ownership of the buffer it was helped with
(Line 6). Finally, p returns from the LL operation at
Line 9.

2.6 Code for SC

A process p performs an SC operation on some object
O[i] by executing the procedure SC(p, i, v), where v

is the pointer to a block of W -words which contain the
value to write to O[i] if SC succeeds. First, p writes the
value v into its local buffer (Line 11), and then tries to
make its SC operation take effect by changing the value
in X[i] from the tag it had witnessed in its latest LL op-
eration to a new tag consisting of (1) the index of p’s
local buffer and (2) a sequence number (of the previous
tag) incremented by one (Line 12). If the CAS operation
fails, it follows that some other process performed a suc-
cessful SC after p’s latest LL, and hence p’s SC must
fail. Therefore, p terminates its SC procedure, return-
ing false (Line 13). On the other hand, if CAS succeeds,

5

then p’s current SC operation has taken effect. In that
case, p gives up ownership of its local buffer, which now
holds O[i]’s current value, and becomes the owner of the
buffer B holding O[i]’s old value. To remain true to the
promise that the buffer that held O[i]’s current value (B,
in this case) is not reused until some process performs at
least N successful SC’s, p enqueues the index of buffer
B into its local queue (Line 14), and then dequeues some
other buffer index from the queue (Line 15). Notice that,
since p’s local queue contains N buffer indices when p
inserts B’s index into it, p will not reuse buffer B until
it performs at least N successful SC’s.

Next, p tries to determine whether some process
needs help with its LL operation. As we stated earlier,
the process to help is q = index p. So, p reads Help[q]

to check whether q needs help (Line 16). If it does, p
consults variable Announce[q] to learn the index j of
the object that q needs help with (Line 17). Next, p reads
the tag stored in X[j] to determine the buffer holding
O[j]’s current value (Line 18), and then copies the value
from that buffer into its own buffer (Line 19). Then, p
writes into the W th location of the buffer the tag that it
read from X[j] (Line 20). Finally, p attempts to help q
by handing it p’s buffer (Line 21). If p succeeds in help-
ing q, then, by the earlier discussion, the buffer that p
handed over to q contains a valid value of O[j]. Hence,
p gives up its buffer to q and assumes ownership of q’s
buffer (Line 22). (Notice that p’s CAS at Line 21 fails
if and only if, while p executed Lines 16–21, either an-
other process already helped q or q withdrew its request
for help.) Regardless of whether process q needed help
or not, p increments the index p variable by 1 modulo N
(Line 23) to ensure that in the next successful SC op-
eration it helps some other process (Line 23), and then
terminates its SC procedure by returning true (Line 24).

The procedure VL is self-explanatory (Line 10). The
following theorem summarizes the above discussion. Its
proof is presented in Appendix A.1.

Theorem 1 The algorithm in Figure 4 is a linearizable,
wait-free implementation of an array O[0 . . M − 1] of
W-word LL/SC objects, shared by N processes. The time
complexities of LL, SC and VL operations on any O[i]
are O(W), O(W) and O(1), respectively. The space
complexity of the implementation is O((N 2 + M)W).

2.7 Remarks

2.7.1 Sequence number wrap-around

Each 64-bit variable X[i] stores in it a buffer index and
an unbounded sequence number. The algorithm relies
on the assumption that during the time interval when

some process p executes one LL/SC pair, the sequence
number stored in X[i] does not cycle through all pos-
sible values. If we reserve 32 bits for the buffer index
(which allows the implementation of up to 231 LL/SC
objects, shared by up to 215 = 32, 768 processes), we
still will have 32 bits for the sequence number, which is
large enough that sequence number wraparound is not a
concern in practice.

2.7.2 The number of outstanding LL operations

Modifying the code in Figure 4 to handle multiple out-
standing LL/SC operations is straightforward. Simply
require that each LL operation, in addition to returning
a value, also returns the tag associated with that value.
Then, when calling an SC operation on some object, the
caller p must also provide the tag that was returned by
p’s latest LL operation on that object.

3 LL/SC for an unknown N

In this section, we present a modified version of the algo-
rithm in Figure 4 that does not require N to be known in
advance. In particular, the algorithm supports two new
operations—Join(p) and Leave(p)—which allow a pro-
cess p to join and leave the algorithm at any given time.
If K is the maximum number of processes that have
simultaneously participated in the algorithm (i.e., have
joined the algorithm but have not yet left it), then the
space complexity of the algorithm is O((K 2 + M)W).
The time complexities of procedures Join, Leave, LL,
SC, and VL are O(K), O(1), O(W), O(W), and O(1),
respectively.

The algorithm is given in three steps. First, we in-
troduce an important building block of the algorithm,
namely, an implementation of a dynamic array that sup-
ports constant-time read and write operations (with some
restrictions). Next, we restate the LL/SC algorithm in
Figure 4, but with small modifications that will make
it easier to remove the assumption of N . Finally, we
present our main result, namely, an algorithm that im-
plements an array of M W -word LL/SC objects shared
by an unknown number of processes. These three steps
are described in Sections 3.1, 3.2, and 3.3.

3.1 Dynamic arrays

A dynamic array is just like a regular array except that
it places no bounds on the highest location that can be
written. In particular, a process can write into the i th
location of the dynamic array for any natural number

6

i . At all times, the size of the array must stay propor-
tional to the highest location written so far. Furthermore,
all reads and writes in the array must complete in O(1)

time. In this paper, we consider only a weaker version
of dynamic array that has the following restrictions: (1)
all writes into the same location write the same value,
(2) a write into a location i must precede a read on that
location, and (3) a write into a location i must precede a
write into location i + 1. We capture the above restric-
tions in an object that we call a DynamicArray object.
This object is formally defined as follows.

A DynamicArray object supports two operations:
write(i, v) and read(i). The write(i, v) operation writes
value v into the i th location of the array, while the
read(i) operation returns the value stored in the i th lo-
cation of the array. The following restrictions are placed
on the usage of read and write operations:

• Before write(k + 1, ∗) is invoked, at least one
write(k, ∗) must complete.

• Before read(k) is invoked, at least one write(k, ∗)

must complete.

• If write(k, v) and write(k, v ′) are invoked, then
v = v′.

We present in Figure 5 an algorithm that implements
a DynamicArray object from a CAS object and registers.
In the following, we first describe the main idea behind
the algorithm, and then describe the algorithm in detail.

3.1.1 The main idea

The main idea of the algorithm is as follows. We main-
tain two (static) arrays at all times: array A of length k,
and array B of length 2k. (Initially, A is of length 1, and
B is of length 2.) When a process writes a value into
some array location j , for j ≥ k/2, it writes that value
into both A[j] and B[j]. Additionally, it copies the array
location A[j −k/2] into B[j −k/2]. By this mechanism,
when the array A fills up (i.e., when the location A[k−1]

is written), all the locations of array A have been copied
into array B. Therefore, B contains the same values as
A, and can hence be used in place of A. A new array of
length 4k is then allocated (and used in place of B), and
the algorithm proceeds the same way as before.

3.1.2 The algorithm

The algorithm is presented in Figure 5. Central to the al-
gorithm is variable D, which stores a pointer to the block
containing three fields: (1) a pointer to array A, (2) a
pointer to array B, and (3) the length of array A.

Types
arraytype = array of 64-bit value
dtype = record size: 64-bit number; A, B: ∗arraytype end

Shared variables
D: ∗dtype

Initialization
D = malloc(sizeof dtype)
D→size = 1;
D→A = malloc(1);
D→B = malloc(2);

procedure write(p, i, v,D)

1: d = D
2: if (d→size > i)
3: d→A[i] = v

4: d→B[i] = v

5: d→B[i − c′(i)] = d→A[i − c′(i)]
6: else newD = malloc(sizeof dtype)
7: newD→A = d→B
8: newD→B = malloc(4 ∗ d→size)
9: newD→size = 2 ∗ d→size
10: if ¬CAS(D, d, newD) free(newD→B); free(newD)

11: write(i, v,D)

procedure read(p, i,D) returns valuetype
12: d = D
13: return d→A[i]

Figure 5: An implementation of a DynamicArray object.
Function c′(i) returns the largest power of 2 smaller or
equal to i . (If i = 0, then c′(i) = 0.)

We now explain the write(p, i, v,D) procedure
that describes how a process p writes a value v into the
i th location of DynamicArray D. In the following, let
c′(i) denote the largest power of 2 smaller than or equal
to i .3 First, p reads D to obtain a pointer to the block
containing arrays A and B (Line 1). Next, p checks
whether the length of array A is greater than i (Line 2).
If it is, then p writes v into A[i] (Line 3). To help with
the amortized copying of array A into B, p writes v into
B[i] (Line 4) and copies the location A[i − c ′(i)] into
B[i − c′(i)] (Line 5).

Notice that, by initialization, the lengths of A and B
are powers of 2 at all times. Let k be the length of A
when p tries to write v into A[i]. Then, if i ≥ k/2, we
have c′(i) = k/2 (since k is a power of 2). Hence, p
copies the location A[i − k/2] into B[i − k/2], which is
consistent with our main idea presented earlier. If i <

k/2, then, by definition of c′(i), we have i − c′(i) ≥ 0.
Hence, p copies some location A[j] into B[j], for j ∈

{0, 1, . . . , k/2 − 1}, which causes no harm. Hence, by
copying A[i − c′(i)] into B[i − c′(i)], p remains faithful

3If i = 0, then c′(i) = 0.

7

to the earlier idea of amortized copying of array A into
array B.

If the length of array A is equal to i , then p knows
that the array A has been filled up. Furthermore, by an
earlier discussion, all the values in A have already been
copied into B. So, p prepares a new block newD that
will hold pointers to the new values for arrays A and
B. Next, p sets newD.A to B (Line 7), newD.B to a
newly allocated array twice the size of B (Line 8), and
newD.size to the size of B (Line 9). Then, p attempts
to swing the pointer in D from the block that p had wit-
nessed at Line 1, to the new block newD (Line 10). If
p’s CAS is successful, then p has successfully installed
the new block newD in D. Otherwise, some other process
must have installed its own block into D, and so p frees
up the memory occupied by the block newD (Line 10).
In either case, the length of an array A in the new block
is sure to be greater than i . So, p calls the write
procedure again to complete installing value v into D
(Line 11). Notice that, since the size of the new array
A is strictly greater than i , p will not make another re-
cursive call to write, thus ensuring a constant running
time for the write operation.

The read(p, i,D) procedure is very simple: a pro-
cess p simply reads D to obtain a pointer to the block
containing the most recent values of A and B (Line 12),
and then returns the value stored in A[i] (Line 13). No-
tice that, since we require that at least one write(i, ∗)

operation completes before read(i) starts, the length of
the array A is at least i + 1 when p reads A[i]. Further-
more, by the above discussion, location A[i] contains
the value written by write(i, ∗). Therefore, p returns the
correct value.

We now calculate the space complexity of the algo-
rithm at some time t . First, notice that there are only two
arrays at time t = 0: one array of length 1 and one of
length 2. During the first write(1, ∗) operation, a new
array of length 4 is allocated. Similarly, during the first
write(2, ∗) operation, a new array of length 8 is allo-
cated. In general, during the first write(2 j , ∗) operation,
a new array of length 2 j+2 is allocated. So, if write(K , ∗)

is the operation with the highest index among all opera-
tions invoked prior to time t , then at time t the largest al-
located array is of length 2blg K c+2. Hence, the lengths of
all allocated arrays at time t are 1, 2, 4, 8, . . . , 2blg K c+1,

and 2blg K c+2. Consequently, the space occupied by the
arrays at time t is 2blg K c+3−1, and the space occupied by
the blocks at time t is blg Kc + 1. Therefore, the space
permanently used by the algorithm at time t is O(K).
However, we also have to count the space occupied by
the blocks and arrays allocated at Lines 6 and 8 that were
not successfully installed in D but have not yet been freed

from memory (at Line 10). The number of such blocks
and arrays at time t is at most n, where n is the number
of processes executing the algorithm at time t . Since the
largest allocated array is of length at most 2blg K c+2, the
space used by the blocks and arrays at time t is O(nK).
Therefore, the space used by the algorithm at time t is
O(nK).

Based on the above discussion, we have the follow-
ing theorem. Its proof is given in Appendix A.2.

Theorem 2 The algorithm in Figure 5 is wait-free and
implements a DynamicArray object D from a word-sized
CAS object and registers. The time complexity of read
and write operations on D is O(1). The space used by
the algorithm at any time t is O(nK), where n is the
number of processes executing the algorithm at time t,
and K is the highest location written in D prior to time
t.

3.2 Restatement of the algorithm in Figure 4

We now restate our known-N LL/SC algorithm from
Figure 4. We introduce small modifications to this al-
gorithm that will make it easier to remove the the as-
sumption of N . Figure 6 shows the resulting algorithm.
In the following, we refer to the algorithms in Figures 4
and 6 by the names A and B, respectively.

The main difference between algorithms A and B
lies in the way the variables are organized. Below, we
summarize the differences between the two organiza-
tions.

1. In algorithm A, process p’s shared variables
Help[p] and Announce[p] are located in shared ar-
rays Help and Announce, respectively. Hence, if a
process q wishes to access p’s shared variables, it can
do so by simply reading Help[p] or Announce[p].
In algorithm B, on the other hand, process p’s shared
variables are stored in p’s own block of memory,
and an array NameArray holds pointers to mem-
ory blocks of all processes. Hence, if a process q
wishes to access p’s shared variables, it must first read
NameArray[p] to obtain the address l of p’s mem-
ory block, and then read the variables l →Help and
l→Announce.

2. In algorithm A, there is a single array BUF of length
M + N(N +1) which holds all the buffers used by the
algorithm. The index of a buffer is therefore a num-
ber in the range [0 . . M + N(N + 1) − 1]. Hence,
if a process wishes to access a buffer with index b,
it simply reads the location BUF[b]. In algorithm B,
on the other hand, array BUF is divided into N + 1

8

Types
valuetype = array [0 . . W] of 64-bit value
indextype = record type: {0, 1}; if (type == 0) (bindex: 31-bit number)

else (name: 15-bit number; bindex: 15-bit number) end
xtype = record seq: 32-bit number; buf: indextype end
helptype = record seq: 31-bit number; helpme: {0, 1}; buf: indextype end
blocktype = record Announce: 31-bit number; Help: helptype; Q: Single-process queue; BUF: array [0 . . N] of ∗valuetype;

index: 15-bit number; mybuf: indextype; lseq: 31-bit number; x: xtype end
Shared variables

X: array [0 . . M − 1] of xtype; BUF: array [0 . . M − 1] of ∗valuetype; NameArray: array [0 . . N − 1] of ∗blocktype
Local persistent variables at each p

locp: blocktype
Initialization

X[k] = (0, k), for all k ∈ {0, 1, . . . , M − 1}

BUF[k] = the desired initial value of O[k], for all k ∈ {0, 1, . . . , M − 1}

For all p ∈ {0, 1, . . . , N − 1}

NameArray[p] = &locp; enqueue(locp.Q, (1, p, k)), for all k ∈ {0, 1, . . . , N − 1}

locp.mybuf = (1, p, N); locp.Help = (0, 0, ∗); locp.index = 0; locp.lseq = 0

procedure LL(p, i, retval) procedure SC(p, i, v) returns boolean
1: locp.Announce = i 15: copy ∗v into ∗GetBuf(locp.mybuf)
2: locp.Help = (++locp.lseq, 1, locp.mybuf) 16: if ¬CAS(X[i], locp.x, (locp.x.seq + 1, locp.mybuf))
3: locp.x = X[i] 17: return false
4: copy ∗GetBuf(locp.x.buf) into ∗retval 18: enqueue(locp.Q, locp.x.buf)
5: if ¬CAS(locp.Help, (locp.lseq, 1, locp.mybuf), 19: locp.mybuf = dequeue(locp.Q)

(locp.lseq, 0, locp.mybuf)) 20: l = NameArray[locp.index]
6: locp.mybuf = locp.Help.buf 21: if (l→Help ≡ (s, 1, c))
7: b = GetBuf(locp.mybuf) 22: j = l→Announce
8: locp.x = b[W] 23: x = X[j]
9: copy ∗b into ∗retval 24: d = GetBuf(locp.mybuf)
10: return 25: copy ∗GetBuf(x.buf) into ∗d

26: d[W] = x
procedure GetBuf(b) returns ∗valuetype 27: if CAS(l→Help, (s, 1, c), (s, 0, loc p.mybuf))

11: if (b.type == 0) return BUF[b.bindex] 28: locp.mybuf = c
12: l = NameArray[b.name] 29: locp.index = (locp.index + 1) mod N
13: return l→BUF[b.bindex] 30: return true

procedure VL(p, i) returns boolean
14: return (X[i] == locp.x)

Figure 6: A slightly modified version of the algorithm in Figure 4

smaller arrays: (1) a central array of length M , and (2)
N arrays of length N + 1 each, which are kept at pro-
cesses’ memory blocks (one array per process). The
index of a buffer is therefore either a pair (0, i), where
i is the index into the central array, or a tuple (1, p, i),
where i is the index into the array located at process
p’s memory block. Hence, if a process wishes to ac-
cess a buffer with index b = (0, i), it simply reads
the location BUF[i]. If, on the other hand, a process
wishes to access a buffer with index b = (1, p, i), it
must first read NameArray[p] to obtain the address
l of p’s memory block, and then read the location
l.BUF[i]. The above method for accessing a buffer
given its index is captured by the procedure GetBuf
(see Figure 6).

As in algorithm A, we will need to store a sequence
number and a buffer index together in a single ma-
chine word. From the previous paragraph, the buffer
index consists of one bit (to distinguish between the
central array and an array stored at a process’s memory
block) and lg (max(M, N(N + 1))) bits to describe
either (1) an index within the central array, or (2) an in-
dex within a process’s array and the name of that pro-
cess. Assuming 64 bits per machine word, this leaves
64−1− lg (max(M, N(N + 1))) bits for the sequence
number. Rather than using these long expressions, in
the rest of the paper we assume the values 231 and 215

for M and N , respectively, which then leaves 32 bits
for the sequence number.

3. In algorithm A, each process p maintains the follow-

9

ing persistent local variables: mybuf p, lseqp, indexp,
x p, and Q p. In algorithm B, on the other hand, all of
the above variables are located in p’s memory block
and p maintains the address of that memory block in
its persistent local variable loc p.

Given the above discussion, the code in Figure 6 is
self-explanatory.

3.3 The unknown-N LL/SC algorithm

The algorithm is presented in Figure 7. The statements
given in rectangular boxes represent the differences with
the algorithm from Figure 6. Operations da read and
da write denote read and write operations on the dy-
namic array. We now describe the changes that were
made to the original algorithm.

Arrays NameArray and BUF (located at processes’
memory blocks) are now dynamic arrays. Variable N
holds the maximum number of processes that have si-
multaneously participated in the algorithm so far. Each
process maintains its own estimate N of N, which it pe-
riodically updates to match N. At all times, the algorithm
ensures that the length of process’s local queue Q is at
least N and the length of process’s array BUF is at least
N + 1. Processes’ memory blocks are no longer allo-
cated in advance. Instead, when a process joins the al-
gorithm (by executing the Join procedure), it will either
(1) allocate a new memory block, or (2) get a memory
block from another process that has left the algorithm.
In either case, the implementation of Join guarantees
that each process p (participating in the algorithm) has a
unique memory block. The algorithm also assigns (dur-
ing the Join procedure) a unique name to each participat-
ing process. This name is guaranteed to be small: if K
process are currently participating in the algorithm, then
a new process joining the algorithm will be assigned a
name in the range [0 . . K]. (Hence, a process’ name is
sure the be smaller or equal to N.) A process stores this
name in a variable name located at that process’s mem-
ory block. If a process p has a name n, then the nth lo-
cation in (dynamic) array NameArray holds a pointer
to the memory block owned by p. When p leaves the
algorithm, it leaves its memory block in the nth location
of NameArray; this block will be used later by another
process that obtains the name n.

We now explain the code at Lines 19–23. After a
process p inserts the index of the previous current buffer
into its local queue (Line 18), it checks whether its es-
timate N matches the actual value N (Line 19). If it
doesn’t, then p increments N by one (Line 20). Next, p
allocates a new buffer and writes that buffer into the N th

location of its array BUF (Line 21). By doing so, p im-
plicitly increments the length of array BUF to N +1, thus
maintaining the earlier stated invariant on the length of
BUF. Then, p takes the newly allocated buffer and uses
it as its own local buffer (Line 22). Notice that, in this
case, p does not dequeue an index from its local queue;
hence, p implicitly increases the length of its queue to
N , thus maintaining the earlier stated invariant on the
size of Q.

If, on the other hand, N does match the value of N,
then p withdraws a new buffer index from its local queue
and uses that buffer as its own local buffer (Line 23).
The only other major change is at Line 33, where p in-
crements its variable index by 1 modulo its local esti-
mate N (versus a fixed N in the original algorithm). The
changes at Lines 12, 13, and 24 are due to the fact that
arrays NameArray and BUF (located at process’ mem-
ory blocks) are now dynamic arrays.

Recall that in the original algorithm where N was
fixed, each process p made a promise not to reuse the
buffer B that held some O[i]’s current value until p per-
formed at least N successful SC operations. (Process
p kept its promise by enqueueing B’s index into its lo-
cal queue, which was of length at least N at all times.)
This promise gave p enough time to help all other pro-
cesses (that are interested in B) obtain valid values for
their LL operations. To ensure that all N processes are
helped during this time, p would help a process with
name j = index during an SC operation, and then in-
crement index by 1 modulo N . Since N is not fixed in
the new algorithm, and since each process increments its
index variable modulo its local estimate N , it is not clear
that the above property still holds. We now show that it
does.

Suppose that some process q reads (at Line 3 of its
LL) the tag of a buffer B that holds the current value of
an object O[i]. Suppose further that after q performs
that read, some process p performs a successful SC on
O[i]. Then, we will show that p does not reuse B before
it checks whether q needs help, thereby ensuring that the
above property holds. In the following, we let n and j
denote, respectively, the values of p’s estimate N and
p’s variable index at the time t when p inserts B’s index
its local queue Q (Line 13).

Notice that, by the algorithm, there are n items al-
ready in the local queue when B’s index is inserted at
time t . Hence, B is not written until p performs at least
n + 1 dequeues on its local queue. Notice further that,
each time p satisfies the condition at Line 19, the fol-
lowing holds: (1) p does not dequeue an element from
its local queue, and (2) the values of N and index both
increase by one. Moreover, each time p does not sat-

10

Types
valuetype = array [0 . . W] of 64-bit value
indextype = record type: {0, 1}; if (type == 0) (bindex: 31-bit number)

else (name: 15-bit number; bindex: 15-bit number) end
xtype = record seq: 32-bit number; buf: indextype end
helptype = record seq: 31-bit number; helpme: {0, 1}; buf: indextype end
blocktype = record Announce: 31-bit number; Help: helptype; Q: Single-process queue; BUF: dynamic array of ∗valuetype;

index: 15-bit number; mybuf: indextype; lseq: 31-bit number;
x: xtype; name: 15-bit number; N : 15-bit number end

Shared variables
X: array [0 . . M − 1] of xtype; BUF: array [0 . . M − 1] of ∗valuetype; NameArray: dynamic array of ∗blocktype; N: 15-bit number

Local persistent variables at each p
locp: blocktype

Initialization
X[k] = (0, (0, k)), for all k ∈ {0, 1, . . . , M − 1}; BUF[k] = the desired initial value of O[k], for all k ∈ {0, 1, . . . , M − 1}; N = 0

procedure LL(p, i, retval) procedure SC(p, i, v) returns boolean
1: locp.Announce = i 15: copy ∗v into ∗GetBuf(locp.mybuf)
2: locp.Help = (++locp.lseq, 1, locp.mybuf) 16: if ¬CAS(X[i], locp.x, (locp.x.seq + 1, locp.mybuf))
3: locp.x = X[i] 17: return false
4: copy ∗GetBuf(locp.x.buf) into ∗retval 18: enqueue(locp.Q, locp.x.buf)
5: if ¬CAS(locp.Help, (locp.lseq, 1, locp.mybuf), 19: if (locp.N < N)

(locp.lseq, 0, locp.mybuf)) 20: locp.N++
6: locp.mybuf = locp.Help.buf 21: da write(locp.BUF, locp.N,malloc(W + 1))

7: b = GetBuf(locp.mybuf) 22: locp.mybuf = (1, locp.name, locp.N)

8: locp.x = b[W] 23: else locp.mybuf = dequeue(locp.Q)

9: copy ∗b into ∗retval 24: l = da read(NameArray, loc p.index)
10: return 25: if (l→Help ≡ (s, 1, c))

26: j = l→Announce
procedure GetBuf(b) returns ∗valuetype 27: x = X[j]

11: if (b.type == 0) return BUF[b.bindex] 28: d = GetBuf(locp.mybuf)
12: l = da read(NameArray, b.name) 29: copy ∗GetBuf(x.buf) into ∗d
13: return da read(l→BUF, b.bindex) 30: d[W] = x

31: if CAS(l→Help, (s, 1, c), (s, 0, locp.mybuf))
32: locp.mybuf = c

procedure VL(p, i) returns boolean 33: locp.index = (locp.index + 1) mod locp.N
14: return (X[i] == locp.x) 34: return true

Figure 7: Implementation of O[0 . . M − 1]: an array of M W -word LL/SC objects shared by an unknown number of
processes.

isfy the condition at Line 19, the following holds: (1)
p dequeues an element from its local queue, and (2)
the value of N remains the same and index increases by
one (modulo N). As a result, the value of index wraps
around to 0 after p dequeues exactly n − j elements
from its local queue. Let t ′ > t be the first time after
t when index wraps around to 0, and let n ′ be the value
of N at time t ′. Then, p dequeues at most j elements
from the local queue before index again reaches value
j . Consequently, at the moment when p performs the
(n + 1)st dequeue from its local queue (which returns
the index of B), variable index has gone through the val-
ues j, j + 1, . . . , n ′ − 1, 0, 1, . . . j − 1, j , and processes
with names j, j + 1, . . . , n ′ − 1, 0, 1, . . . , j − 1 have
been helped by p. Since q has obtained a name prior to
time t , it follows that q’s name is certainly less than n ′

Therefore, p would have checked whether q needs help
before reusing B, which proves the above property.

3.3.1 Implementation of Join and Leave

Figure 8 present the code for Join and Leave operations.
As we stated earlier, the Join operation must (1) give
each process a unique name, (2) give each process a
unique memory block, (3) ensure that if K processes
are participating in an algorithm then a new process ob-
tains a name in the range [0 . . K], (4) guarantee that if a
process obtains a name n, then a pointer to its memory
block has been written into the nth location of the array
NameArray, and (5) ensure that variable N holds the
maximum number of processes that have simultaneously
participated in the algorithm so far. We now explain how
the implementation in Figure 8 ensures these properties.

11

Types
nodetype = record owned: boolean; loc: blocktype; next: ∗nodetype end

Shared variables
Head: ∗nodetype

Local persistent variables at each process p
nodep: ∗nodetype

Initialization
Head = malloc(sizeof nodetype); Head→owned = false; Head→next = ⊥

Head→loc = malloc(sizeof blocktype); Head→loc→Help = (0, 0, ∗)

Init(∗(Head→loc), 0)

procedure Join(p) procedure Leave(p)

35: mynode = malloc(sizeof nodetype) 61: node p→owned = false
36: mynode→owned = true
37: mynode→next = ⊥ procedure Init(loc, name)
38: mynode→loc = malloc(sizeof blocktype) 62: loc.N = 1
39: mynode→loc→Help = (0, 0, ∗) 63: da write(loc.BUF, 0,

40: name = 0 malloc(W + 1))

41: cur = Head 64: da write(loc.BUF, 1,

42: while (true) malloc(W + 1))

43: if CAS(cur→owned, false, true) 65: loc.mybuf = (1, name, 0)

44: free(mynode→loc) 66: enqueue(loc.Q, (1, name, 1))

45: free(mynode) 67: loc.index = 0
46: break 68: loc.name = name
47: da write(NameArray, name, cur→loc)

48: name++
49: if (cur→next == ⊥)

50: if CAS(cur→next,⊥, mynode)
51: cur = mynode
52: break
53: cur = cur→next
54: da write(NameArray, name, cur→loc)

55: while ((n = N) < name + 1)

56: CAS(N, n, name + 1)

57: locp = ∗(cur→loc)

58: nodep = cur
59: if (cur == mynode)
60: Init(locp, name)

Figure 8: Implementation of Join and Leave procedures, based on the renaming algorithm of Herlihy et al. [10] and
the algorithm for allocating hazard-pointer records by Michael [21]

The algorithm for Join and Leave is essentially the
same as the renaming algorithm of Herlihy et al. [10]
and the algorithm for allocating new hazard-pointer
records of Michael [21]. The algorithm maintains a
linked list of nodes, with variable Head pointing to the
head of the list. Each node in the list has a boolean field
owned, which indicates whether the node is owned by
some process or not. A node can be owned by at most
one process at any given time. If a process p captures
ownership of the kth node in the list, then its also cap-
tures ownership of the name k.4 Each node in the list
also has a field loc which holds the pointer to a mem-
ory block. The idea is that when a process p captures
ownership of some node, it also captures ownership of

4We assume that the list starts with the 0th node.

the memory block at that node and will use that memory
block in the LL/SC algorithm. Each node in the list has
a field next which holds the pointer to the next node
in the list. Finally, process p’s local persistent variable
nodep holds the pointer to the node owned by p.

We now explain how the algorithm works. When a
process p wishes to join the algorithm, it first prepares
a new node that it will attempt to insert into the linked
list (Lines 35–39). Next, it initializes its local variable
name to 0, and, starting at the head of the list, tries to
capture the first available node in the list (Lines 41–53).
As we stated earlier, if p succeeds in capturing the kth
node in the list, then it has also captured ownership of the
name k as well as the memory block stored at that node.
While traversing through the list, process p also makes
sure that array NameArraymatches the contents of the

12

linked list, i.e., that the j th location in the array holds
the pointer to the memory block stored at the j th node
in the list.

In order to capture a node, p performs the CAS op-
eration on the owned field of that node (Line 43), trying
to change its value from false (indicating that no pro-
cess owns the node), to true (indicating that the node is
owned by some process). If p’s CAS succeeds, it means
that p has successfully captured the node, and so p ter-
minates the loop and frees up the node that it had previ-
ously allocated (Lines 44–46). If p fails to in capturing a
node (because a node was already owned by some other
process or because some other process’s CAS succeeded
before p’s), p increments its variable name (Line 48)
and then writes the memory block at that node into array
NameArray (Line 47). Next, p checks whether it is at
the last node in the list (Line 49), and if so, it tries to
insert its own node at the back of the list (Line 50). If
p’s CAS succeeds, it means that p has successfully in-
stalled its node at the end of the list. Furthermore, since
p had already set the owned field of that node to true
(at Line 36), it means that p has ownership of that node.
Hence, p terminates its loop at Line 52. If, on the other
hand, p’s CAS fails, it means that some other process
must have inserted its own node into the list. In that
case, the node that p was currently visiting is no longer
the last node in the list. So, p moves on to the next node
in the list (Line 53) and repeats the above steps.

By the above algorithm, at the moment when p ex-
its the loop, its variable name holds the position of the
node in the list that p had captured (which is the same
as p’s new name). Since p had not previously written
that node into array NameArray, p does so at Line 54.
Notice that, if p captures the kth node in the list (i.e., if
p’s name is k), it means that p must have found the first
k nodes to be owned by other processes. (Recall that the
list starts with the 0th node.) Hence, the number of pro-
cesses participating in the algorithm when p captures the
kth node is k + 1 or more [10]. To ensure that variable
N, which holds the maximum number of processes par-
ticipating in the algorithm so far, is up to date, process p
performs the following steps. First, p reads N (Line 55).
If the value of N is smaller than k + 1, p tries to write
k +1 into N (Line 56). There are two possibilities: either
p’s CAS succeeds or it fails. In the former case, N has
been correctly updated; furthermore, the next time next
time p tests the condition at Line 55, it will break out
of the loop. In the latter case, some other process must
have written into N and p may have to repeat the loop.
However, since N is increased by at least one with each
write, p will repeat the loop at most k + 1 times. Conse-
quently, after p’s last iteration of the loop, N will hold a

value greater than or equal to k + 1.
Next, p sets its two persistent variables node p and

locp to point to, respectively, the node in the list that p
had captured and the memory block stored at that node
(Lines 57 and 58). Finally, p checks whether it captured
the same node that it had allocated at the beginning of the
Join operation (Line 59). If so, it initializes the memory
block stored at that node (Line 60). If p had captured
some other node, then the memory block at that node
has already been initialized (by a process who inserted
that node into the list), and so there is no need for p to
initialize that memory block.

The initialization of a block proceeds as follows.
First, p sets the estimate of N to 1 (Line 62). Next, it
allocated two new buffers and writes them at locations 0
and 1 of the array BUF (Lines 63 and 64). Then, p takes
one of the two buffers to be its local buffer (Line 65)
and enqueues the index of the other buffer into the local
queue Q (Line 66). Finally, p sets its variable index to 0
and its variable name to name (Lines 67 and 68).

Operation Leave is extremely simple: p simply re-
leases the ownership of the node it had previously cap-
tured during its Join operation (Line 61)

Based on the above discussion, we have the follow-
ing theorem. Its proof is given in Appendix A.3.

Theorem 3 The wait-free implementation in Figures 7
and 8 of an array O[0 . . M−1] of M W-word LL/SC ob-
jects is linearizable. The time complexity of LL, SC and
VL operations on some variable in O are O(W), O(W)

and O(1), respectively. The time complexity of Join and
Leave operations is O(K) and O(1), respectively, where
K is the maximum number of processes that have simul-
taneously participated in the algorithm. The space com-
plexity of the implementation is O((K 2 + M)W).

References

[1] J. Anderson and M. Moir. Universal constructions
for large objects. In Proceedings of the 9th Interna-
tional Workshop on Distributed Algorithms, pages
168–182, September 1995.

[2] J. Anderson and M. Moir. Universal constructions
for multi-object operations. In Proceedings of the
14th Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 184–194, August 1995.

[3] IBM T.J Watson Research Center. System/370
Principles of operation, 1983. Order Number
GA22-7000.

13

[4] T.D. Chandra, P. Jayanti, and K. Y. Tan. A poly-
log time wait-free construction for closed objects.
In Proceedings of the 17th Annual Symposium on
Principles of Distributed Computing, pages 287–
296, June 1998.

[5] Intel Corporation. Intel Itanium Architecture Soft-
ware Developer’s Manual Volume 1: Application
Architecture, 2002. Revision 2.1.

[6] S. Doherty, M. Herlihy, V. Luchangco, and
M. Moir. Bringing practical lock-free synchro-
nization to 64-bit applications. In Proceedings of
the 23rd Annual ACM Symposium on Principles of
Distributed Computing, pages 31–39, 2004.

[7] IBM Server Group. IBM e server POWER4 System
Microarchitecture, 2001.

[8] M. Herlihy. A methodology for implementing
highly concurrent data structures. ACM Trans-
actions on Programming Languages and Systems,
15(5):745–770, 1993.

[9] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free synchronization: Double-ended
queues as an example. In Proceedings of the 23rd
International Conference on Distributed Comput-
ing Systems, 2003.

[10] M. Herlihy, V. Luchangco, and M. Moir. Space-
and time-adaptive nonblocking data structures. In
Proceedings of Computing: Australasian Theory
Symposium, 2003.

[11] M.P. Herlihy. Wait-free synchronization. ACM
TOPLAS, 13(1):124–149, 1991.

[12] M.P. Herlihy and J.M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
TOPLAS, 12(3):463–492, 1990.

[13] SPARC International. The SPARC Architecture
Manual. Version 9.

[14] A. Israeli and L. Rappoport. Disjoint-Access-
Parallel implementations of strong shared-memory
primitives. In Proceedings of the 13th Annual ACM
Symposium on Principles of Distributed Comput-
ing, pages 151–160, August 1994.

[15] P. Jayanti. f-arrays: implementation and applica-
tions. In Proceedings of the 21st Annual Sym-
posium on Principles of Distributed Computing,
pages 270 – 279, 2002.

[16] P. Jayanti. An optimal multi-writer snapshot algo-
rithm. In Proceedings of the 37th ACM Symposium
on Theory of Computing, 2005.

[17] P. Jayanti and S. Petrovic. Efficient and practical
constructions of LL/SC variables. In Proceedings
of the 22nd ACM Symposium on Principles of Dis-
tributed Computing, July 2003.

[18] P. Jayanti and S. Petrovic. Efficient wait-free im-
plementation of multiword LL/SC variables. In
Proceedings of the 25th International Conference
on Distributed Computing Systems, 2005.

[19] L. Lamport. Concurrent reading and writing. Com-
munications of the ACM, 20(11):806–811, 1977.

[20] V. Luchangco, M. Moir, and N. Shavit. Nonblock-
ing k-compare-single-swap. In Proceedings of the
fifteenth annual ACM symposium on Parallel algo-
rithms and architectures, pages 314–323, 2003.

[21] M. Michael. Hazard pointers: Safe memory recla-
mation for lock-free objects. IEEE Transactions on
Parallel and Distributed Systems, 15(6):491–504,
2004.

[22] M. Michael. Practical lock-free and wait-free
LL/SC/VL implementations using 64-bit CAS. In
Proceedings of the 18th Annual Conference on Dis-
tributed Computing, pages 144–158, 2004.

[23] M. Moir. Practical implementations of non-
blocking synchronization primitives. In Proceed-
ings of the 16th Annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 219–228,
August 1997.

[24] G. L. Peterson. Concurrent reading while writing.
ACM TOPLAS, 5(1):56–65, 1983.

[25] R. Site. Alpha Architecture Reference Manual.
Digital Equipment Corporation, 1992.

[26] MIPS Computer Systems. MIPS64TMArchitecture
For Programmers Volume II: The
MIPS64TMInstruction Set, 2002. Revision
1.00.

A Proofs

A.1 Proof of the algorithm in Figure 4

Let H be finite execution history of the algorithm in Fig-
ure 4. Let OP be some LL operation, OP ′ some SC op-
eration, and OP′′ some VL operation on O[i] in H, for

14

some i . Then, we define the linearization points (LPs)
for OP, OP′, and OP′′ as follows. If the CAS at Line 5 of
OP succeeds, then LP(OP) is Line 3 of OP. Otherwise,
let t be the time when OP executes Line 2, and t ′ be the
time when OP performs the CAS at Line 5. Let v be the
value that OP reads from BUF at Line 8 of OP. Then, we
show that there exists a successful SC operation SCq on
O[i] such that (1) at some point t ′′ during (t, t ′), SCq is
the latest successful SC on O[i] to execute Line 12, and
(2) SCq writes v into O[i]. We then set LP(OP) to time
t ′′. We set LP(OP′) to Line 12 of OP′, and LP(OP′′) to
Line 10 of OP′′.

Lemma 1 Let p be some process, and L L p some LL
operation by p in H. Let t and t ′ be the times when p
executes Line 2 and Line 5 of L L p, respectively. Let t ′′

be either (1) the time when p executes Line 2 of its first
LL operation after L L p, if such operation exists, or (2)
the end of H, otherwise. Then, the following statements
hold:

(S1) During the time interval (t, t ′], exactly one write
into Help[p] is performed.

(S2) Any value written into Help[p] during (t, t ′′) is
of the form (∗, 0, ∗).

(S3) Let t ′′′ ∈ (t, t ′] be the time when the write from
statement (S1) takes place. Then, during the time
interval (t ′′′, t ′′), no process writes into Help[p].

Proof. Statement (S2) follows trivially from the fact
that the only two operations that can affect the value of
Help[p] during (t, t ′′) are (1) the CAS at Line 5 of L L p,
and (2) the CAS at Line 21 of some other process’ SC
operation, both of which attempt to write (∗, 0, ∗) into
Help[p].

We now prove statement (S1). Suppose that (S1)
does not hold. Then, during (t, t ′], either (1) two or more
writes on Help[p] are performed, or (2) no writes on
Help[p] are performed. In the first case, we know (by
an earlier argument) that each write on Help[p] during
(t, t ′] is performed either by the CAS at Line 5 of L L p,
or by the CAS at Line 21 of some other process’ SC op-
eration. Let C AS1 and C AS2 be the first two CAS oper-
ations on Help[p] to write into Help[p] during (t, t ′].
Then, by the algorithm, both C AS1 and C AS2 are of the
form CAS(Help[p], (∗, 1, ∗), (∗, 0, ∗)). Since C AS1
succeeds and Help[p] doesn’t change between C AS1
and C AS2, it follows that C AS2 fails, which is a contra-
diction.

In the second case (where no writes on Help[p] take
place during (t, t ′]), Help[p] doesn’t change through-
out (t, t ′]. Therefore, p’s CAS at Line 5 of L L p suc-
ceeds, which is a contradiction to the fact that no writes

on Help[p] take place during (t, t ′]. Hence, statement
(S1) holds.

We now prove statement (S3). Suppose that (S3)
does not hold. Then, at least one write on Help[p]

takes place during (t ′′′, t ′′). By an earlier argument,
any write on Help[p] during (t ′′′, t ′′) is performed ei-
ther by the CAS at Line 5 of L L p, or by the CAS at
Line 21 of some other process’ SC operation. Let C AS3
be the first CAS operation on Help[p] to write into
Help[p] during (t ′′′, t ′′). Then, by the algorithm, C AS3
is of the form CAS(Help[p], (∗, 1, ∗), (∗, 0, ∗)). Since
Help[p] holds the value (∗, 0, ∗) at time t ′′′ (by (S2)),
and since Help[p] doesn’t change between time t ′′′ and
C AS3, it follows that C AS3 fails, which is a contradic-
tion. Hence, we have statement (S3). ut

In Figure 9 we present a number of invariants satis-
fied by the algorithm. In the following, we let PC(p)

denote the value of process p’s program counter. For
any register r at process p, we let r(p) denote the value
of that register. We let P denote a set of processes such
that p ∈ P if and only if PC(p) ∈ {1, 2, 7 − 13, 16 −

21, 23, 24} or PC(p) ∈ {3 − 5} ∧ Help[p] ≡ (∗, 1, ∗).
We let P ′ denote a set of processes such that p ∈ P ′ if
and only if PC(p) ∈ {3 − 6} ∧ Help[p] ≡ (∗, 0, ∗).
We let P ′′ denote a set of processes such that p ∈ P ′′

if and only if PC(p) = 14. We let P ′′′ denote a set of
processes such that p ∈ P ′′′ if and only if PC(p) = 22.
Finally, we let |Q p| denote the length of process p’s lo-
cal queue Q p.

Lemma 2 The algorithm satisfies the invariants in Fig-
ure 9.

Proof. (By induction) For the base case, (i.e., t = 0),
all the invariants hold by initialization. The inductive
hypothesis states that the invariants hold at time t ≥ 0.
Let t ′ be the earliest time after t that some process, say
p, makes a step. Then, we show that the invariants holds
at time t ′ as well.

First, notice that if PC(p) = {1−4, 7−11, 13, 16−

20, 23, 24}, or if PC(p) = {5, 12, 21} and p’s CAS
fails, then none of the invariants are affected by p’s step
and hence they hold at time t ′ as well.

If PC(p) = 5 and p’s CAS succeeds, then p moves
from P to P ′ and writes mybuf p into Help[p].buf. Con-
sequently, invariant 5 holds by IH:4 and invariant 9 by
IH:9. All other invariants trivially hold.

If PC(p) = 6, then, by Lemma 1, p was in P ′ at
time t . Furthermore, p is in P at time t ′. Since p writes
Help[p].buf into mybuf p, invariant 4 holds by IH:5 and
invariant 9 by IH:9. All other invariants trivially hold.

15

1. For any process p, we have |Q p| ≥ N .

2. For any process p such that PC(p) = 15, we have
|Q p| ≥ N + 1.

3. For any process p and any value b in Q p, we have
b ∈ [0 . . M + (N + 1)N − 1].

4. For any processes p ∈ P , we have mybyf p ∈

[0 . . M + (N + 1)N − 1].

5. For any process p ∈ P ′, we have Help[p].buf ∈

[0 . . M + (N + 1)N − 1].

6. For any process p ∈ P ′′, we have x p.buf ∈

[0 . . M + (N + 1)N − 1].

7. For any process p ∈ P ′′′, we have b(p) ∈

[0 . . M + (N + 1)N − 1].

8. For any index i ∈ [0 . . M −1], we have X[i].buf ∈

[0 . . M + (N + 1)N − 1].

9. Let p and q, (respectively, p ′ and q ′, p′′ and q ′′,
p′′′ and q ′′′), be any two processes in P (respec-
tively, P ′, P ′′, P ′′′). Let r be any process and
b1 and b2 any two values in Qr . Let i and j be
any two indices in [0 . . M − 1]. Then, we have
mybufp 6= mybufq 6= b1 6= b2 6= X[i].buf 6=

X[j].buf 6= Help[p′].buf 6= Help[q ′].buf 6=

x p′′ .buf 6= xq ′′ .buf 6= b(p′′′) 6= b(q ′′′).

Figure 9: The invariants satisfied by the algorithm in
Figure 4

If PC(p) = 12 and p’s CAS succeeds, then p
moves from P to P ′′. Let X[i] be the variable that p
writes to. Then, since p’s CAS is successful, we have
X[i].buf = x p.buf at time t , and X[i].buf = mybuf p at
time t ′. Consequently, invariant 8 holds by IH:4, invari-
ant 6 by IH:8, and invariant 9 by IH:9. All other invari-
ants trivially hold.

If PC(p) = 14, then p leaves P ′′. Furthermore,
p enqueues x p.buf into the queue Q p. Consequently,
invariant 1 holds by IH:1, invariant 2 by IH:1, invariant 3
by IH:6, and invariant 9 by IH:9. All other invariants
trivially hold.

If PC(p) = 15, then p joins P . Furthermore, p
reads and dequeues the front element of the queue Q p.
Consequently, invariant 4 holds by IH:3, invariant 1 by
IH:2, and invariant 9 by IH:9. All other invariants triv-
ially hold.

If PC(p) = 21 and p’s CAS succeeds, then p
moves from P to P ′′′. Let Help[q] be the variable
that p writes into during this step. Then, we have
b(p) = Help[q].buf at time t , Help[q].buf = mybuf p
at time t ′, and Help[q] changes from value (∗, 1, ∗)

at time t to a value (∗, 0, ∗) at time t ′. Therefore, by
Lemma 1, we have PC(q) ∈ {3 − 5} at times t and t ′,
and Help[q].buf = mybufq . Hence, q moves from P to
P ′, and b(p) = mybufq . Consequently, invariant 5 holds
by IH:4, invariant 7 by IH:4, and invariant 9 by IH:9. All
other invariants trivially hold.

If PC(p) = 22, then p moves from P ′′′ to P . Fur-
thermore, p writes b(p) into mybuf p. Consequently, in-
variant 4 holds by IH:7 and invariant 9 by IH:9. All other
invariants trivially hold. ut

Lemma 3 Let t0 < t1 < . . . < tK be all the times in
H when some variable X[i] is written to (by a successful
CAS at Line 12). Then, for all j ∈ {0, 1, . . . , K }, the
value written into X[i] at time t j is of the form (j, ∗).

Proof. Suppose not. Let j be the smallest index such
that, at time t j , a value k 6= j is written into X[i] by
some process p. (By initialization, we have j ≥ 1.)
Then, by the algorithm, p’s CAS at time t j is of the form
CAS(X[i], (k−1, ∗), (k, ∗)). Since X[i] holds value j−1
at time t j , and since k 6= j , it follows that p’s CAS fails,
which is a contradiction to the fact that p writes into X[i]
at time t j . ut

Lemma 4 Let O[i] be an LL/SC object. Let t be the
time when some process p reads X[i] (at Line 3 or 18),
and t ′ > t the first time after t that p completes Line 4
or Line 19. Let OP be the latest successful SC opera-
tion on O[i] to execute Line 12 prior to time t, and v the
value that OP writes in O[i]. If there exists some pro-
cess q such that Help[q] holds value (∗, 1, ∗) through-
out (t, t ′) and doesn’t change, then p reads value v from
BUF at Line 4 or Line 19 (during (t, t ′)).

Proof. Let r be the process executing OP. Since OP
is the latest successful SC operation on O[i] to execute
Line 12 prior to time t , it follows that p reads from X[i]
at time t the value that r writes in X[i] at Line 12 of
OP. Therefore, p reads during (t, t ′) the same buffer B
that r wrote v into at Line 11 of OP. Let t1 be the time
when r starts writing into B at Line 11 of OP, t2 the time
when r completes writing into B at Line 11 of OP, t3 the
time when r writes into X[i] at Line 12 of OP, and t ′′ the
time when p starts reading B during (t, t ′). Then, the
following claim holds.

16

Claim 1 During (t1, t2), no process other than r writes
into B. During (t2, t ′), no process writes into B.

Proof. Suppose not. Then, either some process other
than r writes into B during (t1, t2), or some process
writes into B during (t2, t ′). In the first case, let r1 be the
process that writes into B during (t1, t2). Then, at some
point during (t1, t2), we have mybufr1

= mybufr , which
is a contradiction to Invariant 9. In the second case, let r2
be the first process to start writing into B at some time
τ1 ∈ (t2, t ′), and k be the index of buffer B. Then, by
an earlier argument, τ1 6∈ (t2, t3). Furthermore, by In-
variant 9 , r2 does not write into B as long as X[i] holds
value (∗, k). Therefore, X[i] changes during (t3, τ1).

Since X[i] doesn’t change during (t3, t), it means
that (1) τ1 > t and (2) some process writes into X[i] dur-
ing (t, τ1). Let r3 be the first such process, τ2 ∈ (t, τ1)

the time when r3 writes into X[i], and SCr3 the SC oper-
ation during which r3 performs that write. Let τ3 be the
time when r3 executes Line 14 of SCr3 . Then, at time τ3,
r3 enqueues k into Qr3 . Furthermore, by Invariant 9, r2
does not write into B during (τ2, τ3), nor does it write
into B during the time Qr3 contains value k. Therefore,
we have τ3 ∈ (τ2, τ1). Finally, we know that k is de-
queued from Qr3 during (τ3, τ1).

Let τ4 be the first time after τ3 that k is dequeued
from Qr3 . (Notice that, by the above argument, τ4 ∈

(τ3, τ1).) Then, by Invariant 1, r3 executes Lines 16–23
N times during (τ3, τ4). Since during each execution of
Lines 16–23 r3 increments variable indexr3 by 1 mod-
ulo N , there exists an execution E of Lines 16–23 dur-
ing which indexr3 = q. Because Help[q] holds value
(∗, 1, ∗) throughout (t, t ′) and doesn’t change, it follows
that (1) r3 satisfies the condition at Line 16 of E , and
(2) r3’s CAS at Line 21 of E succeeds. This, however,
is a contradiction to the fact that Help[q] = (∗, 1, ∗)

throughout (t, t ′). Hence, we have the claim. ut

The above claim shows that (1) during (t1, t2), no
process other than r writes into B, and (2) during (t2, t ′),
no process writes into B. Consequently, p reads v from
B during (t, t ′), which proves the lemma. ut

Lemma 5 Let O[i] be an LL/SC object and OP some LL
operation on O[i]. Let SCq be the latest successful SC
operation on O[i] to execute Line 12 prior to Line 3 of
OP, and vq the value that SCq writes in O[i]. If the CAS
at Line 5 of OP succeeds, then OP returns value vq .

Proof. Let p be the process executing OP. Let t
time when p executes Line 3 of OP, and t ′ > t be
the time when p completes Line 4 of OP. Since the

CAS at Line 5 of OP succeeds, it follows by Lemma 1
that Help[p] holds value (∗, 1, ∗) throughout (t, t ′)

and doesn’t change during that time. Therefore, by
Lemma 4, p reads vq from BUF at Line 4 of OP, which
proves the lemma. ut

Lemma 6 Let O[i] be an LL/SC object, and OP an LL
operation on O[i] such that the CAS at Line 5 of OP
fails. Let p be the process executing OP. Let t and t ′ be
the times, respectively, when p executes Lines 2 and 5
of OP. Let x and v be the values that p reads from BUF
at Lines 7 and 8 of OP, respectively. Then, there exists
a successful SC operation SCq on O[i] such that (1) at
some point during (t, t ′), SCq is the latest successful SC
on O[i] to execute Line 12, and (2) SCq writes x into
X[i] and v into O[i].

Proof. Since p’s CAS at time t ′ fails, it means that
Help[p] = (s, 0, b) just prior to t ′. Then, by Lemma 1,
there exists a single process r that writes into Help[p]

during (t, t ′) (at Line 21). Let t1 ∈ (t, t ′) be the time
when r performs that write, and E be r ’s execution of
Lines 16–22 during which r performs that write. Then,
r ’s CAS at Line 21 of E (at time t1) is of the form
CAS(Help[p], (s, 1, ∗), (s, 0, ∗)), for some s. There-
fore, at time t1, Help[p] has value (s, 1, ∗). Hence, by
Lemma 1, p writes (s, 1, ∗) into Help[p] at Line 2 of
OP (at time t). Since a value of the form (s, ∗, ∗) is writ-
ten into Help[p] for the first time at time t , it follows
that r reads (s, 1, ∗) from Help[p] at Line 16 of E at
some time t2 ∈ (t, t1). Consequently, r reads variable
Announce[p] at Line 17 of E at some time t3 ∈ (t2, t1).
Since p writes i into Announce[p] at Line 1 of OP, it
follows that r reads i from Announce[p] at time t2.
Hence, r reads X[i] at Line 18 of E .

Let t4 be the time when r reads X[i] at Line 18 of
E , t5 the time when r starts Line 19 of E , t6 the time
when r completes Line 19 of E , and t7 the time when r
executes Line 20 of E . Let SCq be the latest successful
SC operation on O[i] to execute Line 12 prior to time
t4, xq the value that SCq writes in X[i], and vq the value
that SCq writes in O[i]. Then, at time t4, r reads xq
from X[i]. Furthermore, since t1 is the first (and only)
time that Help[p] is written during (t, t ′), it follows
that Help[p] holds value (∗, 1, ∗) at all times during
(t4, t6) and doesn’t change during that time. Therefore,
by Lemma 4, r reads vq from BUF during (t5, t6).

Let B be the buffer that r writes vq into during
(t5, t6). Then, at time t7, r writes xq into B[W]. Further-
more, since r writes the index of buffer B into Help[p]

at Line 21 of E (at time t1), it follows that p reads buffer
B at Lines 7 and 8 of OP. Let t8 be the time when p

17

reads B[W] at Line 7 of OP, t9 the time when p starts
reading B at Line 8 of OP, and t10 the time when p com-
pletes reading B at Line 8 of OP. Then, we show that the
following claim holds.

Claim 2 During (t5, t6), no process other than r writes
into B, and during (t6, t10), no process writes into B.

Proof. Suppose not. Then, either some process other
than r writes into B during (t5, t6), or some process
writes into B during (t6, t10). In the former case, let r1
be the process that writes into B during (t5, t6). Then, at
some point during (t5, t6), we have mybufr1

= mybufr ,
which is a contradiction to Invariant 9. In the latter case,
let r2 be the first process to write into B at some time
τ1 ∈ (t6, t10). Then, by an earlier argument, we know
that τ1 6∈ (t6, t1). We now show that τ1 6∈ (t1, t10).

Let b be the index of buffer B. We know by In-
variant 9 that r2 does not write into B as long as (1)
Help[p] = (s, 0, b), and (2) p is between Lines 2 and
6 of OP. Furthermore, since p sets mybuf p to b at Line 6
of OP, r2 does not write into B after p executes Line 6
of OP and before it completes OP. Therefore, throughout
(t1, t10), r2 does not write into B. Hence, τ1 6∈ (t1, t10).
Since, by an earlier argument, τ1 6∈ (t6, t1), it follows
that τ1 6∈ (t6, t10). This, however, is a contradiction to
the fact that r2 writes into B during (t6, t10). ut

The above claim shows that (1) during (t5, t6), no
process other than r writes into B, and (2) during
(t6, t10), no process writes into B. Consequently, p reads
xq from B[W] at time t8 and vq from B during (t9, t10).
Since SCq is the latest successful SC operation on O[i]
to execute Line 12 prior to time t4, and since t4 ∈ (t, t ′),
we have the lemma. ut

Lemma 7 (Correctness of LL) Let O[i] be some
LL/SC object. Let OP be any LL operation on O[i],
and OP′ be the latest successful SC operation on O[i]
such that LP(OP′) < LP(OP). Then, OP returns the value
written by OP′.

Proof. Let p be the process executing OP. We exam-
ine the following two cases: (1) the CAS at Line 5 of
OP succeeds, and (2) the CAS at Line 5 of OP fails. In
the first case, let SCq be the latest successful SC oper-
ation on O[i] to execute Line 12 prior to Line 3 of OP,
and vq be the value that SCq writes in O[i]. Since all
SC operations are linearized at Line 12 and since OP is
linearized at Line 3, we have SCq = OP′. Furthermore,
by Lemma 5, OP returns value vq . Therefore, the lemma
holds in this case.

In the second case, let t and t ′ be the times, respec-
tively, when p executes Lines 2 and 5 of OP. Let v be
the value that p reads from BUF at Line 8 of OP. Then,
by Lemma 6, there exists a successful SC operation SCr
on O[i] such that (1) at some time t ′′ ∈ (t, t ′), SCr is
the latest successful SC on O[i] to execute Line 12, and
(2) SCr writes v into O[i]. Since all SC operations are
linearized at Line 12 and since OP is linearized at time
t ′′, we have SCr = OP′. Therefore, the lemma holds. ut

Lemma 8 (Correctness of SC) Let O[i] be some
LL/SC object. Let OP be any SC operation on O[i] by
some process p, and OP′ be the latest LL operation on
O[i] by p prior to OP. Then, OP succeeds if and only if
there does not exist any successful SC operation OP ′′ on
O[i] such that LP(OP′) < LP(OP′′) < LP(OP).

Proof. We examine the following two cases: (1) the
CAS at Line 5 of OP′ succeeds, and (2) the CAS at Line 5
of OP′ fails. In the first case, let t1 be the time when p
executes Line 3 of OP′, and t2 be the time when p exe-
cutes Line 12 of OP. Then, we show that the following
claim holds.

Claim 3 Process p’s CAS at time t2 succeeds if and only
if there does not exist some other SC operation on O[i]
that performs a successful CAS at Line 12 during (t1, t2).

Proof. Suppose that no other SC operation on O[i] per-
forms a successful CAS at Line 12 during (t1, t2). Then,
X[i] doesn’t change during (t1, t2), and hence p’s CAS
at time t2 succeeds.

Suppose that some SC operation SCq on O[i] does
perform a successful CAS at Line 12 during (t1, t2).
Then, by Lemma 3, X[i] holds different values at times
t1 and t2. Hence, p’s CAS at time t2 fails, which proves
the claim. ut

Since all SC operations are linearized at Line 12 and
since OP′ is linearized at time t1, it follows from the
above claim that OP succeeds if and only if there does
not exist some successful SC operation OP′′ on O[i] such
that LP(OP′) < LP(OP′′) < LP(OP). Hence, the lemma
holds in this case.

In the second case (when the CAS at Line 5 of OP ′

fails), let t and t ′ be the times when p executes Lines 2
and 5 of OP′, respectively. Let x and v be the values
that p reads from BUF at Lines 7 and 8 of OP′, respec-
tively. Then, by Lemma 6, there exists a successful
SC operation SCr on O[i] such that (1) at some time
t ′′ ∈ (t, t ′), SCr is the latest successful SC on O[i] to
execute Line 12, and (2) SCr writes x into X[i] and v

18

into O[i]. Therefore, at Line 7 of OP′, p reads the value
that variable X[i] holds at time t ′′. We now prove the
following claim.

Claim 4 Process p’s CAS at time t2 succeeds if and only
if there does not exist some other SC operation on O[i]
that performs a successful CAS at Line 12 during (t ′′, t2).

Proof. Suppose that no other SC operation on O[i] per-
forms a successful CAS at Line 12 during (t ′′, t2). Then,
X[i] doesn’t change during (t ′′, t2), and hence p’s CAS
at time t2 succeeds.

Suppose that some SC operation SCq on O[i] does
perform a successful CAS at Line 12 during (t ′′, t2).
Then, by Lemma 3, X[i] holds different values at times
t ′′ and t2. Hence, p’s CAS at time t2 fails, which proves
the claim. ut

Since all SC operations are linearized at Line 12 and
since OP′ is linearized at time t1, it follows from the
above claim that OP succeeds if and only if there does
not exist some successful SC operation OP′′ on O[i] such
that LP(OP′) < LP(OP′′) < LP(OP). Hence, the lemma
holds. ut

Lemma 9 (Correctness of VL) Let O[i] be some
LL/SC object. Let OP be any VL operation on O[i] by
some process p, and OP′ be the latest LL operation on
O[i] by p that precedes OP. Then, OP returns true if and
only if there does not exist some successful SC operation
OP′′ on O[i] such that LP(OP′′) ∈ (LP(OP′), LP(OP)).

Proof. Similar to the proof of Lemma 8. ut

Theorem 1 The algorithm in Figure 4 is a linearizable,
wait-free implementation of an array O[0 . . M − 1] of
W-word LL/SC objects, shared by N processes. The time
complexities of LL, SC and VL operations on any O[i]
are O(W), O(W) and O(1), respectively. The space
complexity of the implementation is O((N 2 + M)W).

Proof. The theorem follows immediately from Lem-
mas 7, 8, and 9. ut

A.2 Proof of the algorithm in Figure 5

Let H be the complete execution history of the Dynami-
cArray algorithm in Figure 5. Then, we show that the
following lemmas hold.

Lemma 10 Let t1, t2, . . . , tm be all the times in H that
variable D is written. Let di , for all i ∈ {1, 2, . . . , m}, be
the value written into D at time ti . Let d0 be the initial-
izing value for D. Then, we have d0 6= d1 6= . . . 6= dm .
Furthermore, for all i ∈ {0, 1, . . . , m}, we have: (1)
di→size = 2i , (2) di→A is an array of size 2i , (3) di→

B is an array of size 2i+1, and (4) di → A = di−1 → B
for i > 0.

Proof. Suppose that the first part of the claim
doesn’t hold. Then, there exist some indices i and j in
{0, 1, . . . , m} such that di = d j . Let t ′

i (respectively,
t ′

j) be the latest time prior to ti (respectively, t j) that di
was returned by a malloc at Line 6 (or during initial-
ization). Then, by the algorithm, di (respectively, d j) is
not freed after time ti (respectively, t j). Hence, by the
uniqueness of allocated addresses, we have t ′

j < t ′
i and

t ′
i < t ′

j , which is a contradiction. Therefore, we have the
first part of the claim.

We prove the second part of the claim by induction.
Suppose that that the claim holds for all i < j ; we show
that the claim holds for j as well. Let p be the pro-
cess that writes d j into D at time t j . Let t be the lat-
est time prior to t j that p reads D (at Line 1). Then,
since p’s CAS at time t j succeeds, p reads d j−1 from
D at time t . Furthermore, since, by the first part of the
claim, we have d0 6= d1 6= . . . 6= d j−1 6= d j , it follows
that t ∈ (t j−1, t j). By inductive hypothesis, we have (1)
d j−1→size = 2 j−1, (2) d j−1→A is of size 2 j−1, and (3)
d j−1→B is of size 2 j . Therefore, during time (t, t j), p
(1) writes 2 j into d j →size (Line 9), (2) sets d j → B to
be a new array of size 2 j+1 (Line 8), and (3) sets d j →A
to be d j−1→B (Line 7). Hence, we have the claim. ut

In the following, let K be the maximum i such
that write(i, ∗) is invoked in H. Let Ei , for all
i ∈ {0, 1, . . . , K }, be the collection of all executions of
write(i, ∗) in H. Let ti , for all i ∈ {0, 1, . . . , K }, be
the earliest time some execution in Ei is invoked. Let t ′

i ,
for all i ∈ {0, 1, . . . , K }, be the earliest time some exe-
cution in Ei completes. (Notice that, by the definition of
DynamicArray, ti > t ′

i−1 for all i ∈ {1, 2, . . . , K }.) Let
vi , for all i ∈ {0, 1, . . . , K }, be the value written by an
execution in Ei . Let c(i), for all i ∈ {1, 2, . . . , K }, be the
smallest power of 2 greater or equal to i , and c ′(i) be the
largest power of 2 smaller or equal to i . (If i = 0, then
c′(i) = 0.) If E is an execution of procedure write
in H, then, in the following, we slightly abuse notation,
and say that “E executes Line 4”, instead of “process p
executing E executes Line 4.”

Lemma 11 For all i ∈ {0, 1, . . . , K }, we have the fol-
lowing.

19

If i is not a power of 2:

(1) Ei 6= ∅.

(2) Let d be the value of variable D at time ti . Then,
we have d→size = c(i).

(3) For all E ∈ Ei , E does not execute Lines 6–11.
(Notice that this implies that E does not invoke
the write procedure at Line 11; therefore, we
can say, for example, “Line 4 of E,” without being
ambiguous.)

(4) Variable D doesn’t change during (ti , t ′
i).

(5) Let E be any execution in Ei , and d be the value
that E reads from D at Line 1. Then, E writes vi
into d→A[i] at Line 3.

(6) Let E be any execution in Ei , and d be the value
that E reads from D at Line 1. Then, E writes vi
into d→B[i] at Line 4.

(7) Let E be any execution in Ei , and d be the value
that E reads from D at Line 1. Then, E copies
d→A[i − c′(i)] into d→B[i − c′(i)] at Line 5.

If i is a power of 2:

(8) Ei 6= ∅.

(9) Let d be the value of variable D at time ti . Then,
we have d→size = i .

(10) For all E ∈ Ei , E executes write at Line 11
at most once. (In the following, let E ′

i ⊂ Ei be
the collection of all executions in Ei that execute
write at Line 11, and E ′′

i ⊂ Ei be the collection
of all executions in Ei that do not execute write
at Line 11. Let E(1) and E(2), for all E ∈ E ′

i ,
denote E’s first and second execution of Lines 1–
11, respectively.)

(11) Exactly one execution E ∈ Ei performs a success-
ful CAS at Line 10. Furthermore, E performs this
CAS at some time t ′′

i during (ti , t ′
i).

(12) Variable D changes exactly once during (ti , t ′
i), at

time t ′′
i .

(13) Let E (respectively, E ′) be any execution in E ′
i (re-

spectively, E ′′
i). Then, E(2) (respectively, E ′) exe-

cutes Line 1 after time t ′′
i .

(14) Let E (respectively, E ′) be any execution in E ′
i (re-

spectively, E ′′
i), and d be the value that E(2) (re-

spectively, E ′) reads from D at Line 1. Then, E(2)

(respectively, E ′) writes vi into d→A[i] at Line 3.

(15) Let E (respectively, E ′) be any execution in E ′
i (re-

spectively, E ′′
i), and d be the value that E(2) (re-

spectively, E ′) reads from D at Line 1. Then, E(2)

(respectively, E ′) writes vi into d→B[i] at Line 3.

(16) Let E (respectively, E ′) be any execution in E ′
i (re-

spectively, E ′′
i), and d be the value that E(2) (re-

spectively, E ′) reads from D at Line 1. Then, E(2)

(respectively, E ′) copies d → A[0] into d → B[0]

at Line 5.

Proof. (By induction) We assume that the lemma holds
for all i < j , and show that it also holds for j . (Dur-
ing the proof of the inductive step, we will also prove
the base case of i = 0.) We first prove the case when
j is not a power of 2.

Let d be the value of variable D at time t j . By induc-
tive hypothesis, D has changed exactly lg (c(j)) times
prior to time t j (by Statements (3) and (11)). Then, by
Lemma 10, we have (1) d→size = c(j), (2) d→A is an
array of size c(j), and (3) d→B is an array of size 2c(j).
Hence, Statement (2) holds. Since, by Lemma 10, the
value of D→size only increases after time t j , it follows
that all executions in E j satisfy the condition at Line 2.
Therefore, no execution in E j executes Line 6–11, which
proves Statement (3). Statements (5), (6), and (7) follow
directly from the algorithm. Statement (1) follows triv-
ially by the definition of DynamicArray. Statement (4)
follows directly from the following claim.

Claim 5 During (t j , t ′
j), variable D doesn’t change.

Proof. The claim follows immediately from the fact that
(1) during (t j , t ′

j), no execution in E j writes into D (by
Statement (3)), and (2) during (t j , t ′

j), no execution in
Ei , for all i < j , writes into D (by inductive hypothesis
for Statements (3) and (11)). ut

We now prove the case when j is a power of 2. Let
d be the value of variable D at time t j . By inductive hy-
pothesis, D has changed exactly lg j times prior to time
t j (by Statements (3) and (11)). Then, by Lemma 10, we
have (1) d→size = j , (2) d→A is an array of size j , and
(3) d → B is an array of size 2 j . Hence, Statement (9)
holds. We now prove the following claims.

Claim 6 Let t be either (1) the earliest time during
(t j , t ′

j) that some execution E ∈ E j performs a CAS at
Line 10, or (2) t j , if there is no such execution. Then,
throughout (t j , t), variable D holds value d.

Proof. The claim follows immediately from the fact
that (1) during (t j , t), no execution in E j writes into D

20

(by definition of t), (2) during (t j , t), no execution in Ei ,
for all i < j , writes into D (by inductive hypothesis for
Statements (3) and (11)), and (3) D holds value d at time
t j . ut

Claim 7 At least one execution E ∈ E j performs a CAS
at Line 10 during (t j , t ′

j).

Proof. Suppose not. Then, during (t j , t ′
j), no execu-

tion in E j performs a CAS at Line 10. Consequently, by
Claim 6, variable D holds value d throughout (t j , t ′

j). Let
E ∈ E j be the execution that completes at time t ′

j . Let
E(1) be the first execution of Lines 1–11 by E . Then,
E(1) reads d from D at Line 1. Therefore, E(1) does
not satisfy the condition at Line 2 and hence executes
Line 6–11, which is a contradiction to the fact that no ex-
ecution in E j performs a CAS at Line 10 during (t j , t ′

j).
ut

Claim 8 Let t be the earliest time (by Claim 7) during
(t j , t ′

j) that some execution E ∈ E j performs a CAS at
Line 10. Then, E’s CAS at time t succeeds.

Proof. Notice that, by Claim 6, variable D holds value
d throughout (t j , t). Therefore, E reads d from D at
Line 1, and E’s CAS at time t succeeds, which proves
the claim. ut

Claim 9 Let t be the earliest time (by Claim 7) dur-
ing (t j , t ′

j) that some execution in E j performs a CAS
at Line 10. Let E be any execution in E j , and E(l) any
execution of Lines 1–11 of E. Then, if E(l) executes
Line 1 prior to time t, it executes Lines 6–11. Otherwise,
it executes Lines 3–5.

Proof. By Claim 6, we know that variable D holds value
d throughout (t j , t). Therefore, if E(l) executes Line 1
before time t , it will find d in variable D. Consequently,
E(l) will not satisfy the condition at Line 2, and will
hence execute Lines 6–11.

Suppose that E(l) executes Line 1 after time t . Let
d ′ be the value that E(l) reads from D at Line 1. Then, by
Lemma 10 and Claim 8, we have d ′→size ≥ 2 j . There-
fore, E(l) satisfies the condition at Line 2, and hence
executes Lines 3–5. ut

Claim 10 At most one execution E ∈ E j performs a suc-
cessful CAS at Line 10.

Proof. Suppose not. Then, two or more executions in E j
perform a successful CAS at Line 10. Let t and t ′ be the
earliest two times that some execution in E j performs
a successful CAS at Line 10. Then, by Claim 8, t is
the earliest time during (t j , t ′

j) that any execution in E j
performs a CAS at Line 10.

Let E be the execution in E j that performs a suc-
cessful CAS at time t ′. Let E(l) be the execution of
Lines 1–11 of E during which E performs that CAS.
Let t ′′ be the time when E(l) executes Line 1, and d ′ be
the value that E(l) reads from D at time t ′′. Then, since
E(l)’s CAS at time t ′ succeeds, it follows that t ′′ ∈ (t, t ′)

(by Lemma 10). Therefore, by Claim 9, E(l) executes
Lines 3–5, which is a contradiction to the fact that E(l)
performs a successful CAS at Line 10. ut

Notice that, by Claim 9, if an execution E ∈

E j executes write at Line 11, it will not execute
Lines 6–11 again. Therefore, we have Statement (10).
Statement (11) follows directly from Claims 8 and 10.
Statement (13) follows directly from Claim 9. State-
ments (14), (15), and (16) follow directly by the algo-
rithm. Statement (8) follows trivially by the definition of
DynamicArray. Statement (12) follows directly from the
following claim.

Claim 11 During (t j , t ′
j), variable D changes exactly

once, at time t ′′
i .

Proof. The claim follows immediately from the fact
that (1) during (t j , t ′

j), no execution in Ei , for all i < j ,
writes into D (by inductive hypothesis for Statements (3)
and (11)), and (2) during (t j , t ′

j), exactly one execution
in E j writes into D (by Statement (11)). ut

ut

Lemma 12 No execution E in H writes or reads an un-
allocated memory region at Lines 3, 4, or 5.

Proof. Let E be an execution in H, and Es the collec-
tion that E belongs to, for some s ∈ {1, 2, . . . , K }. If s
is not a power of 2, let d be the value of variable D that
E reads at Line 1. Then, by Statement (2) of Lemma 11
and by Lemma 10, we have d → size ≥ c(s). Further-
more, arrays d → A and d → B are of sizes at least c(s)
and 2c(s), respectively. Therefore, E writes into a valid
array location at Lines 3 and 4. Since s > c ′(s), E reads
and writes a valid array location at Line 5 as well.

If s is not a power of 2, we examine two possibilities:
either E ∈ E ′

j or E ∈ E ′′
j . In the first case, let d be the

value of variable D that E(2) reads at Line 1. Then, by
Statement (13) of Lemma 11 and by Lemma 10, we have

21

d → size ≥ 2s. Furthermore, arrays d → A and d → B
are of sizes at least 2s and 4s, respectively. Therefore,
E(2) writes into a valid array location at Lines 3 and 4.
Since s = c′(s), E reads and writes a valid array location
at Line 5 as well. (The argument for the second case is
identical, and is therefore omitted.) ut

Lemma 13 Let R be any read(i, ∗) operation in H, for
some i ∈ {0, 1, . . . , K }. Then, R returns vi .

Proof. (In the following, let D(t) to denote the value of
variable D at time t .) Let td and tr be the times when R
executes Lines 12 and 13, respectively. Then, we show
that the following claim holds:

Claim 12 The length of the array D(td)→ A is at least
i + 1.

Proof. Notice that, by the definition of DynamicArray,
at least one execution E ∈ Ei completes before R starts.
Then, the claim follows immediately by Statements (2),
(9), and (12) of Lemma 11 and by Lemma 10. ut

Suppose that the lemma doesn’t hold. Then, the
value that R reads from D(td)→ A[i] at time tr is dif-
ferent than vi . By Lemma 11, we know that at least
one execution in Ei writes vi into both D(ti) → A[i]
and d ′ → B[i] during (ti , t ′

i). Furthermore, D doesn’t
change during (ti , t ′

i) and no other execution in E j , for
all j < i , writes into D(ti)→A[i] and D(ti)→B[i] dur-
ing (ti , t ′

i). Therefore, we have D(t ′
i)→ A[i] = vi and

D(t ′
i)→B[i] = vi at time t ′

i .
Let t be any time in (t ′

i , tr). Let t1, t2, . . . , tm(t) be
all the times during (t ′

i , t) when D changes. Let A j , for
all j ∈ {1, 2, . . . , m(t)}, be the array in D(t i)→ A. Let
B j , for all j ∈ {1, 2, . . . , m(t)}, be the array in D(t i)→

B. Let A0 be the array in D(t ′
i) → A, B0 the array in

D(t ′
i)→ B, and t0 = t ′

i . Then, we prove the following
claim.

Claim 13 If no execution writes a value different than
vi at index i (of some array) during (t ′

i , t), then at all
times during (t j , t) and for all j ∈ {0, 1, 2, . . . , m(t)},
we have A j [i] = vi .

Proof. Suppose not. Then, let t ′ be the earliest time that
the following occurs: for some k, Ak [i] 6= vi at time t ′ ∈

(tk, t). Notice that, since A0[i] = vi at time t ′
i , and since

no execution writes a value different than vi at index i
during (t ′

i , t), it follows that k 6= 0. Similarly, since
B0[i] = vi at time t ′

i , and since no execution writes a
value different than vi at index i during (t ′

i , t), it follows

that A1[i] = vi at time t1 and A1[i] = vi throughout
(t1, t). Therefore, we have k ≥ 2.

It follows by Lemma 11 that some execution in
E2k−2c(i) writes into D at time t k−1. Furthermore, some
execution in E2k−1c(i) writes into D at time t k . Finally,
during (t k−1, tk), some execution E ∈ E2k−2c(i)+i reads
the value in Ak−1[i] (at Line 5) and writes that value into
Bk−1[i] (at Line 5). Then, by definition of t ′, E reads
vi from Ak−1[i]. Therefore, E writes vi into Bk−1[i].
Consequently, since no execution writes a value different
than vi at index i during (t ′

i , t), it follows that Ak [i] = vi
at time t k and Ak [i] = vi throughout (t k, t), which is a
contradiction to the fact that Ak [i] 6= vi at time t ′. ut

By Claim 13, some execution writes a value different
than vi at index i (of some array) during (t ′

i , tr) (because
R reads a value different than vi at time tr). Let te be
the earliest time that some execution E writes a value
different than vi at index i (of some array) during (t ′

i , tr).
Then, by Lemma 11, (1) E writes into one of the arrays
A0, A1, . . . , Am(tr) or B0, B1, . . . , Bm(tr), (2) E ∈ E j , for
some j > i , and (3) E’s write at time te takes place at
Line 5 of E . Therefore, E writes into Bk[i] at time te,
for some k ∈ 0, 1, . . . , m(tr).

Notice that E reads Ak [i] at Line 5 prior to time
te. Since te is the first time during (t ′

i , tr) that some
execution writes a value different than vi at index i (of
some array), it follows that during (t ′

i , te), no execution
writes a value different than vi at index i (of some array).
Therefore, by Claim 13, we have Ak [i] = vi throughout
(t ′

i , te). Consequently, E reads vi from Ak [i] at Line 5,
and therefore writes vi into Bk[i] at time te, which is a
contradiction. Hence, we have the lemma. ut

Theorem 2 The algorithm in Figure 5 is wait-free and
implements a DynamicArray object D from a word-sized
CAS object and registers. The time complexity of read
and write operations on D is O(1). The space used by
the algorithm at any time t is O(nK), where n is the
number of processes executing the algorithm at time t,
and K is the highest location written in D prior to time
t.

Proof. The theorem follows immediately from
Lemma 13. ut

22

A.3 Proof of the algorithm in Figures 7 and 8

A.3.1 Lemmas associated with the algorithm in Fig-
ure 8

We say that node n is allocated at time t if there exists
a call to malloc at time t (at Line 35) that returns n.
Node n is released at time t if some process executes a
free operation at Line 45 at time t with the argument
n. Node n is installed at time t if some process executes
a successful CAS at Line 50 at time t with the third ar-
gument n.

We say that node n is alive at time t if it has been
allocated prior to time t but hasn’t been released, or if
n is the initial dummy node and n hasn’t been released.
Node n is active at time t if it has been installed prior
to time t or if it is the initial dummy node. We let Alive
denote the set of all nodes that are alive. We let L denote
the sequence of nodes that are active, arranged in the
order of their installation.

We let PC(p) denote the value of process p’s pro-
gram counter at time t . For any register r at process p,
we let r(p) denote the value of that register at time t .
We let P ′ denote the set of processes such that p ∈ P ′

if and only if PC(p) ∈ {36 − 45, 47 − 50, 53}. We let
P ′′ denote the set of processes such that p ∈ P ′′ if and
only if PC(p) ∈ {38 − 45, 47 − 50, 53}. We let P ′′′ de-
note the set of processes such that p ∈ P ′′′ if and only if
PC(p) ∈ {42 − 45, 47 − 50, 53}. We let |L| denote the
length of L . We let n i denote the i th element of L , for all
i ∈ {0, 1, . . . , |L| − 1}. Then, the algorithm in Figure 8
satisfies the following invariants.

Lemma 14 The algorithm in Figure 8 satisfies the in-
variants in Figure 10.

Proof. (By induction) For the base case (i.e., t = 0),
the lemma holds trivially by initialization. The inductive
hypothesis states that the lemma holds at all times prior
to t ≥ 0. Let t ′ be the earliest time after t that some
process, say p, makes a step. Then, we show that the
lemma holds at time t ′ as well.

Notice that, if PC(p) ∈ {36, 38 − 40, 42 − 44, 46 −

48, 51, 52, 54 − 68}, then none of the invariants are af-
fected by p’s step and hence they hold at time t ′ as well.

If PC(p) = 35, then p joins P ′ and writes into
mybuf(p) a pointer to a newly allocated node. Conse-
quently, invariant 8 holds by IH:2, invariant 9 by IH:7,
and invariant 7 by definition of Alive. All other invari-
ants trivially hold.

If PC(p) = 37, then p joins P ′′ and writes ⊥ into
mynode(p)→next. Hence, we have invariant 10. Fur-
thermore, invariant 5 holds by IH:8. All other invariants
trivially hold.

1. |L| ≥ 1.

2. For any node n ∈ L , we have n ∈ Alive.

3. For any two nodes n i and n j such that i 6= j , we
have n i 6= n j .

4. Head = n0.

5. ∗(n i .next) = n i+1, for all i ∈ {0, 1, . . . , |L|−2}.

6. n|L|−1.next = ⊥.

7. For all p ∈ P ′, we have mynode(p) ∈ Alive.

8. For all p ∈ P ′ and all i ∈ {0, 1, . . . , |L| − 1}, we
have ∗mynode(p) 6= n i .

9. For all p and q in P ′ such that p 6= q, we have
mynode(p) 6= mynode(q).

10. For all p ∈ P ′′, we have mynode(p)→next =

⊥.

11. For all p ∈ P ′′′, we have ∗cur(p) = n j , for some
j ∈ {0, 1, . . . , |L| − 1}.

12. For any p ∈ P ′ such that PC(p) = 53, we have
cur(p)→next 6= ⊥.

Figure 10: The invariants satisfied by the algorithm in
Figure 8

If PC(p) = 41, then p joins P ′′′ and writes Head
into cur(p). Consequently, invariant 11 holds by IH:4.
All other invariants trivially hold.

If PC(p) = 45, then p leaves P ′, P ′′, and P ′′′, and
frees up the node ∗m†\ode(p). Consequently, invariant 2
holds by IH:8 and invariant 7 by IH:9. All other invari-
ants trivially hold.

If PC(p) = 49, or if PC(p) = 50 and p’s CAS
fails, then we have cur(p)→next 6= ⊥ at both times
t and t ′. Consequently, invariant 12 holds. All other
invariants trivially hold.

If PC(p) = 50 and p’s CAS succeeds, then (1) p
leaves P ′, P ′′, and P ′′′, (2) ∗mynode(p) joins L , (3)
∗cur(p).next = ⊥ at time t , and (4) ∗cur(p).next =

mynode(p) at time t ′. Let l be the length of L at
time t . Then, by IH:11, IH:5, and IH:6, it follows that
∗cur(p) = nl−1. Therefore, invariant 5 holds. Further-
more, invariant 1 holds by IH:1, invariant 2 by IH:7, in-
variant 3 by IH:8, invariant 6 by IH:10, invariant 8 by
IH:9. All other invariants trivially hold.

If PC(p) = 53, then p writes cur(p)→next into

23

cur(p). Consequently, invariant 11 holds by IH:12, IH:5,
and IH:6. All other invariants trivially hold. ut

Lemma 15 Let n 6= n0 be any node in L and t be the
time when n is installed in L. Let p be the process that
installs n in L. Let t1 (respectively, t2, t3, t4, t5) be the
time when p executes Line 35 (respectively, Line 36, 37,
38, 39). Let B be the memory block that p allocates at
time t4. Then, we have the following: (1) p allocates n
at time t1, (2) n.owned holds value true at all times dur-
ing (t2, t), (3) n.next holds value ⊥ at all times during
(t3, t), (4) n.loc holds a pointer to B at all times dur-
ing (t4, t), (5) B is not released during (t4, t), and (6)
B.Help holds value (0, 0, ∗) at all times during (t5, t).

Proof. The lemma follows immediately by Invariant 9.
ut

Lemma 16 Let n be any node in L and t be the time
when n is installed in L. If n 6= n0, let p be the process
that installs n in L and t ′ < t be the latest time prior to t
when p executes Line 38. If n = n0, let t ′ = 0. Let B be
the memory block allocated at time t ′. Then, (1) B is not
released (at Line 44) after time t ′, and (2) n.loc points
to B at all times after t ′.

Proof. If n = n0, then the lemma holds immediately
by Invariant 8. We now show that the lemma also holds
for n 6= n0. Notice that, by Lemma 15, it follows that
(1) p allocates n at Line 35 at some time t ′′ < t ′, (2)
n.loc holds a pointer to B at all times during (t ′, t),
and (3) B is not released during (t ′, t). Furthermore, by
Invariant 8, no process writes into n.loc after time t ,
and no process releases B after time t . Therefore, we
have the lemma. ut

Lemma 17 For any two nodes n i and n j in L such that
i 6= j , we have n i .loc 6= n j .loc.

Proof. If i 6= 0 (respectively, j 6= 0), let pi (re-
spectively, p j) be the process that installs n i (respec-
tively, n j) in L , ti (respectively, t j) be the time when
pi (respectively, p j) executes Line 38, and Bi (respec-
tively, B j) be the block that pi (respectively, p j) allo-
cates at time ti (respectively, t j). If i = 0 (respectively,
j = 0), let ti = 0 (respectively, t j = 0). Then, by
Lemma 16, n i .loc (respectively, n j .loc) has value Bi
(respectively, B j), at all times after ti (respectively, t j),
and Bi (respectively, B j) is not released after time ti (re-
spectively, t j). Without loss of generality, let ti < t j .

Then, by the uniqueness of allocated addresses, we have
B j 6= Bi , which proves the lemma. ut

In the following, we let Bi , for all i ∈

{0, 1, . . . , |L| − 1}, denote the memory block pointed
by ni .loc.

Lemma 18 At the time when some process p starts its
kth execution of the loop at Line 42 we have (1) |L| ≥ k,
(2) cur(p) = nk−1, and (3) name(p) = k − 1.

Proof. (By induction) For the base case (i.e., k = 1),
notice that by Invariant 1, we have |L| ≥ 1. Further-
more, by Invariant 4, we have cur(p) = n0. Finally, by
Line 40, we have name(p) = 0. Therefore, the lemma
holds for the base case. The inductive hypothesis states
that the lemma holds for some k ≥ 1. We now show that
the lemma holds for k + 1 as well.

By inductive hypothesis, we have cur(p) = nk−1
and name(p) = k − 1 when p starts its kth iteration
of the loop. Since p increments name(p) at Line 48 dur-
ing that iteration, it follows that name(p) = k when p
starts its k + 1st iteration of the loop. Furthermore, by
Invariants 12 and 5, it follows that L ≥ k + 1 and that
cur(p) = nk when p starts its k + 1st iteration of the
loop. Hence, we have the lemma. ut

Definition 1 If at some time a process p either (1) per-
forms a successful CAS at Line 43 with cur(p) = n or (2)
performs a successful CAS at Line 50 with mynode(p) =

n, then we say that p acquires ownership of a node
n ∈ L. If i is the index of n in L (i.e., n = n i), then
we also say that p acquires ownership of name i and
memory block Bi .

Lemma 19 If a process p exits the loop at Line 46 dur-
ing the kth iteration of the loop, then we have (1) |L| ≥

k, (2) p has ownership of nk−1, (3) name(p) = k − 1,
(4) ∗cur(p) = nk−1, and (5) ∗mynode(p) 6= nk−1.

Proof. Claims 1, 2, 3, and 4 follow immediately from
Lemma 18. Claim 5 follows immediately by Invariant 8.
ut

Lemma 20 If a process p exits the loop at Line 52
during the kth iteration of the loop, then we have (1)
|L| ≥ k+1, (2) p has ownership of nk , (3) name(p) = k,
(4) ∗cur(p) = nk , and (5) ∗mynode(p) = nk .

Proof. Notice that, by Lemma 18, when p begins its
kth iteration of the loop, we have |L| ≥ k, name(p) =

k − 1, and ∗cur(p) = nk−1. Since p’s CAS at Line 50

24

is successful, it follows that nk−1.next = ⊥ just before
that CAS. Hence, by Invariant 6, |L| = k just before p
executes Line 50. Consequently, p installs ∗mynode(p)

into the kth position in L , and so we have ∗mynode(p) =

nk and |L| = k + 1 after p’s CAS. Therefore, Claims 1,
2, and 5 hold. Furthermore, Claim 3 holds by Line 48
and Claim 4 by Line 51. ut

Lemma 21 If a process p captures a node n ∈ L, then
p subsequently satisfies the condition at Line 59 if and
only if p captured n at Line 52.

Proof. The lemma follows immediately by Lemmas 19
and 20. ut

Lemma 22 If a process p acquires ownership of some
node n ∈ L, then ∗node p = n at the time when p subse-
quently executes Line 61.

Proof. The lemma follows immediately by Lemmas 19
and 20, and Line 58. ut

Definition 2 Let t be the time when p acquires owner-
ship of some node n ∈ L, t ′ > t be the first time after t
when p executes Line 61, and i be the position of n in L
(i.e., n = n i). Then, we say that p releases ownership of
node n (respectively, name i , memory block Bi) at time
t ′, and that p owns node n (respectively, name i , memory
block Bi) at all times during (t, t ′).

Lemma 23 For any node n ∈ L, at most one process
owns n.

Proof. Suppose not. Then, there exists some time such
that two or more processes own some node in L . Let t be
the earliest such time and n the node in L owned by two
processes. Let p and q be those two processes. With-
out loss of generality, assume that p acquired ownership
of n first, at some time t ′ < t . (Notice that, by defini-
tion of t , q acquires ownership of n at time t .) Then, by
Invariant 3, q acquires ownership of n at Line 43. We
examine two possibilities: either p acquires ownership
if n at Line 43 or at Line 50. In the first case, p writes
true into n.owned at time t ′. Furthermore, since t is the
earliest time that two or more processes own the same
node, it follows that during (t ′, t) no process writes false
into n.owned. Therefore, n.owned = true at time t ,
and so q’s CAS at time t fails. This, however, is a con-
tradiction to the fact that q acquires ownership of n at
time t .

In the second case (where p acquires ownership at
Line 50), it follows by Lemma 15 that n.owned = true

at time t ′. By the same argument as above, n.owned =

true at time t as well. Therefore, q’s CAS at time t fails,
which is a contradiction to the fact that q acquires own-
ership of n at time t . ut

Lemma 24 Let t be the time when some process p starts
its kth execution of the loop at Line 44, and t ′ < t be
the latest time prior to t when p executes Line 42. Then,
there exists some time t ′′ ∈ (t ′, t) such that the number of
nodes in n1, n2, . . . , nk that are owned by some process
at time t ′′ plus the number of processes (including p)
that do not own any nodes but are in their j th execution
of the loop at Line 44 at time t ′′, for j ≤ k, is at least k.

Proof. The proof is identical to the proof of Lemma A.4
in [10]. ut

Definition 3 A memory block Bi , i ∈ {0, 1, . . . , |L|− 1,
becomes active the first time some process that captures
Bi (at Line 52) completes its Join procedure.

Lemma 25 At the moment when a memory block Bi ,
i ∈ {0, 1, . . . , |L| − 1, becomes active, we have (1)
Bi .N = 1, (2) |Bi .BUF| = 2, (3) Bi .mybuf = (1, i, 0),
(4) |Bi .Q| = 1, (5) the value in Bi .Q is (1, i, 1), (6)
Bi .index = 0, and (7) Bi .name = i .

Proof. Let p be the process that first captures Bi (at
Line 52). Then, by Lemma 21, p subsequently satis-
fies the condition at Line 59. Hence, p executes steps
at Lines 62–68. Since, by Lemma 21, no other process
ever writes into Bi at Lines 62–68, the lemma follows
trivially by Lines 62–68. ut .

Lemma 26 After a memory block Bi , i ∈

{0, 1, . . . , |L| − 1, becomes active, no process writes
into Bi at Lines 62–68.

Proof. The lemma follows immediately by Lemma 21.
ut

Lemma 27 Any process that executes Line 47 during
the i th iteration of the loop (at Line 42) writes a pointer
to Bi−1 into the i − 1st location of NameArray.

Proof. The lemma follows immediately by Lemma 18.
ut

25

Lemma 28 If a process p exits the loop at Line 43 dur-
ing the i th iteration of the loop, then p writes Bi−1 into
the i − 1st location of NameArray at Line 54. If a
process p exits the loop at Line 52 during the i th itera-
tion of the loop, then p writes Bi into the i th location of
NameArray at Line 54.

Proof. The lemma follows immediately by Lemmas 19
and 20. ut

Lemma 29 The algorithm in Figure 8 writes into array
NameArray in accordance with the specification of the
DynamicArray object.

Proof. Notice that, by Lemma 27, any process that ex-
ecutes Line 47 during the i th iteration of the loop writes
the same value (namely, a pointer to Bi−1) into the i −1st
location of NameArray. Furthermore, by Lemma 28, if
a process exits the loop at Line 43 (respectively, Line 52)
during the i th iteration of the loop, then p writes the
same value, namely, Bi−1 (respectively, Bi), into the
i − 1st (respectively, i th) location of NameArray at
Line 54. Therefore, all values written into the same lo-
cation are the same, and each process writes into the lo-
cations of NameArray in order. Hence, we have the
lemma. ut

Lemma 30 The value of N increases with each write
into N.

Proof. Suppose not. Let t be the first time that N is writ-
ten and its value does not increase. Let p be the process
that performs that write. Then, p’s CAS at Line 56 must
be of the form CAS(N, i, j), where j ≤ i . This, how-
ever, is a contradiction to the fact that p had satisfied the
condition at Line 55 prior to this CAS. ut

Lemma 31 At the moment when a process p exits the
loop at Line 55, we have name(p) < N.

Proof. The lemma follows immediately by Line 55. ut

Lemma 32 Any process p completes the loop at Line 55
after at most name(p) + 1 iterations.

Proof. Suppose not. Then, p executes the loop at
Line 55 for at least name(p) + 2 iterations. Notice
that, during the first name(p) + 1 iterations, p does
not perform a successful CAS at Line 56 (because, by
Lemma 30, p would exit the loop right after that CAS).
Therefore, the value in N changes at least name(p) + 1

times during those name(p) + 1 iterations. Then, by
Lemma 30, it follows that after p executes name(p) + 1
iterations of the loop the value of N is at least name(p)+

1. Therefore, p does not execute the (name(p) + 2)nd
iteration of the loop, which is a contradiction. ut

Lemma 33 Location i in NameArray holds value Bi
at all times, for all i < N.

Proof. Let j be the value of N. If j = 0, then the
lemma trivially holds. Otherwise, let p be the process
that first wrote j into N, and t be the time when p per-
formed that write. Then, we have name(p) = j − 1 at
time t . Hence, p had executed Line 48 exactly j − 1
times prior to t . Consequently, by Lemma 27, p had
written pointers to memory blocks B0, B1, . . . , B j−2 into
locations 0, 1, . . . , j − 2 of NameArray, respectively.
Furthermore, by Lemma 28, p had written a pointer to
B j−1 into NameArray at Line 54. Thus, we have the
lemma. ut

Lemma 34 For any memory block Bi , i ∈

{0, 1, . . . , |L| − 1}, if Bi is active then i < N.

Proof. Let p be the process that first captures Bi (at
Line 52). Then, by Lemma 20, we have name(p) = i
when p exits the loop (at Line 42). Consequently, by
Lemma 31, at the moment when p exits the loop at
Line 55, we have i < N. Since, by Lemma 30, the value
in N never decreases, we have the lemma. ut

Corollary 1 For any memory block Bi , i ∈

{0, 1, . . . , |L| − 1}, if Bi is active then location i
in NameArray holds value Bi .

We let P denote a set of processes such that p ∈ P
if and only if PC(p) ∈ [1 . . 34].

Lemma 35 For any process p ∈ P , the following holds:

1. locp = Bi , for some i ∈ 0, 1, . . . , |L| − 1.

2. For all q ∈ P such that p 6= q, we have loc p 6=

locq .

Proof. The first claim follows immediately by Lem-
mas 19 and 20. The second claim follows immediately
by the first claim and Lemma 17. ut

26

A.3.2 Lemmas associated with the algorithm in Fig-
ure 7

Let H be any finite execution history of the algorithm in
Figures 7 and 8. Let OP be some LL operation, OP ′ some
SC operation, and OP′′ some VL operation on O[i] in
E , for some i . Then, we define the linearization points
(LPs) for OP, OP′, and OP′′ as follows. If the CAS at
Line 5 of OP succeeds, then LP(OP) is Line 3 of OP.
Otherwise, let t be the time when OP executes Line 2,
and t ′ be the time when OP performs the CAS at Line 5.
Let v be the value that OP reads at Line 9 of OP. Then,
we show that there exists a successful SC operation SCq
on O[i] such that (1) at some point t ′′ during (t, t ′), SCq
is the latest successful SC on O[i] to execute Line 16,
and (2) SCq writes v into O[i]. We then set LP(OP) to
time t ′′. We set LP(OP′) to Line 16 of OP′, and LP(OP′′)

to Line 14 of OP′′.

Lemma 36 Let Bi , for i ∈ {0, 1, . . . , |L| − 1 be any
memory block. Let t be the time when Bi is installed
in L. Let t ′ be the end of H. Let L L1, L L2, . . . , L Lm
be the sequence of all LL operations in H such that, if
a process p is executing L L j , then locp = Bi during
L L j , for all j ∈ {1, 2, . . . , m}. Let t j and t ′

j , for all
j ∈ {1, 2, . . . , m}, be the times when Lines 2 and 5 of
L L j are executed. Then, the following statements hold:

(S1) During the time interval (t j , t ′
j], for all j ∈

{1, 2, . . . , m}, exactly one write into Bi .Help is
performed.

(S2) Any value written into Bi .Help during (t j , t ′
j], for

all j ∈ {1, 2, . . . , m}, is of the form (∗, 0, ∗).

(S3) During the time intervals
(t, t1), (t ′

1, t2), (t ′
2, t3), . . . , (t ′

m−1, tm), (t ′
m, t ′),

the value in Bi .Help is of the form (∗, 0, ∗) and
doesn’t change.

Proof. Let j be any index in {1, 2, . . . , m}. State-
ment (S2) follows trivially from the fact that the only
two operations that can affect the value of Bi .Help dur-
ing (t j , t ′

j) are (1) the CAS at Line 5 of L L j , and (2) the
CAS at Line 31 of some other process’ SC operation,
both of which attempt to write (∗, 0, ∗) into Bi .Help.

We now prove statement (S1). Suppose that (S1)
does not hold. Then, during (t j , t ′

j], either (1) two
or more writes on Bi .Help are performed, or (2) no
writes on Bi .Help are performed. In the first case,
we know (by an earlier argument) that each write
on Bi .Help during (t j , t ′

j] is performed either by the
CAS at Line 5 of L L j , or by the CAS at Line 31
of some other process’ SC operation. Let C AS1 and

C AS2 be the first two CAS operations on Bi .Help
to write into Bi .Help during (t j , t ′

j]. Then, by the
algorithm, both C AS1 and C AS2 are of the form
CAS(Bi.Help, (∗, 1, ∗), (∗, 0, ∗)). Since C AS1 suc-
ceeds and Bi .Help doesn’t change between C AS1 and
C AS2, it follows that C AS2 fails, which is a contradic-
tion.

In the second case (where no writes on Bi .Help take
place during (t j , t ′

j]), Bi .Help doesn’t change through-
out (t j , t ′

j]. Therefore, the CAS at Line 5 of L L j suc-
ceeds, which is a contradiction to the fact that no writes
on Bi .Help take place during (t j , t ′

j]. Hence, statement
(S1) holds.

We now prove statement (S3). Suppose that (S3)
statement doesn’t hold. Let (t ′′, t ′′′) be any of the inter-
vals (t, t1), (t ′

1, t2), (t ′
2, t3), . . . , (t ′

m−1, tm), (t ′
m, t ′) during

which the statement doesn’t hold. Notice that, by
Lemma 15, Bi .Help = (∗, 0, ∗) at time t . Fur-
thermore, by statements (S1) and (S2), Bi .Help =

(∗, 0, ∗) at times t ′
1, t ′

2, . . . , t ′
m . Hence, Bi .Help =

(∗, 0, ∗) at time t ′′. Let C AS3 be the first CAS
operation on Bi .Help to write into Bi .Help dur-
ing (t ′′, t ′′′). Then, by the algorithm, C AS3 is of
the form CAS(Bi.Help, (∗, 1, ∗), (∗, 0, ∗)). Since
Bi .Help doesn’t change between time t ′′ and C AS3, it
follows that C AS3 fails, which is a contradiction. Hence,
we have statement (S3). ut

In Figure 11 we present a number of invariants that
the algorithm satisfies. In the following, we let PC(p)

denote the value of process p’s program counter. With-
out loss of generality, we assume that when a process
completes any of the procedures its program counter
immediately jumps to the start of the next procedure
it wishes to execute. For any register r at process p,
we let r(p) denote the value of that register. We let
P1 denote a set of processes such that p ∈ P1 if and
only if PC(p) ∈ {1, 2, 7 − 17, 24 − 31, 33, 34} or
PC(p) ∈ {3 − 5} ∧ locp.Help ≡ (∗, 1, ∗). We let P2
denote a set of processes such that p ∈ P2 if and only if
PC(p) ∈ {3 − 6} ∧ locp.Help ≡ (∗, 0, ∗). We let P3
denote a set of processes such that p ∈ P3 if and only
if PC(p) = 18. We let P4 denote a set of processes
such that p ∈ P4 if and only if PC(p) = 32. We let
B1 (respectively, B2, B3) denote a set of memory blocks
such that B ∈ B1 (respectively, B2, B3) if and only if (1)
B ∈ B, and (2) there exists some process p such that
locp = B and p ∈ P1 (respectively, P2, P3). We let B0
denote a set of memory blocks such that B ∈ B0 if and
only if (1) B ∈ B, and (2) there does not exist any pro-
cess p ∈ P such that loc p = B. Finally, for any buffer
B ∈ B, we let |B.Q| denote the length of the queue B.Q,

27

1. For any memory block B ∈ B, we have |B.Q| ≥ B.N .

2. For any memory block B ∈ B, we have |B.BUF| ≤ B.N + 1.

3. For any process p ∈ P such that PC(p) ∈ {19, 20, 23}, we have |loc p.Q| ≥ locp.N + 1.

4. For any process p ∈ P such that PC(p) = 21, we have |loc p.BUF| ≤ locp.N .

5. Let B0 (respectively, B1, B2, B3) be any memory block in B0 (respectively, B1, B2, B3). Let B be any memory
block in B, and b be any value in B.Q. Let p4 be any process in P4. Let i be any index in [0 . . M − 1]. If b
(respectively, B0.mybuf, B1.mybuf, B2.Help.buf, B3.x .buf, c(p4), X[j].buf) is of the form (0, j), then we have
j ∈ [0 . . M − 1]. If b (respectively, B0.mybuf, B1.mybuf, B2.Help.buf, B3.x .buf, c(p4), X[j].buf) is of the form
(1, n, j), then we have (1) Bn ∈ B, (2) the j th location in array Bn.BUF holds a pointer to a buffer of length
W + 1, and (3) there does not exist any process p ∈ P such that loc p = Bn, PC(p) = 22, and locp.N = j .

6. Let B0 and C0 (respectively, B1 and C1, B2 and C2, B3 and C3) be any two memory blocks in B0 (respectively,
B1, B2, B3). Let B be any memory block in B, and b1 and b2 any two values in B.Q. Let p4 and q4 be any
two processes in P4. Let i and j be any two indices in [0 . . M − 1]. Then, we have B 0.mybuf 6= C0.mybuf 6=

B1.mybuf 6= C1.mybuf 6= b1 6= b2 6= X[i].buf 6= X[j].buf 6= B2.Help.buf 6= C2.Help.buf 6= B3.x .buf 6=

C3.x .buf 6= c(p4) 6= c(q4).

7. For any memory block B ∈ B, we have 0 < B.N ≤ N.

8. For any process p ∈ P such that PC(p) = 20, we have 0 < loc p.N < N.

9. For any memory block B ∈ B, we have B.index < B.N .

Figure 11: The invariants satisfied by the algorithm in Figure 7

and |B.BUF| denote the length of the array B.BUF.

Lemma 37 The algorithm in Figures 7 and 8 satisfies
the invariants in Figure 11.

Proof. For the base case, (i.e., t = 0), all the invariants
hold by initialization. The inductive hypothesis states
that the invariants hold at time t ≥ 0. Let t ′ be the ear-
liest time after t that some process, say p, makes a step.
Then, we show that the invariants holds at time t ′ as well.

First, notice that if PC(p) = {1 − 4, 7 − 9, 11 −

13, 15, 17, 24 − 30, 35 − 58, 60 − 67}, or if PC(p) =

{5, 16, 31} and p’s CAS fails, then none of the invariants
are affected by p’s step and hence they hold at time t ′ as
well. In the following, let B = loc p.

If PC(p) = 5 and p’s CAS succeeds, then B moves
from B1 to B2 and p writes B.mybuf into B.Help.buf.
Consequently, invariant 5 holds by IH:5 and invariant 6
by IH:6. All other invariants trivially hold.

If PC(p) = 6, then, by Lemma 36, B was in B2 at
time t . Furthermore, B is in B1 at time t ′. Since p writes
B.Help.buf into B.mybuf, invariant 5 holds by IH:5 and
invariant 6 by IH:6. All other invariants trivially hold.

If PC(p) ∈ {10, 14, 17, 34}, then B moves either
from B1 to B1 (if the next operation that p executes is

LL, VL, or SC), or from B1 to B0 (if the next opera-
tion that p executes is Leave). In either case, invariant 5
holds by IH:5 and invariant 6 by IH:6. All other invari-
ants trivially hold.

If PC(p) = 16 and p’s CAS succeeds, then B
moves from B1 to B3. Let X[i] be the variable that p
writes to. Then, since p’s CAS is successful, we have
X[i].buf = B.x .buf at time t , and X[i].buf = B.mybuf
at time t ′. Consequently, invariant 5 holds by IH:5 and
invariant 6 by IH:6. All other invariants trivially hold.

If PC(p) = 18, then B leaves B3. Furthermore, p
enqueues B.x .buf into the queue B.Q. Consequently, in-
variant 1 holds by IH:1, invariant 3 by IH:1, invariant 5
by IH:5, and invariant 6 by IH:6. The other two invari-
ants trivially hold.

If PC(p) = 19, then we have B.N < N. Conse-
quently, invariant 8 holds by IH:7. All other invariants
trivially hold.

If PC(p) = 20, then p increments B.N by one.
Consequently, invariant 1 holds by IH:3, invariant 4 by
IH:2, and invariant 7 by IH:8. All other invariants triv-
ially hold.

If PC(p) = 21, then the length of B.BUF increases
to at least B.N + 1. Consequently, invariant 2 holds

28

by IH:4. Notice that, by IH:4, the length of B.BUF
was at most B.N prior to this step. Therefore, loca-
tion B.N does not hold a pointer to a buffer of length
W + 1. Consequently, by IH:5, none of the values ap-
pearing in the inequality of invariant 6 were of the form
(1, B.name, B.N) prior to this step. Hence, invariant 5
holds. All other invariants trivially hold.

If PC(p) = 22, then B joins B1. Furthermore, p
writes (1, B.name, B.N) into B.mybuf. Notice that, by
IH:5, none of the values appearing in the inequality of
invariant 6 were of the form (1, B.name, B.N) prior to
this step. Consequently, invariant 6 holds. Invariant 5
holds by the fact that p had written a buffer of length
W + 1 into location B.N of B.BUF at Line 21. All other
invariants trivially hold.

If PC(p) = 23, then B joins B1. Furthermore, p
reads and dequeues the front element of the queue B.Q.
Consequently, invariant 1 holds by IH:3, invariant 5 by
IH:5, and invariant 6 by IH:6. All other invariants triv-
ially hold.

If PC(p) = 31 and p’s CAS succeeds, then B
moves from B1 to B4. Let B ′ be the memory block
pointed to by l(p). Then, we have c(p) = B ′.Help.buf
at time t , B ′.Help.buf = B.mybuf at time t ′, B ′.Help
changes from value (∗, 1, ∗) at time t to a value (∗, 0, ∗)

at time t ′. Therefore, by Lemma 36, there exists some
process q such that (1) locq = B ′ and PC(q) ∈ {3 − 5}

at times t and t ′, and (2) B ′.Help.buf = B ′.mybuf at
time t . Hence, B ′ moves from B1 to B2, and c(p) =

B ′.mybuf. Consequently, invariant 5 holds by IH:5 and
invariant 6 by IH:6. All other invariants trivially hold.

If PC(p) = 32, then B moves from B4 to B1. Fur-
thermore, p writes c(p) into B.mybuf. Consequently,
invariant 5 holds by IH:5 and invariant 6 by IH:6. All
other invariants trivially hold. ut

If PC(p) = 59 and p does not satisfy the condition
at Line 59, then, by Lemma 21, B moves either from
B0 to B1 (if the next operation that p executes is LL),
or from B0 to B0 (if the next operation that p executes
is Leave). In the latter case, none of the invariants are
affected by p’s step and hence they hold at time t ′. In the
former case, invariant 5 holds by IH:5 and invariant 6 by
IH:6. All other invariants trivially hold.

If PC(p) = 59 and p satisfies the condition at
Line 59, then none of the invariants are affected by p’s
step and hence they hold at time t ′ as well.

If PC(p) = 68, then, by Lemma 21, B joins B. Fur-
thermore, B either joins B1 (if the next operation that p
executes is LL), or B0 (if the next operation that p exe-
cutes is Leave). Let i be the name that p captures during
the Join procedure. Then, we have B = Bi . Notice that,
by Lemma 25, we have invariants 1, 2, 5, and 9. Further-

more, by IH:5, all the values in the inequality of invari-
ant 6 are either of the form (0, ∗) or (1, n, ∗), for some
Bn ∈ B. Since B has just joined B and since all mem-
ory blocks in B are different (by Lemma 17), it follows
that n 6= i . Hence, by Lemma 25, we have invariant 6.
Invariant 7 follows immediately by Lemmas 25 and 34.
All other invariants trivially hold. ut

Lemma 38 The algorithm in Figure 7 reads array
NameArray in accordance with the specification of the
DynamicArray object.

Proof. Let p be any process. Then, the only two places
where p reads NameArray is at Lines 12 and 24 of
the algorithm. If p reads NameArray at Line 12, let
i be the location in NameArray that p reads. Then,
by Invariant 5, it follows that Bi ∈ B. Consequently, by
Corollary 1, location i of NameArray had already been
written, which means that the lemma holds.

If p reads NameArray at Line 24, let j be the lo-
cation in NameArray that p reads. Then, by Invari-
ants 9 and 7, it follows that i < N. Consequently, by
Lemma 33, location i of NameArray had already been
written, which means that the lemma holds. ut

Lemma 39 Let Bi , for i ∈ {0, 1, . . . , |L| − 1} be any
memory block. Then, the algorithms in Figures 7 and 8
read and write into the array Bi .BUF in accordance with
the specification of the DynamicArray object.

Proof. Let p be the first process that captures owner-
ship of Bi . Then, by Lemma 21, p is the only process
that writes into Bi .BUF at Lines 63 and 64, and that p
writes into locations 0 and 1 of Bi .BUF. Notice that, by
Lemma 25, Bi .N = 1 when Bi becomes active. Since
Bi .BUF is written at Line 21 only after Bi .N is incre-
mented at Line 20, it follows that locations 2, 3, . . . are
written in order. Hence, the writes into Bi .BUF are in
accordance with the specification of the DynamicArray
object.

Let q be any process that reads some location j of
array Bi .BUF at Line 13. Then, by Invariant 5, we have
(1) Bi ∈ B and (2) the j th location in Bi .BUF had al-
ready been written. Consequently, the lemma holds. ut

Lemma 40 Let t0 < t1 < . . . < tK be all the times in
H when some variable X[i] is written to (by a successful
CAS at Line 16). Then, for all j ∈ {0, 1, . . . , K }, the
value written into X[i] at time t j is of the form (j, ∗).

29

Proof. Suppose not. Let j be the smallest index such
that, at time t j , a value k 6= j is written into X[i] by
some process p. (By initialization, we have j ≥ 1.)
Then, by the algorithm, p’s CAS at time t j is of the form
CAS(X[i], (k−1, ∗), (k, ∗)). Since X[i] holds value j−1
at time t j , and since k 6= j , it follows that p’s CAS fails,
which is a contradiction to the fact that p writes into X[i]
at time t j . ut

Lemma 41 Let O[i] be an LL/SC object. Let t be the
time when some process p reads X[i] (at Line 3 or 27),
and t ′ > t the first time after t that p completes Line 4 or
Line 29. Let OP be the latest successful SC operation on
O[i] to execute Line 16 prior to time t, and v the value
that OP writes in O[i]. If there exists some process q ∈

P such that locq .Help holds value (∗, 1, ∗) throughout
(t, t ′) and doesn’t change, then p reads value v at Line 4
or Line 29 (during (t, t ′)).

Proof. Let r be the process executing OP. Let B be the
buffer that q owns (i.e., B = locq). Since OP is the latest
successful SC operation on O[i] to execute Line 16 prior
to time t , it follows that p reads from X[i] at time t the
value that r writes in X[i] at Line 16 of OP. Therefore, p
reads during (t, t ′) the same buffer b that r wrote v into
at Line 15 of OP. Let t1 be the time when r starts writing
into b at Line 15 of OP, t2 the time when r completes
writing into b at Line 15 of OP, t3 the time when r writes
into X[i] at Line 16 of OP, and t ′′ the time when p starts
reading b during (t, t ′). Then, the following claim holds.

Claim 14 During (t1, t2), no process other than r writes
into b. During (t2, t ′), no process writes into b.

Proof. Suppose not. Then, either some process other
than r writes into b during (t1, t2), or some process
writes into b during (t2, t ′). In the first case, let r1 be the
process that writes into b during (t1, t2). Then, at some
point during (t1, t2), we have locr1 .mybuf = locr .mybuf,
which is a contradiction to Invariant 6. In the second
case, let r2 be the first process to start writing into b
at some time τ1 ∈ (t2, t ′), and k be the index of buffer
b. Then, by an earlier argument, τ1 6∈ (t2, t3). Further-
more, by Invariant 6 , r2 does not write into b as long as
X[i] holds value (∗, k). Therefore, X[i] changes during
(t3, τ1).

Since X[i] doesn’t change during (t3, t), it means
that (1) τ1 > t and (2) some process writes into X[i] dur-
ing (t, τ1). Let r3 be the first such process, τ2 ∈ (t, τ1)

the time when r3 writes into X[i], SCr3 the SC operation
during which r3 performs that write, and B ′ the memory
block that r3 owns during SCr3 (i.e., B ′ = locr3). Let

τ3 be the time when r3 executes Line 18 of SCr3 . Then,
at time τ3, r3 enqueues k into B ′.Q. Furthermore, by
Invariant 6, r2 does not write into b during (τ2, τ3), nor
does it write into b during the time B.Q contains value
k. Therefore, we have τ3 ∈ (τ2, τ1). Finally, we know
that k is dequeued from B ′.Q during (τ3, τ1).

Let τ4 be the first time after τ3 that k is dequeued
from B ′.Q. (Notice that, by the above argument, τ4 ∈

(τ3, τ1).) Then, we have the following subclaim.

Subclaim 1 There exists some process r5 and an exe-
cution E of Lines 24–32 by r5 such that (1) E takes
place during (τ3, τ4), (2) locr5 = B ′ during E, and (3)
B ′.index = B.name during E.

Proof. Let n, m, and j denote the values of B ′.N , shared
variable N, and B ′.index, respectively, at time τ3. Then,
by Invariant 1, there are n items already in B ′.Q before
b’s index is inserted at time τ3. So, b is not dequeued
until at least n + 1 dequeues are performed on B ′.Q.
Notice that, each time some process r6 ∈ P , such that
locr6 = B ′, satisfies the condition at Line 19, the fol-
lowing holds: (1) r6 does not dequeue an element from
B ′.Q, and (2) the values of B ′.N and B ′.index both in-
crease by one (at Lines 20 and 33). Moreover, each time
r6 does not satisfy the condition at Line 19, the follow-
ing holds: (1) r6 dequeues an element from B ′.Q, and
(2) the value of B ′.N remains the same and B ′.index
increases by one modulo B ′.N (at Line 33). As a re-
sult of the above two facts, the value of B ′.index wraps
around to 0 (at Line 33) after exactly n − j elements
are dequeued from B ′.Q. Let τ5 > τ3 be the first time
after τ3 when B ′index wraps around to 0, and let n ′ be
the value of B ′.N at time τ5. Notice that, since b is not
dequeued until at least n + 1 dequeues are performed
on B ′.Q, we have τ5 ∈ (τ3, τ4). By the same argu-
ment as above, at most j elements are dequeued from
B ′.Q before B ′.index again reaches value j (at Line 33).
Therefore, during (τ3, τ5), variable B ′.index has gone
through the values j, j +1, . . . , n ′ −1, 0, 1, . . . j −1, j .
Since B has become active prior to time τ3, it follows
by Lemma 34 that B.name < n ′. Therefore, there exists
some process r5 and an execution E of Lines 24–32 by r5
such that (1) E takes place during (τ3, τ5), (2) locr5 = B ′

during E , and (3) B ′.index = B.name during E . Hence,
we have the subclaim. ut

Since B.Help holds value (∗, 1, ∗) throughout
(t, t ′) and doesn’t change, it follows that (1) r5 reads B
at Line 24 of E (by Lemma 1), (2) r5 satisfies the con-
dition at Line 25 of E , and (3) r5’s CAS at Line 31 of
E succeeds. This, however, is a contradiction to the fact

30

that B.Help = (∗, 1, ∗) throughout (t, t ′). Hence, we
have the claim. ut

The above claim shows that (1) during (t1, t2), no
process other than r writes into b, and (2) during (t2, t ′),
no process writes into b. Consequently, p reads v from
b during (t, t ′), which proves the lemma. ut

Lemma 42 Let O[i] be an LL/SC object and OP some
LL operation on O[i]. Let SCq be the latest successful
SC operation on O[i] to execute Line 16 prior to Line 3
of OP, and vq the value that SCq writes in O[i]. If the
CAS at Line 5 of OP succeeds, then OP returns value vq .

Proof. Let p be the process executing OP. Let t
time when p executes Line 3 of OP, and t ′ > t be
the time when p completes Line 4 of OP. Since the
CAS at Line 5 of OP succeeds, it follows by Lemma 36
that locp.Help holds value (∗, 1, ∗) throughout (t, t ′)

and doesn’t change during that time. Therefore, by
Lemma 41, p reads vq at Line 4 of OP, which proves
the lemma. ut

Lemma 43 Let O[i] be an LL/SC object, and OP an LL
operation on O[i] such that the CAS at Line 5 of OP
fails. Let p be the process executing OP. Let t and t ′ be
the times, respectively, when p executes Lines 2 and 5 of
OP. Let x and v be the values that p reads at Lines 8
and 9 of OP, respectively. Then, there exists a successful
SC operation SCq on O[i] such that (1) at some point
during (t, t ′), SCq is the latest successful SC on O[i] to
execute Line 16, and (2) SCq writes x into X[i] and v

into O[i].

Proof. Since p’s CAS at time t ′ fails, it means
that loc p.Help = (s, 0, k) just prior to t ′. Then, by
Lemma 36, there exists a single process r that writes into
locp.Help during (t, t ′) (at Line 31). Let t1 ∈ (t, t ′) be
the time when r performs that write, and E be r ’s execu-
tion of Lines 24–32 during which r performs that write.
Then, r ’s CAS at Line 31 of E (at time t1) is of the form
CAS(locp.Help, (s, 1, ∗), (s, 0, ∗)), for some s > 1.
Therefore, at time t1, locp.Help has value (s, 1, ∗).
Hence, by Lemma 36, p writes (s, 1, ∗) into loc p.Help
at Line 2 of OP (at time t). Since a value of the form
(s, ∗, ∗) is written into loc p.Help for the first time at
time t , it follows that r reads (s, 1, ∗) from loc p.Help
at Line 25 of E at some time t2 ∈ (t, t1). Conse-
quently, r reads variable loc p.Announce at Line 26
of E at some time t3 ∈ (t2, t1). Since p writes i into
locp.Announce at Line 1 of OP, it follows that r reads

i from locp.Announce at time t2. Hence, r reads X[i]
at Line 27 of E .

Let t4 be the time when r reads X[i] at Line 27 of
E , t5 the time when r starts Line 29 of E , t6 the time
when r completes Line 29 of E , and t7 the time when r
executes Line 30 of E . Let SCq be the latest successful
SC operation on O[i] to execute Line 16 prior to time
t4, xq the value that SCq writes in X[i], and vq the value
that SCq writes in O[i]. Then, at time t4, r reads xq
from X[i]. Furthermore, since t1 is the first (and only)
time that locp.Help is written during (t, t ′), it follows
that locp.Help holds value (∗, 1, ∗) at all times during
(t4, t6) and doesn’t change during that time. Therefore,
by Lemma 41, r reads vq at Line 29.

Let d be the buffer that r writes vq into during
(t5, t6). Then, at time t7, r writes xq into d[W]. Further-
more, since r writes the index of buffer d into loc p.Help
at Line 31 of E (at time t1), it follows that p reads buffer
d at Lines 8 and 9 of OP. Let t8 be the time when p reads
d[W] at Line 8 of OP, t9 the time when p starts reading d
at Line 8 of OP, and t10 the time when p completes read-
ing d at Line 8 of OP. Then, we show that the following
claim holds.

Claim 15 During (t5, t6), no process other than r writes
into d, and during (t6, t10), no process writes into d.

Proof. Suppose not. Then, either some process other
than r writes into d during (t5, t6), or some process
writes into d during (t6, t10). In the former case, let r1
be the process that writes into d during (t5, t6). Then,
at some point during (t5, t6), we have locr1 .mybuf =

locr .mybuf, which is a contradiction to Invariant 6. In
the latter case, let r2 be the first process to write into d
at some time τ1 ∈ (t6, t10). Then, by an earlier argu-
ment, we know that τ1 6∈ (t6, t1). We now show that
τ1 6∈ (t1, t10).

Let k ′ be the index of buffer d . We know by In-
variant 6 that r2 does not write into d as long as (1)
locp.Help = (s, 0, k ′), and (2) p is between Lines 2
and 6 of OP. Furthermore, since p sets loc p.mybuf to
k ′ at Line 6 of OP, r2 does not write into d after p exe-
cutes Line 6 of OP and before it completes OP. There-
fore, throughout (t1, t10), r2 does not write into d . Hence,
τ1 6∈ (t1, t10). Since, by an earlier argument, τ1 6∈ (t6, t1),
it follows that τ1 6∈ (t6, t10). This, however, is a contra-
diction to the fact that r2 writes into d during (t6, t10). ut

The above claim shows that (1) during (t5, t6), no
process other than r writes into d , and (2) during (t6, t10),
no process writes into d . Consequently, p reads xq from
d[W] at time t8 and vq from d during (t9, t10). Since SCq

31

is the latest successful SC operation on O[i] to execute
Line 16 prior to time t4, and since t4 ∈ (t, t ′), we have
the lemma. ut

Lemma 44 (Correctness of LL) Let O[i] be some
LL/SC object. Let OP be any LL operation on O[i], and
OP′ be the latest successful SC operation on O[i] such
that LP(OP′) < LP(OP). Then, OP returns the value writ-
ten by OP′.

Proof. Let p be the process executing OP. We examine
the following two cases: (1) the CAS at Line 5 of OP
succeeds, and (2) the CAS at Line 5 of OP fails. In the
first case, let SCq be the latest successful SC operation
on O[i] to execute Line 16 prior to Line 3 of OP, and
vq be the value that SCq writes in O[i]. Since all SC
operations are linearized at Line 16 and since OP is lin-
earized at Line 3, we have SCq = OP′. Furthermore, by
Lemma 42, OP returns value vq . Therefore, the lemma
holds in this case.

In the second case, let t and t ′ be the times, respec-
tively, when p executes Lines 2 and 5 of OP. Let v

be the value that p reads at Line 9 of OP. Then, by
Lemma 43, there exists a successful SC operation SCr
on O[i] such that (1) at some time t ′′ ∈ (t, t ′), SCr is
the latest successful SC on O[i] to execute Line 16, and
(2) SCr writes v into O[i]. Since all SC operations are
linearized at Line 16 and since OP is linearized at time
t ′′, we have SCr = OP′. Therefore, the lemma holds. ut

Lemma 45 (Correctness of SC) Let O[i] be some
LL/SC object. Let OP be any SC operation on O[i] by
some process p, and OP′ be the latest LL operation on
O[i] by p prior to OP. Then, OP succeeds if and only if
there does not exist any successful SC operation OP ′′ on
O[i] such that LP(OP′) < LP(OP′′) < LP(OP).

Proof. We examine the following two cases: (1) the
CAS at Line 5 of OP′ succeeds, and (2) the CAS at Line 5
of OP′ fails. In the first case, let t1 be the time when p
executes Line 3 of OP′, and t2 be the time when p exe-
cutes Line 16 of OP. Then, we show that the following
claim holds.

Claim 16 Process p’s CAS at time t2 succeeds if and
only if there does not exist some other SC operation on
O[i] that performs a successful CAS at Line 16 during
(t1, t2).

Proof. Suppose that no other SC operation on O[i] per-
forms a successful CAS at Line 16 during (t1, t2). Then,

X[i] doesn’t change during (t1, t2), and hence p’s CAS
at time t2 succeeds.

Suppose that some SC operation SCq on O[i] does
perform a successful CAS at Line 16 during (t1, t2).
Then, by Lemma 40, X[i] holds different values at times
t1 and t2. Hence, p’s CAS at time t2 fails, which proves
the claim. ut

Since all SC operations are linearized at Line 16 and
since OP′ is linearized at time t1, it follows from the
above claim that OP succeeds if and only if there does
not exist some successful SC operation OP′′ on O[i] such
that LP(OP′) < LP(OP′′) < LP(OP). Hence, the lemma
holds in this case.

In the second case (when the CAS at Line 5 of OP ′

fails), let t and t ′ be the times when p executes Lines 2
and 5 of OP′, respectively. Let x and v be the values that
p reads at Lines 8 and 9 of OP′, respectively. Then, by
Lemma 43, there exists a successful SC operation SCr
on O[i] such that (1) at some time t ′′ ∈ (t, t ′), SCr is
the latest successful SC on O[i] to execute Line 16, and
(2) SCr writes x into X[i] and v into O[i]. Therefore, at
Line 8 of OP′, p reads the value that variable X[i] holds
at time t ′′. We now prove the following claim.

Claim 17 Process p’s CAS at time t2 succeeds if and
only if there does not exist some other SC operation on
O[i] that performs a successful CAS at Line 16 during
(t ′′, t2).

Proof. Suppose that no other SC operation on O[i] per-
forms a successful CAS at Line 16 during (t ′′, t2). Then,
X[i] doesn’t change during (t ′′, t2), and hence p’s CAS
at time t2 succeeds.

Suppose that some SC operation SCq on O[i] does
perform a successful CAS at Line 16 during (t ′′, t2).
Then, by Lemma 40, X[i] holds different values at times
t ′′ and t2. Hence, p’s CAS at time t2 fails, which proves
the claim. ut

Since all SC operations are linearized at Line 16 and
since OP′ is linearized at time t1, it follows from the
above claim that OP succeeds if and only if there does
not exist some successful SC operation OP′′ on O[i] such
that LP(OP′) < LP(OP′′) < LP(OP). Hence, the lemma
holds. ut

Lemma 46 (Correctness of VL) Let O[i] be some
LL/SC object. Let OP be any VL operation on O[i] by
some process p, and OP′ be the latest LL operation on
O[i] by p that precedes OP. Then, OP returns true if and
only if there does not exist some successful SC operation
OP′′ on O[i] such that LP(OP′′) ∈ (LP(OP′), LP(OP)).

32

Proof. Similar to the proof of Lemma 45. ut

Theorem 3 The wait-free implementation in Figures 7
and 8 of an array O[0 . . M−1] of M W-word LL/SC ob-
jects is linearizable. The time complexity of LL, SC and
VL operations on some variable in O are O(W), O(W)

and O(1), respectively. The time complexity of Join and
Leave operations is O(K) and O(1), respectively, where
K is the maximum number of processes that have simul-
taneously participated in the algorithm. The space com-
plexity of the implementation is O((K 2 + M)W).

Proof. The theorem follows immediately from Lem-
mas 44, 45, and 46. ut

33

	Efficiently Implementing a Large Number of LL/SC Objects
	Dartmouth Digital Commons Citation

	tmp.1601066523.pdf.Ql4di

