
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

5-1-2005

An O(n^{5/2} log n) Algorithm for the Rectilinear Minimum Link-An O(n^{5/2} log n) Algorithm for the Rectilinear Minimum Link-

Distance Problem in Three Dimensions (Extended Abstract) Distance Problem in Three Dimensions (Extended Abstract)

Robert Scot Drysdale
Dartmouth College

Clifford Stein
Columbia University

David P. Wagner
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Drysdale, Robert Scot; Stein, Clifford; and Wagner, David P., "An O(n^{5/2} log n) Algorithm for the
Rectilinear Minimum Link-Distance Problem in Three Dimensions (Extended Abstract)" (2005). Computer
Science Technical Report TR2005-538. https://digitalcommons.dartmouth.edu/cs_tr/270

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/270?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

An O(n5/2 log n) Algorithm for the Rectilinear Minimum Link-Distance

Problem in Three Dimensions (Extended Abstract)
(Dartmouth Computer Science Technical Report TR2005-538)

Robert Scot Drysdale ∗ Clifford Stein † David P. Wagner ∗ ‡

Abstract

In this paper we consider the Rectilinear Minimum
Link-Distance Problem in Three Dimensions. The prob-
lem is well studied in two dimensions, but is relatively
unexplored in higher dimensions. We solve the problem
in O(βn log n) time, where n is the number of corners
among all obstacles, and β is the size of a BSP decompo-
sition of the space containing the obstacles. It has been
shown that in the worst case β = Θ(n3/2), giving us
an overall worst case time of O(n5/2 log n). Previously
known algorithms have had worst-case running times of
Ω(n3).

1 Introduction

The Minimum Link-Distance Problem (sometimes re-
ferred to as the Minimum Bends Path Problem) at-
tempts to find a path between two points which has a
minimum number of turns. Equivalently, one can mini-
mize the number of straight line segments, or “links”, in
the path. An entire chapter in [8] is devoted to the sub-
ject of link-distance problems. Rectinlinear versions of
this problem received considerable attention during the
early and mid 1990’s, notably including [9, 5, 11, 7, 2].
Most of these treatments have been confined to just two
dimensions, since much of the interest in this problem
has been motivated by applications in VLSI[11].

A notable exception comes from deBerg, et al. who
have considered rectilinear variants of this problem in
higher dimensions [2]. They describe an O(nd log n)
method to solve a combined metric problem in d di-
mensions, where the objective is to minimize the total
distance travelled, plus some constant C times the total
number of bends in the path. Setting C to zero or to a
sufficiently high number solves the Euclidean Shortest
Path Problem, and the Minimum Link-Distance Prob-
lem, respectively.

∗Department of Computer Science, Dartmouth College,

{scot,dwagn}@cs.dartmouth.edu
†Department of Industrial Engineering and Operations Re-

search, Columbia University, cliff@ieor.columbia.edu
‡Portions of this were written at Korea Advanced Institute for

Science and Technology (KAIST)

Here we focus on the Minimum Link-Distance prob-
lem with rectilinear (axis-parallel) paths among recti-
linear obstacles (with axis-perpendicular faces) in three
dimensions. A motivation for our consideration of this
problem has been its application to Homogeneous Mod-
ular Robots, as described by Fitch, et al. in [3].

Our algorithm improves on the previously best known
bound of O(n3) (see [3] and Section 2.1), running in in
O(βn log n) time. It has been shown that in the worst
case β = Θ(n3/2) [4, 10], however in many practical
circumstances, β ≈ Θ(n).

For a more detailed version of this paper visit:

http://www.cs.dartmouth.edu/~dwagn/minlinkpath

2 Preliminaries

Other authors have discussed how to efficiently divide
rectinlinear polygons with n corners into O(n) rectan-
gles [6, 1], and so we assume that our input obstacle
faces have already been thus partitioned. We refer to
one such rectangle as a “Subface”.

2.1 An O(n3) algorithm

There exists a straightforward algorithm solving this
problem in O(n3) time. Given a set of rectangular ob-
stacle subfaces, define its grid to be the arrangement of
all planes which contain a subface. This grid divides
space into O(n3) cells, each of which lies either entirely
within an obstacle or entirely outside of all obstacles [2].

The algorithm then is similar to a breadth-first search
through those cells which lie outside of the obstacles.
Two important differences are that repeating a step to
another cell in the same direction does not increment the
distance to that cell, and we do not immediately elimi-
nate a cell from consideration via an entry direction, if
it has only been reached by other entry directions.

2.2 Overview of our Algorithm

Our algorithm follows a similar approach to the O(n3)
algorithm, but saves time by using a Binary Space Parti-
tion decomposition of space[4, 10]. The leaves of the tree
representing this decomposition all designate subspaces

1

which are either entirely within an obstacle or entirlely
outside obstacles. We refer to the subspace represented
by such a leaf as a “Block”. We call the blocks out-
side of obstacles “Empty Blocks” and the blocks which
are within an obstacle “Obstacle Blocks”. The problem
then reduces to searching for an optimal path through
the set of empty blocks.

Our algorithm finds all points reachable by paths with
zero bends, then by paths with one bend, then by paths
with two bends, and so on, until the finish point is found.

These paths are found during a series of sweep plane
operations. We begin with six sweeps, each of which
follows the zero-bend path from the starting point in a
particular cardinal direction. We then perform six more
sweeps, each of which follows the one-bend paths whose
last segment is in a particular direction, and so on.

The sweep operation for a bend distance b and direc-
tion d keeps track of all points on the sweep plane that
are reachable in exactly b bends, with the last segment
travelling in direction d. As the plane sweeps across the
various blocks, it is updated by adding or removing re-
gions of reachable points. When the plane encounters
an obstacle we must remove any points that lie in the re-
gion corresponding to the obstacle face. When the plane
leaves an empty block which has been encountered be-
fore, we must add any previously saved outgoing paths
of bend distance b to the sweep plane.

Whenever the sweep plane encounters an unvisited
or only recently visited empty block we determine the
best paths from the entry face to every point on all six
exit faces. We store this path information as events for
future sweep operations.

3 Preprocessing

3.1 Binary Space Partitioning

Given the set of obstacle subfaces, we first compute a
Binary Space Partition. A result of Paterson and Yao
describes how to find a BSP decomposition of n orthog-
onal rectangles in three dimensional space resulting in
a BSP which contains O(n3/2) fragments of the original
rectangles. This gives us a tree with O(n3/2) leaves [10].

Note, the starting and ending points are considered
zero-dimensional obstacles, and so get their own leaves.

Theorem 1 Space can be subdivided into β = O(n3/2)
blocks, including both obstacle blocks and empty blocks,
by a Binary Space Partition[10].

3.2 Neighbors in a BSP Tree

Our algorithm needs to know which blocks are adjacent
to each other in space. We will call such pairs neighbors.
The running time of preprocessing is dominated by the
amount of time expended building a neighbor graph.

The time spent in sweep plane operations also depends
in part on the size of the neighbor graph.

Lemma 2 An axis-perpendicular plane can intersect at
most O(n) blocks of the BSP space decomposition de-
fined in [10].

Proof. This can be derived from [10]. �

Theorem 3 There are at most O(βn) neighbor rela-
tionships between pairs of blocks, and between empty
blocks and obstacle subfaces.

Proof. By Lemma 2 each face of a block and each ob-
stacle subface can have at most O(n) neighbors. There
are O(n) obstacle subfaces, and so the total number of
blocks given in Theorem 1 then limits the total number
of neighbor relationships to O(βn). �

4 Paths through Blocks

Within a single block, there can be several variations in
the optimal bend distance to different places within the
block. We would like to examine the kinds of optimal
paths which can travel through an empty block.

An examination of a block then must answer the fol-
lowing question: “Given the set of points on a single
face of a block through which optimal paths can enter
with a particular bend distance, what configuration of
exit points could be generated by optimal paths, and
what are the optimal bend distances to those points?”

4.1 Classification of Paths through a Block

We define three kinds of paths which could travel
through a block, based on their exit face:

Definition 4 (Through Paths) Paths exiting the
block through the face opposite to the one through which
they entered.

Definition 5 (Right Angle Paths) Paths exiting
the block through one of the four faces which are not
parallel to the entry face (We use “Right Angle” here to
indicate the angle between the entry and exit faces).

Definition 6 (U-Turn Paths) Paths exiting the
block through the same face through which they entered.

We can also classify sets of paths into three configu-
rations of points reachable on an exit face. We define
those classes with respect to a single entry point:

Definition 7 (Class A Path) Paths which can exit
anywhere through the exit face.

2

(c)(b)(a)

Figure 1: Three kinds of paths, (a) a Through Path, (b)
a Right Angle Path, and (c) a U-Turn Path

Definition 8 (Class B Path) Paths which can exit
through a stripe across the exit face.

Definition 9 (Class C Path) Paths which can exit
through a single point on the exit face.

The following table describes all relations between the
exit face of a path, the number of bends the path takes
within a block, and the configuration of exit points:

of bends 0 1 2 3
Through Paths C - B A

Right Angle Paths - B A -
U-Turn Paths - - B A

4.2 Generating Exit Paths

Given an entry face with a set of entry points, we would
like to generate the appropriate sets of exit points result-
ing from the paths described above. This configuration
depends on the class of path being considered: A, B,
or C. All paths fall into one of these classes, so it is
sufficient to only consider these paths.
Class A paths can exit anywhere on the exit face.

Thus, from any entry point or points, the complete rect-
angular outgoing face of the block is the data generated.
Class B paths have the property that they must re-

main in one of the two axis parallel planes perpendicular
to the entry face which contains the entry point. Such a
path can exit at any point in one of the segments formed
at the intersection of a plane containing the entry point
and an exit face.

The data generated by all Class B paths coming from
all points in the entry face and exiting through a specific
exit face can be described by projecting the entry data
onto one of its axes, and then striping the outgoing face
according to the resulting set of intervals along the axis.

All six faces have Class B paths exiting them. The
entry face, and the face opposite it, each have two sets of
Class B paths exiting through them, one set striped in
each direction. The remaining faces can only be striped
in a single direction.
Class C paths generate outgoing points which are

identical in configuration to the set of incoming points.
Unfortunately, this data could be complex, so copying it

in its entirety at every block would be prohibitively time
consuming. We therefore will employ a sweep plane,
described in section 5, which will carry the same data
forward from block to block without copying.

(c)(b)(a)

Figure 2: Some examples of the three classes of paths,
(a) Class A, (b) Class B, and (c) Class C.

5 Sweep Plane

As outlined in Section 2.2, we will maintain a sweep
plane, during each of a series of sweep operations. The
regions stored in the plane contain points which are
reachable by paths of a particular bend distance, and
whose last segment is in the direction of the sweep. We
store this data as a two-dimensional segment tree.

5.1 Two-Dimensional Segment Trees

We will need a data structure to describe the sweep
plane, as well as the sets of paths which can enter
and exit an empty block. For these we employ a
two-dimensional segment tree. This data structure is
designed to store rectangles, and to support efficient
queries. The advantage of using this data structure is
that a set of rectangles can be stored efficiently, even if
the rectangles are criss-crossing and overlapping.

Unlike traditional segment trees, our two-dimensional
segment trees do not distinguish between rectangles af-
ter they have been inserted. Rather the union of all
inserted regions is kept.

We will use the following segment tree operations :

• InsertRect inserts a rectangle into the tree.
• InsertStripedRect inserts a set of O(n) stripes

which are contained within, and extend the length
or width of a given rectangle. The stripes vary in
the other dimension according to the set of intervals
defined in a given one-dimensional segment tree.

• QueryRect queries a rectangle in the segment tree,
returning TRUE if it overlaps with previously in-
serted data.

• ClearRect clears all data within the specified rect-
angle (Note this may fragment previously inserted
rectangles).

• ProjectRect projects all data within the given
rectangle onto an axis, returning a one-dimensional
segment tree containing the resulting intervals.

3

Some auxilliary data is maintained in the nodes of the
two-dimensional segment tree in order to support effi-
cient projections and queries. Each of the above opera-
tions then runs in amortized O(n log n) time or better.

5.2 Events

There are three types of events that the sweep may en-
counter. We define a function SweepPlaneEvent which
processes these events based on the event type:

• OutgoingPath: A set of paths leaving a block in
the direction and bend distance of the sweep are
encountered. Add them to the sweep plane, by call-
ing InsertRect or InsertStripedRect, for Class
A and B paths respectively. Neighboring empty
blocks and subfaces are inserted into the queue.

• ObstacleFace: A subface is encountered, and so
all paths which intersect that face must be deleted
from the sweep plane, using ClearRect.

• EmptyBlock: An empty block is encountered. If it
was discovered more than three bends ago, treat it
like an obstacle, since all optimal paths through the
block have already been generated. If it was dis-
covered less than three bends ago, query the sweep
plane, via a call to QueryRect, to see if any paths
enter that block. If so, then outgoing paths are gen-
erated, using ProjectRect, and neighboring blocks
and obstacle subfaces are inserted into the queue.

6 Algorithm

Min-Link-Path(obsFaces, s, t)

1) Q = new PriorityQueue

2) sweepPlane = new SegTree2D

3) blocks = Preprocess(obsFaces, s, t)

4) InitializeQ(Q, s)

5) benddist = 0; dir = 0

6) While not EmptyPriorityQ(Q)

7) event = RemoveMinPriorityQ(Q)

8) If (event.benddist 6= benddist) or

(event.dir 6= dir) then

9) ClearSegTree2D(sweepPlane)

10) benddist = event.benddist

11) dir = event.dir

12) SweepPlaneEvent(Q, sweepPlane, event,

benddist, dir)

13) Output t.benddist

6.1 Runtime Analysis

The running time of this algorithm depends on the run-
ning time of all invocations of SweepPlaneEvent.

Each empty block only generates outgoing paths dur-
ing sweeps having three different bend distances. After
that the block is treated as an obstacle. Therefore each

block can only generate a constant number of sets of out-
going paths, and we have O(β) OutgoingPath events.

An obstacle subface is both rectangular and com-
pletely uncovered. Therefore, its neighbors are empty
blocks, and there exists a path having at most three
bends between any two points within this set of blocks.
This implies that the minimum bend distance to any
two of these neighbors differs by at most a constant.
Thus, each obstacle subface will be added to the queue
during at most a constant number of sweeps, and there
can only be O(n) ObstacleFace events. Similarly, there
can only be O(β) EmptyBlock events.

Each of these events invokes a constant number of
two-dimensional segment tree operations. Each oper-
ation has amortized O(n log n) running time, the total
time taken by all SweepPlaneEvent calls is O(βn log n).

Theorem 10 Our algorithm finds the Minimum Link-
Distance Path in O(βn log n) time.

Acknowledgements

We are grateful to Robert Fitch, Lisa Fleischer, Joseph
S. B. Mitchell, Der-Tsai Lee, and Takeshi Tokuyama
for their helpful discussions. We are also grateful to
Kyung-Yong Chwa for the contribution of his lab space
at Korea Advanced Institute for Science and Technology
in which early versions of this paper were written.

References

[1] B. Chazelle. Computational Geometry and Convexity.
PhD thesis, Yale University, New Haven, CT, 1980.

[2] M. de Berg, M. J. van Kreveld, B. J. Nilsson, and M. H.
Overmars. Shortest path queries in rectilinear worlds.
International Journal of Computational Geometry and

Applications, 2(3):287–309, 1992.

[3] R. Fitch, Z. Butler, and D. Rus. 3D rectilinear motion
planning with minimum bend paths. In International

Conference on Intelligent Robots and Systems, 2001.

[4] J. Hershberger and S. Suri. Binary space partitions for
3d subdivisions. In Symposium on Discrete Algorithms,
pages 100–108, 2003.

[5] D. Lee, C. Yang, and C. Wong. Rectilinear paths among
rectilinear obstacles. Discrete Applied Mathematics, 70,
1996.

[6] C. Levcopoulos and A. Lingas. Bounds on the length
of convex partitions of polygons. In Foundations of

Software Technology and Theoretical Computer Science,
pages 279–295, 1984.

[7] A. Lingas, A. Maheshwari, and J. Sack. Optimal par-
allel algorithms for rectilinear link-distance problems.
Algorithmica, 14(3):261–289, 1995.

[8] A. Mahehswari and J. Sack. Link distance problems.
In Handbook of Computational Geometry, chapter 12.
Elsevier Science Pub Co, 2000.

4

[9] J. Mitchell, C. Piatko, and E. Arkin. Computing a
shortest k-link path in a polygon. In Proceedings of the

33rd Annual Symposium on Foundations of Computer

Science, pages 573–582, 1992.

[10] M. S. Paterson and F. F. Yao. Optimal binary space
partitions for orthogonal objects. Journal of Algo-

rithms, 13:99–113, 1992.

[11] C. Yang, D. Lee, and C. Wong. On bends and dis-
tance paths among obstacles in two-layer interconnec-
tion model. IEEE Transactions on Computers, 43:711–
724, 1994.

5

	An O(n^{5/2} log n) Algorithm for the Rectilinear Minimum Link-Distance Problem in Three Dimensions (Extended Abstract)
	Dartmouth Digital Commons Citation

	tmp.1601066523.pdf.cqjml

