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Graphical Models of Residue Coupling in Protein Families
Dartmouth Computer Science Technical Report TR2005-535

John Thomas∗ Naren Ramakrishnan† Chris Bailey-Kellogg∗

Abstract: Identifying residue coupling relationships within a protein family can provide im-
portant insights into intrinsic molecular processes, and has significant applications in modeling
structure and dynamics, understanding function, and designing new or modified proteins. We
present the first algorithm to infer an undirected graphical model representing residue cou-
pling in protein families. Such a model serves as a compact description of the joint amino acid
distribution, and can be used for predictive (will this newly designed protein be folded and
functional?), diagnostic (why is this protein not stable or functional?), and abductive reasoning
(what if I attempt to graft features of one protein family onto another?). Unlike current corre-
lated mutation algorithms that are focused on assessing dependence, which can conflate direct
and indirect relationships, our algorithm focuses on assessing independence, which modular-
izes variation and thus enables efficient reasoning of the types described above. Further, our
algorithm can readily incorporate, as priors, hypotheses regarding possible underlying mecha-
nistic/energetic explanations for coupling. The resulting approach constitutes a powerful and
discriminatory mechanism to identify residue coupling from protein sequences and structures.
Analysis results on the G-protein coupled receptor (GPCR) and PDZ domain families demon-
strate the ability of our approach to effectively uncover and exploit models of residue coupling.

Keywords: residue coupling, graphical models, evolutionary co-variation.

1 Introduction

When studying a family of proteins that have evolved to perform a particular function, a major
goal of contemporary biological research is to uncover constraints that appear to be acting on the
family, with an eye toward understanding the molecular mechanisms imposing the constraints. For
example, amino acid conservation has long been recognized as an important indicator of structural
or functional significance [25]. In the 1990s, researchers began generalizing single-position con-
servation to correlated co-evolution of amino acid pairs, thus revealing cooperativity and coupling
constraints (e.g., one early study focused on the HIV-1 envelope protein, with the aim of guiding
peptide vaccine design [15]). Such works boosted the discovery of coupled residues, which could
previously have been identified only by painstakingin vitro approaches such as thermodynamic
double mutant analysis [11]. The next step was to summarize information about correlated posi-
tions into pathways [14], motifs [1, 18], and structural templates [18] in protein families. Today,
projects undertake ambitious large-scale recombination [26] or site-directed and combinatorial mu-
tagenesis studies [21] to identify entire building blocks of proteins important to preserve function.

Knowing which pairs (or sets) of residues are coupled in a protein family aids our understand-
ing of many important processes, e.g., protein folding and conformational change [19, 22], sig-
naling [24], protein-protein interaction, and even protein complex assembly [13]. Since the basis
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for coupling can be structural and/or functional, information about coupled residues can be used
predictively for assessing protein structure [23], fold classification [9], or even to suggest novel
sequences for protein engineering [20].

While there are many computational techniques for studying residue coupling [6], all methods
begin by defining a metric to quantify the degree to which two residues co-vary. Global methods
then determine pairs of coupled residues by observing correlated mutations in the protein family
multiple sequence alignment (MSA) as a whole (e.g., [15]). The state-of-the-art in understand-
ing residue coupling is, however, a local method — so-called ‘perturbation-based’ analysis [4]
introduced by Lockless and Ranganathan [16]. The basic idea is to subset the MSA according to
some condition (e.g., containing a moderately conserved residue type at a particular position) and
observe the effect of the perturbation on residue distributions at other positions. If the subsetting
operation significantly alters the proportions of amino acids at some other position, it is inferred
to be coupled to the perturbed position, according to the evolutionary record. Even though this
approach is purely sequence-based, it has been shown to uncover structural networks of residues
underlying important allosteric communication pathways in proteins [24].

A key missing ingredient to date is a formal probabilistic model capturing the constraints in-
ferred from residue coupling studies. Such a model would help assess the feasibility and signifi-
cance of inferring a network from coupling data, including determining whether such a network is
a persistent feature of a protein family or merely a hallucination. The process of inferring such a
model would help make explicit the essential constraints underlying the family (e.g., by identify-
ing a small set of correlations that explain the data nearly as well as the complete set). A model
would enable the careful combination of multiple information sources (e.g., by integrating priors
from structural and functional studies with correlations derived from sequence analysis). Finally,
the model would serve as a compact description of the joint amino acid distribution, and could be
used for predictive (will this newly designed protein be folded and functional?), diagnostic (why is
this protein not stable or functional?), and abductive reasoning (what if I attempt to graft features
of one protein family onto another?).

This paper addresses these needs by formulating and elucidating the natural correspondence
between a coupling network (qualifying interdependencies among residues) and a probabilistic
graphical model (summarizing interrelationships between random variables).

1. We present thefirst algorithm to infer an undirected graphical model underlying residue
coupling in protein families. We bring in ideas from the extensive literature on probabilistic
models [3] to derive networks that are meaningful as indicators of joint variation of sequence
positions and that also explain structural features of protein families.

2. Unlike current correlated mutation algorithms that are focused on assessing dependence
(which can conflate direct and indirect relationships) we focus on assessingindependence
(which enables modular reasoning about variation). We thus derive more compact descrip-
tions of underlying networks highlighting the most important relationships.

3. We demonstrate how hypotheses regarding possible underlying mechanistic/energetic expla-
nations for coupling can be used as priors for computational model discovery. For instance,
if we have reason to believe that coupling in a given family would be only between nearby
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residues, a representative contact graph can be utilized as a valuable prior, benefiting algo-
rithmic complexity and ensuring biological interpretability of the results.

2 Background: Correlated Mutations and Residue Coupling

We begin by providing some background about correlated mutations and how they are used as
indicators of residue coupling. Typically, we are given a multiple sequence alignment (MSA)
whose rows are the members of the family and the columns are the aligned residue positions. Thus
the MSA can be thought of a matrix where the value in rows and columnj refers to thejth residue
according to sequences. We ignore columns that are too ‘gapful,’ and ignore in the calculations
below the remaining entries that are gaps.

A coupling constraint quantifies the degree to which two positions in the family co-vary. Given
positionsi andk, information about amino acid occurrences contained in theith andkth column
vectors of the MSA can be summarized into 20-element vectors of frequencies, or probability
distributionsP (i) andP (k). Essentially, this allows us to think of residue positions as random
variables over a discrete sample space of 20 possibilities (recall that we ignore gaps). Coupling
can then be estimated by many information-theoretic and statistical metrics; one example is the
(global)mutual informationbetweenP (i) andP (k), given by:

MI(i, k) ≡
20∑
i=1

20∑
k=1

P (i, k) log
P (i, k)

P (i)P (k)

Notice that the mutual information is actually the KL divergence [17] between the distributions
P (i, k) and P (i)P (k); it quantifies the margin of error in assuming that the joint distribution
P (i, k) is decomposable.MI(i, k) is zero when the underlying distributions are independent and
non-zero otherwise. Another way to think ofMI(i, k) is as the difference

MI(i, k) ≡ H(i)−H(i|k)

whereH(i) is the entropy of the random variablei andH(i|k) is the entropy of the probability
distributionP (i|k). If MI(i, k) = 0, then knowing the value ofk does not reduce our uncertainty
abouti. A high score ofMI(i, k) is typically used as an indicator of coupling [15].

There are other ways to quantify coupling, e.g., using covariances and correlations; see [6]. All
metrics, however, suffer from estimation problems under high or low degrees of conservation. For
instance, if positioni is always alanine and positionk is always glutamine, thenMI(i, k) would
be assigned zero even though we have not observed any variation in either! Similar problems arise
with residues that have low frequencies of certain amino acids. It is hence well-recognized that
‘correlated mutation algorithms must favor an intermediate level of conservation’ [6].

The typical use of the above concepts is to posit graphs or networks summarizing the con-
straints inferred. Traditionally researchers have used coupling constraints as a basis to infer the
contact map—since coupled residues are often known to be spatially proximal—and this is still a
popular way to validate correlated mutation algorithms (e.g., see [4]). Others compare the con-
straints to known energetic couplings inferred from double mutant experiments [7]. Still others
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Figure 1:Graphical models of residue coupling. (a) A graph expressing a prior over possible coupling rela-
tionships. One source for a prior could be the contact graph representation of a protein’s three-dimensional
structure; here, mechanistic explanations for coupling posit either a direct interaction between contacting
residues, or an indirect (transitive) propagation of an interaction through networks of contacting residues.
(b) The multiple sequence alignment for members of a protein family provides evidence for dependence and
independence. In the example, positionsi andk are very correlated — wheni is a ‘filled in’ residue,k tends
to be as well; similarly wheni is ‘empty,’ k tends to agree. However, knowingj makes the positions rather
independent. In the most common case wherej is filled in, we see the combinations of types ati andk
are more evenly distributed. This suggests thati andk are conditionally independent, givenj. (Of course,
even in this example, noise obscures the degree of independence.) (c) A graphical model (darkened edges)
capture conditional independence. We construct such a model by selecting edges from the prior that best
decouple other relationships. For example, we see that the conditional independence ofi andk givenj can
be explained by a transitive propagation of interaction along model edges.

attempt to organize the couplings into pathways of allosteric communication through the pro-
tein [14]. The discovery of such pathways has recently been reinvigorated with the work of [24]
where the authors perform perturbation-based analysis at numerous positions and subsequently
‘cluster’ the pairs of coupled residues; this procedure has been shown to yield sparse, connected,
networks in many protein families.

3 Learning Graphical Models of Residue Coupling

If coupled residues indeed capture meaningful relationships, then they must afford a probabilistic
interpretation. That is our working hypothesis for this paper and helps highlight where all previous
work falls short. All previous approaches to inferring networks from data do so by direct incor-
poration of couplings as dependencies and, as is well known, such an approach cannot distinguish
direct from transitive dependencies. It is also clear that (in)dependence of random variables is
a very conditional phenomenon: two random variables may be correlated, become uncorrelated
in the presence of new evidence, become correlated again when given further evidence, and so
on. This means that we must pay careful attention to conditioning contexts, especially when we
employ perturbation-based correlated mutation algorithms.

Our proposed approach is to directly learn an undirected graphical model [3] that encodes the
network of residue coupling relationships. Such a modelN(V , E) encodes a joint distribution over
the space of random variables inV (residues) as a product of potential functions overN ’s cliques.
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Formally, this joint distribution is given by:

P ({V}) =
∏

c∈ cliques(N)

φc(c) (1)

By the Hammersley-Clifford theorem [3], the conditional independence statements represented by
such a model are a union of statements of the form ‘a node is independent of its non-neighbors
given its neighbors.’ In other words, variation in a residue position is independent of all others
when we are given information about neighboring residues. Notice that ‘neighboring’ here indi-
cates adjacency w.r.t. the inferred graphical model, not (necessarily) physical proximity according
to the protein structure. For instance, a network with no edges implies that all the variation in
the MSA is captured through independent, pointwise variations occurring at the residues. One
situation where this would happen is with high degrees of conservation.

Eq. 1 yields a natural likelihood formulation for evaluating a model with respect to a set of
input sequences. The likelihood is given by the product of marginals defined over the cliques of
N divided by the product of marginals defined over the clique adjacencies (which could be nodes,
edges, or general subgraphs). In this view, each potential of Eq. 1 is either a conditional or a joint
marginal distribution (but they cannot all be of the same type).

Uncovering graphical models from datasets is known to be an NP-hard problem in the general
case and researchers typically restrict either the topology of the network (e.g., to trees) or adopt
heuristics to search the space of possibilities. In this paper, we assume the existence of a candidate
set of edges (a graph prior) and propose heuristics that sequentially infer conditionalindependen-
ciesamong this set (rather than dependencies as followed in prior work). If we know that residues
i andk become independent givenj, i.e., the conditional mutual information

MI(i, k|j) = H(i|j)−H(i|k, j)

is zero, then it is easy to see that the removal ofj and its incident edges must separatei andk in the
unknown networkN . This assessment is made in the context of a prior graphG = (V, E), where
we assumeV = V andE ⊂ E. This approach is akin to the ‘sparse candidate’ algorithm [8] for
learning (directed) Bayesian networks.

Fig. 1 presents an example of such an inference. In attempting to de-couple positioni from k,
we need only consider neighbors ofi (e.g.,j) according to the graph prior. Notice, however, that
insisting on complete independence, i.e.,MI(i, k|j) = 0, is a very stringent criterion especially in
the presence of small, finite datasets; instead we assess how much the conditional mutual informa-
tion is decreased. The above ideas can be used to formulate an approach for scoring a network as
well as an algorithm for greedily inferring the network from data. The score for a network is given
by:

Score(N(V , E)) =
∑
n∈V

∑
m/∈neighbors(n)

MI(n,m|neighbors(n))

We use this notion of network score to define an edge score as the difference in score between
the network without the edge and the network with the edge. Note that the score of an edge can
be negative, if adding the edge produces more coupling in the network. This then allows us to
incrementally grow a network by, at each step, selecting the edge that scores best with respect to
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function InferNetwork(G = (V,E))
V ← V ; E ← ∅
s← Score(V, E)
C ← {(e, s− Score(V, E ∪ {e}))|e ∈ E}
repeat

e← arg maxe∈E−E C(e)
E ← E ∪ {e}
for all e′ ∈ E − E such thate ande′ share a vertexdo

C(e′)← C(e)− Score(V, E ∪ {e′})
end for

until “enough” edges incorporated

Figure 2:Algorithm for inferring graphical models of residue coupling.

the current network. Fig. 2 gives this algorithm. The algorithm can be configured to utilize various
greedy stopping criteria—stop when the newly added edge’s contribution is not significant enough,
stop when a designated number of edges have been added, or stop when the likelihood of the model
is within acceptable bounds.

The run-time of our algorithm depends onn, the number of residues in the protein of interest
andd, the maximum degree of nodes in the prior. With an uninformative prior,d is n. For stronger
priors (e.g., a contact graph), we can assume a bounded number of neighbors for any residue, so
d is O(1). The algorithm scoresO(dn) edges at each iteration. Naive execution of the algorithm
requires that the score of the network be computed for each edge at each iteration. Scoring a net-
work requiresO(n) MI computations for each residue and there aren residues, so naive execution
requiresO(dn3) MI computations at each iteration. Since conditioning contexts change dynam-
ically during the operation of the algorithm, we cannot perform anya priori pre-processing to
accumulate sufficient statistics (in contrast to global methods where mutual information between
all pairs of residues can be computed in a single pass). However, the cost of making fresh assess-
ments is curtailed since conditioning contexts are merely subsets of neighbors. Thus by caching
values efficiently we can improve the runtime by a factor ofO(n2) at each iteration. First, pre-
compute the score of every edge in consideration, requiringO(dn3) MI computations. At each
iteration, rather than recomputing scores, pick the edge in the cache that improves the score of the
network the most. This requiresO(n) time, but does not require anyMI computations. The key
observation is that after an edge is added, the only edges whose scores change are those incident
to the edge just added. Since there are at mostO(d) of those that need to be updated, we need only
O(dn) MI computations, for a speedup ofO(n2). Additional constant factor speedups can be
achieved by removing at each step edges that produce statistically unsound conditioning contexts.

4 Results

We illustrate our algorithm for inferring graphical models of residue coupling with two protein
families: GPCRs (G-protein coupled receptors) and PDZ domains. GPCRs are membrane-bound
proteins critical in intracellular communication and signaling, and a key target of molecular mod-
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eling in drug discovery. Since ligand binding at the extracellular face initiates propagation of
structural changes through the transmembrane helices and ultimately to the cytoplasmic domains,
GPCRs make an appropriate and compelling study for network identification [24]. PDZ domains
are protein-protein interaction domains that occur in many proteins and are involved in a wide va-
riety of biological processes [10]. One role of PDZ domains is assisting in the formation of protein
complexes by binding to the C-termini of certain ligands [10]. Traditionally, PDZ domains have
been classified into two types according to which type of ligand they bind. The first class of PDZ
domains binds to C termini with sequences S/T-X-Φ (Φ is a hydrophobic residue) while the second
class targets sequences of the formΦ-X-Φ. Through these two studies we aim to explore many
pertinent aspects of our approach, such as how to set priors, studying the progress of the algorithm
as new edges are added, using the induced graphical model for classifying protein sequences, and
biological interpretation of the results. Due to space considerations, we do not discuss all these
issues for both families.

GPCRs

In the GPCR study, we study the use of protein contact graphs as priors and also explicitly relate
the structure of our identified networks with those previously identified [24]. We first retrieved the
multiple sequence alignment of 940 members of the class A GPCR family as discussed in [24]. In
order to explore contact graph priors, we constructed a contact graph from the three-dimensional
structure of one prominent GPCR member, bovine rhodopsin (PDB id 1HZX), identifying 3161
pairs of residues with atoms within 7̊A. We verified that the residues previously identified as
belonging to networks [24] form connected subgraphs of this contact graph.

For this study, in testing conditional mutual information, we only considered cases for which at
least 15% of the original set of sequences remained after subsetting to a particular residue type. As
discussed [16], such a bound is required in order to ensure sufficient fidelity to the original MSA
and allow for evolutionary exploration. The above bound of 15% is roughly half that used in [24],
since our algorithm subsets according to multiple residues, depending on the number of neighbors
available, whereas the previous algorithm subsets according to only one residue. From extensive
experiments with this parameter (data not shown), we found that while there is some variation in
the edges with changes of this parameter, many (> 70%) of the best edges are insensitive to the
exact threshold.

In order to evaluate the implications of restricting dependencies to structural neighbors, we
compared theMI scores for edges in the protein contact map against those for all pairs of residues.
For every residue, we identified both the best decoupleranywherein the protein, and the best
decoupling contact graph neighbor. Fig. 3 shows the absolute differences between these values.
Notice that in most cases, the best neighbor provides nearly as much decoupling as the best residue
elsewhere in the graph. However, there are some nodes that incur a large penalty. In general, these
nodes are highly conserved and therefore have small scores against all other nodes. However,
since the total number of residues is large, the sum of all these small correlations becomes non-
trivial. When a node is subsetted, making an originally highly conserved node to become perfectly
conserved, the score for that node drops to 0. In this case there is a large difference in improvement
between selecting a distant node and a node from the original prior graph. It is important to keep
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Figure 4:Improvement ofMI score as edges are successively added for the contact graph prior (left) and
uninformative prior (right). The red line shows a lower bound for the score for the GPCR MSA.

these caveats in mind in the discussion that follows.
Our first model inference test was to start with the previously identified network [24], use its

induced subgraph of the contact graph as input to our algorithm, and see if it recovers the network.
The algorithm considers 144 edges and picks 52 of them for inclusion in the model. The top of
Fig. 5 (left) illustrates the network identified by our algorithm. Fig. 4 (left) shows the change in
score as edges are added to our network. Notice the score decreases as edges are added and levels
out toward the end. When the algorithm completes, there are no edges that reduce the score.

To study the influence of the contact graph prior, we re-ran our algorithm using an uninfor-
mative prior so that all pairs of residues are now tested for inclusion. This time, the algorithm
considers 1080 edges and picks 67 of them for inclusion. As Fig. 4 (right) shows, the algorithm
produces a network that has a better score than the one produced by the contact graph prior but,
unfortunately, does not have as nice a visualization (Fig. 5 (right)).

Since the score differences between these two runs were substantial, we investigated the best
possible score achievable on this protein family. Towards this end, we randomly shuffled the
columns of the MSA, yielding a new MSA having the same level of conservation for each residue
but with correlation lost due to the independent shuffling. We measured the correlation in 2500 of
these MSAs (which consisted of just noise) by computing the score of the empty network (one with
no edges) on the MSA. The resulting scores were normally distributed over a small range (63.5 to
65.1) with mean value 64.3. This means that for the GPCR family, if we accounted for all possible
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Figure 5: GPCR network identification: three-dimensional structure of bovine rhodopsin with overlayed
network, and just the network for model inferred from (left) contact graph induced by the network of [24]
and (right) entire contact graph. Edges are colored by score, with red the strongest ‘decouplers’ and blue
the weakest.

correlation we would expect a score of about 64.3. The algorithm run with the uninformative prior
scores 73.6, well within the margin of error we would expect due to the greedy property of our
algorithm or the nature of the conditioning contexts.

While our modeling formulation is different in nature from that of Suelet al. (independence vs.
dependence), our model identifies many of the same biologically relevant features. For example,
Suel et al. identify coupling between residues 296 and 265 that form “part of a linked network
extending parallel to the plasma membrane from 296 to form the bottom of the ligand-binding
pocket.” Our algorithm likewise identifies an edge between residues 296 and 265. Several other
identified interactions appear asindirect relationships in our model. For example, coupling be-
tween residue 296 and 293, identified as a “helical packing interaction” is identified by our model
as being indirect. In this case, residue 117 actually makes residues 296 and 293 conditionally in-
dependent, lowering their mutual information scores from .3347 to .0259. This is true also of the
coupling between residue 296 and residues 298 and 299. These couplings are part of “a sparse but
contiguous network of inter-helical interactions linking the ligand-binding pocket with the cyto-
plasmic surface.” Both 296/298 and 296/299 become conditionally independent in the presence of
residue 117.

Although our algorithm does produce many of the relationships as identified by Suelet al.,
there are several differences between the models. For instance, our network does not identify the
coupling between residues 296 and 113 which “makes a salt-bridge interaction with the protonated
form of the Schiff base,” as either direct or indirect. Nor does our algorithm find the “inter-helical
packing interaction” between residues 296 and 91. Conversely, our algorithm finds a strong direct
coupling between residues 296 and 117 as well as between residues 90 and 91. Further investi-
gation into these strong couplings may be of interest to biologists (e.g., by mutagenesis studies).
This illustrates the ability of our approach to help formulate testable biological hypotheses.
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Figure 6:Evolution of likelihood as edges are added to the network. (Left) Sequences from class I (blue)
and class II (red) against the class I model. (Right) Sequences from training class I (blue), testing class I
(red), and class II (green) against the class I model. Each plot shows the mean, maximum and minimum
likelihood.

PDZs

In this case study, we demonstrate the utility in subsequent analyses of graphical models learned
by our algorithm. In particular, we study the ability of our inferred models to capture the ‘essense’
of a protein, namely in classifying PDZ domains. Although the two classes in this protein family
may be defined by simple sequence motifs, we show that coupling-based models provide more
discriminatory power, and we use this opportunity to subject our approach to a rigorous evaluation
in a maximum likelihood framework.

We obtained MSAs for the two classes of PDZ domains from PDZBase [2] by querying ac-
cording to the ligand and removing duplicate entries, thereby obtaining 95 class I and 14 class II
sequences. We ran our algorithm on the sequences in class I and compared the likelihoods from
proteins in class I and II against the model. Fig. 6 (left) shows the evolution of likelihood scores as
edges are added to our model. On the far left is the likelihood based solely on conservation (i.e.,
with no edges in the network). As the network grows, so does its power to discriminate classes—
conservation alone does not adequately represent the multiple sequence alignment. In the limit, we
would derive a clique, with a joint distribution over all residues that would provide a reasonable
score only for sequences in the original alignment.

To avoid over-fitting, we adopted a cross-validation approach. We randomly selected 2/3 of the
class I multiple sequence alignment data with which to construct a model. We then computed the
likelihood of the remaining sequences against the model so inferred and compared it to likelihoods
of the sequences used for model building and the sequences from class II. We repeated this experi-
ment 500 times; Fig. 6 (right) shows the average of the results. As is clear, sequences in the model
(blue) have the highest likelihoods while the sequences in class I but not in the model (red) have
higher likelihoods than those in class II (green).
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5 Discussion

This work marries research into residue co-variation with probabilistic graphical models, produc-
ing a systematic and sound algorithmic approach to infering networks underlying protein families.
Our use of conditional mutual information as a criterion for growing a network means that our
algorithm can also be viewed as a perturbation-based approach; however, in contrast to [24] who
infer coupling between the perturbed position and another position, we infer independence be-
tween residues on either side of the perturbed position. The results indicate that independence of
residues can be a good guiding principle for the discovery of evolutionarily conserved structure.

While there are other ways to infer networks from covariation data (e.g., gaussian graphical
models [5]) they either require the specification of complete sets (e.g., all pairs) of dependency
information or must necessarily make assumptions about the parametric form of interrelationships.
In contrast, our approach employs the broader notion of independencies to situate the network. In
addition, it modelsall significant couplings and conditional independencies, hence capturing the
essence of what it means to belong to a given family. This has tremendous applications in protein
fold classification and protein design.

There are several extensions to the work proposed here. First, we would like to scale up our
algorithms to work with MSAs involving greater numbers of sequences. There have been system-
atic approaches proposed to scaling up graphical model inference algorithms [12] and we propose
to consider these for inferring coupled residues. Second, we would like to relax our modeling of
residues as distributions over amino acids, and instead consider distributions overclassesof amino
acids (e.g., polar, hydrophobic, small). Since there are multiple, overlapping, taxonomies of amino
acids [25] we can even assume a hidden variable model (denoting an unknown relabeling of each
residue) and attempt to infer the network as well as the relabeling function from a given MSA and
contact map. An alternative is to employ a scoring matrix in evaluating extent of co-variation [22].
Yet another form of relaxation involves modeling multiple families simultaneously, perhaps by
superposition of Gaussian processes, each with its own graphical model. Finally, we intend to
explore the applications to protein analysis and design made possible by our graphical model.
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