
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Ph.D Dissertations Theses and Dissertations

8-19-2005

Efficient Wait-Free Algorithms for Implementing LL/SC Objects Efficient Wait-Free Algorithms for Implementing LL/SC Objects

Srdjan Petrovic
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Petrovic, Srdjan, "Efficient Wait-Free Algorithms for Implementing LL/SC Objects" (2005). Dartmouth
College Ph.D Dissertations. 70.
https://digitalcommons.dartmouth.edu/dissertations/70

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/70?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Efficient Wait-Free Algorithms for Implementing LL/SC Objects

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Computer Science

by

Srdjan Petrovic

DARTMOUTH COLLEGE

Hanover, New Hampshire

August 19th, 2005

Examining Committee

(chair) Prasad Jayanti

Thomas H. Cormen

Maurice Herlihy

Douglas McIlroy

Charles K. Barlowe, Ph.D.
Dean of Graduate Studies

Abstract

Over the past decade, a pair of instructions called load-linked (LL) and store-

conditional (SC) have emerged as the most suitable synchronization instructions

for the design of lock-free algorithms. However, current architectures do not sup-

port these instructions; instead, they support either CAS (e.g., UltraSPARC, Ita-

nium, Pentium) or restricted versions of LL/SC (e.g., POWER4, MIPS, Alpha).

Thus, there is a gap between what algorithm designers want (namely, LL/SC)

and what multiprocessors actually support (namely, CAS or restricted LL/SC). To

bridge this gap, this thesis presents a series of efficient, wait-free algorithms that

implement LL/SC from CAS or restricted LL/SC.

ii

Acknowledgments

Prasad Jayanti, my Ph.D. advisor and now a great friend and mentor, I thank you

for taking me on as a student. It is impossible for me to do justice, in any num-

ber of words, to your excellent guidance, friendship, and enthusiasm; I can only

hope that I did not abuse your kindness and support. You have taught me so many

things, including the research process and its excitement, writing papers, giving

talks, teaching, mentoring students, reviewing papers, ..., the list does not end. All

along the way, you have remained one of my closest and dearest friends. Prasad’s

wife, Aparna, and children Siddhartha and Sucharita have become my second fam-

ily; I will always remember the careless times that I have spent at their home, and

the basketball games we’ve played together.

I thank Tom Cormen, for his friendship and for his valuable suggestions regard-

ing the writing of my thesis. Maurice Herlihy, I feel honored to have you on my

thesis commitee: thank you for taking the time and for the encouragement. Doug

McIlroy, I thank you sharing the enthusiasm for my research area and for reading

so carefully through my thesis and sharing your comments.

In the five years that I have spent at Dartmouth, I had the good fortune of

meeting and befriending several wonderful people, I thank them all. Udayan, Alin,

iii

BJ, and Tim, thank you for the fun times.

I would never get so far without the support of my parents. Mama and Tata, I

feel lucky to have you. Thank you for loving me and supporting me so steadfastly

and unconditionally: I love you. I would also like to thank Mummy and Papa, my

wife’s parents, for their blessings and support.

Geeta, my love, you are my strength and inspiration. I thank you for the four

most beautiful years of my life. I look forward to the journey that’s ahead of us.

Ila, my daughter, you have been a constant source of joy ever since you were born:

I love you.

iv

Contents

Abstract ii

Acknowledgments iii

1 Introduction 1

1.1 Weaknesses of hardware synchronization instructions 2

1.2 Solution: LL/SC instructions . 3

1.3 Implementing LL/SC from CAS 4

1.4 Design considerations . 6

1.5 Main results . 9

1.6 Using RLL/RSC instead of CAS 11

1.7 The VL operation . 11

1.8 Notational conventions . 12

1.9 Organization of the rest of the thesis 12

2 Related work 13

2.1 Implementations of LL/SC from CAS 13

2.2 Implementations of Weak-LL/SC from CAS 22

v

3 System model 25

4 Word-sized LL/SC 27

4.1 An unbounded 64-bit LL/SC implementation 27

4.1.1 How the algorithm works 29

4.1.2 Remark: using RLL/RSC instead of CAS 33

4.1.3 Remark: implementing read, write 34

4.2 A bounded 64-bit LL/SC implementation 34

4.3 Implementing 64-bit LL/SC from 64-bit WLL/SC 35

4.3.1 Two obligations of LL 36

4.3.2 How the algorithm works 37

4.4 Implementing 64-bit WLL/SC from (1-bit, pid)-LL/SC 39

4.4.1 How the algorithm works 40

4.5 Implementing (1-bit, pid)-LL/SC from 64-bit CAS 41

4.5.1 How the algorithm works 43

4.5.2 Why X is read twice . 45

4.5.3 An implementation of select 46

4.5.4 An alternative selection algorithm 56

5 Multiword LL/SC 67

5.1 Implementing a W -word LL/SC Object 68

5.1.1 The variables used . 68

5.1.2 The helping mechanism 70

5.1.3 The role of Helpp . 71

5.1.4 Two obligations of LL 72

5.1.5 Code for LL . 73

vi

5.1.6 Code for SC . 75

6 LL/SC for large number of objects 78

6.1 Implementing an array of M W -word Weak-LL/SC objects 79

6.2 Implementing an array of M W -word LL/SC objects 83

6.2.1 The variables used . 83

6.2.2 The helping mechanism 85

6.2.3 The roles of Helpp and Announcep 86

6.2.4 Obtaining a valid value 87

6.2.5 Code for LL . 88

6.2.6 Code for SC . 89

6.2.7 Remarks . 91

7 LL/SC for unknown N 92

7.1 Implementing an array of M W -word LL/SC objects for an un-

known number of processes . 93

7.1.1 Dynamic arrays . 94

7.1.2 Restatement of Algorithm 6.2 98

7.1.3 The algorithm . 102

7.2 Implementing a word-sized LL/SC object for an unknown number

of processes . 111

8 Conclusion and future work 117

8.1 Summary of the results . 118

8.2 Future work . 120

vii

A Proofs 127

A.1 Proof of the algorithms in Chapter 4 127

A.1.1 Proof of Algorithm 4.1 127

A.1.2 Proof of Algorithm 4.2 134

A.1.3 Proof of Algorithm 4.3 140

A.1.4 Proof of Algorithm 4.4 143

A.1.5 Proof of Algorithm 4.5 146

A.1.6 Proof of Algorithm 4.6 152

A.2 Proof of the algorithm in Chapter 5 159

A.3 Proof of the algorithms in Chapter 6 173

A.3.1 Proof of Algorithm 6.1 173

A.3.2 Proof of Algorithm 6.2 178

A.4 Proof of the algorithms in Chapter 7 190

A.4.1 Proof of Algorithm 7.1 190

A.4.2 Proof of Algorithm 7.3 200

A.4.3 Proof of Algorithm 7.4 228

viii

Chapter 1

Introduction

In shared-memory multiprocessors, multiple processes running concurrently on

different processors cooperate with each other via shared data structures (e.g.,

queues, stacks, counters, heaps, trees). Atomicity of these shared data structures

has traditionally been ensured through the use of locks. To perform an operation,

a process obtains the lock, updates the data structure, and then releases the lock.

Locking, however, has several drawbacks, including deadlocks (each of two pro-

cesses waits for a lock currently held by the other), priority inversion (a low-priority

process holds a lock needed by a high-priority process, and the low-priority pro-

cess is preempted by a medium-priority process), and convoying (a descheduled

process that holds a lock causes other processes to wait). Locking also limits par-

allelism: even when operations update disjoint parts of the data structure, they are

applied sequentially, one after the other. Finally, lock-based implementations are

not fault-tolerant: if a process crashes while holding a lock, other processes can

end up waiting forever for the lock.

Wait-free implementations overcome most of the above drawbacks of locking

1

[Her91, Lam77, Pet83]. A wait-free implementation guarantees that every process

completes its operation on the data structure in a bounded number of its steps,

regardless of whether other processes are slow, fast, or have crashed. This bound

(on the number of steps that a process executes to complete an operation on the

data structure) is the time complexity (of that operation).

It is well understood that whether wait-free algorithms can be efficiently de-

signed depends crucially on what synchronization instructions are available for the

task. As we describe in the next section, the synchronization instructions supported

by modern machines are not well suited for the task. The main goal of this thesis is

to remedy this situation by implementing more useful synchronization instructions.

1.1 Weaknesses of hardware synchronization instructions

Most modern machines support either a compare&swap (CAS) instruction (e.g.,

UltraSPARC [Spa], Itanium [Ita02]), or restricted LL/SC (RLL/RSC) instructions

(e.g., POWER4 [Pow01], MIPS [Mip02], Alpha [Sit92]). Neither of these instruc-

tions are well suited for the design of shared data structures. To understand why,

we must first look at their semantics.

The instruction CAS(X, u, v) checks if location X has value u; if so, it changes

the value to v and returns true, else it returns false and leaves the value unchanged.

In practice, CAS is most commonly used as follows. First, we would read some

value A from a location X ; then, we would perform some computation (which may

involve reading other locations) and compute the new value to be stored into X ;

finally, we would use CAS to attempt to change location X from A to the new

value. Most often, our intent is for CAS to succeed only if between the read and

2

the CAS the location X hasn’t been changed. However, it is quite possible that the

location X changes from A to some value B, and then back to A again between the

read and the CAS; in that case, CAS will succeed, even though our intent was for

it to fail. This undesirable behavior is known in the literature as the ABA-problem

[Ibm83], and it has greatly complicated the design of shared data structures.

Next, we turn to the instructions RLL/RSC, which are also supported on many

modern machines. The RLL and RSC instructions act like read and conditional-

write, respectively. More specifically, the RLL(X) instruction by process p returns

the value of the location X , while the RSC(X, v) instruction by p checks whether

some process updated the location X since p’s latest RLL, and if no process has

updated X it writes v into X and returns true; otherwise, it returns false and leaves

X unchanged.

Due to their semantics, the RLL/RSC instructions do not suffer from the ABA-

problem. However, they impose two severe restrictions on their use [Moi97a]: (1)

there is a chance of RSC failing spuriously: RSC might fail even when it should

have succeeded, and (2) a process is not allowed to access any shared variable

between its RLL and the subsequent RSC. Due to these restrictions, it is hard to

design algorithms based on this instruction pair.

1.2 Solution: LL/SC instructions

The instructions LL/SC have the same semantics as RLL/RSC, except that they

do not impose any restrictions on their use. For this reason, they are very well

suited for the design of shared data structures. Some examples of recent LL/SC-

based lock-free algorithms are (1) the closed objects construction [CJT98], (2) the

3

construction of f -arrays [Jay02] and snapshots [Jay05, Jay02], (3) the abortable

mutual exclusion algorithm [Jay03], and (4) some universal constructions [ADT95,

Bar93, Her93, Moi97b, Moi01, ST95].

However, despite the desirability of LL/SC, no processor supports these in-

structions in hardware because it is impractical to maintain (in hardware) the state

information needed to determine the success or failure of each process’s SC oper-

ation on each word of memory. Thus, there is a gap between what algorithm de-

signers want (namely, LL/SC) and what multiprocessors actually support (namely,

CAS or RLL/RSC). To bridge this gap, we must efficiently emulate LL/SC instruc-

tions in software, which gives rise to the following research problem:

Research problem: Design a wait-free algorithm that implements LL/SC mem-

ory words from memory words supporting either CAS or RLL/RSC opera-

tions.

1.3 Implementing LL/SC from CAS

The most efficient algorithm for implementing LL/SC from CAS is due to Moir

[Moi97a] (see Algorithm 1.1). His algorithm runs in constant time and has no

space overhead. Below, we briefly describe how this algorithm works.

The algorithm stores a sequence number and a value together in the same ma-

chine word X. When a process p wishes to perform an LL operation, it first copies

the current value of X into a local variable x p (Line 1), and then returns the value

stored in x p (Line 2). During an SC(v) operation, p tries to change X from the value

x p it had witnessed in its latest LL operation to a value (x p.seq + 1, v) (Line 3).

If p’s CAS succeeds, then p’s SC has succeeded and so p returns true; otherwise,

4

Types
xtype = record seq: 40-bit number; val: 24-bit value end

Shared variables
X: xtype

Local persistent variables at each p ∈ {0, 1, . . . , N − 1}

x p: xtype

procedure LL(p,O) returns 24-bit value procedure SC(p,O, v) returns boolean
1: x p = X 3: return CAS(X, x p, (x p.seq + 1, v))

2: return x p.val

Algorithm 1.1: Implementation of the N -process 24-bit LL/SC object O from a
64-bit CAS object and 64-bit registers, based on Moir’s algorithm [Moi97a].

p’s SC has failed and so p returns false.

It is easy to see that p’s SC succeeds if and only if X hasn’t changed since

p’s latest LL, i.e., if no other process performed a successful SC since p’s latest

LL. The only exception is the case when the sequence number in X is incremented

sufficiently many times that it wraps around to the same value x p.seq that p had

witnesses in its latest LL. In that case, p’s SC will succeed even though the se-

mantics of LL/SC mandate that it should fail. However, if sufficiently many bits in

X are reserved for the sequence number (e.g., 32 to 40 bits), then the wraparound

is extremely unlikely to occur in practice. Therefore, for practical purposes, the

algorithm is a correct implementation of LL/SC from CAS.

Notice that, after reserving sufficiently many bits in X for the sequence number

(e.g., 32 to 40 bits), only few bits are left in X for the value (e.g., 24 to 32 bits).

Therefore, the algorithm presented above implements only a small (e.g., 24- to

32-bit) LL/SC object, which is inadequate for storing pointers, large integers, and

doubles.

In this thesis, we focus on implementing word-sized LL/SC objects, i.e., objects

5

that can hold values of machine-word length (e.g., 64 bits). In order to implement

such objects, we must store the value and the sequence number in separate machine

words. This separation of value and sequence number makes it hard to ensure

atomicity of concurrent operations, but our algorithms meet this challenge.

We also consider implementations of multiword LL/SC objects, i.e., objects

whose value spans across multiple machine words (e.g., 512 or 1024 bits). Many

existing applications [AM95a, CJT98, Jay02, Jay05] require support for such ob-

jects. In order to implement such objects, we must internally manage values that

span across multiple machine words, using only single-word operations. Thus,

these objects are more challenging to implement than word-sized objects.

1.4 Design considerations

In addition to time complexity and space complexity, the following three factors

should be considered when designing LL/SC algorithms.

1. Progress condition. Wait freedom guarantees that a process completes its op-

eration on the data structure in a bounded number of its steps, regardless of

the speeds of other processes. A weaker form of implementation, known as

non-blocking implementation [Lam77], guarantees that if a process p repeat-

edly takes steps, then the operation of some process (not necessarily p) will

eventually complete. Thus, non-blocking implementations guarantee that the

system as a whole makes progress, but admit starvation of individual pro-

cesses. An even weaker form of implementation, known as obstruction-free

implementation [HLM03a], guarantees that a process completes its operation

on the data structure in a bounded number of its steps, provided that no other

6

process takes steps during that operation. This progress condition therefore

allows for a situation where all processes starve. To reduce contention be-

tween operations (and thus reduce the chance of starvation), obstruction-free

algorithms are often used in conjunction with a contention manager. A con-

tention manager may, for example, use schemes such as exponential back-off

or queuing to reduce contention [HLM03a].

Although wait freedom offers the strongest progress guarantees, it is generally

difficult to design wait-free algorithms. Obstruction-free algorithms, on the

other hand, offer the weakest progress guarantees but are much simpler to de-

sign. The tradeoff between wait-free algorithms on one side and non-blocking

and obstruction-free algorithms on the other side is therefore that of progress

guarantee versus simplicity of design. In this thesis, we focus our attention on

wait-free algorithms.

2. Knowing the number of processes in advance. Most wait-free algorithms re-

quire that N—the maximum number of processes participating in the

algorithm—is known in advance. They need this information in order to allo-

cate and initialize all of their data structures in advance (i.e., before the algo-

rithm starts). In situations where N cannot be known in advance, a conserva-

tive estimate has to be applied, which results in wasted space. It is therefore

more desirable to have an algorithm that makes no assumptions on N and in-

stead adapts to the actual number of participating processes.

This problem of unknown N has been studied before [HLM03b], and there

are many algorithms that adapt to the actual number of participating processes

[DHLM04, DMMJ02, HLM03b, MH02, Mic04a, Mic04b, MS96]. We clas-

7

sify all such algorithms into three groups. In the first group are the algorithms

whose space utilization at any time t is proportional to the number of processes

participating in the algorithm at time t . An example of an algorithm in this

group is a non-blocking LL/SC algorithm by Doherty, Herlihy, Luchangco,

and Moir [DHLM04].

In the second group are the algorithms whose space utilization at any time t

is proportional to the maximum number of processes that have simultaneously

participated in the algorithm prior to time t . An example of an algorithm in

this group is a wait-free LL/SC algorithm by Michael [Mic04b] and our LL/SC

algorithm in Section 7.1 of Chapter 7.

In the third group are the algorithms whose space utilization at any time t is

proportional to the maximum number of processes that have participated in

the algorithm at any time prior to time t . An example of an algorithm in this

group is our LL/SC algorithm in Section 7.2 of Chapter 7.

3. Unbounded vs. bounded sequence numbers. Most LL/SC algorithms in the

literature associate a sequence number with each successful SC operation (e.g.,

Moir’s algorithm [Moi97a] in Section 1.3). The purpose of a sequence num-

ber is to enable a process to detect whether an LL/SC object has been changed

between its LL and SC operations. Some LL/SC algorithms use sequence

numbers that grow without bound (e.g., [Moi97a]), while others use sequence

numbers that are drawn from a finite set (e.g., [AM95b]). If sufficiently many

bits are reserved for the sequence number (e.g., 32 to 40 bits), unbounded al-

gorithms are just as good in practice as the bounded algorithms. Consider, for

example, an unbounded LL/SC algorithm that uses 40-bit sequence numbers.

8

For this algorithm to behave incorrectly, a process would have to perform 240

successful SC operations during the time interval when some other process

executes one LL/SC pair. Unbounded sequence numbers are therefore not a

practical concern.

1.5 Main results

We now summarize the main results of this thesis.

• Word-sized LL/SC. Our first result is a wait-free implementation of a word-

sized LL/SC object from a word-sized CAS object and registers. We present

three algorithms: the first algorithm uses unbounded sequence numbers; the

other two use bounded sequence numbers. The time complexity of LL and SC

in all three algorithms is O(1), and the space complexity of the algorithms is

O(N) per implemented object, where N is the number of processes access-

ing the object. The space complexity of implementing M LL/SC objects is

O(N M), and the algorithms require N to be known in advance.

• Multiword LL/SC. Our second result is a wait-free implementation of a W -word

LL/SC object (from word-sized CAS objects and registers). The time com-

plexity of LL and SC is O(W), and the space complexity of the algorithm is

O(NW) per implemented object, where N is the number of processes access-

ing the object. The space complexity of implementing M LL/SC objects is

O(N MW). This algorithm requires N to be known in advance, and it uses

unbounded sequence numbers.

• Multiword LL/SC for large number of objects. Our third result is a wait-free

9

implementation of an array of M W -word LL/SC objects (from word-sized

CAS objects and registers). This algorithm improves the space complexity

of our multiword LL/SC algorithm (see above) when implementing a large

number of LL/SC objects (i.e., when M = ω(N)). In particular, the space

complexity of the algorithm is O((N 2 + M)W), where N is the number of

processes accessing the objects. The time complexity of LL and SC is O(W).

The algorithm requires N to be known in advance, and it uses unbounded se-

quence numbers.

• LL/SC algorithms for an unknown N. Our fourth result is a wait-free imple-

mentation of an array of M W -word LL/SC objects (from word-sized CAS

objects and registers), shared by an unknown number of processes. This al-

gorithm supports two new operations—Join(p) and Leave(p)—which allow

a process p to join and leave the algorithm at any given time. If K is the

maximum number of processes that have simultaneously participated in the

algorithm (i.e., have joined the algorithm but have not yet left it), then the

space complexity of the algorithm is O((K 2 + M)W). The time complexities

of procedures Join, Leave, LL, and SC are O(K), O(1), O(W), and O(W),

respectively. The algorithm uses unbounded sequence numbers.

We also present a wait-free implementation of a word-sized LL/SC object

(from a word-sized CAS object and registers) that does not require N to be

known in advance. The attractive feature of this algorithm is that the Join

procedure runs in O(1) time. This algorithm, however, does not allow pro-

cesses to leave. The time complexities of LL and SC operations are O(1), and

the space complexity of the algorithm is O(K 2 + K M). The algorithm uses

10

unbounded sequence numbers.

• Multiword Weak-LL/SC for a large number of objects. Our fifth result is a wait-

free implementation of an array of M W -word Weak-LL/SC objects from

word-sized CAS objects and registers.1 The time complexity of WLL and SC

is O(W), and the space complexity of the algorithm is O((N + M)W), where

N is the number of processes accessing the object. The algorithm requires N

to be known in advance, and it uses unbounded sequence numbers.

1.6 Using RLL/RSC instead of CAS

Although the main focus of this thesis is implementing LL/SC objects from CAS

objects and registers, we note that most of our algorithms can easily be ported

to machines that support RLL/RSC instructions, using Moir’s implementation of

CAS from RLL/RSC [Moi97a].

1.7 The VL operation

In practice, it is often useful to have a support for the Validate (VL) operation,

which allows a process p to check whether some location X has been updated

since p’s latest LL, without modifying X . The VL operation returns true if X has

not been updated; otherwise, it returns false. We include the support for the VL

operation in all of our algorithms.
1A Weak-LL/SC object is the same as the LL/SC object, except that its LL operation—denoted

WLL—is allowed to return to the invoking process p a special failure code (instead of the object’s
value) if the subsequent SC operation by p is sure to fail.

11

1.8 Notational conventions

Throughout the thesis, we use the following notation: N is the maximum number

of processes for which the algorithm is designed, M is the number of implemented

LL/SC objects, and k is the maximum number of outstanding LL operations of a

given process (i.e., the maximum number of objects on which a process invoked an

LL operation but did not yet invoke a matching SC).

1.9 Organization of the rest of the thesis

The remainder of the thesis is organized as follows. In Chapter 2, we present

related work. Chapter 3 introduces the system model. Chapters 4–7 constitute the

main body of the thesis, namely, algorithms (1)–(5) described earlier. Chapter 8

offers some concluding comments and future work. Finally, the proofs of all our

algorithms are presented in Appendix A.

12

Chapter 2

Related work

In this chapter, we summarize the related work on implementing LL/SC from CAS.

For each algorithm we list below, we describe briefly how it works and then present

its main characteristics.

2.1 Implementations of LL/SC from CAS

The earliest wait-free algorithm for implementing an LL/SC object from a CAS

object and registers is due to Israeli and Rappoport [IR94]. Their algorithm main-

tains a central variable X, and it stores N bits (along with the value) together in X.

During an LL operation, process p writes 1 into the pth bit in X. Each successful

SC operation writes 0s into all bits in X. By this strategy, process p can determine

whether variable X has been changed (between p’s LL and subsequent SC) by sim-

ply checking whether the pth bit in X is still 1. This approach, however, has the

following two drawbacks: (1) it assumes that N bits can be stored (along with the

value) into a single memory word, which may be unrealistic, and (2) since LL and

13

SC both write into variable X, an LL or an SC operation that fails to write into X

must keep retrying until it succeeds. Although the algorithm manages to bound the

number of retries to N , its time complexity is still an excessive O(N). The space

complexity of the algorithm is O(N 2 + N M), and the knowledge of N is required.

Anderson and Moir [AM95b] present an algorithm that implements a small

LL/SC object from a word-sized CAS object and registers. Their algorithm is es-

sentially the same as Moir’s algorithm [Moi97a] (see Section 1.3), but with an

added mechanism for bounding the sequence numbers. This mechanism works as

follows. During an LL operation, process p announces the sequence number that

it reads from variable X. In each SC operation, p reads announcements by other

processes and always chooses to write into X a sequence number that no other pro-

cess had announced. It is easy to see that, if p reads a sequence number s from X

during its LL operation and finds that X has the same sequence number during its

subsequent SC, then X couldn’t have been written in the meantime (because any

process performing a successful SC would have noticed p’s announcement and

would therefore not have chosen to write s into X). The crux of the algorithm is the

observation that p does not have to read all the announcements during a single SC

operation. Instead, p reads announcements one at a time—in its i th SC operation,

p reads (a single) announcement belonging to a process i mod N . Therefore, over

N consecutive SC operations, p is sure to read the announcements of all processes.

Moreover, the algorithm keeps announcements read during p’s N latest SC oper-

ations in a special data structure that allows p to choose a new sequence number

(that is different than all of the N announcements) in O(1) time. Hence, using

the above two strategies, the algorithm achieves O(1) running time for the SC (in

addition to O(1) running time for the LL). The space complexity of the algorithm,

14

however, is significant: the algorithm must maintain N announcements for each

process per each implemented LL/SC object. Hence, the space complexity of the

algorithm is O(N 2 M). This algorithm requires N to be known in advance.

In a different paper, Anderson and Moir [AM95a] present an algorithm that

implements a W -word LL/SC object O from a small LL/SC object and regis-

ters. Their algorithm maintains a central variable X that stores the location of

two buffers: buffer A, which holds the current value of O, and buffer B, which

holds the previous value of O. During an LL operation, process p first reads X to

learn the location of the two buffers, and then reads the values from both buffers.

The algorithm cleverly ensures that (1) at most one SC operation writes into the

two buffers while p is reading them, and (2) at least one value that p reads from

the two buffers will be a correct value for p’s LL to return. To ensure these two

properties, however, the algorithm must keep at least N buffers at each process

(per each implemented variable). Hence, the space complexity of the algorithm is

O(N2 MW). The time complexity for LL and SC is O(W), and the knowledge of

N is required.

Moir [Moi97a] presents two algorithms that implement small LL/SC objects

from word-sized CAS objects and registers. We have already described (in Sec-

tion 1.3) his first algorithm. Its space complexity is O(N + M), and the time

complexity of LL and SC is O(1). Moreover, the algorithm does not require N

to be known in advance. The second algorithm is a variation of Anderson and

Moir’s bounded algorithm in [AM95b]. This algorithm reduces the space com-

plexity of [AM95b] from O(N 2 M) to O(N 2k + N M) by exploiting the fact that

a process p can have at most k outstanding LL operations at any given time. The

algorithm works as follows. Each process p keeps the announcements (of the se-

15

quence numbers) made during its k latest LL operations. In each SC operation, p

reads all the announcements made by all other processes and always chooses to

write into X a sequence number that no other process had announced. The benefit

of this approach is that each process has to maintain one data structure over all

M LL/SC objects (whereas in [AM95b], each process had to maintain one data

structure per implemented LL/SC object). Hence, the space complexity of the al-

gorithm is O(N 2k + N M). Furthermore, by employing the same mechanism as in

[AM95b], a process can avoid reading all the announcements during a single SC

operation, thereby achieving a constant time complexity for both LL and SC. This

algorithm requires the knowledge of N .

Luchangco, Moir, and Shavit [LMS03] present an algorithm that implements

word-sized LL/SC objects from word-sized CAS objects and registers. Their algo-

rithm maintains a central variable X for each implemented LL/SC object O, which

holds either (1) the current value of O, or (2) a tag of the process that performed the

latest LL on O (which consists of a sequence number and a process id). If X holds

some process p’s tag, then the current value of O is located in the pth location of

the array VAL SAVE. The first bit in X is reserved to distinguish between the above

two types of values. For this reason, the algorithm implements an LL/SC object

whose value is by 1 bit shorter than the length of the machine word (i.e., 63-bit

LL/SC object on a 64-bit machine). The algorithm works as follows. During an

LL operation, process p first obtains a valid value of O (either from X or from the

array VAL SAVE), and then attempts to write its tag into X. In each SC operation,

p attempts to change the value in X from the tag it installed in X during the latest

LL operation to the new value v. If the attempt succeeds, then p’s SC has suc-

ceeded; otherwise, p’s SC has failed. This approach, however, has the following

16

two drawbacks: (1) it allows an LL operation by some other process to fail p’s

SC operation, contrary to the specification of SC, and (2) since LL and SC both

write into variable X, an LL or an SC operation that fails to write into X must keep

retrying until it succeeds. Hence, the algorithm implements only a weaker form of

LL/SC and is only obstruction-free (and not wait-free). The space complexity of

the algorithm is O(Nk + M). The algorithm uses unbounded sequence numbers

and requires the knowledge of N .

Before we present the next two related works, we take a moment to explain the

following simple algorithm that implements W -word LL/SC objects from word-

sized CAS objects and registers (see Algorithm 2.1). This algorithm is based on the

technique used in [Lea02] and was first described by Doherty, Herlihy, Luchangco,

and Moir [DHLM04]. The algorithm maintains a single variable X for each LL/SC

object O. At all times, X points to the block containing the current value of O.

When a process p wishes to perform an LL operation, it first reads X to obtain

the address of the block with the current value of O (Line 1), and then reads the

value from that block (Line 2). During an SC(v) operation, p allocates a new block

(Line 3), copies value v into it (Line 4), and then tries to swing the pointer in X

from the address x p it had witnesses in its latest LL operation to the address of

the new block (Line 5). If p’s CAS succeeds, then p’s SC has succeeded and so

it returns true; otherwise, p’s SC has failed and so it returns false. It is easy to

see that, since every SC uses a new block, p’s SC succeeds if and only if X hasn’t

changed since p’s latest LL, i.e., if no other process performed a successful SC

since p’s latest LL.

The above algorithm, although correct, uses an unbounded amount of memory

and is therefore not practical. To bound the memory usage, blocks must be freed

17

Types
xtype = pointer to array 0 . . W − 1 of 64-bit value

Shared variables
X: xtype

Local persistent variables at each p ∈ {0, 1, . . . , N − 1}

x p: xtype

procedure LL(p,O, retval) procedure SC(p,O, v) returns boolean
1: x p = X 3: buf = malloc(W)

2: copy ∗x p into ∗retval 4: copy ∗v into ∗buf
5: return CAS(X, x p, buf)

Algorithm 2.1: Implementation of the N -process W -word LL/SC object O from a
64-bit CAS object and 64-bit registers, based on the technique used in [Lea02].

from memory when they are no longer needed. Care must be taken, however, not

to free a block that has been read by some process in its latest LL operation. To see

why, suppose that some process p reads an address of a block B during its latest LL

operation. Next, suppose that block B is freed from memory, and then allocated

again by some process q during its SC operation. If q’s SC succeeds, then the

address of block B is again written into X. If p now performs an SC operation, p’s

SC will succeed even though it should have failed. Hence, blocks that have been

read by some process in its latest LL operation must not be freed until that process

performs a subsequent SC operation.

Michael [Mic04b] enforces the freeing rule by keeping a hazard pointer

[Mic04a] at each process. When a process p reads an address of a block B (during

its LL operation), it writes that address into its hazard pointer. The idea is that no

other process will free block B from memory as long as p’s hazard pointer holds

B’s address. In order to ensure this property, each process reads hazard point-

ers belonging to all other processes before attempting to free some block C from

memory; if any process’s hazard pointer holds the address of C , then C is not freed

18

until later. The algorithm exploits the fact that a process p can have at most k

outstanding LL operations at any point in time. Thus, each process keeps k haz-

ard pointers, and all k hazard pointers at each process are read before a block is

freed from memory. Similar to [AM95b], a process does not read all the announce-

ments at once. Instead, it uses an amortized approach of reading announcements

one at a time. However, unlike [AM95b], which works with sequence numbers,

this algorithm works with memory pointers. For this reason, the algorithm cannot

ensure the O(1) running time for its SC operation.1 Instead, each SC operation

runs in O(1) expected amortized time: the first (Nk − 1) SC operations by each

process take O(1) time, and the (Nk)th operation takes O(Nk) expected time. The

“expected” running time of the (Nk)th operation comes from the fact that there is

hashing involved in the execution of that operation. If all entries are hashed per-

fectly, then the operation runs in O(Nk) time; if all entries are hashed to the same

location (a highly unlikely scenario), the operation runs in O((Nk)2) time. The

space complexity of the algorithm is O(Nk + (N 2k + M)W), and the algorithm

does not require N to be known in advance.

Doherty et al. [DHLM04], on the other hand, ensure that a block is not freed

from memory (if some process has read it in its latest LL operation) by keeping a

counter in each block. When a process p reads an address of a block B (during

its LL operation), it increments the counter stored in block B. Likewise, during its

subsequent SC operation, p decrements the counter stored in B. By the above strat-

egy, once a block’s counter reaches a value zero, it means that no process has read

that block in its latest LL operation and thus the block can be freed. The counter

management, however, is more complicated than described above, because the fol-
1We assume here that W = 1.

19

lowing undesirable scenario must be prevented: (1) p reads an address of a block B

and then sleeps for a long time; (2) in the meantime, block B is freed from memory;

(3) then, p attempts to increment a counter stored in B. This attempt will result

in an illegal memory access, since the memory occupied by B has already been

freed. To overcome this problem, the algorithm maintains a static counter at each

LL/SC object. During an LL operation, process p increments this static counter in-

stead of a counter inside the block. Once a successful SC operation replaces block

B with a newer one, it copies the value of the static counter into B’s counter and

then resets the static counter back to zero. With regards to the space complexity,

notice that if there are T outstanding LL operations (over all N processes) at some

time t , then there are at most T blocks with counters greater than zero at time t .

Hence, the space utilization of the algorithm at time t is O((T + M)W). Since in

the worst case T is as high as Nk, it means that the space complexity of the algo-

rithm is O((Nk + M)W). This algorithm, however, is only non-blocking and not

wait-free. The algorithm does not require N to be known in advance. Finally, we

note that, although the algorithm was originally presented as a word-sized LL/SC

implementation, it can be trivially extended to a W -word LL/SC implementation.

Table 2.1 summarizes the above discussion on related work and compares it to

the results presented in this thesis. The results are listed in chronological order.

20

Worst-case
Size of Progress Time Complexity

Algorithm LL/SC Condition LL SC
1. Israeli and Rappoport [IR94], Fig. 3 small wait-free O(N) O(N)

2. Anderson and Moir [AM95b], Fig. 1 small wait-free O(1) O(1)

3. Anderson and Moir [AM95a], Fig. 2 W -word wait-free O(W) O(W)

4. Moir [Moi97a], Fig. 4 small wait-free O(1) O(1)

5. Moir [Moi97a], Fig. 7 small wait-free O(1) O(1)

6. Luchangco et al. [LMS03]† 63-bit obstr.-free − −

7. This thesis, Chapter 4 word-sized wait-free O(1) O(1)

8. Doherty et al. [DHLM04] W -word non-blocking − −

9. Michael [Mic04b] W -word wait-free O(W) O(Nk + W)‡

10. This thesis, Chapter 5 W -word wait-free O(W) O(W)

11. This thesis, Chapter 6 W -word wait-free O(W) O(W)

12. This thesis, Sec. 7.1 of Chapter 7 W -word wait-free O(W) O(W)

13. This thesis, Sec. 7.2 of Chapter 7 word-sized wait-free O(1) O(1)

Space Knowledge Bounded or
Algorithm Complexity of N Unbounded
1. Israeli and Rappoport [IR94], Fig. 3 O(N2 + N M) required bounded
2. Anderson and Moir [AM95b], Fig. 1 O(N2 M) required bounded
3. Anderson and Moir [AM95a], Fig. 2 O(N2 MW) required bounded
4. Moir [Moi97a], Fig. 4 O(Nk + M) not required unbounded
5. Moir [Moi97a], Fig. 7 O(N2k + N M) required bounded
6. Luchangco et al. [LMS03] O(Nk + M) required unbounded
7. This thesis, Chapter 4 O(N M) required bounded
8. Doherty et al. [DHLM04] O((Nk + M)W) not required unbounded
9. Michael [Mic04b] O(Nk + (N2k + M)W) not required unbounded
10. This thesis, Chapter 5 O(N MW) required unbounded
11. This thesis, Chapter 6 O(Nk + (N2 + M)W) required unbounded
12. This thesis, Sec. 7.1 of Chapter 7 O(Nk + (N2 + M)W) not required unbounded
13. This thesis, Sec. 7.2 of Chapter 7 O(N2 + N M) not required unbounded

Table 2.1: A comparison of algorithms that implement LL/SC from CAS.

†This algorithm implements a weaker form of LL/SC in which an LL operation by a process can
cause some other process’s SC operation to fail.

‡The amortized running time for SC is O(W). We note that this algorithm uses hashing and
that the presented running times for SC apply to the best case where all entries hash into different
locations. In the worst case where all entries hash into the same location, SC operation runs in
O((Nk)2 + W) worst-case and O(Nk + W) amortized time.

21

2.2 Implementations of Weak-LL/SC from CAS

The Weak-LL/SC object was first defined by Anderson and Moir [AM95a], who

also present an algorithm that implements a W -word Weak-LL/SC object O from

single-word LL/SC objects and registers. This algorithm works as follows. Each

process p maintains two W -word buffers. One buffer holds the value written into

O by p’s latest successful SC, and the other buffer is available for use in p’s next

SC operation. The central variable X holds a pair (b, q), where q is the id of the

process that performed the latest SC operation on O, and b is the index of q’s

buffer that holds the value written by that SC. To perform an SC operation, p first

writes the value into its available buffer, and then attempts to write the pointer to

that buffer into X (i.e., it writes a pair (b, p) into X, where b is the index of p’s

available buffer). During a WLL operation, p (1) reads X to obtain a pointer to

the buffer that holds the current value of O, (2) reads that buffer, and (3) checks

whether X has been modified since p’s latest read. If X hasn’t been modified, then

p is certain that it had read a valid value from the buffer, and so it simply returns

that value signaling the success of its WLL operation. Otherwise, some process

must have performed a successful SC during p’s WLL. Then, by the definition of

WLL, p is not obligated to return a value; instead, it can signal failure and return

the id of a process that performed a successful SC during p’s WLL. Such an id

can be obtained simply by reading X. So, p reads X and returns the id obtained,

also signaling the failure of its WLL operation. The space complexity of the above

algorithm is O(N MW), and the time complexity for WLL and SC is O(W). The

algorithm requires N to be known in advance.

Moir [Moi97a] presents an algorithm that implements an array O0 . . M of M

22

W -word Weak-LL/SC objects from CAS objects and registers. The algorithm

maintains a central array X0 . . . M that holds the following information for each

object Oi : (1) the current value of Oi , and (2) the id of the process that wrote that

value in Oi . To perform an SC operation on some object Oi , p first writes the value

into its local buffer, and then attempts to write its id into the “id” field of Xi . If p’s

attempt succeeds, then p’s SC has succeeded. Before returning from its operation,

however, p first copies the value from its buffer into the “value” field of Xi . If p

is slow in copying, then other processes that execute WLL operations on Oi will

help p copy that value into Xi . In particular, during an WLL operation on some

object Oi , p first reads the “id” field of Xi to learn the id q of the process that wrote

the current value in Oi , and then helps q copy the value from q’s buffer into the

“value” field of Xi . While helping q, p also reads the current value of Oi . Period-

ically, p checks the “id” field of Xi to see whether some process has performed an

SC operation on Oi . If so, p abandons its helping and returns the id of that process,

signaling the failure of its WLL operation. Otherwise, p returns the value it had

obtained from Xi , also signaling the success of its WLL operation. The space com-

plexity of the algorithm is O(Nk + (N + M)W), and the time complexity for WLL

and SC is O(W). The algorithm, however, has the following drawback: in order

to facilitate the helping scheme by which a process p helps a process q copy the

value from its buffer into Xi , the values must be copied word-by-word using a CAS

operation. Hence, the algorithm has an excessive CAS-time-complexity of O(W)

for both WLL and SC. (Since CAS is a costly operation in multiprocessors, it is

important to keep the CAS-time-complexity of operations small.) The algorithm

uses bounded sequence numbers and requires N to be known in advance.

Table 2.2 summarizes the above discussion on related work and compares it

23

to the Weak-LL/SC algorithm presented in this thesis. The results are listed in

chronological order.

Worst-case CAS-time
Size of Progress Time Complexity Complexity

Algorithm WLL/SC Condition WLL SC WLL SC
1. Anderson and Moir W -word wait-free O(W) O(W) O(1) O(1)[AM95a], Fig. 1
2. Moir [Moi97a], Fig. 6 W -word wait-free O(W) O(W) O(W) O(W)

3. This thesis, Chapter 6 W -word wait-free O(W) O(W) O(1) O(1)

Space Knowledge Bounded or
Algorithm Complexity of N Unbounded
1. Anderson and Moir O(N MW) required bounded[AM95a], Fig. 1
2. Moir [Moi97a], Fig. 6 O(Nk + (N + M)W) required bounded
3. This thesis, Chapter 6 O(Nk + (N + M)W) required unbounded

Table 2.2: A comparison of algorithms that implement Weak-LL/SC from CAS.

24

Chapter 3

System model

In this chapter, we describe the system model that we will use in the rest of the

thesis. We use Herlihy’s [Her93] concurrent system model, defined as follows.

A concurrent system consists of a collection of processes communicating with

each other through shared objects. Processes are asynchronous—they execute at

different speeds and may halt at any given time. A process cannot tell whether

another process has halted or is running very slowly. The object is a data structure

in memory. Each object has a type, which defines a set of possible values for the

object and a set of operations that can be applied on the object. A process inter-

acts with the object by invoking operations on the object and receiving associated

responses. Processes are sequential—each process invokes a new operation only

after receiving a response to the previous invocation.

Each object has a sequential specification that specifies how the object behaves

when all the operations on the object are applied sequentially. For example, a se-

quential specification of a read/write register specifies that a read operation must

return the value written by the latest write operation. In a concurrent system, op-

25

erations from different processes may overlap, making the sequential specification

insufficient for understanding the behavior of an object. Linearizability, defined by

Herlihy and Wing [HW90], is a widely accepted criterion for the correctness of a

shared object. An object is linearizable if operations applied to the object appear to

act instantaneously, even though in reality each operation executes over an interval

of time. More precisely, every operation applied to the object appears to take ef-

fect at some instant between its invocation and response. This instant (at which an

operation appears to take effect) is called the linearization point for that operation.

An implementation of an object O from some other objects O1, O2, . . . , On is

a collection of algorithms—one algorithm per operation on O—defined in terms of

the operations of O1, O2, . . . , On. We call O a derived object and O1, O2, . . . , On

base objects. The space complexity of an implementation of O is the number of

base objects used by the implementation. A step in the execution of O’s operation

corresponds to invoking an operation on the base object and receiving the associ-

ated response. An execution history of an implementation of O is a sequence of

steps taken by all processes while executing O’s operations. The time complex-

ity of O’s operation is the maximum number of steps taken by any process while

executing that operation.

26

Chapter 4

Word-sized LL/SC

In this chapter, we present three algorithms that implement a word-sized LL/SC

object from word-sized CAS objects and registers. The first algorithm uses un-

bounded sequence numbers and is presented in Section 4.1. The other two algo-

rithms use bounded sequence numbers and are presented in Section 4.2.

All three algorithms implement an LL/SC object whose size is as big as the

memory word of the underlying architecture. For example, on a 64-bit architecture

supporting CAS, our algorithms implement a 64-bit LL/SC object; on a 128-bit

architecture, they implement a 128-bit LL/SC object. To make the reading easier, in

the rest of the chapter we assume a word size of 64 bits, but note that the algorithms

are good for any word size.

4.1 An unbounded 64-bit LL/SC implementation

Algorithm 4.1 implements a 64-bit LL/SC object from a CAS object and registers.

We begin by providing an intuitive description of how this algorithm works.

27

Types
valuetype = 64-bit number
seqnumtype = (64 − log N)-bit number
tagtype = record pid: 0 .. N − 1; seqnum: seqnumtype end

Shared variables
X: tagtype (X supports read and CAS operations)
For each p ∈ {0, . . . , N − 1}, we have four single-writer, multi-reader registers:

valp0, valp1, oldvalp: valuetype
oldseqp: seqnumtype

Local persistent variables at each p ∈ {0, . . . , N − 1}

tagp: tagtype; seqp: seqnumtype
Initialization

X = (0, 1); val01 = vinit , the desired initial value of O
oldseq0 = 0; seq0 = 2
For each p ∈ {1, . . . , N − 1} seqp = 1

procedure LL(p,O) returns valuetype procedure SC(p,O, v) returns boolean
1: tagp = X 7: valpseqp mod 2 = v

Let (q, k) = (tagp.pid, tagp.seqnum) 8: if CAS(X, tagp, (p, seqp))

2: v = valqk mod 2 9: oldvalp = valp(seqp − 1) mod 2
3: k′ = oldseqq 10: oldseqp = seqp − 1
4: if (k ′ = k − 2) ∨ (k ′ = k − 1) return v 11: seqp = seqp + 1
5: v′ = oldvalq 12: return true
6: return v′ 13: else return false

procedure VL(p,O) returns boolean
14: return X = tagp

Algorithm 4.1: An unbounded implementation of the 64-bit LL/SC object O using
a 64-bit CAS object and 64-bit registers

4.1.1 How the algorithm works

The algorithm implements a 64-bit LL/SC object O. Central to the implementation

is the variable X that supports CAS and read operations. In addition, there are four

shared registers at each process p—val p0, valp1, oldvalp and oldseqp—

that are written to only by p but may be read by any process. The meanings of

these variables are described as follows.

The algorithm associates a tag with every successful SC operation on O. A

28

tag consists of a process id and a sequence number. Specifically, the tag associated

with a successful SC operation is (p, k) if it is the kth successful SC operation

by process p. The variable X always contains the tag corresponding to the latest

successful SC.

Suppose that the current value of X is (p, k) (which means that the last suc-

cessful SC was performed by p and p performed k successful SC operations so

far). The algorithm ensures that the value written by the kth successful SC by p is

in valp0 if k is even, or in valp1 if k is odd; i.e., the value is made available in

valpk mod 2. The registers oldvalp and oldseqp hold an older value and its

sequence number, respectively. Specifically, if p has so far performed k successful

SC operations, oldseqp and oldvalp contain, respectively, the number k − 1

and the value written by the (k − 1)th successful SC by p.

In addition to the shared variables just described, each process p has two per-

sistent local variables, seq p and tagp, described as follows. The value of seq p is

the sequence number of p’s next SC operation: if p has performed k successful

SC operations so far, seq p has the value k + 1. (Thus, sequence numbers in our

algorithm are local: p’s sequence number is based on the number of successful

SC’s performed by p, not by the system as a whole.) The value of tag p is the value

of X read by p in its latest LL operation.

Given this representation, the variables are initialized as follows. Let v init de-

note the desired initial value of the implemented object O. We pretend that pro-

cess 0 performed an “initializing SC” to write the value vinit . Accordingly, X is

initialized to (0, 1), val01 to vinit , oldseq0 to 0, and seq0 to 2. For each process

p 6= 0, seq p is initialized to 1. All other variables are arbitrarily initialized.

We now explain the procedure SC(p,O, v) that describes how process p per-

29

forms an SC operation on O to attempt to change O’s value to v. First, p makes

available the value v in valp0 if the sequence number is even, or in valp1 if

the sequence number is odd (Line 7). Next, p tries to make its SC operation take

effect by changing the value in X from the tag that p had witnessed in its latest

LL operation to the tag corresponding to its current SC operation (Line 8). If the

CAS operation fails, it follows that some other process performed a successful SC

after p’s latest LL. In this case, p’s SC must fail. Therefore, p terminates its SC

procedure, returning false (Line 13). On the other hand, if CAS succeeds, then

p’s current SC operation has taken effect. To remain faithful to the previously de-

scribed meanings of the variables oldvalp and oldseqp, p writes in oldvalp

the value written by p’s earlier successful SC (Line 9) and writes in oldseq p the

sequence number of that SC (Line 10). (Since the sequence number for p’s current

successful SC is seqp, it follows that the sequence number for p’s earlier success-

ful SC is seqp − 1, and the value written by that SC is in valp(seqp − 1) mod 2;

this justifies the code on Lines 9 and 10.) Next, p increments its sequence number

(Line 11) and signals successful completion of the SC by returning true (Line 12).

We now turn to the procedure LL(p,O) that describes how process p performs

an LL operation on O. In the following, let SCq,i denote the i th successful SC by

process q and vq,i denote the value written in O by SCq,i . First, p reads X to

obtain the tag (q, k) corresponding to the latest successful SC operation, SCq,k

(Line 1). Since SCq,k wrote vq,k into valqk mod 2, and since valqk mod 2 is not

modified until q initiates an SC operation with seqq = k + 2, it follows that at the

instant when p performs Line 1, the variable valqk mod 2 holds the value vq,k .

Furthermore, the value of valqk mod 2 is guaranteed to be vq,k until q completes

SCq,k+1.

30

So, in an attempt to learn vq,k , p reads valqk mod 2 (Line 2). By the obser-

vation in the previous paragraph, if p is not too slow and executes Line 2 before q

completes SCq,k+1, the value v read on Line 2 will indeed be vq,k . Otherwise the

value v cannot be trusted. To resolve this ambiguity, p must determine if q has

completed SCq,k+1 yet. To make this determination, p reads the sequence number

k ′ in oldseqq (Line 3). If k ′ = k − 2 or k ′ = k − 1, it follows that SCq,k+1 has not

yet completed even if it had been already initiated (because, by Line 10, SCq,k+1

writes k into oldseqq). It follows that the value v obtained on Line 2 is vq,k . So,

p terminates the LL operation, returning v (Line 4).

If k ′ ≥ k, q must have completed SCq,k+1, its (k+1)th successful SC. It follows

that the value in oldvalq is vq,k or a later value (more precisely, the value in

oldvalq is vq,i for some i ≥ k). Therefore, the value in oldvalq is a legitimate

value for p’s LL to return. Accordingly, p reads the value v ′ of oldvalq (Line 5)

and returns it (Line 6). Although v ′ is a recent enough value of O for p’s LL to

legitimately return, it is important to note that v ′ is not the current value of O. This

is because the algorithm moves a value into oldvalq only after it is no longer the

current value. Since the value v ′ that p’s LL returns on Line 6 is not the current

value, p’s subsequent SC must fail (by the specification of LL/SC). Our algorithm

satisfies this requirement because, when p’s subsequent SC performs Line 8, the

CAS operation fails since tag p is (q, k) and the value of X is not (q, k) anymore

(the value of X is not (q, k) because, by the first sentence of this paragraph, q has

completed its (k + 1)th successful SC). This completes the description of how LL

is implemented.

The VL operation by p is simple to implement: p returns true if and only if

the tag in X has not changed since p’s latest LL operation (Line 14).

31

In our discussion above, we assumed that the sequence numbers never wrap

around. This assumption is not a concern in practice, as we now explain. The 64-

bit variable X stores in it a process number and a sequence number. Even if there are

as many as 16,000 processes sharing the implementation, only 14 bits are needed

for storing the process number, leaving 50 bits for the sequence number. In our

algorithm, for seq p to wrap around, p must perform 250 successful SC operations.

If p performs a million successful SC operations each second, it takes 32 years for

seqp to wrap around! Thus, wraparound is not a practical concern.

In fact, as we show in Appendix A.1.1, the algorithm works correctly even

in the presence of a wraparound, provided that the following weaker assumption

holds:

Assumption A: If s is the number of bits in X reserved for the sequence number,

then during the time interval when some process p executes one LL/SC pair, no

other process q performs more than 2s − 3 successful SC operations.

It is easy to see that for s = 50, a process p would have to spend 32 years

executing a single LL/SC pair for the algorithm to behave incorrectly. Thus, As-

sumption A is weak enough not to be a practical concern.

Based on the above discussion, we have the following theorem. Its proof is

given in the Appendix A.1.1.

Theorem 1 Algorithm 4.1 is wait-free and, under Assumption A, implements a

linearizable 64-bit LL/SC object from a single 64-bit CAS object and an additional

six registers per process. The time complexity of LL, SC, and VL is O(1).

32

4.1.2 Remark: using RLL/RSC instead of CAS

Using Moir’s idea [Moi97a], it is straightforward to replace the CAS instruction

(on Line 8 of the algorithm) with RLL/RSC instructions. Specifically, keep Line 7

and Lines 9-13 of the algorithm as they are and replace Line 8 with the following

code fragment. The repeat-until loop in this code fragment handles spurious RSC

failures and terminates in a single iteration if there are no such failures.

8: flag = false

repeat

if RLL(X) 6= tagp go to L

flag = RSC(X, (p, seqp))

until flag

L: if (flag)

4.1.3 Remark: implementing read, write

It is straightforward to extend Algorithm 4.1 to implement read and write opera-

tions in addition to LL, SC and VL operations. Specifically, the implementation

of Write(p,O, v) is the same as the implementation of SC(p,O, v) with the fol-

lowing changes: replace the CAS on Line 8 with write(X, (p, seq p)) and remove

Lines 12 and 13. The implementation of Read(p,O) is the same as the code for

LL, except that on Line 1 the value of X is read into a local variable, different from

tagp (so that the read operation doesn’t affect the success of the subsequent SC).

The code for LL, SC and VL operations remains the same as in Algorithm 4.1.

33

It has been shown elsewhere that it is often algorithmically not easy to incorpo-

rate the write operation into LL/SC constructions [Jay98]. Thus, it is an interesting

feature of our algorithm that it can be extended effortlessly to support the write

operation.

4.2 A bounded 64-bit LL/SC implementation

For the rest of this chapter, the goal is to design a bounded algorithm that imple-

ments a 64-bit LL/SC object using 64-bit CAS objects and 64-bit registers. We

achieve this goal in four steps:

1. Implement a 64-bit LL/SC object from a 64-bit WLL/SC object and 64-bit

registers.

2. Implement a 64-bit WLL/SC object from a (1-bit, pid)-LL/SC object (which

will be described later).

3. Implement a (1-bit, pid)-LL/SC object from a 64-bit CAS object and regis-

ters.

4. This step is trivial: simply compose the implementations of the above three

steps. This composition results in an implementation of a 64-bit LL/SC ob-

ject from 64-bit CAS objects and 64-bit registers.

As we will show in the next three sections, the implementations of the first

three steps have O(1) time complexity and O(1) space overhead per process. As a

result, the 64-bit LL/SC implementation obtained in the fourth step also has O(1)

time complexity and O(1) space overhead per process, as desired.

34

4.3 Implementing 64-bit LL/SC from 64-bit WLL/SC

Recall that a WLL operation, unlike LL, is not always required to return the value

of the object: if the subsequent SC operation is sure to fail, the WLL may simply

return the identity of a process whose successful SC took effect during the execu-

tion of that WLL. Thus, the return value of WLL is of the form (flag, v), where

either (1) flag = success and v is the value of the object O, or (2) flag = failure

and v is the id of a process whose SC took effect during the WLL.

Algorithm 4.2 implements a 64-bit LL/SC object O. The algorithm uses a

single 64-bit WLL/SC variable X and, for each process p, a single 64-bit atomic

register lastValp. Note that the invocation of SC at Line 11 (in the implementa-

tion of SC) is not a recursive call to the SC procedure, but is merely an invocation

of the SC operation on the underlying WLL/SC object X. Likewise, Line 12 is not

a recursive call to the VL procedure.

We explain how the algorithm works in Section 4.3.2, but fist draw the reader’s

attention to two conditions that any implementation of an LL operation must satisfy

in order to ensure correctness.

4.3.1 Two obligations of LL

Consider an execution of the LL procedure by a process p. Suppose that v is the

value of O when p invokes the LL procedure and suppose that k successful SC’s

take effect during the execution of this procedure, changing O’s value from v to

v1, v1 to v2, . . ., vk−1 to vk . We call each of the values v, v1, . . . , vk a valid value

(with respect to this LL execution by p), since it would be legitimate for p’s LL to

return any one of these values. Also, we call the value vk current (with respect to

35

Types
valuetype = 64-bit number

Shared variables
X: valuetype (X supports WLL, SC and VL operations)
For each p ∈ {0, . . . , N − 1}, we have one single-writer, multi-reader register:

lastValp : valuetype
Initialization

X = vinit , the desired initial value of O

procedure LL(p,O) returns valuetype procedure SC(p,O, v) returns boolean
1: (flag, v) = WLL(p,X) 11: return SC(p,X, v)

2: if (flag = success)
3: lastValp = v procedure VL(p,O) returns boolean
4: return v 12: return VL(p,X)

5: val = lastValv

6: (flag, v) = WLL(p,X)

7: if (flag = success)
8: lastValp = v

9: return v

10: return val

Algorithm 4.2: Implementation of the 64-bit LL/SC object O using a 64-bit
WLL/SC object and 64-bit registers

this LL execution by p).

Although p’s LL operation could legitimately return any valid value, there is

a significant difference between returning the current value vk versus returning an

older valid value from v, v1, . . . , vk−1: assuming that no successful SC operation

takes effect between p’s LL and p’s subsequent SC, the specification of LL/SC

operations requires p’s subsequent SC to succeed in the former case and fail in

the latter case. Thus, p’s LL procedure, besides returning a valid value, has the

additional obligation of ensuring the success or failure of p’s subsequent SC (or

VL) based on whether or not its return value is current.

In our algorithm, the SC procedure includes exactly one SC operation on the

variable X (Line 11) and the procedure succeeds if and only if the operation suc-

36

ceeds. Therefore, we can restate the two obligations on p’s LL procedure as fol-

lows: (O1) it must return a valid value u, and (O2) if no successful SC is per-

formed after p’s LL, p’s subsequent SC (or VL) on X must succeed if and only if

the return value u is current.

4.3.2 How the algorithm works

Algorithm 4.2 is based on two key ideas: (A1) the current value of O is held in X,

and (A2) whenever a process p performs LL on O and obtains a value v, it writes

v in lastValp unless p is certain that its subsequent SC on O will fail. With

this in mind, consider the procedure LL(p,O) that p executes to perform an LL

operation on O. First, p tries to obtain O’s current value by performing a WLL

on X (Line 1). There are two possibilities: either WLL returns the current value

v in X, or it fails, returning the id v of a process that performed a successful SC

during the WLL. In the first case, p writes v in lastVal p (to ensure A2) and

then returns v (Lines 3 and 4). In the second case, let t be the instant during p’s

WLL when process v performs a successful SC, and v ′ be O’s value immediately

prior to t (that is, just before v’s successful SC). Then, v ′ is a valid value for p’s

LL procedure to return. Furthermore, by A2, lastValv contains v′ at time t .

So, when p reads lastValv and obtains val (Line 5), it knows that val must be

either v′ or some later value of O. This means that val is a valid value for p’s LL

procedure to return. However, p cannot return val because its subsequent SC is

sure to fail (due to the failure of WLL in Line 1) and, therefore, p must ensure

that val is not the latest value of O. So, p performs another WLL (Line 6). If this

WLL succeeds and returns v, then as before p writes v in lastVal p and returns

v (Lines 8 and 9). Otherwise, p knows that some successful SC occurred during

37

its execution of WLL in Line 6. At this point, p is certain that val is no longer the

latest value of O. Furthermore, p knows that its subsequent SC will fail (due to

the failure of WLL in Line 6). Thus, returning val fulfills both Obligations O1 and

O2, justifying Line 10.

The VL operation by p is simple to implement: p returns true if and only if

the VL on X returns true (Line 12).

Based on the above discussion, we have the following theorem. Its proof is

given in Appendix A.1.2.

Theorem 2 Algorithm 4.2 is wait-free and implements a linearizable 64-bit LL/SC

object from a single 64-bit WLL/SC object and one additional 64-bit register per

process. The time complexity of LL, SC, and VL is O(1).

4.4 Implementing 64-bit WLL/SC from (1-bit, pid)-LL/SC

A (1-bit, pid)-LL/SC object is the same as a 1-bit LL/SC object except that its LL

operation, which we call BitPid LL, returns not only the 1-bit value written by the

latest successful SC, but also the name of the process that performed that SC. Al-

gorithm 4.3 implements a 64-bit WLL/SC object from a (1-bit, pid)-LL/SC object

and 64-bit registers. This algorithm is nearly identical to Anderson and Moir’s

algorithm [AM95a] that implements a multi-word WLL/SC object from a word-

sized CAS object and atomic registers. In the following, we describe the intuition

underlying the algorithm.

38

Types
valuetype = 64-bit number
returntype = record flag: boolean; (val: valuetype or val: 0 . . N − 1) end

Shared variables
X: {0, 1} (X supports BitPid read, BitPid LL, SC and VL operations)
For each p ∈ {0, . . . , N − 1}, we have two single-writer, multi-reader registers:

valp0, valp1 : valuetype
Local persistent variables at each p ∈ {0, . . . , N − 1}

index p : {0, 1}

Initialization
X = 1 (written by process 0)
val01 = vinit , the desired initial value of O
index0 = 0
For each p ∈ {1, . . . , N − 1}: index p = 1

procedure WLL(p,O) returns returntype procedure SC(p,O, v) returns boolean
1: (b, q) = BitPid LL(p,X) 6: valpindex p = v

2: v = valqb 7: if ¬SC(p,X, index p) return false
3: if VL(p,X) return (success, v) 8: index p = 1 − index p
4: (b, q) = BitPid read(p,X) 9: return true
5: return (failure, q)

procedure VL(p,O) returns boolean
10: return VL(p,X)

Algorithm 4.3: Implementation of the 64-bit WLL/SC object O using a (1-
bit, pid)-LL/SC object and 64-bit registers, based on Anderson and Moir’s algo-
rithm [AM95a]

4.4.1 How the algorithm works

Let O denote the 64-bit WLL/SC object implemented by the algorithm. Our im-

plementation uses two registers per process p—val p0 and valp1—which only p

may write into, but any process may read. One of the two registers holds the value

written into O by p’s latest successful SC; the other register is available for use in

p’s next SC operation (p’s local variable index p stores the index of the available

register). Thus, over the N processes, there are a total of 2N val registers. Exactly

which one of these contains the current value of O (i.e., the value written by the

latest successful SC) is revealed by the (1-bit, pid)-LL/SC object X. Specifically, if

39

(b, q) is the value of X, then the algorithm ensures that valqb contains the current

value of O.

We now explain how process p performs an SC(v) operation on O. First, p

writes the value v into its available register (Line 6). Next, p tries to make its SC

operation take effect by “pointing” X to this location (Line 7). If this effort fails,

it means that some process performed a successful SC since p’s latest WLL. In

this case, p terminates its SC operation returning false (Line 7). Otherwise, p’s

SC operation has succeeded. So, val pindex p now holds the value written by p’s

latest successful SC. Therefore, to remain faithful to the representation described

above, the index of the register available for p’s next SC operation is updated to be

1− index p (Line 8). Finally, p returns true to reflect the success of its SC operation

(Line 9).

We now turn to the procedure WLL(p,O) that describes how process p per-

forms a WLL operation on O. First, p performs an BitPid LL operation on X to

obtain a value (b, q) (Line 1). By our representation, at the instant when p per-

forms Line 1, valqb holds the current value v of O. So, in an attempt to learn the

value v, p reads valqb (Line 2). Then, it validates X. If the validate succeeds, p

is certain that the value read in Line 2 is indeed v and so it returns v and signals

success (Line 3). Otherwise, some process must have performed a successful SC

after p had executed Line 1. Then, by the definition of WLL, p is not obligated

to return a value; instead, it can signal failure and return the id of a process that

performed a successful SC during p’s WLL. Such an id can be obtained simply by

reading X. So, p reads X and returns the id obtained, also signaling failure (Lines 4

and 5).

Based on the above discussion, we have the following theorem. Its proof is

40

given in Appendix A.1.3.

Theorem 3 Algorithm 4.3 is wait-free and implements a 64-bit WLL/SC object

from a single (1-bit, pid)-LL/SC object and an additional three 64-bit registers per

process. The time complexity of LL, SC, and VL is O(1).

4.5 Implementing (1-bit, pid)-LL/SC from 64-bit CAS

Algorithm 4.4 implements a (1-bit, pid)-LL/SC object from 64-bit CAS objects and

registers. This algorithm uses a procedure called select. As we will explain, the

algorithm works correctly provided that select satisfies a certain property. This

algorithm is inspired by, and is nearly identical to, Anderson and Moir’s algorithm

in Figure 1 of [AM95b]. The implementation of select, however, is novel and

is crucial to obtaining constant space overhead per process.

Below we provide an intuitive description of how the algorithm works. Later

we present two different implementations of the select procedure that offer dif-

ferent tradeoffs.

4.5.1 How the algorithm works

Let O denote the (1-bit, pid)-LL/SC object implemented by the algorithm. The

variables used in the implementation are described as follows.

• The variable X supports read and CAS operations, and contains a value of the

form (seq, pid, val), where seq is a sequence number, pid is a process id,

and val is a 1-bit value. The first two entries (sequence number and process

id) constitute the tag, and the last two entries (process id and 1-bit value)

constitute the value of O.

41

Types
seqnumtype = (63 − log N)-bit number
rettype = record val: {0, 1}; pid: 0 . . N − 1 end
entrytype = record seq: seqnumtype; pid: 0 . . N − 1; val: {0, 1} end

Shared variables
X: entrytype (X supports read and CAS operations)
A: array 0 . . N − 1 of entrytype

Local persistent variables at each p ∈ {0, . . . , N − 1}

oldp , chk p: entrytype
seqp: seqnumtype

Initialization
X = (−1, pinit , vinit), where (pinit , vinit) is the desired initial value of O
For each p ∈ {0, . . . , N − 1}:

Ap = (0, −1, 0)

seqp = 0

procedure BitPid LL(p,O) returns rettype procedure SC(p,O, v) returns boolean
1: oldp = X 5: if (oldp 6= chk p) return false
2: Ap = (oldp.seq, oldp.pid, 0) 6: if ¬CAS(X,oldp,(seqp ,p,v)) return false
3: chk p = X 7: seqp = select(p)

4: return (oldp.val, oldp.pid) 8: return true

procedure VL(p,O) returns boolean procedure BitPid read(p,O) returns rettype
9: return (oldp = chk p = X) 10: tmp = X

11: return (tmp.val, tmp.pid)

Algorithm 4.4: A bounded implementation of the 1-bit “pid” LL/SC object using
a 64-bit CAS object and 64-bit registers, based on Anderson and Moir’s algorithm
[AM95b]

• The variable A is an array with one entry per process. A process p announces

in Ap the tag that it reads from X in its latest BitPid LL operation. This array

is used by the select procedure, and it is crucial for ensuring Property 1

stated below.

• The variable seqp is process p’s local variable. It holds the value of the next

sequence number that p can use in a tag.

42

We now explain the procedure BitPid LL(p,O) that describes how process

p performs a BitPid LL operation on O. First, p reads X to obtain the current tag

and value (Line 1). Next, p announces this tag in the array A (Line 2). Then, p

reads X again (Line 3). There are two cases, based on whether the return values of

the two reads are the same or not. If they are not the same, we linearize BitPid LL

at the instant when p performs the first read, and let p return that value at Line 4.

In this case, since the value of O has changed after p’s LL operation, we must

ensure that p’s subsequent SC operation will fail. This condition is indeed ensured

by Line 5 of the algorithm. In the other case where the reads on Lines 1 and 3

return the same value, we linearize BitPid LL at the instant when p performs the

second read and let the LL operation return that value (at Line 4).

The implementation of the SC operation assumes that the select procedure

satisfies the following property:

Property 1 Let OP and OP′ be any two consecutive BitPid LL operations by some

process p. If p reads (s, q, v) from X in both Lines 1 and 3 of OP, then process q

does not write (s, q, ∗) into X after p executes Line 3 of OP and before it invokes

OP′.

We now describe how a process p performs an SC operation on O. In the fol-

lowing, let OP denote p’s latest execution of the BitPid LL operation on O. First,

p compares the two values that it read from X during OP (Line 5). If these values

are different then, as already explained, p’s SC operation must fail, and Line 5

ensures this outcome. To understand Line 6, observe that by Property 1 the value

of X is still old p if and only if no process wrote into X after the point where p’s

latest BitPid LL operation took effect (at Line 3 of OP). It follows that p’s current

43

SC operation should succeed if and only if the CAS on Line 6 succeeds. Accord-

ingly, if the CAS fails, p terminates the SC operation returning false (Line 6). On

the other hand, if the CAS succeeds, p obtains a new sequence number to be used

in p’s next SC operation (Line 7), and completes the SC operation returning true

(Line 8).

The implementation of the VL operation (Line 9) has the same justification

as the SC operation. Finally, the implementation of the BitPid read operation

(Lines 10 and 11) is immediate from our representation.

Based on the above discussion, we have the following theorem. Its proof is

given in Appendix A.1.4.

Theorem 4 Algorithm 4.4 is wait-free and, if the select procedure satisfies

Property 1, implements a linearizable (1-bit, pid)-LL/SC object from 64-bit CAS

objects and 64-bit registers. If τ is the time complexity of select, then the time

complexity of BitPid LL, SC, VL, and BitPid read operations are O(1), O(1) + τ ,

O(1), and O(1), respectively. If s is the per-process space overhead of select,

then the per-process space overhead of the algorithm is 4 + s.

4.5.2 Why X is read twice

To execute a BitPid LL operation, notice that a process p reads X, announces the

tag obtained in Ap, and reads X once more (Lines 1–3). As we will see in the

next section, this double reading of X, with the tag announced between the reads,

is crucial to our ability to implement the select procedure. To see why, suppose

that p reads the same tag t at Lines 1 and 3. When subsequently executing an SC

operation, p determines the success or failure of its SC based on whether the tag

44

in X is still t or not. Clearly, such a strategy goes wrong if X has been modified

several times (between p’s LL and SC) and the tag t has simply reappeared in X

because of reuse of that tag. Fortunately, this undesirable scenario is preventable

because p publishes the tag t in Ap (at Line 2) even before it reads that tag at

Line 3, where p’s LL operation takes effect. So, we can prevent the undesirable

scenario by requiring processes not to reuse the tags published in the array A (this

requirement will be enforced by the implementation of select).

4.5.3 An implementation of select

In this section, we design an algorithm that implements the select procedure.

This design is challenging because it must guarantee several properties: the select

procedure must satisfy Property 1, be wait-free, and have constant time complexity

and constant per-process space overhead. Algorithm 4.5, presented in this section,

guarantees all of these properties, but only works for at most 215 = 32,768 pro-

cesses. A more complex algorithm, presented in the next section, can handle a

maximum of 219 = 524,288 processes. To explain our algorithms, we introduce

the notion of a sequence number being safe for a process.

Let s be a sequence number, q be a process, and t be a point in time. We say s

is safe for q at time t if the following statement holds for every possible execution

E from time t : the first writing into X after t (if any) of a value of the form (s, q, ∗)

does not violate Property 1.

A sequence number s is unsafe for q at time t if s is not safe for q at t . Notice

that if s is safe for q at time t , it remains safe until q writes (s, q, ∗) in X for the

first time after t . An interval is safe for q at time t if every sequence number in the

interval is safe for q at time t .

45

In both of our algorithms, the main idea is as follows. At all times, each process

p maintains a current safe interval of size 1; initially, this interval is 0,1). Each

call to select by p returns a sequence number from p’s current safe interval. By

the time all numbers in p’s current safe interval have been returned (which won’t

happen until p calls select 1 times), p determines a new safe interval of size

1 and makes that interval its current safe interval. Since p’s current safe interval

is not exhausted until p calls select 1 times, our algorithms use an amortized

approach to finding the next safe interval: the work involved in identifying the next

safe interval is distributed evenly over the 1 calls to select. Together with an

appropriate choice of 1, this strategy helps achieve constant time complexity for

select.

The manner in which the next safe interval is determined is different in our two

algorithms. The main idea in the first algorithm is as follows. Let k, k + 1) be

p’s current safe interval. Then, k + 1, k + 21) is the first interval that p tests

for safety. If there is evidence that this interval is not safe, then the next 1-sized

interval, namely, k +21, k +31) is tested for safety. The above steps are repeated

until a safe interval is found. It remains to be explained how p tests whether a

particular interval I is safe. To perform this test, p reads each element α of array

A (recall that an element of A contains both a process id and a sequence number).

If α = (s, p, ∗), then it is possible that some process read (s, p, ∗) at Lines 1

and 3 of its latest BitPid LL operation, thereby making s potentially unsafe for p.

Therefore, in our algorithm, p deems an interval I to be safe if and only if it reads

no element α such that α.pid = p and α.seq ∈ I . To ensure O(1) time complexity

for the select procedure, p reads A in an incremental manner: it reads only one

element of A in each invocation of select.

46

Types
seqnumtype = (63 − log N)-bit number

Local persistent variables at each p ∈ {0, . . . , N − 1}

val p , nextStartp: seqnumtype
procNump: 0 . . N

Constants
1 = (2N + 1)N
K = (2N + 2)1

Initialization
val p = 0
nextStart p = 1

procNump = 0

procedure select(p,O) returns seqnumtype
12: a = AprocNump
13: if ((a.pid = p) ∧ (a.seq ∈ nextStart p, nextStart p ⊕K 1)))

14: nextStart p = nextStartp ⊕K 1

15: procNump = 0
16: else procNump = procNump + 1
17: if (procNump < N)

18: val p = val p ⊕K 1
19: else val p = nextStartp
20: nextStart p = nextStartp ⊕K 1

21: procNump = 0
22: return val p

Algorithm 4.5: A simple selection algorithm

In the following, we explain how the above high level ideas are implemented

in our algorithm and why these ideas work.

How the algorithm works

Algorithm 4.5 implements the select procedure. Let TestInt p denote the interval

that p is currently testing for safety. The algorithm uses three persistent local

variables, described as follows:

• valp is the sequence number from p’s current safe interval that was returned

by p’s most recent invocation of select.

47

• nextStart p is the start of the interval TestInt p. Thus, TestInt p is the interval

nextStart p, nextStart p + 1).

• procNump indicates how far the test of safety of TestInt p has progressed.

Specifically, if procNum p = k, it means that the array entries belonging to

processes 0, 1, . . . , k − 1 (namely, A0,A1, . . . ,Ak − 1) have not presented

any evidence that TestInt p is unsafe.

The ⊕K operator at Lines 18 and 20 denotes addition modulo K . The value for

K is chosen to be large enough to ensure that all the intervals that p tests for safety

(before it finds the next safe interval) are disjoint (i.e., no wraparound occurs).

Given the above definitions, the algorithm works as follows. First, p reads the

next element a of the array A (Line 12). If the process id in a is p and the sequence

number in a belongs to the interval TestInt p, then the interval is potentially unsafe.

Therefore, if the condition at Line 13 holds, p abandons the interval TestInt p as

unsafe. At this point, the 1-sized interval immediately following TestInt p becomes

the new interval to be tested for safety. To this end, p updates nextStart p to the

beginning of this interval (Line 14) and resets procNum p to 0 (Line 15). On the

other hand, if the condition on Line 13 does not hold, it means that AprocNum p

(namely, a) presents no evidence that TestInt p is unsafe. To reflect this fact, p

increments procNump (Line 16).

At Line 17, if procNum p is N , it follows from the meaning of procNum p that p

read the entire array A and found no evidence that the interval TestInt p is unsafe. In

this case, p performs the following actions. It switches to TestInt p as its current safe

interval and lets select return the first sequence number in this interval (Lines 19

and 22). The 1-sized interval immediately following this new current safe interval

48

becomes the new interval to be tested for safety. To this end, p updates nextStart p

to the beginning of this interval (Line 20) and resets procNum p to 0 (Line 21).

At Line 17, if procNum p is not yet N , p is not sure yet that TestInt p is a safe

interval. Therefore, it keeps the current safe interval as it is and simply returns the

next value from that interval (Lines 18 and 22).

Notice that after p adopts an interval I to be its current safe interval at some

time t , p’s calls to select return successive sequence numbers starting from the

first number in I . Therefore, if p makes at most k ≤ 1 calls to select before

adopting a new interval I ′ as its current safe interval, then all numbers returned

(by the k calls to select) are from I and no number is returned more than once.

Since I was safe for p at time t , it follows that the numbers returned by the k calls

to select do not lead to a violation of Property 1. By the above discussion, the

correctness of the algorithm rests on the following two claims:

• After a process p adopts an interval I to be its current safe interval, p makes

at most 1 calls to select before adopting a new interval I ′ as its current

safe interval.

• At the time that p adopts I ′ to be its current safe interval, I ′ is indeed safe

for p.

The above claims are justified in the next two subsections.

A new interval is identified quickly

Suppose that at time t a process p adopts an interval I to be its current safe interval.

Let t ′ > t be the earliest time when p adopts a new interval I ′ as its current safe

interval. Then, we claim:

49

Claim A: During the time interval t, t ′), process p makes at most 1 calls to

select (which return distinct sequence numbers from the interval I). Further-

more, I and I ′ are disjoint.

To prove the claim, we make a crucial subclaim which states that, when a

process p searches for a next safe interval, no process q can cause p to abandon

more than two intervals as unsafe.

Subclaim: If I1, I2, . . . , Im are the successive intervals that p tests for safety

during t, t ′), then at most two of I1, I2, . . . , Im are abandoned by p as unsafe on

the basis of the values read in Aq, for any q.

First we argue that the subclaim implies the claim. By the subclaim, during

t, t ′), p abandons at most 2N intervals as unsafe. Notice that, in the worst case, p

invokes select N times before abandoning any interval as unsafe (the worst case

arises if none of A0,A1, . . . ,AN −2 provides any evidence of unsafety, and AN −1

does). It follows from the above two facts that, during t, t ′), p invokes select at

most 2N · N times before it begins testing an interval that is sure to pass the test.

Since the testing of this final interval occurs over N calls to select, it follows

that, during t, t ′), p invokes select at most 2N 2 + N = (2N +1)N times before

it identifies the next safe interval I ′. Since we fixed 1 to be (2N + 1)N , we have

the first part of the claim.

For the second part, notice that (1) by the subclaim, p abandons at most 2N

intervals as unsafe, and so m ≤ 2N , and (2) I ′ is the interval that p tests for safety

after abandoning Im as unsafe. Furthermore, by the algorithm, each interval in

I, I1, I2, . . . Im, I ′ is of size 1 and begins immediately after the previous one ends.

Since we fixed K to be (2N +2)1 and since we perform the arithmetic modulo K ,

it follows that all of I, I1, I2, . . . Im, I ′ are disjoint intervals. Hence, we have the

50

second part of the claim.

Next, we prove the subclaim. By the algorithm, the testing of I1 for safety

begins only after p writes the first sequence number from I in the variable X. Let

τ ∈ t, t ′) be the time when this writing happens. For a contradiction, suppose that

the subclaim is false and τ ′ is the earliest time when the subclaim is violated. More

precisely, let τ ′ be the earliest time in t, t ′) such that, for some q ∈ {0, 1, . . . , N −

1}, p abandons three intervals as unsafe on the basis of the values that it read in

Aq. Let I j , Ik , and Il denote these three intervals, and let s j ∈ I j , sk ∈ Ik , and

sl ∈ Il be the sequence numbers that p read in Aq which caused p to abandon the

three intervals. We make a number of observations:

(O1). In the time interval t, τ ′, p abandons at most 2N + 1 intervals as unsafe.

Proof : This observation is immediate from the definition of τ ′.

(O2). In the time interval t, τ ′, p calls select at most (2N + 1)N times.

Proof : This observation follows from Observation O1 and an earlier observa-

tion that, in the worst case, p invokes select N times before abandoning

any interval as unsafe.

(O3). In the time interval t, τ ′, all of p’s calls to select return distinct sequence

numbers from I .

Proof : Notice that after p adopts I as its current safe interval at time t , p’s

calls to select return successive sequence numbers starting from the first

number in I . Since, by Observation O2, p makes at most 1 = (2N + 1)N

calls to select during t, τ ′), all numbers returned by these calls are distinct

numbers from I .

51

(O4). In the time interval τ, τ ′, if X contains a value of the form (s, p, ∗), then

s ∈ I .

Proof : By definition of τ , p writes in X at time τ a value of the form (s, p, ∗),

where s ∈ I . By Observation O3, all values that p subsequently writes in X

during τ, τ ′ are from I . Hence, we have the observation.

(O5). The intervals I , I j , Ik and Il are all disjoint (and, therefore, s j , sk and sl are

distinct and are not in I).

Proof : Recall that I1, I2, . . . Il are the intervals that p abandons during t, τ ′)

as unsafe. By Observation O1, l ≤ 2N + 1. Furthermore, by the algorithm,

each of the intervals I, I1, I2, . . . Il is of size 1 and begins immediately after

the previous one ends. Since K = (2N + 2)1 and since we perform the

arithmetic modulo K , it follows that all of I, I1, I2, . . . Il are disjoint intervals.

Then, the observation follows from the fact that I , I j , Ik , and Il are members

of {I, I1, I2, . . . Il}.

(O6). Recall that p abandons the interval Il at time τ ′ because it reads at τ ′ the

value (sl, p, ∗) in Aq, where sl ∈ Il . Let σ ′ be the latest time before τ ′ when

q writes (sl, p, ∗) in Aq (at Line 2). By the algorithm, this writing must be

preceded by q’s reading of the value (sl, p, ∗) from the variable X (Line 1).

Let σ be the latest time before σ ′ when q reads (sl, p, ∗) from X. Then, we

claim that τ < σ < τ ′.

Proof : By definition of s j , sk and sl , we know that p reads from Aq the values

(s j , p, ∗), (sk, p, ∗) and (sl, p, ∗) (in that order) in the time interval τ, τ ′. It

follows that q’s writing of (sk, p, ∗) and (sl, p, ∗) in Aq occur (in that order) in

52

the time interval τ, τ ′. Since q’s reading of (sl, p, ∗) in X must occur between

the above two writes, it follows that the time σ at which this reading occurs

lies in the time interval τ, τ ′.

By Observation O6, q reads (sl, p, ∗) from X during τ, τ ′. Therefore, by Ob-

servation O4, we have sl ∈ I . This conclusion contradicts Observation O5, which

states that sl 6∈ I . Hence, we have the subclaim.

The new interval is safe

In this section, we argue that the rule by which the algorithm determines the safety

of an interval works correctly. More precisely, let t be the time when process p

adopts an interval I to be its current safe interval, and t ′ be the earliest time after

t when p switches its current safe interval from I to a new interval I ′. Then, we

claim:

Claim B: The interval I ′ is safe for process p at time t ′.

Suppose that the claim is false and I ′ is not safe for p at time t ′. Then, by the

definition of safety, there exists a sequence number s ′ ∈ I ′, a process q, and a time

η such that the following scenario, which violates Property 1, is possible:

• η is the first time after t ′ when p writes (s ′, p, ∗) in the variable X (at Line 6

of Algorithm 4.4).

• q’s BitPid LL operation, which is the latest with respect to time η, completes

Line 3 before η, and at both Lines 1 and 3 this operation reads from X a

value of the form (s ′, p, ∗). In the following, let OP denote this BitPid LL

operation by q.

53

By the algorithm, the testing of I ′ for safety begins only after p writes the first

sequence number s from I in the variable X. Let τ ∈ t, t ′) be the time when this

writing happens. We make a few simple observations: (1) at time τ , the sequence

number in X is not s ′ (because X has the sequence number s ∈ I at τ , s ′ ∈ I ′

and, by Claim A of the previous subsection, the intervals I and I ′ are disjoint), (2)

during the time interval τ, t ′), any sequence number that p writes in X is from I

(by Claim A) and, hence, is different from s ′, and (3) during the time interval t ′, η),

any sequence number that p writes in X is different from s ′ (by the definition of

η). From the above observations, the value of X is not of the form (s ′, p, ∗) at any

point during τ, η). Therefore, q must have executed Line 3 of OP before τ . So, q’s

execution of Line 2 of OP is also before τ . Since q read the same value (s ′, p, ∗)

at both Lines 1 and 3 of OP, it follows that q writes (s ′, p, ∗) in Aq at Line 2 of

OP. This value remains in Aq at least until η because OP is q’s latest BitPid LL

operation with respect to η. Therefore, Aq holds the value (s ′, p, ∗) all through the

time τ, t ′) when p tests different intervals for safety. In particular, when p tests I ′

for safety, it would find (s ′, p, ∗) in Aq and, since s ′ ∈ I ′, it would abandon I ′ as

unsafe. This contradicts the fact that p switches its current safe interval from I to

I ′.

Based on the above discussion, we have the following lemma. Its proof is given

in Appendix A.1.5.

Lemma 1 Algorithm 4.5 satisfies Property 1. The time complexity of the imple-

mentation is O(1), and the per-process space overhead is 3.

54

A remark about sequence numbers

In our algorithm, the operation ⊕K is performed modulo K = (2N + 2)1. Hence,

the space of all sequence numbers must be at least K . Since we store a sequence

number, a process id, and a 1-bit value in the same memory word X, the number

of bits we have available for a sequence number is 63 − lg N . Hence, K can be at

most 263−lg N = 263/N . Since K = (2N + 2)1 and 1 = (2N + 1)N , the above

constraint translates into (2N + 2)(2N + 1)N 2 ≤ 263. It is easy to verify that for

N ≤ 215 = 32,768 this inequality holds. Our algorithm is therefore correct if the

number of processes that execute it is not more than 32,768. We believe that this

restriction is not of practical concern. Furthermore, our second selection algorithm

in Section 4.5.4 relaxes this restriction to N ≤ 219 = 524,288, at the expense of

performing one additional CAS per select operation.

4.5.4 An alternative selection algorithm

In this section, we present an algorithm that supports a larger number of processes

than our previous selection algorithm. More specifically, the new algorithm can

handle a maximum of 219 = 524,288 processes, whereas the previous algorithm

works for a maximum of 215 = 32,768 processes.

The main idea of the algorithm is the same as in the first algorithm: at all times,

each process p maintains a current safe interval of size 1. Each call to select

by p returns a sequence number from p’s current safe interval. By the time all

numbers in p’s current safe interval are returned (which won’t happen until p calls

select 1 times), p determines a new safe interval of size 1 and makes that

interval its current safe interval.

55

The way the next safe interval is located is different from the first algorithm. In

the first algorithm, process p searched for the next safe interval in a linear fashion:

first, p tested whether the interval right next to the current safe interval was safe;

if there was evidence that this interval was not safe, p selected the next 1-sized

interval to test for safety, and repeated this process until a safe interval was found.

In the new algorithm, process p employs a more efficient strategy, based on binary

search, for locating the next safe interval.

Our algorithm consists of two stages—the marking stage, and the search stage.

During the marking stage, process p reads each entry Ak of the array A. If Ak =

(s, p, ∗), then it is possible that some process read (s, p, ∗) at Lines 1 and 3 of

its latest BitPid LL operation, thereby making s potentially unsafe for p. In this

case, p puts a mark on Ak to indicate that it contains a sequence number that is

potentially unsafe for p. If, on the other hand, Ak is not of the form (∗, p, ∗), then

p leaves Ak unchanged.

After the marking stage completes, p initializes a local variable named I p to

some large interval of size (N + 1)1, and begins the search stage. The search

stage consists of many iterations or passes, each of which takes place over many

invocations of select. In each pass, the interval I p is halved. Ultimately, after

all the passes, I p is reduced to a size of 1. At that point, p regards the interval I p

safe, and starts using it as its current safe interval. Below we explain this stage in

more detail.

Let C = k, k+1) be p’s current safe interval, and let I p = k+1, k+(N+2)1)

be the interval immediately after C . The search stage consists of a sequence of

lg (N + 1) passes, where each pass involves exactly N consecutive invocations of

select by p. Each pass consists of two phases:

56

• Counting phase: p goes through all the marked entries in the array A, and

counts how many sequence numbers fall within the first half of I p, and how

many fall within the second half of I p.

• Halving step: p discards the half of I p with a higher count, and sets I p to be

the remaining half.

In the following, we assume that N + 1 is a power of two.1 Then, since after

each pass the size of I p halves, at the end of all lg (N + 1) passes the size of I p

becomes 1. Further, p regards this interval as safe, and starts using it as its current

safe interval.

We now intuitively explain why the above method yields a safe interval. First,

observe that the number of marked entries in A that contain a sequence number

from Ip halves after each pass (since we discard the half of I p with a higher count).

Next, observe that initially there are at most N marked entries (since the size of

A is N). By the above two observations, it follows that after lg(N + 1) passes,

no marked entry in A contains a sequence number in I p. Hence, at the end of

lg(N + 1) passes, I p is indeed safe for p.

In the following, we explain how the above high level ideas are implemented

in our algorithm and why these ideas work.

How the algorithm works

Algorithm 4.6 implements the select procedure. The algorithm uses four per-

sistent local variables, described as follows:
1If N + 1 is not a power of two, then let N ′ + 1 be the smallest power of two that is greater than

N + 1, and imagine processes N, N + 1, . . . , N ′ − 1 to be dummy processes. Since N ′ ≤ 2N , the
asymptotic time and space complexities are unaffected by this change. Thus, the assumption that
N + 1 is a power of two is introduced only for convenience, and is not really needed.

57

Types
seqnumtype = (63 − log N)-bit number
intervaltype = record star t , end: seqnumtype end

Local persistent variables at each p ∈ {0, . . . , N − 1}

Ip : intervaltype; val p : seqnumtype
passNump: 0 . . lg (N + 1); procNump: 0 . . N − 1

Constants
1 = N(lg (N + 1) + 1); K = (N + 2)1

Initialization
passNump = 0; val p = 0; procNump = 0; Ip = 1, (N + 2)1)

procedure select(p) returns seqnumtype
12: if (passNump = 0)

13: a = AprocNump
14: if (a.pid = p) CAS(AprocNump, a, (a.seq, a.pid, 1))

15: if (procNump < N − 1)

16: procNump++
17: else procNump = 0
18: passNump++
19: val p = val p ⊕K 1
20: else a = AprocNump
21: if ((a.pid = p) ∧ (a.val = 1) ∧ (a.seq ∈ Ip))

22: Increase the counter of the half of Ip that contains a.seq;
23: if (procNump < N − 1)

24: procNump++
25: val p = val p ⊕K 1
26: else Set Ip to be the half of Ip with a smaller counter; Reset counters;
27: procNump = 0
28: if (passNump < lg (N + 1))

29: val p = val p ⊕K 1
30: passNump++
31: else passNump = 0
32: val p = Ip .star t
33: Ip = Ip .end, Ip .end ⊕K (N + 1)1)

34: return val p

Algorithm 4.6: Another selection algorithm

58

• Ip is the interval which p halves in the search stage of the algorithm.

• valp is a sequence number from p’s current safe interval which was returned

by p’s most recent invocation of select.

• passNump represents the current pass of process p’s algorithm. If we con-

sider the marking stage to be a pass zero, then the passNum p variable takes

on values from the range 0 . . lg (N + 1).

• procNump indicates how far process p’s reading of the entries in A has pro-

gressed. Specifically, if procNum p = k, it means that the array entries be-

longing to processes 0, 1, . . . , k − 1 (namely, A0,A1, . . . ,Ak − 1) have so

far been read.

The algorithm works as follows. First, p reads the variable passNum p to deter-

mine which pass of the algorithm it is currently executing (Line 12). If the value

of passNump is 0, it means that p is still in the marking stage. So, p reads the next

element a of the array A (Line 13). If the process id in a is p, p puts a mark on the

entry in A it just read (Line 14). Otherwise, it leaves the entry unchanged. Next, p

checks whether it has gone through all the entries in A (i.e., whether it has reached

the end of the marking stage) by reading procNum p (Line 15). If not, p simply

increments procNump (Line 16) and returns the next value from the current safe

interval (Lines 19 and 34). Otherwise, p has reached the end of the marking stage,

and so it resets procNum p to 0 (Line 17) and increments the passNum p variable

(Line 18). Finally, p returns the next value from the current safe interval (Lines 19

and 34).

59

On the other hand, if the value of passNum p is not 0, it means that p is in the

search stage. So, p reads the next element a of the array A (Line 20). If the process

id in a is p and a has the mark, then the sequence number in a is potentially

unsafe for p and hence should be counted (Line 21). So, p tests whether the

sequence number in a belongs to the first or the second half of I p, and increments

the appropriate counter (Line 22). Next, p checks whether it has counted all the

entries in A (i.e., whether it has reached the end of the counting phase), by reading

procNum p (Line 23). If not, p simply increments procNum p (Line 24), and returns

the next value from the current safe interval (Lines 25 and 34). On the other hand,

if p has counted all the entries in A, it has all the information it needs to halve the

interval I p appropriately (i.e., to perform the halving step). To this end, p discards

the half of I p with a higher count, and resets the counters (Line 26). Since it has

reached the end of a pass, p also resets procNum p to zero (Line 27). Next, p

reads passNum p to determine whether it has performed all of the lg (N + 1) passes

(Line 28). If it hasn’t, p simply increments passNum p and returns the next value

from the current safe interval (Lines 29, 30, and 34). On the other hand, if p

has reached the end of all the passes, it means that the interval I p should be p’s

next safe interval. So, p selects I p as its current safe interval (Line 32) and resets

variables passNump and Ip to begin searching for the next safe interval (Lines 31

and 33). Finally, p returns the next (i.e., the first) value from its new current safe

interval (Line 34).

Notice that, similar to our first selection algorithm, the correctness of the above

algorithm depends on the following two claims:

• After a process p adopts an interval I to be its current safe interval, p makes

60

at most 1 calls to select before adopting a new interval I ′ as its current

safe interval.

• At the time that p adopts I ′ to be its current safe interval, I ′ is of size 1 and

is indeed safe for p.

We justify the above two claims in the next two subsections.

A new interval is identified quickly

Suppose that at time t a process p adopts an interval I to be its current safe interval.

Let t ′ > t be the earliest time when p adopts a new interval I ′ as its current safe

interval. Then, we claim:

Claim C: During the time interval t, t ′), process p makes at most 1 calls to

select (which return distinct sequence numbers from the interval I). Further-

more, I and I ′ are disjoint.

The first part of the claim trivially holds since (1) during t, t ′), p executes

exactly lg (N + 1) + 1 passes, and (2) in each pass p makes exactly N calls to

select. Hence, during the time interval t, t ′), process p makes exactly N(lg (N + 1)+

1) = 1 calls to select.

For the second part, notice that soon after t , p initializes I p to be the interval

I ′′, where I ′′ is the interval of size (N + 1)1 immediately after I . Furthermore,

notice that I ′ is the subinterval of I ′′. Since K = (N + 2)1 and since we perform

the arithmetic modulo K , it follows that the intervals I and I ′′ are disjoint, and so

the intervals I and I ′ are disjoint as well. Hence, we have the second part of the

claim.

61

The new interval is safe

In this section, we argue that (1) the interval I ′ is of size 1, and (2) the rule by

which the algorithm determines the safety of an interval works correctly. More

precisely, let t be the time when process p adopts an interval I to be its current

safe interval and t ′ be the earliest time after t when p switches its current safe

interval from I to a new interval I ′. Then, we claim:

Claim D: The interval I ′ is of size 1, and is safe for process p at time t ′.

To prove this claim, we make a crucial subclaim which states that, at time t ′,

there are no marked entries in A holding a sequence number from the interval I ′.

Subclaim: The interval I ′ is of size 1, and at time t ′, no entry in A is of the

form (s, p, 1), where s ∈ I ′.

We first argue that the above subclaim implies the claim. Suppose that the

claim is false and I ′ is not safe for p at time t ′. Then, by the definition of safety,

there exists a sequence number s ′ ∈ I ′, a process q, and a time η such that the

following scenario, which violates Property 1, is possible:

• η is the first time after t ′ when p writes (s ′, p, ∗) in the variable X (at Line 6

of Algorithm 4.4).

• q’s BitPid LL operation, which is the latest with respect to time η, completes

Line 3 before η, and at both Lines 1 and 3 this operation reads from X a

value of the form (s ′, p, ∗). In the following, let OP denote this BitPid LL

operation by q.

By the algorithm, the testing of I ′ for safety begins only after p writes the

first sequence number s from I in the variable X. Let τ ∈ t, t ′) be the time when

62

this writing happens. Then, if we use the same argument we used in the proof of

Claim B, we conclude that (1) q does not write into Aq during the time interval

τ, t ′, and (2) the latest value that q writes into Aq prior to time τ is (s ′, p, ∗).

Furthermore, as long as the value in Aq stays of the form (∗, p, ∗), no other process

will attempt to put their mark on Aq. By the above observations, we conclude that

at some time τ ′ ∈ τ, t ′ during p’s 0th pass, p succeeds in putting its mark on Aq.

Hence, at all times during τ ′, t ′, Aq holds the value (s ′, p, 1). In particular, at time

t ′, Aq holds the value (s ′, p, 1), which contradicts the subclaim. Hence, the claim

holds.

Next we prove the above subclaim. Let t ′′ ∈ t, t ′ be the time when p completes

its 0th pass. For all k ∈ {0, 1, . . . , lg (N + 1)}, let

• Ik denote the value of the interval I p at the end of p’s kth pass, and

• sk denote the number of marked entries in A that, at the end of the kth pass,

hold a sequence number from Ik . (More specifically, sk is the number of

entries in A that, at the end of the kth pass, hold a value of the form (s, p, 1),

for some s ∈ Ik .)

We make a number of observations:

(O1). The size of the interval Ik is ((N + 1)/2k)1.

Proof (by induction): For the base case (i.e., k = 0), the observation trivially

holds, since at the end of the 0th pass I p is initialized to be of size (N + 1)1.

Hence, the size of I0 is (N +1)1. The induction hypothesis states that the size

of I j is ((N + 1)/2 j)1, for all j ≤ k. We now show that the size of Ik+1 is

((N + 1)/2k+1)1. By the algorithm, Ik+1 is a half of Ik . Moreover, we made

63

an assumption earlier that N + 1 is a power of two. Hence, the size of Ik+1 is

exactly (((N + 1)/2k)/2)1 = ((N + 1)/2k+1)1.

(O2). If an entry Aq holds the value (s, p, 1) at any time η ′ ∈ t ′′, t ′, then Aq holds

the value (s, p, 1) at all times during t ′′, η′.

Proof: Suppose not. Then, at some time η′′ ∈ t ′′, η′, Aq does not hold the

value (s, p, 1). Therefore, at some point during η ′′, η′, the value (s, p, 1) is

written into Aq. Since by the time η′′ process p is already done marking all

the entries in A, some process other than p must have written (s, p, 1) into Aq,

which is impossible. Hence, the observation holds.

(O3). The value of sk is at most (N + 1)/2k − 1.

Proof (by induction): For the base case (i.e., k = 0), the observation trivially

holds, since A can hold at most N = (N + 1) − 1 entries. Hence, the value

of s0 is at most N . The induction hypothesis states that the value of s j is

at most (N + 1)/2 j − 1, for all j ≤ k. We now show that the value of

sk+1 is at most (N + 1)/2k+1 − 1. Since sk is the number of entries in A

that, at the end of the kth pass, hold a sequence number from Ik , it follows

by Observation O2 that p can count at most sk sequence numbers during the

(k + 1)st pass. Moreover, since Ik+1 is a half of Ik with a smaller count, it

follows that at most bsk/2c of the counted sequence numbers fall within Ik+1.

Hence, by Observation O2, at the end of the (k + 1)st pass, at most bsk/2c

marked entries in A hold a sequence number from Ik+1. Therefore, we have

sk+1 = bsk/2c = b((N + 1)/2k − 1)/2c. Since N + 1 is a power of two, it

means that sk+1 = (N + 1)/2k+1 − 1. Hence, the observation holds.

64

By the above observations, at the end of the lg (N + 1)st pass, we know that

(1) the size of I ′ is 1 (by Observation O1), and (2) the number of marked entries in

A that hold a sequence number from I ′ is 0 (by Observation O3). Hence, we have

the subclaim.

Based on the above discussion, we have the following lemma. Its proof is given

in the Appendix A.1.6.

Lemma 2 Algorithm 4.6 satisfies Property 1. The time complexity of the imple-

mentation is O(1), and the per-process space overhead is 4.

A remark about sequence numbers

In our algorithm, the operation ⊕K is performed modulo K = (N + 2)1. Hence,

the space of all sequence numbers must be at least K . Since we store a sequence

number, a process id, and a 1-bit value in the same memory word X, the number of

bits we have available for a sequence number is 63−lg N . Hence, K can be at most

263−lg N = 263/N . Since K = (N + 2)1 and 1 = N(lg (N + 1) + 1), the above

constraint translates into (N +2)N 2(lg (N + 1)+1) ≤ 263. It is easy to verify that

for N ≤ 219 = 524,288, this inequality holds. Our algorithm is therefore correct

if the number of processes that execute it is not more than 524,288. This limit is

large enough that it is not of any practical concern.

65

Chapter 5

Multiword LL/SC

All of the algorithms in the previous chapter implement word-sized LL/SC ob-

jects. However, many existing applications [AM95a, CJT98, Jay02, Jay05] need

multiword LL/SC objects, i.e., LL/SC objects whose value does not fit in a single

machine word. In this chapter, we present an algorithm that implements a W -

word LL/SC object from word-sized CAS objects and registers. The algorithm is

designed in two steps:

1. Implement an array of 3N + 1 small LL/SC objects from word-sized CAS

objects and registers.

2. Implement a W -word LL/SC object from an array of 3N + 1 small LL/SC

objects and registers.

The implementation in the first step follows immediately from the following

theorem by Moir [Moi97a]. For the rest of this chapter, therefore, we focus on the

implementation in the second step.

66

Theorem 5 ([Moi97a]) There exists a linearizable N-process wait-free implemen-

tation of an array O0 . . M − 1 of M small LL/SC objects from word-sized CAS

objects and registers. The space complexity of the implementation is O(Nk + M),

and the time complexity of LL, SC, VL, read, and write operations on O is O(1).

Furthermore, the CAS-time-complexity of LL, SC, VL, read, and write operations

on O are 0, 1, 0, 0, and 0, respectively.

5.1 Implementing a W -word LL/SC Object

Algorithm 5.1 implements a W -word LL/SC object O. We now informally de-

scribe how the algorithm works.

5.1.1 The variables used

We begin by describing the variables used in the algorithm. BUF0 . . 3N − 1 is an

array of 3N W -word buffers. Of these, 2N buffers hold the 2N most recent values

of O and the remaining N buffers are “owned” by processes, one buffer by each

process. Process p’s local variable, mybuf p, holds the index of the buffer currently

owned by p. X holds the tag associated with the current value of O and consists

of two fields: the index of the buffer that holds O’s current value and the sequence

number associated with O’s current value. The sequence number increases by 1

(modulo 2N) with each successful SC on O. The buffer holding O’s current value

is not reused until 2N more successful SC’s are performed. Thus, at any point,

the 2N most recent values of O are available and may be accessed as follows. If

the current sequence number is k, the sequence numbers of the 2N most recent

successful SC’s (in the order of their recentness) are k, k −1, . . . , 0, 2N −1, 2N −

67

Types
valuetype = array 0 . . W − 1 of 64-bit word
xtype = record buf: 0 . . 3N − 1; seq: 0 . . 2N − 1 end
helptype = record helpme: {0, 1}; buf: 0 . . 3N − 1 end

Shared variables
X: xtype; Bank: array 0 . . 2N − 1 of 0 . . 3N − 1
Help: array 0 . . N − 1 of helptype; BUF: array 0 . . 3N − 1 of valuetype

Local persistent variables at each p ∈ {0, 1, . . . , N − 1}

mybufp: 0 . . 3N − 1; x p: xtype
Initialization

X = (0, 0); BUF0 = the initial value of O; Bankk = k, for all k ∈ {0, 1, . . . , 2N − 1};
mybufp = 2N + p, for all p ∈ {0, 1, . . . , N − 1};
Helpp = (0, ∗), for all p ∈ {0, 1, . . . , N − 1}

procedure LL(p,O, retval) procedure SC(p,O, v) returns boolean
1: Helpp = (1, mybufp) 12: if (LL(Bankx p.seq) 6= x p.buf) ∧ VL(X)

2: x p = LL(X) 13: SC(Bankx p.seq, x p.buf)
3: copy BUFx p .buf into ∗retval 14: if (LL(Helpx p.seq mod N) ≡ (1, d)) ∧ VL(X)

4: if LL(Helpp) ≡ (0, b) 15: if SC(Helpx p.seq mod N, (0, mybufp))

5: x p = LL(X) 16: mybufp = d
6: copy BUFx p.buf into ∗retval 17: copy ∗v into BUFmybufp
7: if ¬VL(X) copy BUFb into ∗retval 18: e = Bank(x p.seq + 1) mod 2N
8: if LL(Helpp) ≡ (1, c) 19: if SC(X, (mybufp, (x p.seq + 1) mod 2N))

9: SC(Helpp, (0, c)) 20: mybufp = e
10: mybufp = Helpp.buf 21: return true
11: copy ∗retval into BUFmybufp 22: return false

procedure VL(p,O) returns boolean
23: return VL(X)

Algorithm 5.1: An implementation of the N -process W -word LL/SC object O
using 3N + 1 small LL/SC objects and registers

2, . . . , k +1; and Bank j is the index of the buffer that holds the value written to O

by the most recent successful SC with sequence number j . Finally, it turns out that

a process p might need the help of other processes in completing its LL operation

on O. The variable Helpp facilitates coordination between p and the helpers of

p.

68

5.1.2 The helping mechanism

The crux of our algorithm lies in its helping mechanism by which SC operations

help LL operations. Specifically, a process p begins its LL operation by announc-

ing its operation to other processes. It then attempts to read the buffer containing

O’s current value. This reading has two possible outcomes: either p correctly ob-

tains the value in the buffer or p obtains an inconsistent value because the buffer is

overwritten while p reads it. In the latter case, the key property of our algorithm is

that p is helped (and informed that it is helped) before the completion of its reading

of the buffer. Thus, in either case, p has a valid value: either p reads a valid value

in the buffer (former case) or it is handed a valid value by a helper process (latter

case). The implementation of such a helping scheme is sketched in the following

paragraph.

Consider any process p that performs an LL operation on O and obtains a value

V associated with sequence number s (i.e., the latest SC before p’s LL wrote V in

O and had the sequence number s). Following its LL, suppose that p invokes an

SC operation. Before attempting to make this SC operation (of sequence number

(s + 1) mod 2N) succeed, our algorithm requires p to check if the process s mod

N has an ongoing LL operation that requires help (thus, the decision of which

process to help is based on sequence number). If so, p hands over the buffer it

owns containing the value V to the process s mod N . If several processes try to

help, only one will succeed. Thus, the process numbered s mod N is helped (if

necessary) every time the sequence number changes from s to (s + 1) mod 2N .

Since the sequence number increases by 1 with each successful SC, it follows that

every process is examined twice for possible help in a span of 2N successful SC

69

operations. Recall further the earlier stated property that the buffer holding O’s

current value is not reused until 2N more successful SC’s are performed. As a

consequence of the above facts, if a process p begins reading the buffer that holds

O’s current value and the buffer happens to be reused while p still reads it (because

2N successful SC’s have since taken place), some process is sure to have helped p

by handing it a valid value of O.

5.1.3 The role of Helpp

The variable Helpp plays an important role in the helping scheme. It has two

fields: a binary value (that indicates whether p needs help) and a buffer index.

When p initiates an LL operation, it seeks the help of other processes by writing

(1, b) into Helpp, where b is the index of the buffer that p owns (see Line 1). If

a process q helps p, it does so handing over its buffer c containing a valid value of

O to p by writing (0, c). (This writing is performed with a SC operation to ensure

that at most one process succeeds in helping p.) Once q writes (0, c) in Helpp, p

and q exchange the ownership of their buffers: p becomes the owner of the buffer

indexed by c and q becomes the owner of the buffer indexed by b. (This buffer

management scheme is the same as in Herlihy’s universal construction [Her93].)

The above ideas are implemented as follows. Before p returns from its LL

operation, it withdraws its request for help by executing the code at Lines 8–10.

First, p reads Helpp (Line 8). If p was already helped (i.e., Helpp ≡ (0, ∗)), p

updates mybufp to reflect that p’s ownership has changed to the buffer in which the

helper process had left a valid value (Line 10). If p was not yet helped, p attempts

to withdraw its request for help by writing 0 into the first field of Helpp (Line 9).

If p does not succeed, some process must have helped p while p was between

70

Lines 8 and 9; in this case, p assumes the ownership of the buffer handed by that

helper (Line 10). If p succeeds in writing 0, then the second field of Helpp still

contains the index of p’s own buffer, and so p reclaims the ownership of its own

buffer (Line 10).

5.1.4 Two obligations of LL

In Section 4.3 of Chapter 4, we stated the two conditions that any implementation

of an LL operation must satisfy in order to ensure correctness. We restate these

two conditions below.

Consider an execution of the LL procedure by a process p. Suppose that V

is the value of O when p invokes the LL procedure and suppose that k successful

SC’s take effect during the execution of this procedure, changing O’s value from

V to V1, V1 to V2, . . ., Vk−1 to Vk . We call each of the values V, V1, . . . , Vk a valid

value (with respect to this LL execution by p), since it would be legitimate for

p’s LL to return any one of these values. Also, we call the value Vk current (with

respect to this LL execution by p).

Although p’s LL operation could legitimately return any valid value, there is

a significant difference between returning the current value Vk versus returning an

older valid value from V, V1, . . . , Vk−1: assuming that no successful SC operation

takes effect between p’s LL and p’s subsequent SC, the specification of LL/SC

operations requires p’s subsequent SC to succeed in the former case and fail in

the latter case. Thus, p’s LL procedure, besides returning a valid value, has the

additional obligation of ensuring the success or failure of p’s subsequent SC (or

VL) based on whether or not its return value is current.

In our algorithm, the SC procedure (Lines 12–22) includes exactly one SC op-

71

eration on the variable X (Line 19), and the procedure succeeds if and only if the

operation succeeds. Therefore, we can restate the two obligations on p’s LL pro-

cedure as follows: (O1) it must return a valid value U , and (O2) if no successful

SC is performed after p’s LL, p’s subsequent SC (or VL) on X must succeed if and

only if the return value U is current.

5.1.5 Code for LL

A process p performs an LL operation on O by executing the procedure

LL(p,O, retval), where retval is a pointer to a block of W -words in which to

place the return value. First, p announces its operation to inform others that it

may need their help (Line 1). It then attempts to obtain the current value of O by

performing the following steps. First, p reads X to determine the buffer holding

O’s current value (Line 2), and then reads that buffer (Line 3). While p reads

the buffer at Line 3, the value of O might change because of successful SC’s by

other processes. Specifically, there are three possibilities for what happens while

p executes Line 3: (1) no successful SC is performed by any process, (2) fewer

than 2N − 1 successful SC’s are performed, or (3) at least 2N successful SC’s are

performed. In the first case, it is obvious that p reads a valid value at Line 3. In-

terestingly, in the second case too, the value read at Line 3 is a valid value. This is

because, as remarked earlier, our algorithm does not reuse a buffer until 2N more

successful SC’s have taken place. In the third case, p cannot rely on the value read

at Line 3. However, by the helping mechanism described earlier, a helper process

would have made available a valid value in a buffer and written the index of that

buffer in Helpp. Thus, in each of the three cases, p has access to a valid value.

Further, as we now explain, p can also determine which of the three cases actually

72

holds. To do this, p reads Helpp to check if it has been helped (Line 4). If it

has not been helped yet, Case (1) or (2) must hold, which implies that retval has

a valid value of O. Hence, returning this value meets the obligation O1. It meets

obligation O2 as well because the value in retval is the current value of O at the

moment when p read X (Line 2); hence, p’s subsequent SC (or VL) on X will suc-

ceed if and only if X does not change, i.e., if and only if the value in retval is still

current. So, p returns from the LL operation after withdrawing its request for help

(Lines 8–10) and storing the return value into p’s own buffer (Line 11) (p will use

this buffer in the subsequent SC operation to help another process complete its LL

operation, if necessary).

If upon reading Helpp (Line 4), p finds out that it has been helped, p knows

that a helper process must have written in Helpp the index of a buffer containing

a valid value U of O. However, p is unsure whether this valid value U is current

or old. If U is current, it is incorrect to return U : the return of U will fail to meet

the obligation O2. This is because p’s subsequent SC on X will fail, contrary to

O2 (it will fail because X has changed since p read it at Line 2). For this reason,

although p has access to a valid value handed to it by the helper, it does not return

it. Instead, p attempts once more to obtain the current value of O (Lines 5–7). To

do this, p again reads X to determine the buffer holding O’s current value (Line 5),

and then reads that buffer (Line 6). Next, p validates X (Line 7). If this validation

succeeds, it is clear that retval has a valid value and, by returning this value, the

LL operation meets both its obligations (O1 and O2). If the validation fails, O’s

value must have changed while p was between Lines 5 and 7. This implies that

the value handed by the helper (which had been around even before p executed

Line 5) is surely not current. Furthermore, the failure of VL (at Line 7) implies

73

that p’s subsequent SC on X will fail. Thus, returning the value handed by the

helper satisfies both obligations, O1 and O2. So, p copies the value handed by the

helper into retval (Line 7), withdraws its request for help (Lines 8–10), and stores

the return value into p’s own buffer (Line 11), to be used in p’s subsequent SC

operation.

5.1.6 Code for SC

A process p performs an SC operation on O by executing the procedure

SC(p,O, v), where v is the pointer to a block of W words which contain the value

to write to O if SC succeeds. On the assumption that X hasn’t changed since p read

it in its latest LL, i.e., X still contains the buffer index bindex and the sequence num-

ber s associated with the latest successful SC, p reads the buffer index b in Banks

(Line 12). The reason for this step is the possibility that Banks has not yet been

updated to hold bindex, in which case p should update it. So, p checks whether

there is a need to update Banks, by comparing b with bindex (Line 12). If there is

a need to update, p first validates X (Line 12) to confirm its earlier assumption that

X still contains the buffer index bindex and the sequence number s. If this valida-

tion fails, it means that the values that p read from X have become stale, and hence

p abandons the updating. (Notice that, in this case, p’s SC operation also fails.) If

the validation succeeds, p attempts to update Banks (Line 13). This attempt will

fail if and only if some process did the updating while p executed Lines 12–13.

Hence, by the end of this step, Banks is sure to hold the value bindex.

Next, p tries to determine whether some process needs help with its LL oper-

ation. Since p’s SC is attempting to change the sequence number from s to s + 1,

the process to help is q = s mod N . So, p reads Helpq to check whether q needs

74

help (Line 14). If it does, p first validates X (Line 15) to make sure that X still con-

tains the buffer index bindex and the sequence number s. If this validation fails, it

means that the values that p read from X have become stale, and hence p abandons

the helping. (Notice that, in this case, p’s SC operation also fails.) If the validation

succeeds, p attempts to help q by handing it p’s buffer which, by Line 11, contains

a valid value of O (Line 15). If p succeeds in helping q, p gives up its buffer to

q and assumes ownership of q’s buffer (Line 16). (Notice that p’s SC at Line 15

fails if and only if, while p executed Lines 14–15, either another process already

helped q or q withdrew its request for help.)

Next, p copies the value v into its buffer (Line 17). Then, p reads the index

e of the buffer that holds O’s old value associated with the next sequence number,

namely, (s + 1) mod 2N (Line 18). Finally, p attempts its SC operation (Line 19)

by trying to write in X the index of its buffer and the next sequence number (s +

1) mod 2N . This SC will succeed if and only if no successful SC was performed

since p’s latest LL. Accordingly, the procedure returns true if and only if the SC

at Line 19 succeeds (Lines 21–22). In the event that SC is successful, p gives

up ownership of its buffer, which now holds O’s current value, and becomes the

owner of BUFe, the buffer holding O’s old value with sequence number s ′, which

can now be safely reused (Line 20).

The procedure VL is self-explanatory (Line 23). Based on the above discus-

sion, we have the following theorem. Its proof is given in Appendix A.2.

Theorem 6 Algorithm 5.1 is wait-free and implements a linearizable N-process

W-word LL/SC object O from small LL/SC objects and registers. The time com-

plexity of LL, SC, and VL operations on O are O(W), O(W) and O(1), respec-

75

tively. The implementation requires O(NW) registers and 3N + 1 small LL/SC

objects.

Since each process can have at most two outstanding LL operations in the al-

gorithm (i.e., k = 2), by combining the above theorem with Theorem 5 we obtain

the following result.

Theorem 7 There exists an N-process wait-free implementation of a W-word

LL/SC object O from word-sized CAS objects and registers. The space complex-

ity of the implementation is O(NW), and the time complexity of LL, SC, and VL

operations on O are O(W), O(W), and O(1), respectively.

76

Chapter 6

LL/SC for large number of

objects

The algorithm in the previous chapter requires O(NW) space to implement a W -

word LL/SC object. Although these space requirements are modest when a single

LL/SC object is implemented, the algorithm does not scale well when the number

of LL/SC objects to be supported is large. In particular, in order to implement M

W -word LL/SC objects, the algorithm requires O(N MW) space. In this chapter,

we show how to remove this multiplicative factor (i.e., N M) from the space com-

plexity, while still maintaining the optimal running times for LL and SC. More

precisely, we present the following two results.

• An algorithm with O(Nk+(N+M)W) space complexity that implements M

W -word Weak-LL/SC objects from word-sized CAS objects and registers.

• An algorithm with O(Nk + (N 2 + M)W) space complexity that implements

M W -word LL/SC objects from word-sized CAS objects and registers.

77

When constructing a large number of LL/SC objects (M � N), our second

algorithm is the first in the literature to be simultaneously (1) wait-free, (2) time

optimal, and (3) space efficient. Sections 6.1 and 6.2 discuss the above two algo-

rithms in detail.

6.1 Implementing an array of M W -word Weak-LL/SC

objects

Recall that a Weak-LL/SC object is the same as the LL/SC object, except that its

LL operation—denoted WLL—is not always required to return the value of the

object: if the subsequent SC operation is sure to fail, then WLL may simply return

the identity of a process whose successful SC took effect during the execution of

that WLL. Thus, the return value of WLL is of the form (flag, v), where either (1)

flag = success and v is the value of the object O, or (2) flag = failure and v is

the id of a process whose SC took effect during the WLL. We slightly modify the

above semantics to account for the fact that we are now implementing a multiword

LL/SC object. More precisely, we require that an empty buffer, which will be used

by the WLL operation to store the return value, be passed to the WLL operation as

an argument. Hence, WLL returns either success (in which case the buffer contains

the return value of WLL) or (failure, v), where v is the id of a process whose SC

took effect during the WLL (in which case the buffer contains an arbitrary value).

Our algorithm is designed in two steps:

1. Implement an array of M small LL/SC objects from word-sized CAS objects

and registers.

78

2. Implement an array of M W -word Weak-LL/SC object from an array of M

small LL/SC objects and registers.

The implementation of the first step follows immediately from the algorithm

by Moir [Moi97a] (see Theorem 5 in the previous chapter). For the rest of this

section, we focus on the implementation of the second step.

Algorithm 6.1 implements an array O0 . . M − 1 of M W -word Weak-LL/SC

objects from small LL/SC objects and registers. We begin by describing the vari-

ables used in the algorithm. BUF0 . . M + N − 1 is an array of M + N W -word

buffers. Of these, M buffers hold the current values of the M implemented ob-

jects (i.e., O0 . . M − 1) and the remaining N buffers are “owned” by processes,

one buffer by each process. Process p’s local variable, mybuf p, is the index of the

buffer currently owned by p. Xi holds the tag associated with the current value of

Oi and consists of two fields: the identity of the last process to perform a successful

SC on Oi and the index of the buffer that holds the current value of Oi .

We now describe procedure LL(p, i, retval) that enables process p to read the

current value of an object Oi into retval. First, p performs an LL operation on

variable Xi in order to obtain the tag x associated with the most recent successful

SC operation on Oi (Line 1). The buf field of x tells p which of the M + N buffers

has Oi ’s current value. So, p copies the value of that buffer into retval (Line 2), and

then checks whether Xi has been modified (Line 3). If Xi has not been modified, it

means that no process has performed a successful SC on Oi while p was executing

Line 3. Therefore, the value of Oi that p read at Line 3 is correct. So, p’s WLL

returns, signaling success (Line 3). If, on the other hand, VL returns false, one

or more successful SC’s must have been performed on Oi while p was executing

79

Types
xtype = record pid: 0 . . N − 1; buf: 0 . . M + N − 1 end

Shared variables
X: array 0 . . M − 1 of xtype
BUF: array 0 . . M + N − 10 . . W − 1 of 64-bit word

Local persistent variables at each p ∈ {0, 1, . . . , N − 1}

mybufp: 0 . . M + N − 1
Initialization

X j = (∗, j), for all j ∈ {0, 1, . . . , M − 1}

BUF j = the desired initial value of O j , for all j ∈ {0, 1, . . . , M − 1}

For all p ∈ {0, 1, . . . , N − 1}

mybufp = M + p

procedure WLL(p, i, retval) procedure SC(p, i, v) returns boolean
1: x = LL(Xi) 7: x = read(Xi)
2: copy BUFx.buf into ∗retval 8: copy ∗v into BUFmybufp
3: if VL(Xi) return success 9: if SC(Xi, (p, mybuf p))

4: y = read(Xi) 10: mybufp = x.buf
5: return (failure, y.pid) 11: return true

12: return false
procedure VL(p, i) returns boolean

6: return VL(Xi)

Algorithm 6.1: An implementation of O0 . . M − 1: an array of M N -process W -
word Weak-LL/SC objects, using small LL/SC objects and registers

Line 3. The pid field of Xi holds the name of such a process. So, p reads Xi

(Line 4) and returns its pid field (Line 5).

We now describe procedure SC(p, i, v) that enables process p to write a value

v into an object Oi . First, p reads Xi to obtain the tag x associated with the most

recent successful SC operation on Oi (Line 7). (Notice that this value is junk if

some process performed a successful SC since p’s latest WLL, but in this case

the SC will fail at Line 9, resulting in no harm.) Next, p copies the value v into

the buffer that it currently owns (Line 8), and then executes the SC operation on

Xi in an attempt to modify Xi to point to the new value (Line 9). This operation

succeeds if and only if no process performed a successful SC on Oi since p’s latest

80

WLL. Consequently, p returns from the SC procedure signaling success at Line 11

(respectively, failure at Line 12) if it succeeds (respectively, fails) in modifying Xi

at Line 9. Furthermore, if p succeeds in modifying Xi , then p’s buffer has Oi ’s

current value, whereas the buffer that held Oi ’s previous value becomes free. To

reflect this change, p gives up its buffer and assumes ownership of the buffer just

released (Line 10). (This buffer management scheme is the same as in Herlihy’s

universal construction [Her93].)

The VL operation returns success if and only if Xi has not changed since p’s

most recent WLL (Line 6). Based on the above discussion, we have the following

theorem. Its proof is given in Appendix A.3.1.

Theorem 8 Algorithm 6.1 is wait-free and implements an array O0 . . M −1 of M

N-process W-word Weak-LL/SC objects. The time complexity of WLL, SC, and VL

operations on O are O(W), O(W) and O(1), respectively. The implementation

requires O((N + M)W) registers and M small LL/SC objects.

By combining Theorem 8 with Theorem 5, we obtain the following result.

Theorem 9 There exists an N-process wait-free implementation of an array

O0 . . M − 1 of M W-word Weak-LL/SC objects from word-sized CAS objects

and registers. The time complexity of WLL, SC, and VL operations on O are

O(W), O(W) and O(1), respectively. The space complexity of the implementa-

tion is O(Nk + (N + M)W), where k is the maximum number of outstanding WLL

operations of a given process The CAS-time-complexity of WLL, SC, and VL are 0,

1 and 0, respectively.

81

6.2 Implementing an array of M W -word LL/SC objects

Algorithm 6.2 implements an array O0 . . M − 1 of M W -word LL/SC object from

CAS objects and registers. We now describe how the algorithm works.

Types
valuetype = array 0 . . W of 64-bit value
xtype = record seq: (64 − lg (M + (N + 1)N))-bit number;

buf: 0 . . M + (N + 1)N − 1 end
helptype = record seq: (63 − lg (M + (N + 1)N))-bit number; helpme: {0, 1};

buf: 0 . . M + (N + 1)N − 1 end
Shared variables

X: array 0 . . M − 1 of xtype; Announce: array 0 . . N − 1 of 0 . . M − 1
Help: array 0 . . N − 1 of helptype
BUF: array 0 . . M + (N + 1)N − 1 of ∗valuetype

Local persistent variables at each p ∈ {0, 1, . . . , N − 1}

mybufp: 0 . . M + (N + 1)N − 1; Qp: Single-process queue; x p: xtype
lseqp: (63 − lg (M + (N + 1)N))-bit number; index p: 0 . . N − 1

Initialization
Xk = (0, k), for all k ∈ {0, 1, . . . , M − 1}

BUFk = the desired initial value of Ok, for all k ∈ {0, 1, . . . , M − 1}

For all p ∈ {0, 1, . . . , N − 1}

enqueue(Q p, M + (N + 1)p + k), for all k ∈ {0, 1, . . . , N − 1}

mybufp = M + (N + 1)p + N ; Helpp = (0, 0, ∗); indexp = 0; lseqp = 0

procedure LL(p, i, retval) procedure SC(p, i, v) returns boolean
1: Announcep = i 11: copy ∗v into ∗BUFmybufp
2: Helpp = (++lseqp, 1, mybufp) 12: if ¬CAS(Xi, x p, (x p.seq + 1, mybufp))

3: x p = Xi 13: return false
4: copy ∗BUFx p .buf into ∗retval 14: enqueue(Q p, x p.buf)
5: if ¬CAS(Helpp, (lseqp, 1, mybufp), 15: mybufp = dequeue(Q p)

(lseqp, 0, mybufp)) 16: if (Helpindexp ≡ (s, 1, b))

6: mybufp = Helpp.buf 17: j = Announceindexp
7: x p = BUFmybufpW 18: x = X j
8: copy ∗BUFmybufp into ∗retval 19: copy ∗BUFx.buf into ∗BUFmybufp
9: return 20: BUFmybufpW = x

21: if CAS(Helpindexp, (s, 1, b),

(s, 0, mybufp))

22: mybufp = b
procedure VL(p, i) returns boolean 23: index p = (indexp + 1) mod N

10: return (Xi = x p) 24: return true

Algorithm 6.2: Implementation of O0 . . M −1: an array of M N -process W -word
LL/SC objects

82

6.2.1 The variables used

We begin by describing the variables used in the algorithm. BUF0 . . M + (N +

1)N −1 is an array of M + (N +1)N buffers. Of these, M buffers hold the current

values of objects O0,O1, . . . ,OM −1, while the remaining (N +1)N buffers are

“owned” by processes, N + 1 buffer by each process. Each process p, however,

uses only one of its N + 1 buffers at any given time. The index of the buffer that

p is currently using is stored in the local variable mybuf p, and the indices of the

remaining N buffers are stored in p’s local queue Q p. Array X0 . . M − 1 holds the

tags associated with the current values of objects O0,O1, . . . ,OM − 1. A tag in

Xi consists of two fields: (1) the index of the buffer that holds Oi ’s current value,

and (2) the sequence number associated with Oi ’s current value. The sequence

number increases by 1 with each successful SC on Oi , and the buffer holding Oi ’s

current value is not reused until some process performs at least N more successful

SC’s (on any O j). Process p’s local variable x p maintains the tag corresponding to

the value returned by p’s most recent LL operation; p will use this tag during the

subsequent SC operation to check whether the object still holds the same value (i.e.,

whether it has been modified). Finally, it turns out that a process p might need the

help of other processes in completing its LL operation on O. The shared variables

Helpp and Announcep, as well as p’s local variables lseq p and index p, are used

to facilitate this helping scheme. Additionally, an extra word is kept in each buffer

along with the value. Hence, all the buffers in the algorithm are of length W + 1.1

1The only exception are the buffers passed as an argument to procedures LL and SC, which are
of length W .

83

6.2.2 The helping mechanism

The crux of our algorithm lies in its helping mechanism by which SC operations

help LL operations. This helping mechanism is similar to that of Algorithm 5.1,

but whereas the mechanism of Algorithm 5.1 requires O(N MW) space, the new

mechanism requires only O(Nk + (N 2 + M)W) space. Below, we describe this

mechanism in detail.

A process p begins its LL operation on some object Oi by announcing its

operation to other processes. It then attempts to read the buffer containing Oi ’s

current value. This reading has two possible outcomes: either p correctly obtains

the value in the buffer or p obtains an inconsistent value because the buffer is

overwritten while p reads it. In the latter case, the key property of our algorithm is

that p is helped (and informed that it is helped) before the completion of its reading

of the buffer. Thus, in either case, p has a valid value: either p reads a valid value

in the buffer (former case) or it is handed a valid value by a helper process (latter

case). The implementation of such a helping scheme is sketched in the following

paragraph.

Consider any process p that performs a successful SC operation. During that

SC, p checks whether a single process—say, q—has an ongoing LL operation that

requires help. If so, p helps q by passing it a valid value and a tag associated

with that value. (We will see later how p obtains that value.) If several processes

try to help, only one will succeed. Process p makes a decision on which process

to help by consulting its variable index p: if index p holds value j , then p helps

process j . The algorithm ensures that index p is incremented by 1 modulo N after

every successful SC operation by p. Hence, during the course of N successful

84

SC operations, process p examines all N processes for possible help. Recall the

earlier stated property that the buffer holding an Oi ’s current value is not reused

until some process performs at least N more successful SC’s (on any O j). As

a consequence of the above facts, if a process q begins reading the buffer that

holds Oi ’s current value and the buffer happens to be reused while q still reads it

(because some process p has since performed N successful SC’s), then p is sure

to have helped q by handing it a valid value of Oi and a tag associated with that

value.

6.2.3 The roles of Helpp and Announcep

The variables Helpp and Announcep play important roles in the helping scheme.

Helpp has three fields: (1) a binary value (that indicates if p needs help), (2) a

buffer index, and (3) a sequence number (independent from the sequence numbers

in tags). Announcep has only one field: an index in the range 0 . . M − 1. When

p initiates an LL operation on some object Oi , it first announces the index of that

object by writing i into Announcep (see Line 1), and then seeks the help of other

processes by writing (s, 1, b) into Helpp, where b is the index of the buffer that

p owns (see Line 2) and s is p’s local sequence number incremented by one. If a

process q helps p, it does so handing over its buffer c containing a valid value of

Oi to p by writing (s, 0, c) into Helpp. (This writing is performed with a CAS

operation to ensure that at most one process succeeds in helping p.) Once q writes

(s, 0, c) in Helpp, p and q exchange the ownership of their buffers: p becomes

the owner of the buffer indexed by c and q becomes the owner of the buffer in-

dexed by b. (This buffer management scheme is the same as in Herlihy’s universal

construction [Her93].) Before q hands over buffer c to process p, it also writes a

85

tag associated with that value into the W th location of the buffer. Hence, all the

buffers used by the algorithm are of size W + 1.

6.2.4 Obtaining a valid value

We now explain the mechanism by which a process p obtains a valid value to

help some other process q with. Suppose that process p wishes to help process q

complete its LL operation on some object Oi . To obtain a valid value to help q

with, p first attempts to read the buffer containing Oi ’s current value. This reading

has two possible outcomes: either p correctly obtains the value in the buffer or p

obtains an inconsistent value because the buffer is overwritten while p reads it. In

the latter case, by an earlier stated property, p knows that there exists some process

r that has performed at least N successful SC operations (on any O j). Therefore,

r must have already helped q, in which case p’s attempt to help q will surely fail.

Hence, it does not matter that p obtained an inconsistent value of Oi because p

will anyway fail in giving that value to q. As a result, if p helps q complete its LL

operation on some object Oi , it does so with a valid value of Oi .

6.2.5 Code for LL

A process p performs an LL operation on some object Oi by executing the pro-

cedure LL(p, i, retval), where retval is a pointer to a block of W words in which

to place the return value. First, p announces its operation to inform others that it

needs their help (Lines 1 and 2). It then attempts to obtain the current value of

Oi by performing the following steps. First, p reads the tag stored in Xi to de-

termine the buffer holding Oi ’s current value (Line 3), and then reads that buffer

(Line 4). While p reads the buffer at Line 4, the value of Oi might change because

86

of successful SC’s by other processes. Specifically, there are three possibilities for

what happens while p executes Line 4: (1) no process performs a successful SC,

(2) no process performs more than N − 1 successful SC’s, or (3) some process

performs N or more successful SC’s. In the first case, it is obvious that p reads a

valid value at Line 4. Interestingly, in the second case too, the value read at Line 4

is a valid value. This is because, as remarked earlier, our algorithm does not reuse

a buffer until some process performs at least N successful SC’s. In the third case,

p cannot rely on the value read at Line 4. However, by the helping mechanism

described earlier, a helper process would have made available a valid value (and

a tag associated with that value) in a buffer and written the index of that buffer in

Helpp. Thus, in each of the three cases, p has access to a valid value as well as

a tag associated with that value. Further, as we now explain, p can also determine

which of the three cases actually holds. To do this, p performs a CAS on Helpp

to try to revoke its request for help (Line 5). If p’s CAS succeeds, it means that p

has not been helped yet. Therefore, Case (1) or (2) must hold, which implies that

retval has a valid value of O. Hence, p returns from the LL operation at Line 9.

If p’s CAS on Helpp fails, p knows that it has been helped and that a helper

process has written in Helpp the index of a buffer containing a valid value U of Oi

(as well as a tag associated with U). So, p reads U and its associated tag (Lines 7

and 8), and takes ownership of the buffer it was helped with (Line 6). Finally, p

returns from the LL operation at Line 9.

6.2.6 Code for SC

A process p performs an SC operation on some object Oi by executing the proce-

dure SC(p, i, v), where v is the pointer to a block of W words which contain the

87

value to write to Oi if SC succeeds. First, p writes the value v into its local buffer

(Line 11), and then tries to make its SC operation take effect by changing the value

in Xi from the tag it had witnessed in its latest LL operation to a new tag consisting

of (1) the index of p’s local buffer and (2) a sequence number (of the previous tag)

incremented by one (Line 12). If the CAS operation fails, it follows that some other

process performed a successful SC after p’s latest LL, and hence p’s SC must fail.

Therefore, p terminates its SC procedure, returning false (Line 13). On the other

hand, if CAS succeeds, then p’s current SC operation has taken effect. In that case,

p gives up ownership of its local buffer, which now holds Oi ’s current value, and

becomes the owner of the buffer B holding Oi ’s old value. To remain true to the

promise that the buffer that held Oi ’s current value (B, in this case) is not reused

until some process performs at least N successful SC’s, p enqueues the index of

buffer B into its local queue (Line 14), and then dequeues some other buffer index

from the queue (Line 15). Notice that, since p’s local queue contains N buffer

indices when p inserts B’s index into it, p will not reuse buffer B until it performs

at least N successful SC’s.

Next, p tries to determine whether some process needs help with its LL opera-

tion. As we stated earlier, the process to help is q = index p. So, p reads Helpq to

check whether q needs help (Line 16). If it does, p consults variable Announceq

to learn the index j of the object that q needs help with (Line 17). Next, p reads

the tag stored in X j to determine the buffer holding O j ’s current value (Line 18),

and then copies the value from that buffer into its own buffer (Line 19). Then, p

writes into the W th location of the buffer the tag that it read from X j (Line 20).

Finally, p attempts to help q by handing it p’s buffer (Line 21). If p succeeds in

helping q, then, by an earlier argument, the buffer that p handed over to q contains

88

a valid value of O j . Hence, p gives up its buffer to q and assumes ownership of

q’s buffer (Line 22). (Notice that p’s CAS at Line 21 fails if and only if, while

p executed Lines 16–21, either another process already helped q or q withdrew

its request for help.) Regardless of whether process q needed help or not, p in-

crements the index p variable by 1 modulo N (Line 23) to ensure that in the next

successful SC operation it helps some other process (Line 23), and then terminates

its SC procedure by returning true (Line 24).

The procedure VL is self-explanatory (Line 10). Based on the above discus-

sion, we have the following theorem. Its proof is given in Appendix A.3.2.

Theorem 10 Algorithm 6.2 is wait-free and implements an array O0 . . M − 1 of

M linearizable N-process W-word LL/SC objects. The time complexity of LL,

SC and VL operations on O are O(W), O(W) and O(1), respectively. The space

complexity of the implementation is O(Nk+(M+N 2)W), where k is the maximum

number of outstanding LL operations of a given process.

6.2.7 Remarks

Sequence number wrap-around

Each 64-bit variable Xi stores in it a buffer index and an unbounded sequence

number. The algorithm relies on the assumption that during the time interval when

some process p executes one LL/SC pair, the sequence number stored in Xi does

not cycle through all possible values. If we reserve 32 bits for the buffer index

(which allows the implementation of up to 231 LL/SC objects, shared by up to

215 = 32,768 processes), we still will have 32 bits for the sequence number, which

is large enough that sequence number wraparound is not a concern in practice.

89

The number of outstanding LL operations

Modifying the code in Algorithm 6.2 to handle multiple outstanding LL/SC op-

erations is straightforward. Simply require that each LL operation, in addition to

returning a value, also returns the associated tag, which the caller must pass to the

matching SC.

90

Chapter 7

LL/SC for unknown N

Notice that the LL/SC algorithm in the previous chapter requires that N—the max-

imum number of processes accessing the algorithm—is known in advance. This

knowledge of N is used in three places in the algorithm: (1) to initialize arrays

Help, Announce, and BUF to sizes N , N , and M + N(N + 1), respectively; (2)

to initialize a local queue at each process to size N ; and (3) to implement the help-

ing scheme by which a process helps all other processes in a span of N successful

SC operations.

The drawback to the above requirement is that, in cases where N cannot be

known in advance, a conservative estimate has to be applied which can result in

space wastage. For example, if N is estimated too conservatively, arrays Help,

Announce, and BUF would occupy much more space than is actually needed. It

is therefore more desirable to have an algorithm that makes no assumptions on N ,

but instead adapts to the actual number of participating processes.

In this chapter, we present such an algorithm. In particular, we design an al-

gorithm that supports two new operations—Join(p) and Leave(p)—which allow a

91

process p to join and leave the algorithm at any given time. If K is the maximum

number of processes that have simultaneously participated in the algorithm (i.e.,

that have joined the algorithm but have not yet left it), then the space complexity

of the algorithm is O(Kk + (K 2 + M)W). The time complexities of procedures

Join, Leave, LL, SC, and VL are O(K), O(1), O(W), O(W), and O(1), respec-

tively. This algorithm is a modified version of Algorithm 6.2 (see Chapter 6), and

is described in detail in Section 7.1.

We also present a modified version of Algorithm 4.1 (see Chapter 4) that does

not require N to be known in advance. The attractive feature of this algorithm is

that the Join procedure runs in O(1) time. This algorithm, however, does not allow

processes to leave. The time complexities of LL, SC, and VL operations are O(1),

and the space complexity of the algorithm is O(K 2 + K M). Section 7.2 discusses

this algorithm in detail.

7.1 Implementing an array of M W -word LL/SC objects

for an unknown number of processes

In this section, we present an algorithm that implements an array O0 . . M −1 of M

W -word LL/SC objects shared by an unknown number of processes. The algorithm

is given in three steps. First, we introduce an important building block of the algo-

rithm, namely, an implementation of a dynamic array that supports constant-time

read and write operations (with some restrictions). Next, we restate Algorithm 6.2,

but with small modifications that will make it easier to remove the assumption of

N . Finally, we present our main result, namely, an algorithm that implements an

array of M W -word LL/SC objects shared by an unknown number of processes.

92

These three steps are described in detail in Sections 7.1.1, 7.1.2, and 7.1.3.

7.1.1 Dynamic arrays

A dynamic array is just like a regular array except that it places no bound on the

highest location that can be written. In particular, a process can write into the i th

location of the dynamic array for any natural number i . At all times, the size of

the array must stay proportional to the highest location written so far. Furthermore,

all reads and writes in the array must complete in O(1) time. In this thesis, we

consider only a weaker version of dynamic array that has the following restrictions:

(1) all writes into the same location write the same value, (2) a write into a location

i must precede a read on that location, and (3) a write into a location i must precede

a write into location i + 1. We capture the above restrictions in an object that we

call a DynamicArray object. This object is formally defined as follows.

A DynamicArray object supports two operations: write(i, v) and read(i). The

write(i, v) operation writes value v into the i th location of the array, while the

read(i) operation returns the value stored in the i th location of the array. The

following restrictions are placed on the usage of read and write operations:

• Before write(k + 1, ∗) is invoked, at least one write(k, ∗) must complete.

• Before read(k) is invoked, at least one write(k, ∗) must complete.

• If write(k, v) and write(k, v ′) are invoked, then v = v ′.

Algorithm 7.1 implements a DynamicArray object from a CAS object and reg-

isters. In the following, we first describe the main idea behind the algorithm and

then describe the algorithm in detail.

93

The main idea

The main idea of the algorithm is as follows. We maintain two (static) arrays at all

times: array A of length k, and array B of length 2k. (Initially, A is of length 1,

and B is of length 2.) When a process writes a value into some array location j ,

for j ≥ k/2, it writes that value into both A j and B j . Additionally, it copies the

array location A j − k/2 into B j − k/2. By this mechanism, when the array A fills

up (i.e., when the location Ak −1 is written), all the locations of array A have been

copied into array B. Therefore, B contains the same values as A, and can hence be

used in place of A. A new array of length 4k is then allocated (and used in place of

B), and the algorithm proceeds the same way as before.

The algorithm

Central to the algorithm is variable D, which stores a pointer to the block containing

three fields: (1) a pointer to array A, (2) a pointer to array B, and (3) the length of

array A.

We now explain the write(p, i, v,D) procedure that describes how a process

p writes a value v into the i th location of DynamicArray D. In the following, let

c′(i) denote the largest power of 2 smaller than or equal to i .1 First, p reads D to

obtain a pointer to the block containing arrays A and B (Line 1). Next, p checks

whether the length of array A is greater than i (Line 2). If it is, then p writes v into

Ai (Line 3). To help with the amortized copying of array A into B, p writes v into

Bi (Line 4) and copies the location Ai − c′(i) into Bi − c′(i) (Line 5).

Notice that, by initialization, the lengths of A and B are powers of 2 at all times.
1If i = 0, then c′(i) = 0.

94

Types
arraytype = array of 64-bit value
dtype = record size: 64-bit number; A, B: ∗arraytype end

Shared variables
D: ∗dtype

Initialization
D = malloc(sizeof dtype)
D→size = 1;
D→A = malloc(1);
D→B = malloc(2);

procedure write(p, i, v,D)

1: d = D
2: if (d→size > i)
3: d→Ai = v

4: d→Bi = v

5: d→Bi − c′(i) = d→Ai − c′(i)
6: else newD = malloc(sizeof dtype)
7: newD→A = d→B
8: newD→B = malloc(4 ∗ d→size)
9: newD→size = 2 ∗ d→size
10: if ¬CAS(D, d, newD) free(newD→B); free(newD)

11: write(i, v,D)

procedure read(p, i,D) returns valuetype
12: d = D
13: return d→Ai

Algorithm 7.1: An implementation of a DynamicArray object. Function c ′(i) re-
turns the largest power of 2 smaller or equal to i . (If i = 0, then c ′(i) = 0.)

Let k be the length of A when p tries to write v into Ai . Then, if i ≥ k/2, we have

c′(i) = k/2 (since k is a power of 2). Hence, p copies the location Ai − k/2 into

Bi − k/2, which is consistent with our main idea presented earlier. If i < k/2,

then, by definition of c′(i), we have i − c′(i) ≥ 0. Hence, p copies some location

A j into B j , for j ∈ {0, 1, . . . , k/2−1}, which causes no harm. Hence, by copying

Ai −c′(i) into Bi −c′(i), p remains faithful to the earlier idea of amortized copying

of array A into array B.

If the length of array A is equal to i , then p knows that the array A has been

95

filled up. Furthermore, by an earlier discussion, all the values in A have already

been copied into B. So, p prepares a new block newD that will hold pointers to

the new values for arrays A and B. Next, p sets newD.A to B (Line 7), newD.B to

a newly allocated array twice the size of B (Line 8), and newD.size to the size of

B (Line 9). Then, p attempts to swing the pointer in D from the block that p had

witnessed at Line 1, to the new block newD (Line 10). If p’s CAS is successful,

then p has successfully installed the new block newD in D. Otherwise, some other

process must have installed its own block into D, and so p frees up the memory

occupied by the block newD (Line 10). In either case, the length of an array A in

the new block is sure to be greater than i . So, p calls the write procedure again to

complete installing value v into D (Line 11). Notice that, since the size of the new

array A is strictly greater than i , p will not make another recursive call to write,

thus ensuring a constant running time for the write operation.

The read(p, i,D) procedure is very simple: a process p simply reads D to ob-

tain a pointer to the block containing the most recent values of A and B (Line 12),

and then returns the value stored in Ai (Line 13). Notice that, since we require that

at least one write(i, ∗) operation completes before read(i) starts, the length of the

array A is at least i +1 when p reads Ai . Furthermore, by the above discussion, lo-

cation Ai contains the value written by write(i, ∗). Therefore, p returns the correct

value.

We now calculate the space complexity of the algorithm at some time t . First,

notice that there are only two arrays at time t = 0: one array of length 1 and

one of length 2. During the first write(1, ∗) operation, a new array of length 4 is

allocated. Similarly, during the first write(2, ∗) operation, a new array of length

8 is allocated. In general, during the first write(2 j , ∗) operation, a new array of

96

length 2 j+2 is allocated. So, if write(K , ∗) is the operation with the highest index

among all operations invoked prior to time t , then at time t the largest allocated

array is of length 2blg K c+2. Hence, the lengths of all allocated arrays at time t

are 1, 2, 4, 8, . . . , 2blg K c+1, and 2blg K c+2. Consequently, the space occupied by the

arrays at time t is 2blg K c+3 − 1, and the space occupied by the blocks at time t is

blg Kc + 1. Therefore, the space permanently used by the algorithm at time t is

O(K). However, we also have to count the space occupied by the blocks and arrays

allocated at Lines 6 and 8 that were not successfully installed in D but have not yet

been freed from memory (at Line 10). The number of such blocks and arrays at

time t is at most n, where n is the number of processes executing the algorithm

at time t . Since the largest allocated array is of length at most 2blg K c+2, the space

used by the blocks and arrays at time t is O(nK). Therefore, the space used by the

algorithm at time t is O(nK).

Based on the above discussion, we have the following theorem. Its proof is

given in Appendix A.4.1.

Theorem 11 Algorithm 7.1 is wait-free and implements a DynamicArray object D

from a word-sized CAS object and registers. The time complexity of read and write

operations on D is O(1). The space used by the algorithm at any time t is O(nK),

where n is the number of processes executing the algorithm at time t, and K is the

highest location written in D prior to time t.

7.1.2 Restatement of Algorithm 6.2

We now restate Algorithm 6.2, which implements an array of M W -word LL/SC

object shared by a fixed number of processes N . We introduce some modifications

97

to this algorithm that will make it easier to remove the assumption of N . Algo-

rithm 7.2 shows the result of these modifications. In the following, we will refer to

Algorithms 6.2 and 7.2 by the names A and B, respectively.

The main difference between algorithms A and B lies in the way the variables

are organized. Below, we summarize the differences between the two organiza-

tions.

1. In algorithm A, process p’s shared variables Helpp and Announcep are

located in shared arrays Help and Announce, respectively. Hence, if a

process q wishes to access p’s shared variables, it can do so by simply read-

ing Helpp or Announcep. In algorithm B, on the other hand, process

p’s shared variables are stored in p’s own block of memory. Furthermore,

an array NameArray holds pointers to memory blocks of all processes.

Hence, if a process q wishes to access p’s shared variables, it must first read

NameArrayp to obtain the address l of p’s memory block, and then read

the variables l→Help and l→Announce.

2. In algorithm A, there is a single array BUF of length M + N(N + 1) which

holds all the buffers used by the algorithm. The index of a buffer is therefore

a number in the range 0 . . M + N(N + 1) − 1. Hence, if a process wishes

to access a buffer with index b, it simply reads the location BUFb. In algo-

rithm B, on the other hand, array BUF is divided into N + 1 smaller arrays:

(1) a central array of length M , and (2) N arrays of length N +1 each, which

are kept at processes’ memory blocks (one array per process). The index of

a buffer is therefore either a pair (0, i), where i is the index into the central

array, or a tuple (1, p, i), where i is the index into the array located at pro-

98

Types
valuetype = array 0 . . W of 64-bit value
indextype = record type: {0, 1}; if (type = 0) (bindex: 31-bit number)

else (name: 15-bit number; bindex: 15-bit number) end
xtype = record seq: 32-bit number; buf: indextype end
helptype = record seq: 31-bit number; helpme: {0, 1};

buf: indextype end
blocktype = record Announce: 31-bit number; Help: helptype; Q: Single-process queue;

BUF: array 0 . . N of ∗valuetype; index: 15-bit number; mybuf: indextype;
lseq: 31-bit number; x: xtype end

Shared variables
X: array 0 . . M − 1 of xtype; BUF: array 0 . . M − 1 of ∗valuetype
NameArray: array 0 . . N − 1 of ∗blocktype

Local persistent variables at each p
locp: blocktype

Initialization
Xk = (0, k), for all k ∈ {0, 1, . . . , M − 1}

BUFk = the desired initial value of Ok, for all k ∈ {0, 1, . . . , M − 1}

For all p ∈ {0, 1, . . . , N − 1}

NameArrayp = &locp
enqueue(locp.Q, (1, p, k)), for all k ∈ {0, 1, . . . , N − 1}

locp.mybuf = (1, p, N); locp.Help = (0, 0, ∗); locp.index = 0; locp.lseq = 0

procedure LL(p, i, retval) procedure SC(p, i, v) returns boolean
1: locp.Announce = i 15: copy ∗v into ∗GetBuf(locp.mybuf)
2: locp.Help = (++locp.lseq, 1, locp.mybuf) 16: if ¬CAS(Xi, locp.x,

3: locp.x = Xi (locp.x.seq + 1, locp.mybuf))
4: copy ∗GetBuf(locp.x.buf) into ∗retval 17: return false
5: if ¬CAS(locp.Help, 18: enqueue(locp.Q, locp.x.buf)

(locp.lseq, 1, locp.mybuf), 19: locp.mybuf = dequeue(locp.Q)

(locp.lseq, 0, locp.mybuf)) 20: l = NameArraylocp.index
6: locp.mybuf = locp.Help.buf 21: if (l→Help ≡ (s, 1, c))
7: b = GetBuf(locp.mybuf) 22: j = l→Announce
8: locp.x = bW 23: x = X j
9: copy ∗b into ∗retval 24: d = GetBuf(locp.mybuf)
10: return 25: copy ∗GetBuf(x.buf) into ∗d

26: dW = x
procedure GetBuf(b) returns ∗valuetype 27: if CAS(l→Help, (s, 1, c),

11: if (b.type = 0) return BUFb.bindex (s, 0, locp.mybuf))
12: l = NameArrayb.name 28: locp.mybuf = c
13: return l→BUFb.bindex 29: locp.index = (locp.index + 1) mod N

30: return true
procedure VL(p, i) returns boolean

14: return (Xi = locp.x)

Algorithm 7.2: Slightly modified version of Algorithm 6.2

99

cess p’s memory block. Hence, if a process wishes to access a buffer with

index b = (0, i), it simply reads the location BUFi . If, on the other hand, a

process wishes to access a buffer with index b = (1, p, i), it must first read

NameArrayp to obtain the address l of p’s memory block, and then read

the location l.BUFi . This method (for accessing a buffer given its index) is

captured by the procedure GetBuf (see Algorithm 7.2).

As in algorithm A, we will need to store a sequence number and a buffer

index together in a single machine word. From the previous paragraph, the

buffer index consists of one bit (to distinguish between the central array and

an array stored at process’s memory block) and lg (max(M, N(N + 1))) bits

to describe either (1) an index within the central array, or (2) an index within

a process’s array and that process’s name. Assuming 64 bits per machine

word, this leaves 64 − 1 − lg (max(M, N(N + 1))) bits for the sequence

number. Rather than using these long expressions, in the rest of the section

we assume the values 231 and 215 for M and N , respectively, which then

leaves 32 bits for the sequence number.

3. In algorithm A, each process p maintains persistent local variables mybuf p,

lseqp, indexp, x p, and Q p. In algorithm B, on the other hand, all of the above

variables are located in p’s memory block and p maintains the address of that

memory block in its persistent local variable loc p.

Given the above discussion, the code for Algorithm 7.2 is self-explanatory.

100

7.1.3 The algorithm

We now present the main result, namely, Algorithm 7.3 that implements an array

O0 . . M−1 of M W -word LL/SC objects where the number of processes accessing

the array is not known in advance. The code for Algorithm 7.3 is presented in

two figures: Figure 7.1, which gives the code for LL, SC, and VL operations,

and Figure 7.2, which gives the code for Join and Leave operations. We start by

describing the code in Figure 7.1.

Implementation of LL, SC, and VL

Figure 7.1 presents the code for procedures LL, SC, and VL of Algorithm 7.3.

The statements given in rectangular boxes represent the differences with Algo-

rithm 7.2. Operations da read and da write denote read and write operations

on the dynamic array. We now describe the changes that were made to the original

algorithm.

The array NameArray, as well as the arrays BUF located at process’ memory

blocks, are now dynamic arrays. Variable N holds the maximum number of pro-

cesses that have simultaneously participated in the algorithm so far. Each process

maintains its own estimate N of N which it periodically updates to match N. At all

times, the algorithm ensures that the length of process’s queue Q is at least N , and

that the length of process’s array BUF is at least N + 1. Process’ memory blocks

are no longer allocated in advance. Instead, when a process joins the algorithm (by

executing the Join procedure), it will either (1) allocate a new memory block, or

(2) get a memory block from another process that has already left the algorithm. In

either case, the implementation of Join guarantees that each process p participating

101

Types
valuetype = array 0 . . W of 64-bit value
indextype = record type: {0, 1}; if (type = 0) (bindex: 31-bit number)

else (name: 15-bit number; bindex: 15-bit number) end
xtype = record seq: 32-bit number; buf: indextype end
helptype = record seq: 31-bit number; helpme: {0, 1};

buf: indextype end
blocktype = record Announce: 31-bit number; Help: helptype; Q: Single-process queue;

BUF: dynamic array of ∗valuetype; index: 15-bit number; mybuf: indextype;
lseq: 31-bit number; x: xtype
name: 15-bit number; N : 15-bit number end

Shared variables
X: array 0 . . M − 1 of xtype; BUF: array 0 . . M − 1 of ∗valuetype
NameArray: dynamic array of ∗blocktype; N: 0 . . N

Local persistent variables at each p
locp: blocktype

Initialization
Xk = (0, (0, k)), for all k ∈ {0, 1, . . . , M − 1};
BUFk = the desired initial value of Ok, for all k ∈ {0, 1, . . . , M − 1}; N = 0

procedure LL(p, i, retval) procedure SC(p, i, v) returns boolean
1: locp.Announce = i 15: copy ∗v into ∗GetBuf(locp.mybuf)
2: locp.Help = (++locp.lseq, 1, locp.mybuf) 16: if ¬CAS(Xi, locp.x,

3: locp.x = Xi (locp.x.seq + 1, locp.mybuf))
4: copy ∗GetBuf(locp.x.buf) into ∗retval 17: return false
5: if ¬CAS(locp.Help, 18: enqueue(locp.Q, locp.x.buf)

(locp.lseq, 1, locp.mybuf), 19: if (locp.N < N)

(locp.lseq, 0, locp.mybuf)) 20: locp.N++
6: locp.mybuf = locp.Help.buf 21: da write(locp.BUF, locp.N,

7: b = GetBuf(locp.mybuf) malloc(W + 1))

8: locp.x = bW 22: locp.mybuf = (1, locp.name, locp.N)

9: copy ∗b into ∗retval 23: else locp.mybuf = dequeue(locp.Q)

10: return 24: l = da read(NameArray, locp.index)
25: if (l→Help ≡ (s, 1, c))

procedure GetBuf(b) returns ∗valuetype 26: j = l→Announce
11: if (b.type = 0) return BUFb.bindex 27: x = X j
12: l = da read(NameArray, b.name) 28: d = GetBuf(locp.mybuf)
13: return da read(l→BUF, b.bindex) 29: copy ∗GetBuf(x.buf) into ∗d

30: dW = x
31: if CAS(l→Help, (s, 1, c),

(s, 0, locp.mybuf))
32: locp.mybuf = c

procedure VL(p, i) returns boolean 33: locp.index = (locp.index + 1) mod locp.N
14: return (Xi = locp.x) 34: return true

Figure 7.1: Code for procedures LL, SC, and VL of Algorithm 7.3

102

in the algorithm has a unique memory block. The algorithm also assigns (during

the Join procedure) a unique name to each participating process. This name is guar-

anteed to be small: if K processes are currently participating in the algorithm, then

a new process joining the algorithm will be assigned a name in the range 0 . . K .

(Hence, a process’ name is sure the be smaller than N.) A process stores this name

in a variable name located at that process’s memory block. If a process p has a

name n, then the nth location in (dynamic) array NameArray holds a pointer to

the memory block owned by p. When p leaves the algorithm, it leaves its memory

block in the nth location of NameArray; this block will be used later by another

process that obtains name n.

We now explain the code at Lines 19–23. After a process p inserts the index

of the previous current buffer into its local queue (Line 18), it checks whether its

estimate N matches the actual value N (Line 19). If it doesn’t, then p increments its

estimate N by one (Line 20). Next, p allocates a new buffer, and then writes that

buffer into the N th location of its BUF array (Line 21). By doing so, p implicitly

increments the length of array BUF to N + 1, thus maintaining the earlier stated

invariant on the length of BUF. Then, p takes the buffer it had allocated and uses it

as its own local buffer (Line 22). Notice that, in this case, p does not dequeue an

index from its local queue; hence, p implicitly increases the length of its queue to

N , thus maintaining the earlier stated invariant on the size of Q.

If, on the other hand, N does match the value of N, then p withdraws a new

buffer index from its local queue and uses that buffer as its own local buffer

(Line 23). The only other major change is at Line 33, where p increments its

variable index by 1 modulo its local estimate N (versus a fixed N in the original

algorithm). The changes at Lines 12, 13, and 24 are due to the fact that array

103

NameArray, as well as the arrays BUF located at process’ memory blocks, are

now dynamic arrays.

Recall that in the original algorithm where N was fixed, each process p made

a promise not to reuse the buffer B that held some Oi ’s current value until p

performed at least N successful SC operations. (Process p kept its promise by

enqueueing B’s index into its local queue, which was of length at least N at all

times.) This promise gave p enough time to help all other processes interested in

B to obtain valid values for their LL operations, before overwriting B. To ensure

that all N processes are helped during this time, p would help a process with name

j = index during an SC operation, and then increment index by 1 modulo N . Since

N is not fixed in the new algorithm, and since each process increments its index

variable modulo its local estimate N , it is not clear that the above property still

holds. We now show that it does.

Suppose that some process q reads (at Line 3 of its LL) the tag of a buffer B

that holds the current value of an object Oi . Suppose further that after q performs

that read, some process p performs a successful SC on Oi . Then, we will show

that p does not reuse B before it checks whether q needs help, thereby ensuring

that the above property holds. In the following, we let n and j denote, respectively,

the values of p’s estimate N and p’s variable index, at the time t when p inserts

B’s index into its local queue Q (Line 18).

Notice that, by the algorithm, there are n items already in the local queue when

B’s index is inserted at time t . Hence, B is not written until p performs at least

n + 1 dequeues on its local queue. Notice further that, each time p satisfies the

condition at Line 19, the following holds: (1) p does not dequeue an element from

its local queue, and (2) the values of N and index both increase by one. Moreover,

104

each time p does not satisfy the condition at Line 19, the following holds: (1)

p dequeues an element from its local queue, and (2) the value of N remains the

same and index increases by one (modulo N). As a result, the value of index wraps

around to 0 after p dequeues exactly n− j elements from its local queue. Let t ′ > t

be the first time after t when index wraps around to 0, and let n ′ be the value of N

at time t ′. Then, p dequeues at most j elements from the local queue before index

again reaches value j . Consequently, at the moment when p performs the (n +1)st

dequeue from its local queue (which returns the index of B), variable index has

gone through the values j, j + 1, . . . , n ′ − 1, 0, 1, . . . j − 1, j , and processes with

names j, j + 1, . . . , n ′ − 1, 0, 1, . . . , j − 1 have been helped by p. Since q has

obtained a name prior to time t , it follows that q’s name is certainly less than n ′

Therefore, p would have checked whether q needs help before reusing B, which

proves the above property.

We now turn to Figure 7.2 which gives the code for procedures Join and Leave

of Algorithm 7.3.

Implementation of Join and Leave

As we stated earlier, the Join operation must (1) give each process a unique name,

(2) give each process a unique memory block, (3) ensure that if K processes are

participating in an algorithm then a new process obtains a name in the range 0 . . K ,

(4) guarantee that if a process obtains a name n, then a pointer to its memory block

has been written into the nth location of the array NameArray, and (5) ensure

that variable N holds the maximum number of processes that have simultaneously

participated in the algorithm so far. We now explain how the implementation in

Figure 7.2 ensures these properties.

105

Types
nodetype = record owned: boolean; loc: blocktype; next: ∗nodetype end

Shared variables
Head: ∗nodetype

Local persistent variables at each process p
node p: ∗nodetype

Initialization
Head = malloc(sizeof nodetype); Head→owned = false; Head→next = ⊥

Head→loc = malloc(sizeof blocktype); Head→loc→Help = (0, 0, ∗)

Init(∗(Head→loc), 0)

procedure Join(p) procedure Leave(p)

35: mynode = malloc(sizeof nodetype) 61: node p→owned = false
36: mynode→owned = true
37: mynode→next = ⊥ procedure Init(loc, name)
38: mynode→loc = malloc(sizeof blocktype) 62: loc.N = 1
39: mynode→loc→Help = (0, 0, ∗) 63: da write(loc.BUF, 0,

40: name = 0 malloc(W + 1))

41: cur = Head 64: da write(loc.BUF, 1,

42: while (true) malloc(W + 1))

43: if CAS(cur→owned, false, true) 65: loc.mybuf = (1, name, 0)

44: free(mynode→loc) 66: enqueue(loc.Q, (1, name, 1))

45: free(mynode) 67: loc.index = 0
46: break 68: loc.name = name
47: da write(NameArray, name, cur→loc)

48: name++
49: if (cur→next = ⊥)

50: if CAS(cur→next,⊥, mynode)
51: cur = mynode
52: break
53: cur = cur→next
54: da write(NameArray, name, cur→loc)

55: while ((n = N) < name + 1)

56: CAS(N, n, name + 1)

57: locp = ∗(cur→loc)

58: node p = cur
59: if (cur = mynode)
60: Init(locp, name)

Figure 7.2: Code for procedures Join and Leave of Algorithm 7.3, based on the
renaming algorithm of Herlihy et al. [HLM03b] and the algorithm for allocating
hazard-pointer records by Michael [Mic04a]

106

The algorithm for Join and Leave is essentially the same as the renaming al-

gorithm of Herlihy et al. [HLM03b] and the algorithm for allocating new hazard-

pointer records of Michael [Mic04a]. The algorithm maintains a linked list of

nodes, with variable Head pointing to the head of the list. Each node in the list

has a boolean field owned, which indicates whether the node is owned by some

process or not. A node can be owned by at most one process at any given time.

If a process p captures ownership of the kth node in the list, then its also captures

ownership of the name k.2 Each node in the list also has a field loc which holds

the pointer to a memory block. The idea is that when a process p captures own-

ership of some node it also captures ownership of the memory block at that node,

and will use that memory block in the LL/SC algorithm. Each node in the list has

a field next which holds the pointer to the next node in the list. Finally, process

p’s local persistent variable node p holds the pointer to the node owned by p.

We now explain how the algorithm works. When a process p wishes to join the

algorithm, it first prepares a new node that it will attempt to insert into the linked

list (Lines 35–39). Next, it initializes its local variable name to 0, and, starting at

the head of the list, tries to capture the first available node in the list (Lines 41–

53). As we stated earlier, if p succeeds in capturing the kth node in the list, then it

has also captured ownership of the name k, as well as the memory block stored at

that node. While traversing through the list, process p also makes sure that array

NameArray matches the contents of the linked list, i.e., that the j th location in

the array holds the pointer to the memory block stored at the j th node in the list.

In order to capture a node, p performs the CAS operation on the owned field

of that node (Line 43), trying to change its value from false (indicating that no
2We assume that the list starts with the 0th node.

107

process owns the node), to true (indicating that the node is owned by some pro-

cess). If p’s CAS succeeds, it means that p has successfully captured the node

and so p terminates the loop and frees up the node that it had previously allocated

(Lines 44–46). If p fails to in capturing a node (because a node was already owned

by some other process, or because some other process’s CAS succeeded before

p’s), p increments its variable name (Line 48), and then writes the memory block

at that node into array NameArray (Line 47). Next, p checks whether it is at the

last node in the list (Line 49), and if so, it tries to insert its own node at the back of

the list (Line 50). If p’s CAS succeeds, it means that p has successfully installed

its node at the end of the list. Furthermore, since p had already set the owned

field of that node to true (at Line 36), it means that p has ownership of that node.

Hence, p terminates its loop at Line 52. If, on the other hand, p’s CAS fails, it

means that some other process must have inserted its own node into the list. In that

case, the node that p was currently visiting is no longer the last node in the list. So,

p moves on to the next node in the list (Line 53) and repeats the above steps.

By the above algorithm, at the moment when p exits the loop, its variable

name holds the position of the node in the list that p had captured (which is the

same as p’s new name). Since p had not previously written that node into array

NameArray, p does so at Line 54. Notice that, if p captures the kth node in

the list (i.e., if p’s name is k), it means that p must have found the first k nodes

to be owned by other processes. (Recall that the list starts with the 0th node.)

Hence, the number of processes participating in the algorithm when p captures the

kth node is k + 1 or more [HLM03b]. To ensure that variable N, which holds the

maximum number of processes participating in the algorithm so far, is up to date,

process p performs the following steps. First, p reads N (Line 55). If the value

108

of N is smaller than k + 1, then p tries to write k + 1 into N (Line 56). There are

two possibilities: either p’s CAS succeeds or it fails. In the former case, N has

been correctly updated; furthermore, the next time next time p tests the condition

at Line 55, it will break out of the loop. In the latter case, some other process

must have written into N and p may have to repeat the loop. However, since N is

increased by at least one with each write, p will repeat the loop at most k +1 times.

Consequently, after p’s last iteration of the loop, N will hold a value greater than

or equal to k + 1.

Next, p sets its two persistent variables node p and locp to point to, respectively,

the node in the list that p had captured and the memory block stored at that node

(Lines 57 and 58). Finally, p checks whether it captured the same node that it had

allocated at the beginning of the Join operation (Line 59). If so, it initializes the

memory block stored at that node (Line 60). If p had captured some other node,

then the memory block at that node has already been initialized (by a process who

inserted that node into the list), and so there is no need for p to initialize that

memory block.

The initialization of a block proceeds as follows. First, p sets the estimate of

N to 1 (Line 62). Next, it allocated two new buffers and writes them at locations

0 and 1 of the array BUF (Lines 63 and 64). Then, p takes one of the two buffers

to be its local buffer (Line 65) and enqueues the index of the other buffer into the

local queue Q (Line 66). Finally, p sets its variable index to 0 and its variable name

to name (Lines 67 and 68).

Operation Leave is extremely simple: p simply releases the ownership of the

node it had previously captured during its Join operation (Line 61)

Based on the above discussion, we have the following theorem. Its proof is

109

given in Appendix A.4.2.

Theorem 12 Algorithm 7.3 is wait-free and implements an array O0 . . M − 1 of

M linearizable W-word LL/SC objects. The time complexity of LL, SC and VL

operations on O are O(W), O(W) and O(1), respectively. The time complexity of

Join and Leave operations is O(K) and O(1), respectively, where K is the maxi-

mum number of processes that have simultaneously participated in the algorithm.

The space complexity of the implementation is O(Kk + (K 2 + M)W), where k is

the maximum number of outstanding LL operations of a given process.

7.2 Implementing a word-sized LL/SC object for an un-

known number of processes

We now present Algorithm 7.4 that implements a word-sized LL/SC object shared

by any number of processes in which the Join procedure runs in O(1) time. The

time complexities of LL, SC, and VL operations are O(1), and the space com-

plexity of the algorithm is O(K 2 + K M). This algorithm is a modified version of

Algorithm 4.1 (see Chapter 4). Below, we describe how the algorithm works.

Recall that Algorithm 4.1 stores the process id and a sequence number together

in a central variable X. The assumption is that, once a process p reads a process id

q from X, it can immediately locate all the shared variables owned by q, namely,

oldseqq , oldvalq , valq0, and valq1. Although the exact mechanism as to

how p learns the locations of q’s shared variables is not described in the algorithm,

it is easy to see that the following approach will do: maintain an array A of length

N , with one entry for each process, and store in each entry Ar the address of the

110

Types
valuetype = 64-bit value
xtype = record type: {0, 1}; if (type = 0) (name: 20-bit number; seqnum: 43-bit number)

else (ptr: ∗blocktype) end
blocktype = record name: 20-bit number; val0, val1, oldval: valuetype;

oldseq: 43-bit number end
Shared variables

X: xtype; D: dynamic array of ∗blocktype; N: 20-bit number
Local persistent variables at each p

x p : xtype; seqp: 43-bit number; locp: blocktype; firstp: boolean
Initialization

loc = malloc(sizeof ∗blocktype); loc→oldseq = 0;
loc→val1 = vinit,the desired initial value of O; loc→name = 0;
X = (1, loc); N = 0

procedure LL(p,O) returns valuetype procedure SC(p,O, v) returns boolean
1: x p = X 17: locp.valseqp mod 2 = v

2: if (x p.type = 1) 18: if (firstp)

3: l = x p.ptr 19: locp.name = N
4: k = 1 20: if (succ = CAS(X, x p, (1, &locp)))

5: da write(D, l→name, l) 21: firstp = false
6: CAS(N, l→name, l→name+ 1) 22: else succ = CAS(X, x p, (0, locp.name, seqp))

7: else l = da read(D, x p .name) 23: if (succ)
8: k = x p.seqnum 24: locp.oldval = locp.val(seqp − 1) mod 2
9: v = l→valk mod 2 25: locp.oldseq = seqp − 1
10: k′ = l→oldseq 26: seqp = seqp + 1
11: if (k ′ = k − 2) ∨ (k ′ = k − 1) return v 27: return true
12: v′ = l→oldval 28: return false
13: return v′

procedure VL(p,O) returns boolean
procedure Join(p) 29: return (X = x p)

14: seqp = 1
15: locp.oldseq = 0
16: firstp = true

Algorithm 7.4: An unbounded implementation of the 64-bit LL/SC object O shared
by an unknown number of processes

111

block containing r ’s shared variables. To lean the location of q’s shared variables,

p simply reads the address stored in Aq.

To simulate the above approach in the new algorithm (where N is not known

in advance), we keep a dynamic array D in place of the static array A. This array

will grow in size as more processes keep joining the algorithm. When a process p

joins the algorithm, it first obtains a name—say, i—which will be its unique index

into the array D. Next, p inserts the address of the block that contains p’s shared

variables into location i of array D. From this point onwards, p uses its name i in

place of its process id, i.e., it writes i into X instead of p. It is easy to see that if

some process q reads i from X, it can learn the location of p’s shared variables by

simply consulting the i th location in array D.

The main challenge in implementing the above scheme is to allow concur-

rent processes to obtain unique names in O(1) time. Below, we explain how the

algorithm addresses this issue. We start by describing the variables used by the

algorithm.

Each process p maintains a block of memory where it keeps its shared vari-

ables, namely, oldseq, oldval, val0, and val1 (which have the same mean-

ing as in Algorithm 4.1), as well as a new variable name which holds p’s name.

The address of this memory block is kept in p’s local variable loc p. In addition

to locp, each process p maintains the following three (local) variables: (1) seq p,

which stores p’s sequence number, (2) x p, which stores the value of X that p had

read in its latest LL operation, and (3) first p, which holds value true if p hasn’t yet

performed a successful SC operation, and false otherwise.

In addition to the variables stored at each process, there are two global shared

variables, namely, X and N. Variable N stores an unbounded integer, and is used by

112

processes to acquire names. Variable X stores the following information: if q is

the latest process to perform a successful SC, then X holds either (1) a pair (1, b),

where b is a pointer to q’s block of memory, or (2) a tuple (0, k, s), where k is q’s

name and s is a sequence number.

We now explain the procedure SC(p,O, v) that describes how a process p

performs an SC operation on O to attempt to change O’s value to v. First, p

makes available the value v in loc p.val0 if the sequence number is even, or in

locp.val1 if the sequence number is odd (Line 17). Next, p checks whether it

had previously performed at least one successful SC (Line 18). If it hasn’t, then

p reads variable N to obtain a name, and saves that name in loc p.name (Line 19).

(Multiple processes reading N at the same time may get the same name; however,

only one process will actually keep that name, as we explain below.) Next, p tries

to make its SC operation take effect by changing the value in X from the value that

p had witnessed in its latest LL operation to a value (1, &loc p) (Line 20). If the

CAS operation succeeds, then p’s SC is successful. Since it is p’s first successful

SC, p updates variable first p to false (Line 21). Furthermore, p keeps the name

it had read from N. If, on the other hand, p’s CAS fails, then p’s SC has failed

and so p terminates its SC procedure by returning false (Line 28). Furthermore, p

discards the name it had read from N. Therefore, of all processes that had read N at

the same time, only one process (namely, the process that performed a successful

CAS on X) actually keeps that name; all other processes abandon it, and attempt to

capture a name again during their subsequent SC operations.

If p had previously performed a successful SC (Line 18), p attempts to change

the value in X to a value (0, i, s), where i is p’s name and s is a sequence num-

ber (Line 22). Again, if the CAS operation succeeds, then p’s SC is successful.

113

Otherwise, p’s SC has failed, and p terminates its SC procedure by returning false

(Line 28).

If p’s SC is successful (for the first time or not), p performs the same steps as

in Algorithm 4.1. Namely, it (1) writes into loc p.oldval the value written by p’s

earlier successful SC (Line 24), (2) writes into loc p.oldval the sequence number

of that SC (Line 25), and (3) increments its sequence number (Line 26). Finally, p

signals successful completion of the SC by returning true (Line 27).

We now turn to the procedure LL(p,O) that describes how a process p per-

forms an LL operation on O. In the following, let SCq,i denote the i th successful

SC by process q, and vq,i denote the value written in O by SCq,i . First, p reads the

current value x of variable X (Line 1). Suppose that SCq,k is the latest successful

SC operation to write into X before p reads X. Then, if x = (1, l) (Line 2), we

have k = 1 (Line 4). Furthermore, l is the address of the memory block containing

q’s shared variables. Since it is possible that l has not yet been inserted into the

DynamicArray D, p inserts l into D (Line 5) and increments N to a value that is by

one greater than the value of q’s name (Line 6). By doing so, q ensures that before

another process obtains a new name, the following holds: (1) the address of p’s

memory block has been inserted into D, and (2) variable N is by one greater than

p’s name. As a result, each process obtains a name that is unique, and all entries in

array D are written (for the first time) in sequential order: entry j is written before

entry j + 1, for all j ≥ 0.

If x = (0, i, k) (Line 2), then we have k > 1. Furthermore, by the above

argument, the address l of q’s memory block has already been written into location

i of array D. So, p simply reads that location to obtain l (Line 7).

Notice that, in both of the above cases, p is able to obtain address l of q’s

114

memory block: either directly from X (Line 3), or indirectly from D (Line 7).

From this point onwards, p proceeds in the same way as in Algorithm 4.1. In

particular, p first reads l→valk mod 2 to try to learn vq,k (Line 9). Next, p reads

the sequence number k ′ in l →oldseq (Line 10). If k ′ = k − 2 or k ′ = k − 1,

then SCq,k+1 has not yet completed, and the value v obtained on Line 9 is vq,k .

So, p terminates the LL operation, returning v (Line 11). If k ′ ≥ k, q must have

completed SCq,k+1. Hence, the value in l→oldval is vq,k or a later value (more

precisely, the value in l→oldval is vq,i for some i ≥ k). Therefore, the value in

l→oldval is not too old for p’s LL to return. Accordingly, p reads the value v ′

of l→oldval (Line 12) and returns it (Line 13).

The VL procedure is self-explanatory. Based on the above, we have the fol-

lowing theorem. Its proof is given in Appendix A.4.3.

Theorem 13 Algorithm 7.4 is wait-free and implements a linearizable 64-bit

LL/SC object from 64-bit CAS objects and registers. The time complexity of Join,

LL, SC, and VL is O(1). The space complexity of the algorithm is O(K 2 + K M),

where K is the total number of processes that have joined the algorithm and M is

the number of implemented LL/SC objects.

115

Chapter 8

Conclusion and future work

The goal of this thesis was to bridge the gap that exists between the instructions

that are available on most modern multiprocessors (namely, CAS or RLL/RSC),

and the instructions that are of interest to algorithm designers (namely, LL/SC). To

this effect, we have presented a series of time-optimal, wait-free algorithms that

implement LL/SC objects from CAS objects and registers. We started with Algo-

rithm 4.1 that implements a single word-sized LL/SC object shared by a fixed num-

ber of processes, and finished with Algorithm 7.3 that implements a large number

of multiword LL/SC objects shared by an unknown number of processes. When

constructing a large number of LL/SC objects, the latter is the first algorithm in

the literature to be simultaneously (1) wait-free, (2) time optimal, and (3) space

efficient. The next section summarizes the results of the thesis in more detail.

116

8.1 Summary of the results

This thesis presents a total of eight algorithms that implement LL/SC objects from

CAS objects and registers. Below, we summarize these results.

1. Word-sized LL/SC. In Chapter 4, we presented a wait-free implementation of a

word-sized LL/SC object from a word-sized CAS object and registers. We

have given three algorithms: the first algorithm uses unbounded sequence

numbers; the other two use bounded sequence numbers. The time complexity

of LL and SC in all three algorithms is O(1), and the space complexity of the

algorithms is O(N) per implemented object, where N is the number of pro-

cesses accessing the object. The space complexity of implementing M LL/SC

objects is O(N M), and the algorithms require N to be known in advance.

2. Multiword LL/SC. In Chapter 5, we presented a wait-free implementation of a

W -word LL/SC object (from word-sized CAS objects and registers). The time

complexity of LL and SC is O(W), and the space complexity of the algorithm

is O(NW) per implemented object, where N is the number of processes ac-

cessing the object. The space complexity of implementing M LL/SC objects

is O(N MW). This algorithm requires N to be known in advance, and it uses

unbounded sequence numbers.

3. Multiword LL/SC for large number of objects. In Chapter 6, we presented a

wait-free implementation of an array of M W -word LL/SC objects (from

word-sized CAS objects and registers). This algorithm improves the space

complexity of the algorithm in Chapter 5 when implementing a large number

of LL/SC objects (i.e., when M � N). In particular, the space complexity of

117

the algorithm is O((N 2 + M)W), where N is the number of processes access-

ing the objects. The time complexity of LL and SC is O(W). The algorithm

requires N to be known in advance, and it uses unbounded sequence numbers.

We also presented a wait-free implementation of an array of M W -word Weak-

LL/SC objects from word-sized CAS objects and registers. The time complex-

ity of WLL and SC is O(W), and the space complexity of the algorithm is

O((N + M)W), where N is the number of processes accessing the object.

The CAS-time-complexity of WLL and SC is O(1). The algorithm requires

N to be known in advance, and it uses unbounded sequence numbers.

4. LL/SC algorithms for an unknown N. In Chapter 7, we presented a wait-free

implementation of an array of M W -word LL/SC objects (from word-sized

CAS objects and registers), shared by an unknown number of processes. This

algorithm supports two new operations—Join(p) and Leave(p)—which allow

a process p to join and leave the algorithm at any given time. If K is the

maximum number of processes that have simultaneously participated in the

algorithm (i.e., have joined the algorithm but have not yet left it), then the

space complexity of the algorithm is O((K 2 + M)W). The time complexities

of procedures Join, Leave, LL, and SC are O(K), O(1), O(W), and O(W),

respectively.

We also presented a wait-free implementation of a word-sized LL/SC object

(from a word-sized CAS object and registers) that does not require N to be

known in advance. The attractive feature of this algorithm is that the Join pro-

cedure runs in O(1) time. This algorithm, however, does not allow processes

to leave. The time complexities of LL and SC operations are O(1), and the

118

space complexity of the algorithm is O(K 2 + K M).

8.2 Future work

We would like to extend the results in this thesis in the following ways.

• The following problem is still open: design a time-optimal, wait-free algo-

rithm that implements M word-sized LL/SC objects from CAS objects and

registers, using only O(N + M) space. This problem is important because,

if solved, it would present a way to simulate the memory supporting LL and

SC instructions on any modern hardware with virtually no time and space

overhead. We would like to tackle this problem by either (1) designing an

algorithm for it, or (2) show that no such algorithm exists. If latter is the case,

it would be interesting to see whether the problem becomes solvable if some

other hardware instructions are also available for the task (e.g., fetch&Add,

fetch&Store), or if we are willing to sacrifice the time-optimality requirement

and seek, for example, an O(lg N)-time solution.

• It would be interesting to measure the performance of our LL/SC algorithms

on real multiprocessor systems and compare it with other LL/SC algorithms

in the literature. This exercise would help us understand better all the fac-

tors that figure in the performance of an LL/SC algorithm in practice. Also,

we would like to test the performance of our algorithms on the emerging

multi-core systems and see what the differences are compared to the multi-

processor systems. We also plan to make the code for LL/SC available to the

public.

119

• We plan to use LL/SC instructions to design efficient wait-free algorithms

for shared objects such as such as queues, stacks, adaptive snapshots etc. We

have some encouraging preliminary results [JP05, Pet05].

120

Bibliography

[ADT95] Y. Afek, D. Dauber, and D. Touitou. Wait-free made fast. In Proceed-

ings of the 27th Annual ACM Symposium on Theory of Computing,

pages 538–547, 1995.

[AM95a] J. Anderson and M. Moir. Universal constructions for large objects.

In Proceedings of the 9th International Workshop on Distributed Al-

gorithms, pages 168–182, September 1995.

[AM95b] J. Anderson and M. Moir. Universal constructions for multi-object

operations. In Proceedings of the 14th Annual ACM Symposium on

Principles of Distributed Computing, pages 184–194, August 1995.

[Bar93] G. Barnes. A method for implementing lock-free shared data struc-

tures. In Proceedings of the 5th Annual ACM Symposium on Parallel

Algorithms and Architectures, pages 261–270, 1993.

[CJT98] T.D. Chandra, P. Jayanti, and K. Y. Tan. A polylog time wait-free

construction for closed objects. In Proceedings of the 17th Annual

Symposium on Principles of Distributed Computing, pages 287–296,

June 1998.

121

[DHLM04] S. Doherty, M. Herlihy, V. Luchangco, and M. Moir. Bringing practi-

cal lock-free synchronization to 64-bit applications. In Proceedings of

the 23rd Annual ACM Symposium on Principles of Distributed Com-

puting, pages 31–39, 2004.

[DMMJ02] D. Detlefs, P. Martin, M. Moir, and G. Steele Jr. Lock-free reference

counting. Distributed Computing, 15(4):255–271, 2002.

[Her91] M.P. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124–

149, 1991.

[Her93] M. Herlihy. A methodology for implementing highly concurrent data

structures. ACM Transactions on Programming Languages and Sys-

tems, 15(5):745–770, 1993.

[HLM03a] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchro-

nization: Double-ended queues as an example. In Proceedings of

the 23rd International Conference on Distributed Computing Systems,

2003.

[HLM03b] M. Herlihy, V. Luchangco, and M. Moir. Space- and time-adaptive

nonblocking data structures. In Proceedings of Computing: Aus-

tralasian Theory Symposium, 2003.

[HW90] M.P. Herlihy and J.M. Wing. Linearizability: A correctness condition

for concurrent objects. ACM TOPLAS, 12(3):463–492, 1990.

[Ibm83] IBM T.J Watson Research Center. System/370 Principles of Opera-

tion, 1983. Order Number GA22-7000.

122

[IR94] A. Israeli and L. Rappoport. Disjoint-Access-Parallel implementa-

tions of strong shared-memory primitives. In Proceedings of the 13th

Annual ACM Symposium on Principles of Distributed Computing,

pages 151–160, August 1994.

[Ita02] Intel Corporation. Intel Itanium Architecture Software Developer’s

Manual Volume 1: Application Architecture, 2002. Revision 2.1.

[Jay98] P. Jayanti. A complete and constant time wait-free implementation

of CAS from LL/SC and vice versa. In Proceedings of the 12th In-

ternational Symposium on Distributed Computing, pages 216–230,

September 1998.

[Jay02] P. Jayanti. f-arrays: implementation and applications. In Proceedings

of the 21st Annual Symposium on Principles of Distributed Comput-

ing, pages 270 – 279, 2002.

[Jay03] P. Jayanti. Adaptive and efficient abortable mutual exclusion. In Pro-

ceedings of the 22nd ACM Symposium on Principles of Distributed

Computing, July 2003.

[Jay05] P. Jayanti. An optimal multi-writer snapshot algorithm. In Proceed-

ings of the 37th ACM Symposium on Theory of Computing, 2005.

[JP05] P. Jayanti and S. Petrovic. Logarithmic-time single-deleter multiple-

inserter wait-free queues and stacks. Unpublished manuscript, May

2005.

123

[Lam77] L. Lamport. Concurrent reading and writing. Communications of the

ACM, 20(11):806–811, 1977.

[Lea02] D. Lea. Java specification request for concurrent utilities (JSR166),

2002. http://jcp.org.

[LMS03] V. Luchangco, M. Moir, and N. Shavit. Nonblocking k-compare-

single-swap. In Proceedings of the fifteenth annual ACM symposium

on Parallel algorithms and architectures, pages 314–323, 2003.

[MH02] M. Moir M. Herlihy, V. Luchangco. The repeat offender problem:

A mechanism for supporting dynamic-sized, lock-free data structures.

Lecture Notes in Computer Science, 2508:339–353, 2002.

[Mic04a] M. Michael. Hazard pointers: Safe memory reclamation for lock-

free objects. IEEE Transactions on Parallel and Distributed Systems,

15(6):491–504, 2004.

[Mic04b] M. Michael. Practical lock-free and wait-free LL/SC/VL implementa-

tions using 64-bit CAS. In Proceedings of the 18th Annual Conference

on Distributed Computing, pages 144–158, 2004.

[Mip02] MIPS Computer Systems. MIPS64TMArchitecture For Programmers

Volume II: The MIPS64TMInstruction Set, 2002. Revision 1.00.

[Moi97a] M. Moir. Practical implementations of non-blocking synchronization

primitives. In Proceedings of the 16th Annual ACM Symposium on

Principles of Distributed Computing, pages 219–228, August 1997.

124

[Moi97b] M. Moir. Transparent support for wait-free transactions. In Proceed-

ings of the 11th International Workshop on Distributed Algorithms,

pages 305–319, September 1997.

[Moi01] M. Moir. Laziness pays! Using lazy synchronization mechanisms

to improve non-blocking constructions. Distributed Computing,

14(4):193–204, 2001.

[MS96] M. Michael and M. Scott. Simple, fast, and practical non-blocking and

blocking concurrent queue algorithms. In Proceedings of the 15th An-

nual ACM Symposium on Principles of Distributed Computing, pages

267–276, May 1996.

[Pet83] G. L. Peterson. Concurrent reading while writing. ACM TOPLAS,

5(1):56–65, 1983.

[Pet05] S. Petrovic. Efficient algorithms for the adaptive collect object. Un-

published manuscript, May 2005.

[Pow01] IBM Server Group. IBM e server POWER4 System Microarchitecture,

2001.

[Sit92] R. Site. Alpha Architecture Reference Manual. Digital Equipment

Corporation, 1992.

[Spa] SPARC International. The SPARC Architecture Manual. Version 9.

[ST95] N. Shavit and D. Touitou. Software transactional memory. In Proceed-

ings of the 14th Annual ACM Symposium on Principles of Distributed

Computing, pages 204–213, August 1995.

125

Appendix A

Proofs

Throughout the appendix, we let LP(op) denote the linearization point of the oper-

ation op. We also use the term LP as a shorthand for linearization point.

A.1 Proof of the algorithms in Chapter 4

A.1.1 Proof of Algorithm 4.1

In the following, let SCp,i denote the i th successful SC by process p and v p,i denote

the value written in O by SCp,i . The operations are linearized according to the

following rules. We linearize each SC operation at Line 8 and each VL at Line 14.

Let OP be any execution of the LL operation by p. The linearization point of OP is

determined by two cases. If OP returns at Line 4, then we linearize OP at Line 1.

Otherwise, let SCq,k be the latest successful SC operation to execute Line 8 prior

to Line 1 of OP, and let v ′ be the value that p reads at Line 5 of OP. We show that

there exists some i ≥ k such that (1) at some time t during the execution of OP,

SCq,i was the latest successful SC operation to execute Line 8, and (2) v ′ = vq,i .

126

We then linearize OP at time t .

In the rest of this section, let s denote the number of bits in X reserved for

the sequence number. We show that Algorithm 4.1 is correct under the following

assumption:

Assumption A: During the time interval when some process p executes one LL/SC

pair, no other process q performs more than 2s − 3 successful SC operations.

In the following, we assume that the initializing step was performed by process

0 during its first successful SC operation.

Lemma 3 At the beginning of SCp,i , seqp holds the value i mod 2s .

Proof. Prior to SCp,i , exactly i − 1 successful SC operations are performed by

p. Therefore, variable seq p was incremented exactly i − 1 times prior to SC p,i .

Since seqp is initialized to 1, it follows that at the beginning of SC p,i , seqp holds

the value i mod 2s . ut

Lemma 4 During SCp,i , p writes (p, i mod 2s) into X at Line 8 and (i−1) mod 2s

into oldseqp at Line 10.

Proof. According to Lemma 3, at the beginning of SC p,i , seqp holds the value

i mod 2s . Therefore, p writes (p, i mod 2s) into X at Line 8 and (i − 1) mod 2s

into oldseqp at Line 10. ut

Lemma 5 From the moment p performs Line 7 of SC p,i , until p completes the

SCp,i+1 operation, valpi mod 2 holds the value vp,i .

127

Proof. According to Lemma 3, at the beginning of SC p,i , seqp holds the value

i mod 2s . Since (i mod 2s) mod 2 = i mod 2, it follows that p writes v p,i into

valpi mod 2 at Line 7 of SCp,i . Furthermore, since p increments seq p at Line 11

of SCp,i , the value vp,i (in valpi mod 2) will not be overwritten until seq p reaches

the value (i + 2) mod 2s , which in turn will not happen until p executes Line 11 of

SCp,i+1. Therefore, variable valpi mod 2 holds the value vp,i from the moment

p performs Line 7 of SCp,i , until p completes SCp,i+1. ut

Lemma 6 During SCp,i , p writes vp,i−1 into oldvalp at Line 9.

Proof. By Lemma 5, valp(i − 1) mod 2 holds the value vp,i−1 at all times during

SCp,i . As a result, p writes vp,i−1 into oldvalp at Line 9 of SCp,i . ut

Lemma 7 Let OP be an LL operation by process p, and SCq,k the latest successful

SC operation to execute Line 8 prior to Line 1 of OP. If OP terminates at Line 4,

then it returns the value vq,k .

Proof. Let I be the time interval starting from the moment q performs Line 7 of

SCq,k until q completes SCq,k+1. According to Lemma 5, variable valqk mod 2

holds the value vq,k at all times during I . Furthermore, by Lemma 4, q writes

(q, k mod 2s) into X at Line 8 of SCq,k . Therefore, p reads (q, k mod 2s) from

X at Line 1 of OP. Since (k mod 2s) mod 2 = k mod 2, it follows that p reads

valqk mod 2 at Line 2 of OP. Our goal is to show that p executes Line 2 of OP

during I , and therefore reads vq,k from valqk mod 2.

At the moment when p reads (q, k mod 2s) from X at Line 1 of OP, q must

have already executed Line 7 of SCq,k and not yet executed Line 8 of SCq,k+1.

128

Hence, p executes Line 1 during I . From the fact that OP terminates at Line 4, it

follows that p satisfies the condition at Line 4. Therefore, the value that p reads

from oldseqq at Line 3 of OP is either (k − 2) mod 2s or (k − 1) mod 2s . Hence,

by Lemma 4 and Assumption A, it follows that when p performs Line 3, q did

not yet complete SCq,k+1. So, p executes Line 3 during I . Since p performed

both Lines 1 and 3 during I , it follows that p performs Line 2 during I as well.

Therefore, by Lemma 5, p reads vq,k from valqk mod 2 at Line 2, and the value

that OP returns is vq,k . ut

Lemma 8 Let OP be an LL operation by process p, and SCq,k be the latest suc-

cessful SC operation to execute Line 8 prior to Line 1 of OP. If OP terminates at

Line 6, let v′ be the value that p reads at Line 5 of OP. Then, there exists some

i ≥ k such that (1) at some time t during the execution of OP, SCq,i is the latest

successful SC operation to execute Line 8, (2) SCq,i+1 executes Line 8 during OP,

and (3) v′ = vq,i .

Proof. By Lemma 4, q writes (q, k mod 2s) into X at Line 8 of SCq,k . Therefore,

p reads (q, k mod 2s) from X at Line 1 of OP. Furthermore, since OP terminates

at Line 6, the condition at Line 4 of OP doesn’t hold. Therefore, p reads a value

different than (k − 1) mod 2s and (k − 2) mod 2s from oldseqq at Line 3 of OP.

Then, by Lemma 4, q completes Line 10 of SCq,k+1 before p performs Line 3 of

OP. Consequently, q completes Line 9 of SCq,k+1 before p performs Line 5 of

OP. As a result, the value v ′ that p reads at Line 5 of OP was written by q (into

oldvalq at Line 9) in either SCq,k+1 or a later SC operation by q. We examine

two cases: either v ′ was written by SCq,k+1, or it was written by SCq,i , for some

i ≥ k + 2.

129

In the first case, by Lemma 6, we have v ′ = vq,k . Furthermore, by definition of

SCq,k , at the time when p executes Line 1 of OP, SCq,k is the latest successful SC

to execute Line 8. Finally, by definition of SCq,k and an earlier argument, SCq,k+1

executes Line 8 between Lines 1 and 5 of OP. Hence, the lemma holds in this case.

In the second case, by Lemma 6, we have v ′ = vq,i−1. Since, at the time when p

executes Line 1 of OP, SCq,k is the latest successful SC to execute Line 8, it means

that SCq,i−1 and SCq,i did not execute Line 8 prior to Line 1 of OP. Furthermore,

since SCq,i had executed Line 9 prior to Line 5 of OP, it follows that SCq,i−1 and

SCq,i had executed Line 8 prior to Line 5 of OP. Consequently, SCq,i−1 and SCq,i

had executed Line 8 during OP, which proves the lemma. ut

Lemma 9 (Correctness of LL) Let OP be any LL operation, and OP ′ be the latest

successful SC operation such that LP(OP′) < LP(OP). Then, OP returns the value

written by OP′.

Proof. Let p be the process executing OP. Let SCq,k be the latest successful SC

operation to execute Line 8 prior to Line 1 of OP. We examine the following two

cases: (1) OP returned at Line 4, and (2) OP returned at Line 6. In the first case,

since all SC operations are linearized at Line 8 and since OP is linearized at Line 1,

we have SCq,k = OP′. Furthermore, by Lemma 7, OP returns the value written by

SCq,k . Therefore, the lemma holds. In the second case, by Lemma 8, there exists

some i ≥ k such that (1) at some time t during the execution of OP, SCq,i is the

latest successful SC operation to execute Line 8, and (2) OP returns vq,i . Since all

SC operations are linearized at Line 8 and since OP is linearized at time t , it follows

that SCq,i = OP′. Therefore, the lemma holds in this case as well. ut

130

Lemma 10 Let OP be an LL operation by process p, and SCq,k be the latest suc-

cessful SC operation to execute Line 8 prior to Line 1 of OP. If X does not change

during OP, then OP terminates at Line 4.

Proof. By Lemma 4, q writes (q, k mod 2s) into X at Line 8 of SCq,k . Therefore,

p reads (q, k mod 2s) from X at Line 1 of OP. Since X does not change during OP,

q does not execute Line 8 of SCq,k+1 during OP. Consequently, q does not execute

Line 10 of SCq,k+1, or any later SC operation, during OP. Therefore, by Lemma 6,

p reads either (k − 1) mod 2s or (k − 2) mod 2s from oldseqq at Line 3 of OP.

Hence, p terminates at Line 4. ut

Lemma 11 (Correctness of SC) Let OP be any SC operation by some process p,

and OP′ be the latest LL operation by p that precedes OP. Then, OP succeeds if and

only if there does not exist any successful SC operation OP ′′ such that L P(OP′) <

L P(OP′′) < L P(OP).

Proof. Let SCq,k be the latest successful SC operation to execute Line 8 prior

to Line 1 of OP′. By Lemma 4, q writes (q, k mod 2s) into X at Line 8 of SCq,k .

Therefore, p reads (q, k mod 2s) from X at Line 1 of OP′. If OP returned false,

then clearly the CAS at Line 8 of OP failed, which means that the value in X was

different than (q, k mod 2s). We examine the following two cases: (1) OP ′ returned

at Line 4, and (2) OP′ returned at Line 6. In the first case, from the fact that X was

different than (q, k mod 2s) at Line 8 of OP, it follows that some successful SC

operation OP′′ executed Line 8 between the time p executed Line 1 of OP ′ and the

time p executed Line 8 of OP. Since all SC operations are linearized at Line 8 and

since OP′ is linearized at Line 1, it follows that L P(OP ′) < L P(OP′′) < L P(OP).

131

Hence, OP is correct to return false.

In the second case, by Lemma 8, there exists some i ≥ k such that (1) at some

time t during the execution of OP′, SCq,i is the latest successful SC operation to

execute Line 8, (2) SCq,i+1 executes Line 8 during OP′, and (3) v′ = vq,i . Since

OP′ is linearized at time t and since all SC operations are linearized at Line 8, we

have L P(OP′) < L P(SCq,i+1) < L P(OP). Hence, OP is correct to return false.

If OP returned true, then the CAS at Line 8 of OP succeeded. Hence, the value

in X was equal to (q, k mod 2s). Then, by Assumption A, from the moment p

reads (q, k mod 2s) at Line 1 of OP′, until p executes Line 8 of OP, X does not

change. Hence, by Lemma 10, OP′ terminates at Line 4 and is linearized at Line 1.

Furthermore, no successful SC operation executes Line 8 between Line 1 of OP ′

and Line 8 of OP. Since all SC operations are linearized at Line 8 and since OP ′ is

linearized at Line 1, it follows that no successful SC is linearized between OP ′ and

OP. Hence, OP is correct to return true. ut

Lemma 12 (Correctness of VL) Let OP be any VL operation by some process

p, and OP′ be the latest LL operation by p that precedes OP. Then, OP returns

true if and only if there does not exist any successful SC operation OP ′′ such that

L P(OP′) < L P(OP′′) < L P(OP).

Proof. Similar to the proof of Lemma 11. ut

Theorem 1 Algorithm 4.1 is wait-free and, under Assumption A, implements a

linearizable 64-bit LL/SC object from a single 64-bit CAS object and an additional

six registers per process. The time complexity of LL, SC, and VL is O(1).

Proof. The theorem follows immediately from Lemmas 9, 11, and 12. ut

132

A.1.2 Proof of Algorithm 4.2

We start the proof by giving a formal specification of the WLL/SC object:

Definition 1 Let O be a WLL/SC object. In every execution history H on object

O, the following is true:

• each operation OP takes effect at some instant L P(OP) during its execution

interval.

• if an WLL operation OP performed by process p returns (failure, q), then

there exists a successful SC operation OP ′ performed by process q such that:

1. L P(OP′) lies in the execution interval of OP,

2. L P(OP) < L P(OP′).

• the responses of all successful WLL operations and all VL and SC oper-

ations, when ordered according to their LP times, are consistent with the

sequential specifications of LL, SC and VL.

Let O be the LL/SC object implemented by Algorithm 4.2. Let OP be any LL

operation, OP′ be any SC operation, and OP′′ be any VL operation on O. We let

OP(1), OP(2), OP′(1), and OP′′(1) denote, respectively, the WLL operation at Line 1

of OP, the WLL operation at Line 6 of OP, the SC operation at Line 11 of OP ′, and

the VL operation at Line 12 of OP ′′.

The operations on O are linearized according to the following rules: OP ′ is

linearized at L P(OP′(1)) and OP′′ is linearized at L P(OP′′(1)). The linearization

point of OP is determined by three cases. If OP(1) succeeds, we linearize OP at

L P(OP(1)). If OP(1) fails and OP(2) succeeds, we linearize OP at L P(OP(2)).

133

Otherwise, we linearize OP as follows. Let (failure, q) be the value returned by

OP(1). Then, by Definition 1, there exists some successful SC operation SCq by

process q such that (1) L P(SCq(1)) lies in the execution interval of OP(1), and

(2) L P(OP(1)) < L P(SCq(1)). Let LLq be the latest LL operation by q to write

into lastValq prior to Line 5 of OP. Then, if LLq is executed before SCq , we

linearize OP to the point just prior to L P(SCq). Otherwise, we linearize OP to the

point just prior to L P(LLq). (Notice that L P(LLq) is either at L P(LLq(1)) or

L P(LLq(2)), and so the linearization point of OP is well defined.)

We start by showing that the linearization point for the LL operation always

falls within the execution interval of that operation. (This property trivially holds

for the SC and VL operations.)

Lemma 13 Let OP be any LL operation. Then, L P(OP) falls within the execution

interval of OP.

Proof. If either one of OP(1) and OP(2) succeeds, the lemma trivially holds.

Suppose that both OP(1) and OP(2) fail. Let (failure, q) be the value returned

by OP(1). Then, by Definition 1, there exists some successful SC operation SCq

by q such that (1) L P(SCq(1)) lies in the execution interval of OP(1), and (2)

L P(OP(1)) < L P(SCq(1)). Let LLq be the latest LL operation by q to write into

lastValq prior to Line 5 of OP. We examine the following two cases: (1) LLq is

executed before SCq , and (2) LLq is executed after SCq .

In the first case, OP is linearized to the point just prior to L P(SCq). Since

L P(SCq) = L P(SCq(1)), and since L P(SCq(1)) lies within the execution interval

of OP(1), it follows that the linearization point for OP lies within the execution

interval of OP.

134

In the second case, OP is linearized to the point just prior to L P(LLq). Notice

that, by definition of LLq , L P(LLq) lies before Line 5 of OP. Furthermore, since

LLq is executed after SCq and since L P(SCq(1)) lies in the execution interval

of OP(1), L P(LLq) lies after L P(OP(1)). As a result, L P(LLq) lies within the

execution interval of OP. Consequently, the linearization point for OP lies within

the execution interval of OP, which proves the lemma. ut

Lemma 14 (Correctness of LL) Let OP be any LL operation, and OP ′ be the latest

successful SC operation such that LP(OP′) < LP(OP). Then, OP returns the value

written by OP′.

Proof. We examine the following three cases: (1) OP returns at Line 4, (2) OP

returns at Line 9, and (3) OP returns at Line 10. In the first case, OP(1) succeeds

and OP is linearized at L P(OP(1)). Since OP′ is the latest successful SC operation

such that L P(OP′) < L P(OP), it follows that OP′(1) is the latests successful SC

operation on X such that L P(OP ′(1)) < L P(OP(1)). Let v be the value that OP ′

writes in O. Then, OP(1) returns (success, v). Hence, OP returns v and the lemma

holds in this case. The proof for the second case is identical, and is therefore

omitted.

In the third case, let p be the process executing OP. Since OP returns at Line 10,

it follows that both OP(1) and OP(2) failed. Let (failure, q) be the value returned

by OP(1). Then, by Definition 1, there exists some successful SC operation SCq

by q such that (1) L P(SCq(1)) lies in the execution interval of OP(1), and (2)

L P(OP(1)) < L P(SCq(1)). Let LLq be the latest LL operation by q to write into

lastValq before Line 5 of OP. We examine the following two cases: (1) LLq is

executed before SCq , and (2) LLq is executed after SCq .

135

In the first case, let OP′′ be the latest LL operation by q to precede SCq . Then,

we show that OP′′ = LLq . Notice that, since L P(SCq(1)) succeeds, one of OP′′(1)

and OP′′(2) must have succeeded. Hence, OP′′ writes into lastValq. As a result,

OP′′ is the latest LL operation by q to write into lastValq prior to SCq . Since

L P(SCq(1)) lies in the execution interval of OP(1), it follows that L P(SCq(1))

takes place before Line 5 of OP. Furthermore, since LLq is executed before SCq , it

follows that LLq is the latest LL by q to write into lastValq prior to SCq . Hence,

we have OP′′ = LLq .

Notice that, since OP is linearized just prior to L P(SCq), it means that OP′

is the latest successful SC operation such that L P(OP ′) < L P(SCq). Conse-

quently, OP′(1) is the latest successful SC operation on X such that L P(OP ′(1)) <

L P(SCq(1)). Let v be the value that OP ′ writes in O. Then, since SCq(1) suc-

ceeds, it means that either LLq(1) or LLq(2) returns (success, v). Therefore, LLq

writes v into lastValq. Since LLq is the latest LL operation by q to write into

lastValq prior to Line 5 of OP, it means that OP returns v. Hence, the lemma

holds in this case.

In the second case (when LLq is executed after SCq), OP is linearized just

prior to L P(LLq). Hence, OP′ is the latest successful SC operation such that

L P(OP′) < L P(LLq). Since LLq writes into lastValq , it follows that LLq

is linearized at either L P(LLq(1)) or L P(LLq(2)). Consequently, OP′(1) is the

latest successful SC operation on X such that L P(OP ′(1)) < L P(LLq(1)) or

L P(OP′(1)) < L P(LLq(2)). Let v be the value that OP ′ writes in O. Then, LLq(1)

or LLq(2) returns (success, v), and LLq writes v into lastValq. Since LLq is the

latest LL operation to write into lastValq prior to Line 5 of OP, it means that OP

returns v. Hence, the lemma holds in this case as well. ut

136

Lemma 15 (Correctness of SC) Let OP be any SC operation by some process p,

and OP′ be the latest LL operation by p that precedes OP. Then, OP succeeds if and

only if there does not exist any successful SC operation OP ′′ such that L P(OP′) <

L P(OP′′) < L P(OP).

Proof. If OP returns false, we examine the following three cases: (1) OP ′(1) suc-

ceeds, (2) OP′(1) fails and OP′(2) succeeds, and (3) both OP′(1) and OP′(2) fail. In

the first case, since OP returns false, there exists some successful SC operation OP ′′

such that L P(OP′(1)) < L P(OP′′(1)) < L P(OP(1)). Since by our linearization,

OP′ is linearized at L P(OP′(1)), OP′′ is linearized at L P(OP′′(1)), and OP is lin-

earized at L P(OP(1)), we have L P(OP ′) < L P(OP′′) < L P(OP). Hence, OP is

correct to return false. The proof for the second case is identical, and is therefore

omitted.

In the third case, let (failure, q) be the value returned by OP ′(1). Then,

by Definition 1, there exists some successful SC operation SCq by q such that

(1) L P(SCq(1)) lies in the execution interval of OP ′(1), and (2) L P(OP′(1)) <

L P(SCq(1)). Let LLq be the latest LL operation by q to write into lastValq

prior to Line 5 of OP. We examine the following two cases: (1) LLq is executed

before SCq , and (2) LLq is executed after SCq . In the first case, OP′ is linearized

at the point just prior to L P(SCq). Since L P(SCq) = L P(SCq(1)), and since

L P(SCq(1)) lies in the execution interval of OP ′(1), it follows that L P(OP′) lies

before Line 5 of OP′. In the second case, OP′ is linearized at the point just prior

to L P(LLq). Since, by definition of LLq , L P(LLq) lies before Line 5 of OP′, it

follows in this case too that L P(OP′) lies before Line 5 of OP′. Let (failure, r)

be the value returned by OP′(2). Then, by Definition 1, there exists some suc-

137

cessful SC operation SCr by r such that (1) L P(SCr(1)) lies in the execution

interval of OP′(2), and (2) L P(OP′(2)) < L P(SCr(1)). Consequently, we have

L P(OP′) < L P(SCr(1)) < L P(OP). Since L P(SCr) = L P(SCr(1)), we have

L P(OP′) < L P(SCr) < L P(OP). Hence, OP is correct to return false.

If OP returns true, then clearly OP(1) succeeds. Hence, either OP ′(1) or OP′(2)

succeeds. Without loss of generality, assume that OP ′(1) succeeds. Then, by

Definition 1, there does not exist any successful SC operation SCq such that

L P(OP′(1)) < L P(SCq(1)) < L P(OP(1)). Since OP′ is linearized at L P(OP′(1)),

OP is linearized at L P(OP(1)), and any other successful SC operation SCq is lin-

earized at L P(SCq(1)), it follows that there does not exist any successful SC op-

eration SCq such that L P(OP′) < L P(SCq) < L P(OP). Hence, OP is correct to

return true. ut

Lemma 16 (Correctness of VL) Let OP be any VL operation by some process

p, and OP′ be the latest LL operation by p that precedes OP. Then, OP returns

true if and only if there does not exist any successful SC operation OP ′′ such that

L P(OP′) < L P(OP′′) < L P(OP).

Proof. Similar to the proof of Lemma 15. ut

Theorem 2 Algorithm 4.2 is wait-free and implements a linearizable 64-bit LL/SC

object from a single 64-bit WLL/SC object and one additional 64-bit register per

process. The time complexity of LL, SC, and VL is O(1).

Proof. The theorem follows immediately from Lemmas 14, 15, and 16. ut

138

A.1.3 Proof of Algorithm 4.3

Let O be the WLL/SC object implemented by Algorithm 4.3. Let OP be any WLL

operation, OP′ be any SC operation, and OP′′ be any VL operation on O. Then, we

set L P(OP) at Line 1, L P(OP′) at Line 7, and L P(OP′′) at Line 10.

In the following, let SCp,i denote the i th successful SC on O by process p and

vp,i denote the value written in O by SCp,i . We will assume that the initializing

step was performed by process 0 during its first successful SC operation.

Lemma 17 Let SCp,i be a successful SC operation by process p. If i is odd, then

p changes the value of index p from 1 to 0 at Line 8 of SCp,i . Otherwise, p changes

the value of index p from 0 to 1 at Line 8 of SCp,i .

Proof. (By induction) For the base case (i.e., i = 1), the lemma holds trivially

by initialization. The inductive hypothesis states that the lemma holds for some

SCp,k , k ≥ 1. We now show that the lemma holds for SC p,k+1 as well. If k + 1

is odd, then, by inductive hypothesis, p changes the value of index p from 0 to 1

at Line 8 of SCp,k . Therefore, at the beginning of SC p,k+1, the value of index p is

1. Consequently, p changes index p to 1 − 1 = 0 at Line 8 of SCp,k+1. Hence, the

lemma holds in this case.

If, on the other hand, k + 1 is even, then, by inductive hypothesis, p changes

the value of index p from 1 to 0 at Line 8 of SCp,k . Therefore, at the beginning of

SCp,k+1, the value of index p is 0. Consequently, p changes index p to 1 − 0 = 1 at

Line 8 of SCp,n+1. Hence, the lemma holds. ut

Corollary 1 At the beginning of SCp,i , index p holds the value i mod 2.

139

Lemma 18 From the moment p performs Line 6 of SC p,i , until p completes the

SCp,i+1 operation, variable valpi mod 2 holds the value vp,i .

Proof. Notice that, by Corollary 1, at the beginning of SC p,i index p holds the value

i mod 2. Therefore, p writes vp,i into valpi mod 2 at Line 6 of SCp,i . Since, by

Lemma 17, p changes index p at Line 11 of SCp,i to 1 − (i mod 2) 6= i mod 2,

vp,i will not be overwritten in valpi mod 2 until index p reaches the value i mod 2

again. By Lemma 17, index p does not reach the value i mod 2 until p changes

indexp to 1 − (1 − (i mod 2)) = i mod 2 at Line 11 of SC p,i+1. Therefore,

valpi mod 2 holds the value vp,i from the moment p performs Line 6 of SC p,i

until p completes SCp,i+1. ut

Lemma 19 (Correctness of WLL) Let OP be any WLL operation, and OP ′ the

latest successful SC operation such that L P(OP ′) < L P(OP). If OP returns

(success, v), then v is the value that OP ′ writes in O. If OP returns (failure, q), then

there exists a successful SC operation OP′′ by process q such that: (1) L P(OP ′′) lies

in the execution interval of OP, and (2) L P(OP) < L P(OP ′′).

Proof. Let p be the process executing OP. If OP returns (success, v), let q be

the process that executes OP′. Then, OP′ = SCq,i , for some i . Notice that, by

Corollary 1, q writes i mod 2 into X at Line 7 of SCq,i . Hence, p reads (i mod 2, q)

from X at Line 2 of OP. Since the VL call at Line 3 of OP succeeds, no process

(including q) performs a successful SC operation on X between Lines 1 and 3 of

OP. Then, by Lemma 18, valqi mod 2 holds the value vq,i at all times between

Lines 1 and 3 of OP. Consequently, p reads vq,i at Line 2 of OP and returns the

correct value at Line 3 of OP.

140

If OP returns (failure, q), then the VL call at Line 3 of OP fails. Hence, some

other process performs a successful SC on X between Lines 1 and 3 of OP. Conse-

quently, the value (b, q) that p reads from X at Line 4 of OP was written into X by

q while p was between Lines 1 and 4 of OP. Therefore, there exists a successful

SC operation OP′′ by q such that q executes Line 7 between Lines 1 and 4 of OP.

Since L P(OP) is at Line 1 and L P(OP′′) is at Line 7, it follows that (1) L P(OP)′′

lies in the execution interval of OP, and (2) L P(OP) < L P(OP ′′). ut

Lemma 20 (Correctness of SC) Let OP be any SC operation by process p, and

OP′ be the latest LL operation by p that precedes OP. Then, OP succeeds if and

only if there does not exist any successful SC operation OP ′′ such that L P(OP′) <

L P(OP′′) < L P(OP).

Proof. If OP returns false, then the SC call at Line 7 of OP fails. We examine

the following two cases: (1) OP′ returns at Line 3, and (2) OP′ returns at Line 5.

Notice that, in both cases, there exists some successful SC operation OP ′′ on O

that writes into X (at Line 7) between Line 1 of OP ′ and Line 7 of OP. Since

L P(OP′) is at Line 1, L P(OP) at Line 7, and L P(OP ′′) at Line 7, it follows that

L P(OP′) < L P(OP′′) < L P(OP). Hence, OP was correct in returning false.

If OP returns true, then the SC operation on X at Line 7 of OP succeeds. There-

fore, there does not exist any successful SC operation OP ′′ on O such that OP′′

executes Line 7 between Line 1 of OP′ and Line 7 of OP. Since L P(OP′) is at

Line 1, L P(OP) at Line 7, and for any successful SC operation OP ′′ L P(OP′′) is at

Line 7, it follows that there does not exist any successful SC operation OP ′′ such

that L P(OP′) < L P(OP′′) < L P(OP). Hence, OP was correct in returning true. ut

141

Lemma 21 (Correctness of VL) Let OP be any VL operation by some process

p, and OP′ be the latest LL operation by p that precedes OP. Then, OP returns

true if and only if there does not exist any successful SC operation OP ′′ such that

L P(OP′) < L P(OP′′) < L P(OP).

Proof. Similar to the proof of Lemma 20. ut

Theorem 3 Algorithm 4.3 is wait-free and implements a 64-bit WLL/SC object

from a single (1-bit, pid)-LL/SC object and an additional three 64-bit registers per

process. The time complexity of LL, SC, and VL is O(1).

Proof. The theorem follows immediately from Lemmas 19, 20, and 21. ut

A.1.4 Proof of Algorithm 4.4

Let O be the (1-bit, pid)-LL/SC object implemented by Algorithm 4.4. The op-

erations on O are linearized according to the following rules. Let OP be any SC

operation on O. The linearization point of OP is determined by two cases. If the

condition at Line 5 of OP holds (i.e., old p 6= chkp), we linearize OP at any point

during Line 5. Otherwise, we linearize OP at Line 6. Let OP ′ be any VL operation

on O. The linearization point of OP′ is determined by two cases. If the first part

of the condition at Line 9 of OP′ does not hold (i.e., oldp 6= chkp), we linearize

OP′ at any point during Line 9. Otherwise, we linearize OP ′ at the point at Line 9

when X is read. Let OP′′ be any LL operation on O. The linearization point of

OP′′ is determined by two cases. If OP′′ reads different values at Lines 1 and 3, we

linearize OP′′ at Line 1. Otherwise, we linearize OP′′ at Line 3.

142

In the following, we assume that the select operation satisfies Property 1.

We restate this property below.

Property 1 Let OP and OP′ be any two consecutive BitPid LL operations by some

process p. If p reads (s, q, v) from X in both Lines 1 and 3 of OP, then process q

does not write (s, q, ∗) into X after p executes Line 3 of OP and before it invokes

OP′.

Lemma 22 (Correctness of BitPid LL) Let OP be any BitPid LL operation and

OP′ be the latest successful SC operation such that L P(OP ′) < L P(OP). Let q be

the process executing OP′ and v be the value that OP′ writes in O. Then, OP returns

(v, q).

Proof. Let p be the process executing OP. We examine the following two cases:

(1) the values that p reads at Lines 1 and 3 of OP are different, and (2) the values

that p reads at Lines 1 and 3 of OP are the same. In the first case, OP is linearized

at Line 1. Since OP′ is the latest successful SC such that L P(OP ′) < L P(OP),

it means that OP′ is the latest successful SC to write into X before Line 1 of OP.

Hence, OP returns (v, q).

In the second case, OP is linearized at Line 3. Since OP ′ is the latest successful

SC such that L P(OP′) < L P(OP), it means that OP′ is the latest successful SC to

write into X before Line 3 of OP. Therefore, p reads (v, q) at Line 3 of OP. Since

the values that p reads at Lines 1 and 3 of OP are the same, OP returns (v, q). ut

Lemma 23 (Correctness of SC) Let OP be any SC operation by process p, and

OP′ be the latest BitPid LL operation by p that precedes OP. Then, OP succeeds

143

if and only if there does not exist any successful SC operation OP ′′ such that

L P(OP′) < L P(OP′′) < L P(OP).

Proof. We examine the following three cases: (1) OP returns false at Line 5, (2)

OP returns false at Line 6, and (3) OP returns true at Line 8. In the first case, the

values that p reads at Lines 1 and 3 of OP′ are different. Hence, there exists some

successful SC operation OP′′ that writes into X (at Line 6) between Lines 1 and 3

of OP′. Since, by the linearization, OP′ is linearized at Line 1, OP is linearized at

some point during Line 5, and OP ′′ is linearized at Line 6, it means that L P(OP ′) <

L P(OP′′) < L P(OP). Hence, OP was correct in returning false.

In the second case, the values that p reads at Lines 1 and 3 of OP ′ are the

same and the CAS at Line 6 of OP fails. Hence, there exists some successful SC

operation OP′′ that writes into X (at Line 6) between Line 3 of OP ′ and Line 6 of OP.

Since, by the linearization, OP′ is linearized at Line 3, OP is linearized at Line 6,

and OP′′ is linearized at Line 6, it means that L P(OP ′) < L P(OP′′) < L P(OP).

Hence, OP was correct in returning false.

In the third case, the values that p reads at Lines 1 and 3 of OP ′ are the same

and the CAS at Line 6 of OP succeeds. Let (s, q, v) be the value that p reads from

X at Lines 1 and 3 of OP′. Then, X has the value (s, q, v) when p executes Line 6 of

OP. Since, by Property 1, no process writes (s, q, v) into X between Line 3 of OP ′

and Line 6 of OP, it means that X doesn’t change between Line 3 of OP ′ and Line 6

of OP. Consequently, there does not exist any successful SC operation OP ′′ such

that OP′′ writes into X (at Line 6) between Line 3 of OP ′ and Line 6 of OP. Since,

by the linearization, OP′ is linearized at Line 3, OP is linearized at Line 6, and any

successful SC operation OP′′ is linearized at Line 6, it follows that there does not

144

exist any successful SC operation OP′′ such that L P(OP′) < L P(OP′′) < L P(OP).

Hence, OP was correct in returning true. ut

Lemma 24 (Correctness of VL) Let OP be any VL operation by some process

p, and OP′ be the latest LL operation by p that precedes OP. Then, OP returns

true if and only if there does not exist any successful SC operation OP ′′ such that

L P(OP′) < L P(OP′′) < L P(OP).

Proof. Similar to the proof of Lemma 23. ut

Theorem 4 Algorithm 4.4 is wait-free and, if the select procedure satisfies

Property 1, implements a linearizable (1-bit, pid)-LL/SC object from 64-bit CAS

objects and 64-bit registers. If τ is the time complexity of select, then the time

complexity of BitPid LL, SC, VL, and BitPid read operations are O(1), O(1) + τ ,

O(1), and O(1), respectively. If s is the per-process space overhead of select,

then the per-process space overhead of the algorithm is 4 + s.

Proof. The theorem follows immediately from Lemmas 22, 23, and 24. ut

A.1.5 Proof of Algorithm 4.5

We show that Algorithm 4.5 satisfies Property 1. We restate Property 1 below.

Property 1 Let OP and OP′ be any two consecutive BitPid LL operations by some

process p. If p reads (s, q, v) from X in both Lines 1 and 3 of OP, then process q

does not write (s, q, ∗) into X after p executes Line 3 of OP and before it invokes

OP′.

145

Definition 2 An ‘epoch of p’ is the period of time between the two consecutive

executions of Line 19 in select(p), or a period of time between the end of

the initialization phase of the algorithm and the first time Line 19 is executed in

select(p).

Definition 3 Interval x, x ⊕K 1) is the ‘current interval’ of an epoch if x is the

value of the variable nextStart p at the beginning of that epoch.

Lemma 25 Let E be an epoch of p and t an arbitrary point in time during E.

Let Et be the time interval that spans from the moment E starts until time t. If the

condition at Line 13 of select(p) holds true at most 2N times during E t , then all

the sequence numbers that select(p) returns during E t are unique and belong

to the current interval of E.

Proof. We prove the lemma in two steps. First, we prove that the total number

of sequence numbers returned by select(p) during E t is at most (2N + 1)N .

Then, we use this fact to prove that all the sequence numbers that select(p)

returns during Et are unique and belong to the current interval of E .

Claim 1 The total number of sequence numbers returned by select(p) during

Et is at most (2N + 1)N.

Proof. Let te be the latest time during Et that a sequence number is returned

by select(p). (If there is no such time, then the claim trivially holds.) Then,

since te ≤ t , it follows that the condition at Line 13 of select(p) holds true at

most 2N times prior to te. Thus, the value of procNum p was set to 0 at Line 15

at most 2N times prior to te. Furthermore, since te belongs to E , the value of

146

procNum p hasn’t yet reached N at time te (otherwise, the new epoch would have

started at Line 19). Since procNum p has been set to 0 at most 2N times prior to te,

the number of times procNum p was incremented at Line 16 prior to te is at most

(2N +1)(N −1) (otherwise, 2N resets wouldn’t be able to prevent procNum p from

reaching the value N). Therefore, the condition at Line 13 does not hold at most

(2N + 1)(N − 1) times prior to te. Hence, the total number of times the condition

at Line 13 was tested prior to te is at most (2N + 1)(N − 1)+ 2N = 2N 2 + N − 1.

Then, the total number of sequence numbers returned by select(p) during E t is

at most 2N 2 + N − 1 + 1 = (2N + 1)N . ut

Let t1 and t2 in E be the times of two successive executions of Line 22 by p.

Since t1 and t2 belong to E , p does not execute Line 19 during (t1, t2). Hence,

p executes Line 18 during (t1, t2), incrementing val p by one. Thus, the value

of valp at time t2 is by one greater than the value of val p at time t1. To show

that val p always stays within the current interval of E , observe the following. At

the beginning of an epoch, val p is set to the first value in the current interval.

Furthermore, by Claim 1, Line 22 is executed at most (2N + 1)N times during E t .

Consequently, val p stays within the current interval at all times during E t , and all

the sequence numbers that select(p) returns during E t are unique and belong to

the current interval of E . ut

Lemma 26 During an epoch by some process p, the condition at Line 13 holds

true at most 2N times.

Proof. Suppose not. Let E be an epoch by p during which the condition at

Line 13 holds true more than 2N times. Then, there exists an entry in A for which

147

the condition at Line 13 is true three or more times. Let Aq be the first such entry.

Let t1, t2 and t3 in E be the times that the entry Aq is read at Line 12 of select(p).

Let a1, a2, and a3 be the values that Aq holds at times t1, t2, and t3, respectively. Let

x1, x2, and x3 be the values that nextStart p holds at times t1, t2, and t3, respectively.

Then, since a1, a2, and a3 satisfy the condition at Line 13 of select(p), they must

be of the form (s1, p, ∗), (s2, p, ∗), and (s3, p, ∗), respectively, where s1, s2, and s3

belong to intervals x1, x1⊕K 1), x2, x2⊕K 1), and x3, x3⊕K 1), respectively. Let C

be the current interval of E . Let E t3 be the time interval that spans from the moment

E starts until time t3. Then, at the beginning of E , C is set to x, x ⊕K 1) and

nextStart p to x ⊕K 1, for some x . Furthermore, each time the condition at Line 13

is true, nextStart p is incremented by 1 at Line 14. Since Aq is the first entry for

which the condition at Line 13 is true three or more times, it means that during E t3 ,

the condition at Line 13 could have been true at most 2N times. Hence, during E t3 ,

nextStart p could have been incremented at most 2N times. Therefore, nextStart p

has a value at most x⊕K (2N+1)1 at time t3. Then, since ⊕K is performed modulo

K = (2N +2)1, at no point during Et3 does the interval nextStart p, nextStart p ⊕K

1) intersect with C . Therefore, the intervals x1, x1 ⊕K 1), x2, x2 ⊕K 1), and

x3, x3 ⊕K 1) are disjoint and do not intersect with C . Consequently, the sequence

numbers s1, s2 and s3 are distinct and do not belong to C .

Since, by an earlier argument, the condition at Line 13 holds true at most 2N

times during Et3 , it follows by Lemma 25 that all the sequence numbers returned

by select(p) during Et3 belong to C . Furthermore, it follows by the algorithm

that at all times during (t1, t3), the latest sequence number written into X by p is

returned by select(p) during Et3 . Consequently, at all times during (t1, t3), if X

holds a value of the form (s, p, ∗), then s belongs to C .

148

Since Aq holds the value a1 (respectively, a2, a3) at time t1 (respectively, t2, t3),

process q must have written values a2 and a3 into Aq (at Line 2 of BitPid LL) at

some time during (t1, t3). Hence, q must have read a3 from X at some time during

(t1, t3). Since, at all times during (t1, t3), if X holds a value of the form (s, p, ∗),

then s belongs to C , we have s3 ∈ C . This is a contradiction to the fact that the

intervals x3, x3 ⊕K 1) and C are disjoint. Hence, we have the lemma. ut

Lemma 27 All sequence numbers returned by select during an epoch are

unique and belong to that epoch’s current interval.

Proof. Let t be the time at the very end of the current epoch. Then, the lemma

holds trivially by Lemmas 25 and 26. ut

Lemma 28 Current intervals of two consecutive epochs are disjoint.

Proof. Let E be an epoch by some process p, and C be the current interval

of E . Then, at the beginning of E , C is set to x, x ⊕K 1) and nextStart p to

x ⊕K 1, for some x . Furthermore, each time the condition at Line 13 holds true,

nextStart p is incremented by 1 at Line 14. Since, by Lemma 26, the condition at

Line 13 can hold true at most 2N times during an epoch, nextStart p can be at most

x ⊕K (2N + 1)1 at the end of E . Therefore, the current interval of the next epoch

can be at most x ⊕K (2N + 1)1, x ⊕K (2N + 2)1). Since ⊕K is done modulo

K = (2N + 2)1, intervals x ⊕K (2N + 1)1, x ⊕K (2N + 2)1) and x, x ⊕K 1)

are disjoint. Hence, we have the lemma. ut

Lemma 1 Algorithm 4.5 satisfies Property 1. The time complexity of the imple-

mentation is O(1), and the per-process space overhead is 3.

149

Proof. Suppose that select does not satisfy Property 1. Then, there exist two

consecutive BitPid LL operations OP and OP′ by some process p and a successful

SC operation OP′′ by some process q, such that the following is true: p reads

(s, q, v) at both Lines 1 and 3 of OP, yet process q writes (s, q, ∗) at Line 6 of OP ′′

before p invokes OP′. Let t be the time when q executes Line 6 of OP ′′. Let E be

process q’s epoch at time t , and C the current interval of E . Since, by Lemma 27,

all the sequence numbers returned by select(q) during E are unique and belong

to C , it follows that all the sequence numbers q writes into X during E are unique

and belong to C . Consequently, s ∈ C .

Let E ′ be the epoch that precedes E . (If there is no such epoch then the lemma

trivially holds, since, by the argument above, all the sequence number that q writes

into X during E are unique, and there can not be a process p that has read (s, q, v)

at Lines 1 and 3 of OP before q writes it at Line 6 of OP ′′.) Let C ′ be the current

interval of E ′. Let t ′ be the first time that q reads Ap at Line 12 during E ′. By

Lemma 27, all the sequence numbers returned by select(q) during E ′∪E belong

to C ′ ∪ C . Moreover, it follows by the algorithm that at all times during (t ′, t), the

latest sequence number written into X by q was returned by select(q) during

E ′ ∪ E . Consequently, at all times during (t ′, t), if X holds a value of the form

(s, q, ∗), then s belongs to C ′ ∪ C . Since, by Lemma 28, C ′ and C are disjoint, X

does not contain the value of the form (s, q, ∗) during (t ′, t). Then, p must have

read (s, q, v) at Line 3 of OP before t ′. Consequently, p wrote (s, q, 0) into Ap

at Line 2 of OP before t ′. Since OP is p’s latest BitPid LL at time t , no other

BitPid LL by p wrote into Ap after Line 2 of OP and before t . Therefore, and at

all times during (t ′, t), Ap holds the value (s, q, 0).

150

Observe that, at the end of E ′, procNump has value N . Hence, in the last

N executions of select(q) during E ′, procNum p has been incremented by 1 at

Line 16. Thus, in the last N executions of select(q) during E ′, every entry in

A was read once, and none satisfied the condition at Line 13. Consequently, we

have the following: (1) in the execution of select(q) where the entry Ap was

read, the condition at Line 13 was not satisfied, and (2) in the last N executions

of select(q) during E ′, variable nextStart p didn’t change. Since C = x, x ⊕K

1), where x is the value of nextStart p at the end of E ′, during the execution of

select(q) where the entry Ap was read, Ap was not of the form (s ′, q, 0), for

some s ′ ∈ C . This is a contradiction to the fact that at all times during (t ′, t), the

entry Ap contains the value (s, q, 0), where s ∈ C . ut

A.1.6 Proof of Algorithm 4.6

We show that Algorithm 4.6, satisfies Property 1. We restate Property 1 below.

Property 1 Let OP and OP′ be any two consecutive BitPid LL operations by some

process p. If p reads (s, q, v) from X in both Lines 1 and 3 of OP, then process q

does not write (s, q, ∗) into X after p executes Line 3 of OP and before it invokes

OP′.

Definition 4 An ‘epoch of p’ is the period of time between the two consecutive

executions of Line 31 in select(p), or a period of time between the end of

the initialization phase of the algorithm and the first time Line 31 is executed in

select(p).

Definition 5 A ‘pass k of an epoch E’ is a period of time in E during which the

151

variable passNump holds the value k.

Definition 6 Interval C is the ‘current interval’ of an epoch, if C is the value of

the variable I p at the beginning of that epoch.

We introduce the following notation. Let E be some epoch. Then, for all

k ∈ {0, 1, . . . , lg (N + 1)}, we let I E
k denote the value of the interval I p at the end

of the kth pass of an epoch E , and s E
k denote the number of entries in A that, at the

end of the kth pass of an epoch E , hold the value of the form (s, p, 1), for some

s ∈ I E
k .

In the following, we assume that (N + 1) is a power of two.

Lemma 29 There are lg (N + 1) + 1 passes in an epoch.

Proof. At the beginning of an epoch, the value of variable passNum p is set to 0.

Furthermore, an epoch ends when the Line 31 is executed for the first time during

that epoch, which happens only when the condition at Line 28 is fails, i.e., when

passNum p reaches value lg (N + 1). Hence, at the end of an epoch, the value

of passNump is lg (N + 1). Since the variable passNum p is incremented only at

Lines 18 and 30 and is incremented only by one, it follows that during an epoch,

passNum p goes through all the values in the range 0 . . lg (N + 1). Hence, there

are exactly lg (N + 1) + 1 passes in an epoch. ut

Lemma 30 In any given pass, process p invokes select exactly N times.

Proof. At the beginning of any pass, the value of procNum p is zero (since the pass

begins at Lines 18, 30, and 31, and procNum p is set to zero at Lines 17 and 27; like-

wise, procNump is set to zero at initialization time). Furthermore, a pass ends only

152

after the variable procNum p reaches the value N − 1 (since the variable passNum p

is modified only after the conditions at Lines 15 and 23 are false). Hence, during

a pass, procNump goes through all the values in the range 0 . . N − 1. Notice that

in every invocation of select in which a pass doesn’t end, process p executes

Lines 16 and 24 (since it doesn’t execute Lines 18, 30, and 31). Hence, p incre-

ments procNump by one in the first N − 1 invocations of select during the pass,

and then ends the pass during the N th invocation. Hence, in any given pass, pro-

cess p invokes select exactly N times. ut

Lemma 31 Let E be an epoch by some process p, and t ∈ E the time when p

completes the 0th pass of E. Then, if some entry Aq holds the value (s, p, 1) at

time t ′ ∈ E, for t ′ ≥ t , then Aq holds the value (s, p, 1) at all times during (t, t ′).

Proof. Suppose not. Then, at some time t ′′ ∈ (t, t ′), Aq does not hold the value

(s, p, 1). Therefore, at some point during (t ′′, t ′), the value (s, p, 1) is written

into Aq. Since by the time t ′′, process p has already performed the 0th pass of E ,

some process other than p must have written (s, p, 1) into Aq, which is impossible.

Hence, we have the lemma. ut

Lemma 32 If E is an epoch by some process p, then the length of the interval I E
k

is ((N + 1)/2k)1, for all k ∈ {0, 1, . . . , lg (N + 1)}.

Proof. (By induction) For the base case (i.e., k = 0), the lemma trivially holds,

since at the beginning of the 0th pass I p is initialized to be of length (N +1)1. The

inductive hypothesis states that the length of I E
j is ((N+1)/2 j)1, for all j ≤ k. We

153

now show that the length of I E
k+1 is ((N +1)/2k+1)1. Notice that, by the algorithm,

I E
k+1 is a half of Ik . Moreover, we made an assumption earlier that N +1 is a power

of two. Hence, the length of I E
k+1 is exactly (((N+1)/2k)/2)1 = ((N+1)/2k+1)1.

ut

Lemma 33 If E is an epoch by some process p, then the value of s E
k is at most

(N + 1)/2k − 1, for all k ∈ {0, 1, . . . , lg (N + 1)}.

Proof. For the base case (i.e., k = 0), the lemma trivially holds, since A can hold

at most N entries. The inductive hypothesis states that the value of s E
j is at most

(N + 1)/2 j − 1, for all j ≤ k. We now show that the value of s E
k+1 is at most

(N + 1)/2k+1 − 1. Since sk is the number of entries in A that, at the end of the kth

pass, hold a sequence number from I E
k , it follows by Lemma 31 that p can count at

most sE
k sequence numbers during the (k +1)st pass. Moreover, since I E

k+1 is a half

of I E
k with a smaller count, it follows that at most bs E

k /2c of the counted sequence

numbers fall within I E
k+1. Hence, by Lemma 31, at the end of the (k + 1)st pass,

at most bs E
k /2c entries in A are of the form (s, p, 1), s ∈ I E

k+1. Therefore, we have

sE
k+1 = bsE

k /2c = b((N + 1)/2k − 1)/2c. Since N + 1 is a power of two, it means

that sE
k+1 = (N + 1)/2k+1 − 1. Hence, the observation holds. ut

Lemma 34 Let E be an epoch by some process p. Let I ′ be the value of the

interval I p at the end of E. Then, I ′ contains exactly 1 sequence numbers.

Proof. The lemma follows immediately by Lemmas 29 and 32. ut

154

Lemma 35 Let E be an epoch by some process p. Let I ′ be the value of the

interval I p at the end of E. Then, at the end of E, no entry in A is of the form

(s, p, 1), where s ∈ I ′.

Proof. The lemma follows immediately by Lemmas 29 and 33. ut

Lemma 36 Let E be an epoch by some process p. Then, all the sequence numbers

that select(p) returns during E are unique and belong to the current interval of

E.

Proof. Let C be the current interval of E . We prove the lemma in two steps.

First, we prove that the total number of sequence numbers returned by select(p)

during E is at most N(lg (N + 1) + 1). Then, we use this fact to prove that all the

sequence numbers that select(p) returns during E are unique and belong to C .

Claim 2 The total number of sequence numbers returned by select(p) during

E is at most N(lg (N + 1) + 1).

Proof. During each pass of E , select(p) returns exactly N sequence numbers

(by Lemma 30). Since an epoch consists of lg (N + 1) + 1 passes (by Lemma 29),

the total number of sequence numbers returned by select(p) during E is there-

fore N(lg (N + 1) + 1). ut

Let t1 and t2 in E be the times of two successive executions of Line 34 by p.

Since t1 and t2 belong to E , p does not execute Line 31 during (t1, t2). Hence, p

executes either Line 19, Line 25, or Line 29 during (t1, t2) and increments val p by

one. Thus, the value of val p at time t2 is by one greater than the value of val p at

155

time t1. To show that val p always stays within C , observe the following. At the

beginning of an epoch, val p is set to the first value in C . Furthermore, by Lemma 2,

Line 34 is executed at most N(lg (N + 1)+1) times during E . Consequently, val p

stays within C at all times during E . Therefore, all the sequence numbers that

select(p) returns during E are unique and belong to C . ut

Lemma 37 Current intervals of two consecutive epochs are disjoint.

Proof. Let E and E ′ be any two consecutive epochs. Let C (respectively, C ′) be

the current interval of E (respectively, E ′). Let I be the value of the interval I p at

the start of E . Let I ′ be the value of the interval I p after Line 33 of select(p)

is executed during E . By Lemma 34, I is of the form x, x ⊕K 1), for some x .

Therefore, C = x, x ⊕K 1) and I ′ = x ⊕K 1, x ⊕K (N + 2)1). Since the op-

eration ⊕K is performed modulo K = (N + 2)1, intervals C and I ′ are disjoint.

Furthermore, since C ′ is a subinterval of I ′, C and C ′ are disjoint as well. ut

Lemma 2 Algorithm 4.6 satisfies Property 1. The time complexity of the imple-

mentation is O(1), and the per-process space overhead is 4.

Proof. Suppose that select does not satisfy Property 1. Then, there exist two

consecutive BitPid LL operations OP and OP′ by some process p and a successful

SC operation OP′′ by some process q, such that the following is true: p reads

(s, q, v) at both Lines 1 and 3 of OP, yet process q writes (s, q, ∗) at Line 6 of OP ′′

before p invokes OP′. Let t be the time when q executes Line 6 of OP ′′. Let E be

the q’s epoch at time t . Let C be the current interval of E . Since, by Lemma 36, all

the sequence numbers returned by select(q) during E are unique and belong to

156

C , it follows that all the sequence numbers that q writes into X during E are unique

and belong to C . Consequently, s ∈ C .

Let E ′ be the epoch that precedes E . (If there is no such epoch then the lemma

trivially holds, since, by the argument above, all the sequence number that q writes

to X during E are unique, and there can not be a process p that has read (s, q, v) at

Lines 1 and 3 of OP before q writes it at Line 6 of OP ′′.) Let C ′ be the current inter-

val of E ′. Let t ′ be the time that q reads Ap at Line 13 during E ′. By Lemma 36,

all the sequence numbers returned by select(q) during E ′ ∪ E belong to C ′ ∪ C .

Furthermore, it follows by the algorithm that at all times during (t ′, t), the latest

sequence number written into X by q was returned by select(q) during E ′ ∪ E .

Consequently, at all times during (t ′, t), if X holds a value of the form (s ′, q, ∗),

then s ′ belongs to C ′ ∪ C . Since, by Lemma 37, C ′ and C are disjoint, X does not

hold the value (s, q, v) during (t ′, t). Then, p must have read (s, q, v) at Line 3 of

OP before time t ′. Consequently, p wrote (s, q, 0) into Ap at Line 2 of OP before

time t ′. Since OP is p’s latest BitPid LL at time t , it follows that no other BitPid LL

by p writes into Ap after Line 2 of OP and before time t . Consequently, no process

r 6= q writes (∗, r, 1) into Ap after Line 2 of OP and before t . As a result, (1) Ap

holds the value (s, q, 0) at time t ′, and (2) at all times during (t ′, t), no process

other than q writes into Ap. Let t ′′ ∈ E ′ be the time when p performs the CAS at

Line 14. Then, since no other process changes Ap during (t ′, t), p’s CAS at time

t ′′ succeeds, and at all times during (t ′′, t) Ap holds the value (s, q, 1). Let I be

the value of the interval I p at the end of E ′. Then, we have I = C . Since s ∈ C , it

follows that s ∈ I , which is a contradiction to Lemma 35. ut

157

A.2 Proof of the algorithm in Chapter 5

Let H be any execution history of Algorithm 5.1. Let OP be some LL operation,

OP′ some SC operation, and OP′′ some VL operation in H. Then, we define the

linearization points for OP, OP ′, and OP′′ as follows. If the condition at Line 4 of

OP fails (i.e., LL(Helpp) 6≡ (0, b)), we linearize OP at Line 2. If the condition at

Line 7 fails (i.e., VL(X) returns true), we linearize OP at Line 5. If the condition at

Line 7 succeeds, let p be the process executing OP. Then, we show that (1) there

exists exactly one SC operation SCq on O that writes into Helpp during OP, and

(2) the VL operation on X at Line 14 of SCq is executed at some time t during OP;

we then linearize OP at time t . We linearize OP ′ at Line 19, and OP′′ at Line 23.

In the following, we assume that the initializing step was performed by an

arbitrary process during its first successful SC operation.

Lemma 38 Let SC0, SC1, . . . , SCK be all the successful SC operations in H. Let

pi , for all i ∈ {0, 1, . . . , K }, be the process executing SC i . Let ti , for all i ∈

{0, 1, . . . , K }, be the time when pi executes Line 19 of SCi . Let L L i , for all i ∈

{1, 2, . . . K }, be the latest LL operation by pi prior to SCi . Let t ′
i , for all i ∈

{1, 2, . . . K }, be the latest time during L L i that pi performs an LL operation on X.

Then, for all i ∈ {1, 2, . . . K }, we have t ′
i > ti−1.

Proof. Suppose not. Then, there exists some index j such that t ′
j < t j−1. (By

initialization, we have j > 1.) Then, process p j−1 performs a successful SC on X

(at time t j−1) between p j ’s latest LL on X (at time t ′
j) and p j ’s SC on X (at time

t j). Therefore, p j ’s SC on X at time t j fails, which is a contradiction to the fact that

SC j is successful. ut

158

Lemma 39 Let SC0, SC1, . . . , SCK be all the successful SC operations in H. Let

pi , for all i ∈ {0, 1, . . . , K }, be the process executing SC i . Then, pi writes the

value of the form (∗, i mod 2N) into X at Line 19 of SC i .

Proof. Suppose not. Let j be the smallest index such that p j writes a value

different than (∗, j mod 2N) into X at Line 19 of SC j . (By initialization, we have

j > 0.) Let t j−1 (respectively, t j) be the time when p j−1 (respectively, p j) executes

Line 19 of SC j−1 (respectively, SC j). Let L L j be p j ’s latest LL operation prior to

SC j , and let t ′
j be the latest time during L L j that p j performs an LL operation on

X. Then, by Lemma 38, we have t j−1 < t ′
j < t j . Furthermore, by definition of j ,

p j−1 writes (∗, (j −1) mod 2N) into X at time t j−1. Since X doesn’t change during

(t j−1, t j), it follows that p j reads (∗, (j − 1) mod 2N) from X at time t ′
j . Hence,

p j writes (∗, j mod 2N) into X at Line 19 of SC j , which is a contradiction. ut

Lemma 40 Let SC0, SC1, . . . , SCK be all the successful SC operations in H. Let

pi , for all i ∈ {0, 1, . . . , K }, be the process executing SC i . Let ti , for all i ∈

{0, 1, . . . , K }, be the time when pi executes Line 19 of SCi . Let (ai , i mod 2N),

for all i ∈ {0, 1, . . . , K }, be the value that pi writes into X at time ti . Let t ′
i ,

for all i ∈ {0, 1, . . . K − 1}, be the first time during (ti , ti+1) that some process

p that had performed an LL operation on X after time ti begins Line 14. Then,

the following holds for all i ∈ {0, 1, . . . K − 1}: (1) at all times during (t ′
i , ti+1),

variable Banki mod 2N holds value ai , and (2) variable Bank j , for j 6= i mod

2N, is not written during (ti , ti+1).

Proof. (By induction) Suppose that the lemma holds for all i < k; we now show

that the lemma holds for k as well. (During the proof of the inductive step, we will

159

also prove the base case of i = 0.)

Claim 3 During (tk, tk+1), no process writes into Bank j , for all j 6= k mod 2N.

Proof. Suppose not. Then, there exists some process q and some index j 6=

k mod 2N , such that q writes into Bank j during (tk, tk+1). Let t ∈ (tk, tk+1) be

the time when q performs that write (at Line 13). Let t ′, t ′′, and t ′′′ be the latest

times prior to t when q performs, respectively, the latest LL on X (at Line 2 or 5),

the LL on Bank j (at Line 12), and the VL on X (at Line 12). Notice that, since

q writes into Bank j , it means that q reads a value (∗, j) from X at time t ′. Since

j 6= k mod 2N , we have t ′ ∈ (ti , ti+1) and j = i mod 2N , for some i < k.

Moreover, since q satisfies the condition at Line 12, it means that (1) q reads a

value different than ai from Bank j at time t ′′, and (2) q’s VL on X at time t ′′′

succeeds. Since, by the inductive hypothesis, Bank j holds value ai at all times

during (t ′
i , ti+1), it follows that t ′′ < t ′

i . Furthermore, since q executes Line 13 at

time t ∈ (tk, tk+1), for k > i , it follows that t ′
i < t . Consequently, value ai is

written into Bank j during (t ′′, t), which is a contradiction to the fact that q writes

into Bank j at time t . ut

Claim 4 During (tk, tk+1), no process writes a value different than ak into

Bankk mod 2N.

Proof. Suppose not. Then, there exists some process q that writes a value different

than ak into Bankk mod 2N during (tk, tk+1). Let t ∈ (tk, tk+1) be the time when

q performs that write (at Line 13). Let t ′, t ′′, and t ′′′ be the latest times prior to

t when q performs, respectively, the latest LL on X (at Line 2 or 5), the LL on

Bankk mod 2N (at Line 12), and the VL on X (at Line 12). Notice that, since q

160

writes a value different than ak into Bankk mod 2N , it means that q reads a value

(ai , ∗) from X at time t ′, for some i < k. Therefore, we have t ′ ∈ (ti , ti+1), for

some i < k. Since q satisfies the condition at Line 12, it means that (1) q reads a

value different than ai from Bankk mod 2N at time t ′′, and (2) q’s VL on X at time

t ′′′ succeeds. Since, by the inductive hypothesis, Bankk mod 2N holds value a i

at all times during (t ′
i , ti+1), it follows that t ′′ < t ′

i . Furthermore, since q executes

Line 13 at time t ∈ (tk, tk+1), for k > i , it follows that t ′
i < t . Consequently, value

ai is written into Bankk mod 2N during (t ′′, t), which is a contradiction to the fact

that q writes into Bankk mod 2N at time t . ut

Claim 5 At some point during (tk, t ′
k), variable Bankk mod 2N holds value ak .

Proof. Suppose not. Then, at all times during (tk, t ′
k), variable Bankk mod 2N

holds a value different than ak . Since, by Lemma 4, no process writes a value

different than ak into Bankk mod 2N during (tk, tk+1), it means that Bankk mod

2N doesn’t change during (tk, t ′
k). Hence, p reads a value different than ak from

Bankk mod 2N at Line 12, its VL operation on X at Line 12 succeeds, and it

performs a successful SC on Bankk mod 2N at Line 13. Since p reads ak from X

during its latest LL operation (by definition of p), it follows that p writes ak into

Bankk mod 2N at Line 13, which is a contradiction. ut

The lemma follows immediately from Claims 4 and 5. ut

Lemma 41 Let p be some process, and L L p some LL operations by p in H. Let

t be the time when p executes Line 1 of L L p, and t ′ the time just prior to Line 10

of L L p. Let t ′′ be either (1) the moment when p executes Line 1 of its first LL

161

operation after L L p, if such operation exists, or (2) the end of H, otherwise. Then,

the following statements hold:

(S1) During the time interval (t, t ′), exactly one write into Helpp is performed.

(S2) Any value written into Helpp during (t, t ′′) is of the form (0, ∗).

(S3) Let t ′′′ ∈ (t, t ′) be the time when the write from statement (S1) takes place.

Then, during the time interval (t ′′′, t ′′), no process writes into Helpp.

Proof. Statement (S2) follows trivially from the fact that the only two operations

that can affect the value of Helpp during (t, t ′′) are (1) the SC at Line 9 of L L p,

and (2) the SC at Line 15 of some other process’s SC operation, both of which

attempt to write (0, ∗) into Helpp.

We now prove statement (S1). Suppose that (S1) does not hold. Then, during

(t, t ′), either (1) two or more writes on Helpp are performed, or (2) no writes on

Helpp are performed. In the first case, we know (by an earlier argument) that each

write on Helpp during (t, t ′) must have been performed either by the SC at Line 9

of L L p, or by the SC at Line 15 of some other process’s SC operation. Let SC1 and

SC2 be the first two SC operations on Helpp to write into Helpp during (t, t ′).

Let q1 (respectively, q2) be the process executing SC1 (respectively, SC2). Let L L1

(respectively, L L2) be the latest LL operations on Helpp by q1 (respectively, q2)

to precede SC1 (respectively, SC2). Then, both L L1 and L L2 return a value of the

form (1, ∗). Furthermore, L L2 takes place after SC1, or else SC2 would fail. Since

Helpp doesn’t change between SC1 and SC2, it means that L L2 returns the value

of the form (0, ∗), which is a contradiction.

In the second case (where no writes on Helpp take place during (t, t ′)), the

LL operation at Line 8 of L L p returns a value of the form (1, ∗). Furthermore,

162

the SC at Line 9 of L L p must succeed, which is a contradiction to the fact that no

writes into Helpp take place during (t, t ′). Hence, statement (S1) holds.

We now prove statement (S3). Suppose that (S3) does not hold. Then, at least

one write on Helpp takes place during (t ′′′, t ′′). By an earlier argument, any write

on Helpp during (t ′′′, t ′′) must have been performed either by the SC at Line 9 of

L L p, or by the SC at Line 15 of some other process’s SC operation. Let SC3 be

the first SC operations on Helpp to write into Helpp during (t ′′′, t ′′). Let q3 be

the process executing SC3. Let L L3 be the latest LL operations on Helpp by q3

to precede SC3. Then, L L3 returns a value of the form (1, ∗). Furthermore, L L 3

must take place after time t ′′′, or else SC3 would fail. Since Helpp doesn’t change

between time t ′′′ and SC3, it means that L L3 returns the value of the form (0, ∗),

which is a contradiction. Hence, we have statement (S3). ut

In Figure A.1, we present a number of invariants satisfied by the algorithm. In

the following, we let PC(p) denote the value of process p’s program counter. For

any register r at process p, we let r(p) denote the value of that register. We let P

denote a set of processes such that p ∈ P if and only if PC(p) ∈ {1, 11−15, 17−

19, 21 − 23} or PC(p) ∈ {2 − 9} ∧ Helpp ≡ (1, ∗). We let P ′ denote a set of

processes such that p ∈ P ′ if and only if PC(p) ∈ {2 − 10} ∧ Helpp ≡ (0, ∗).

We let P ′′ denote a set of processes such that p ∈ P ′′ if and only if PC(p) = 16.

We let P ′′′ denote a set of processes such that p ∈ P ′′′ if and only if PC(p) = 20.

Lemma 42 The algorithm satisfies the invariants in Figure A.1.

Proof. (By induction) For the base case, (i.e., t = 0), all the invariants hold by

initialization. The inductive hypothesis states that the invariants hold at time t ≥ 0.

163

1. For any processes p ∈ P , we have mybyf p ∈ 0 . . 3N − 1.

2. For any process p ∈ P ′, we have Helpp.buf ∈ 0 . . 3N − 1.

3. For any process p ∈ P ′′, we have d(p) ∈ 0 . . 3N − 1.

4. For any process p ∈ P ′′′, we have e(p) ∈ 0 . . 3N − 1.

5. X.buf ∈ 0 . . 3N − 1.

6. Let (∗, k) be the value of X. Then, for all j 6= k, Bank j ∈ 0 . . 3N − 1.

7. Let p and q (respectively, p ′ and q ′, p′′ and q ′′, p′′′ and q ′′′), be any two
processes in P (respectively, P ′, P ′′, P ′′′). Let (∗, k) be the value of X.
Let i and j be any two indices different than k. Then, we have mybuf p 6=

mybufq 6= Banki 6= Bank j 6= X.buf 6= Helpp ′.buf 6= Helpq ′.buf 6=

d(p′′) 6= d(q ′′) 6= e(p′′′) 6= e(q ′′′).

Figure A.1: The invariants satisfied by Algorithm 5.1

Let t ′ be the earliest time after t that some process, say p, makes a step. Then, we

show that the invariants holds at time t ′ as well.

First, notice that if PC(p) = {1−8, 11, 12, 14, 17, 18, 21−23}, or if PC(p) =

{9, 13, 15, 19} and p’s SC fails, then none of the invariants are affected by p’s step

and hence they hold at time t ′ as well.

If PC(p) = 9 and p’s SC succeeds, then p moves from P to P ′ and writes

mybufp into Helpp.buf. Consequently, invariant 2 holds by IH:1 and invariant 7

by IH:7. All other invariants trivially hold.

If PC(p) = 10, then, by Lemma 41, p was in P ′ at time t . Furthermore, p is

in P at time t ′. Since p writes Helpp.buf into mybuf p, invariant 1 holds by IH:2

and invariant 7 by IH:7. All other invariants trivially hold.

If PC(p) = 12 and p’s SC succeeds, let (∗, k) be the value of X at time t . Then,

by Lemma 40, p’s SC writes into variable Bankk. Hence, none of the invariants

164

are affected by p’s step, and so they hold at time t ′ as well.

If PC(p) = 15 and p’s SC succeeds, then p moves from P to P ′′. Let

Helpq be the variable that p writes into during this step. Then, we have d(p) =

Helpq.buf at time t , Helpq.buf = mybuf p at time t ′, and Helpq changes from

value (1, ∗) at time t to a value (0, ∗) at time t ′. Therefore, by Lemma 41, we

have PC(q) ∈ {2 − 10} at times t and t ′, and Helpq.buf = mybufq . Hence, q

moves from P to P ′, and d(p) = mybufq . Consequently, invariant 2 holds by IH:1,

invariant 3 by IH:1, and invariant 7 by IH:7. All other invariants trivially hold.

If PC(p) = 16, then p moves from P ′′ to P and writes d(p) into mybuf p.

Then, invariant 1 holds by IH:3 and invariant 7 by IH:7. All other invariants triv-

ially hold.

If PC(p) = 19 and p’s SC succeeds, then p moves from P to P ′′′. Let (b, k)

be the value of variable X at time t . Then, by Lemma 39 and the algorithm, the

value of X at time t ′ is (mybuf p, (k + 1) mod 2N). Furthermore, by Lemma 40,

variable Bankk holds value b at time t ′. Finally, by Lemma 40, e(p) has the value

that Bank(k + 1) mod 2N holds at time t . Consequently, invariant 5 holds by

IH:1, invariant 6 by IH:5, invariant 4 by IH:6, and invariant 7 by IH:7. All other

invariants trivially hold.

If PC(p) = 20, then p moves from P ′′′ to P and writes e(p) into mybuf p.

Then, invariant 1 holds by IH:4, and invariant 7 by IH:7. All other invariants

trivially hold. ut

Lemma 43 Let p be some process, and SC p some successful SC operation by p

in H. Let v be the value that SC p writes in O. Let (b, i) be the value that p writes

into X at Line 19 of SC p. Then, BUFb holds the value v until X changes at least

165

2N times.

Proof. Notice that, by the algorithm, the only places where BUFb can be modified

is either at Line 11 of some LL operation, or at Line 17 of some SC operation. Let

t be the time when p writes v into BUFb at Line 17 of SC p. Let t ′ be the time

when p writes (b, i) into X at Line 19 of SC p. Let t ′′ be the first time after t that

X changes. Let t ′′′ be the 2N th time after t that X changes. Then, by Invariant 7,

no process q can be at Line 11 or 17 with mybufq = b during (t, t ′). Similarly, no

process q can be at Line 11 or 17 with mybufq = b during (t ′, t ′′). Notice that, by

Lemma 40, we have Banki = b at time t ′′. Furthermore, variable Banki holds

value b at all times during (t ′′, t ′′′). Hence, by Invariant 7, no process q can be at

Line 11 or 17 with mybufq = b during (t ′′, t ′′′). Consequently, no process writes

into BUFb during (t, t ′′′), which proves the lemma. ut

Lemma 44 Let p be some process, and L L p some LL operation by p in H. Let t

be the time when p executes Line 2 of L L p, and t ′ the time when p executes Line 4

of L L p. If the condition at Line 4 of L L p fails (i.e., LL(Helpp) 6≡ (0, b)), then X

changes at most 2N − 1 times during (t, t ′).

Proof. Suppose not. Then, the condition at Line 4 of L L p fails and X changes

2N or more times during (t, t ′). Let t ′′ ∈ (t, t ′) be the 2N th time after t that X

changes. Let (b, i) be the value that p reads from X at time t . Since the condition

at Line 4 of L L p fails, it means that Helpp holds the value (1, a) at all times

during (t, t ′), for some a. Notice that, by Lemma 39, there exist two successful

SC operations SC1 and SC2 on X (at Line 19) such that (1) SC1 writes the value of

the form (∗, s) into X at some time t1 ∈ (t, t ′′), for some s mod 2N = p, (2) SC2

166

writes the value of the form (∗, (s + 1) mod 2N) into X at some time t2 ∈ (t1, t ′′),

and (3) SC2 is the first SC operation to write into X after t1. Let p2 be the process

executing SC2, L L2 the latest LL operation on X by p2 prior to SC2, and SCp2 the

SC operation on O by p2 during which SC2 is executed. Then, by Lemma 38, L L2

is executed during (t1, t2) and returns the value of the form (∗, s). Hence, at Line 14

of SCp2 , p2 performs an LL operation on Helpp. Since Helpp holds the value

(1, a) at all times during (t, t ′), p2’s LL on Helpp must return the value (1, a).

Furthermore, since SC2 succeeds, the VL operation at Line 14 of SC p2 succeeds as

well. Therefore, p2 executes the SC operation at Line 15 of SC p2 . Since Helpp

doesn’t change during (t ′, t ′′), it also doesn’t change between the time p2 performs

the LL of Helpp at Line 14 of SC p2 , and the time p2 performs the SC of Helpp

at Line 15 of SC p2 . Consequently, p2’s SC at Line 15 succeeds, writing the value

of the form (0, ∗) into Helpp, which is a contradiction to the fact that Helpp

doesn’t change during (t, t ′). ut

Lemma 45 Let p be some process, and L L p some LL operation by p in H. Let t

be the time when p executes Line 2 of L L p, and t ′ the time when p executes Line 4

of L L p. If the condition at Line 4 of L L p fails (i.e., LL(Helpp) 6≡ (0, b)), then

the value that p writes into retval at Line 3 of L L p is the value of O at time t.

Proof. Let (b, i) be the value that p reads from X at time t . Let SCq be the SC

operation on O that wrote that value into X, and q the process that executed SCq .

Let t ′′ < t be the time during SCq when q wrote (b, i) into X, and v the value

that SCq writes in O. Then, by Lemma 43, BUFb will hold the value v until X

changes at least 2N times after t ′′. Since X doesn’t change during (t ′′, t), it means

that BUFb will hold the value v until X changes at least 2N times after t . Notice

167

that, by Lemma 44, X can change at most 2N − 1 times during (t, t ′). Therefore,

BUFb holds the value v at all times during (t, t ′), and hence the value that p writes

into retval at Line 3 of L L p is the value of O at time t . ut

Lemma 46 Let p be some process, and L L p some LL operation by p in H. Let t

be the time when p executes Line 5 of L L p, and t ′ the time when p executes Line 7

of L L p. If the condition at Line 7 of L L p fails (i.e., VL(X) returns true), then the

value that p writes into retval at Line 6 of L L p is the value of O at time t.

Proof. Let (b, i) be the value that p reads from X at time t . Let SCq be the SC

operation on O that wrote that value into X, and q the process that executed SCq .

Let t ′′ < t be the time during SCq when q wrote (b, i) into X, and v the value

that SCq writes in O. Then, by Lemma 43, BUFb will hold the value v until X

changes at least 2N times after t ′′. Since X doesn’t change during (t ′′, t), it means

that BUFb will hold the value v until X changes at least 2N times after t . Because

p’s VL operation on X at Line 7 of L L p returns true at time t ′, it means that X

doesn’t change during (t, t ′). Therefore, BUFb holds the value v at all times during

(t, t ′), and hence the value that p writes into retval at Line 6 of L L p is the value of

O at time t . ut

Lemma 47 Let p be some process, and L L p some LL operation by p in H. Let t

be the time when p executes Line 1 of L L p, and t ′ the time when p executes Line 4

of L L p. If the condition at Line 4 of L L p succeeds (i.e., LL(Helpp) ≡ (0, b)),

then (1) there exists exactly one SC operation SCq on O that writes into Helpp

during (t, t ′), and (2) the VL operation on X at Line 14 of SCq is executed during

(t, t ′).

168

Proof. Since the condition at Line 4 of L L p succeeds, it means that some SC

operation SCq writes the value of the form (0, ∗) into Helpp during (t, t ′). By

Lemma 41, SCq is the only SC operation that writes into Helpp during (t, t ′).

Let t ′′ ∈ (t, t ′) be the time when SCq writes into Helpp. Let q be the process

executing SCq . Since q writes into Helpp at time t ′′, it means that Helpp does

not change between q’s LL at Line 14 of SCq and t ′′. Therefore, q’s LL at Line 14

of SCq occurs during the time interval (t, t ′′). Consequently, q’s VL at Line 14 of

SCq occurs during the time interval (t, t ′′) as well. ut

Lemma 48 Let p be some process, and L L p some LL operation by p in H. Let t

be the time when p executes Line 1 of L L p, and t ′ the time when p executes Line 4

of L L p. If the condition at Line 7 of L L p succeeds (i.e., VL(X) returns false),

let SCq be the SC operation on O that writes into Helpp during (t, t ′), and let

t ′′ ∈ (t, t ′) be the time when the VL operation on X at Line 14 of SCq is performed.

Then, the value that L L p returns is the value of O at time t ′′.

Proof. Let q be the process executing SCq . Let L Lq be q’s latest LL operation

on O before SCq . Since the VL operation on X at Line 14 of SCq succeeds, it

means that either the condition at Line 7 of L L q failed, or that Line 7 of L Lq was

never executed. In the first case, let tq be the time when q executes Line 5 of L L q .

In the second case, let tq be the time when q executes Line 2 of L L q . In either

case, by Lemmas 45 and 46, L Lq returns the value of O at time tq . Let v be the

value returned by L Lq . Since the VL operation on X at Line 14 of SCq succeeds,

it means that v is the value of O at time t ′′ as well.

Let t ′
q be the time just before q starts executing Line 11 of L L q . Let t ′′

q be the

time when q executes the SC operation on Helpp at Line 15 of SCq . Let b be the

169

value of mybufq at time t ′
q . Notice that, by the algorithm, the only places where

BUFb can be modified is either at Line 11 of some LL operation, or at Line 17 of

some SC operation. By Invariant 7, we know that during (t ′
q, t ′′

q), no process r 6= q

can be at Line 11 or 17 with mybufr = b. Therefore, BUFb holds the value v at all

times during (t ′
q, t ′′

q). Since mybufq doesn’t change during (t ′
q, t ′′

q) as well, it means

that q writes (0, b) into Helpp at time t ′′
q ∈ (t, t ′). Because, by Lemma 41, no

other process writes into Helpp during (t, t ′), it means that p reads b at Line 4

of L L p (at time t ′). Let t ′′′ be the time when p executes Line 7 of L L p. Then, by

Invariant 7, we know that during (t ′′
q , t ′′′) no process r can be at Line 11 or 17 with

mybufr = b. Therefore, BUFb holds the value v at all times during (t ′′
q , t ′′′). So, at

Line 6 of L L p, p writes into retval the value v, which is the value of O at time t ′′.

ut

Lemma 49 (Correctness of LL) Let p be some process, and L L p some LL op-

eration by p in H. Let LP(L L p) be the linearization point for L L p. Then, L L p

returns the value of O at L P(L L p).

Proof. This lemma follows immediately from Lemmas 45, 46, and 48. ut

Lemma 50 (Correctness of SC) Let p be some process, and SC p some SC oper-

ation by p in H. Let L L p the latest LL operation by p to precede SC p. Then, SC p

succeeds if and only if there does not exist any other successful SC operation SC ′

such that L P(L L p) < L P(SC ′) < L P(SC p).

Proof. If SC p succeeds, then the SC on X at Line 19 of SC p succeeds. Hence,

LP(L L p) is either at Line 2 of L L p or at Line 5 of L L p. In either case, X doesn’t

170

change during between L P(L L p) and Line 19 of SC p. Since we linearize all

SC operations at Line 19, it follows that there does not exist any successful SC

operation SC ′ such that L P(L L p) < L P(SC ′) < L P(SC p). Hence, SC p was

correct in returning true.

If SCp fails, we examine the following three possibilities: (1) L L p is linearized

at Line 2, (2) L L p is linearized at Line 5, and (3) L L p is linearized at some point

between Lines 2 and 4 (the third linearization case). In the first case, since SC p

fails, variable X changes between Line 2 of L L p and Line 19 of SC p. Since we

linearize all SC operations at Line 19, it follows that there exists some successful

SC operation SC ′ such that L P(L L p) < L P(SC ′) < L P(SC p). Hence, SC p

was correct in returning false. The proof for the second case is identical, and is

therefore omitted.

In the third case, the VL operation at Line 7 of L L p fails. Hence, variable X

changes between Lines 5 and 7 of L L p. Since we linearize all SC operations at

Line 19, it follows that there exists some successful SC operation SC ′ such that

L P(L L p) < L P(SC ′) < L P(SC p). Hence, SC p was correct in returning false.

ut

Lemma 51 (Correctness of VL) Let p be some process, and V L p some VL op-

eration by p in H. Let L L p the latest LL operation by p to precede V L p. Then,

V L p succeeds if and only if there does not exist some successful SC operation SC ′

such that L P(L L p) < L P(SC ′) < L P(V L p).

Proof. Similar to the proof of Lemma 51. ut

171

Theorem 6 Algorithm 5.1 is wait-free and implements a linearizable N-process

W-word LL/SC object O from small LL/SC objects and registers. The time com-

plexity of LL, SC, and VL operations on O are O(W), O(W) and O(1), respec-

tively. The implementation requires O(NW) registers and 3N + 1 small LL/SC

objects.

Proof. This theorem follows immediately from Lemmas 49, 50, and 51. ut

A.3 Proof of the algorithms in Chapter 6

A.3.1 Proof of Algorithm 6.1

Let H be any execution history of Algorithm 6.1. Let OP be some WLL operation,

OP′ some SC operation, and OP′′ some VL operation on O in H. Then, we set the

linearization points for OP, OP ′, and OP′′ at Line 1 (of OP), Line 9 (of OP′), and

Line 6 (of OP′′), respectively.

In Figure A.2, we present a number of invariants satisfied by the algorithm. In

the following, we let PC(p) denote the value of process p’s program counter. For

any register r at process p, we let r(p) denote the value of that register. We let P

denote a set of processes such that p ∈ P if and only if PC(p) ∈ {1 − 9, 11, 12}.

We let P ′ denote a set of processes such that p ∈ P ′ if and only if PC(p) = 10.

Lemma 52 The algorithm satisfies the invariants in Figure A.2.

Proof. (By induction) For the base case, (i.e., t = 0), all the invariants hold by

initialization. The inductive hypothesis states that the invariants hold at time t ≥ 0.

172

1. For any processes p ∈ P , we have mybuf p ∈ 0 . . M + N − 1.

2. For any process p ∈ P ′, we have x(p).buf ∈ 0 . . M + N − 1.

3. For any index i ∈ 0 . . M − 1, we have Xi .buf ∈ 0 . . M + N − 1.

4. Let p and q (respectively, p ′ and q ′), be any two processes in P (respectively,
P ′). Let i and j be any two indices in 0 . . M − 1. Then, we have mybuf p 6=

mybufq 6= Xi .buf 6= X j .buf 6= x(p′).buf 6= x(q ′).buf.

Figure A.2: The invariants satisfied by Algorithm 6.1

Let t ′ be the earliest time after t that some process, say p, makes a step. Then, we

show that the invariants holds at time t ′ as well.

First, notice that if PC(p) = {1 − 8, 11, 12}, or if PC(p) = 9 and p’s SC

fails, then none of the invariants are affected by p’s step and hence they hold at

time t ′ as well.

If PC(p) = 9 and p’s SC succeeds, then p moves from P to P ′. Let Xi be

the variable that p writes to. Then, since p’s SC is successful, we have Xi .buf =

x(p).buf at time t , and Xi .buf = mybuf p at time t ′. Consequently, invariant 3 holds

by IH:1, invariant 2 by IH:3, and invariant 4 by IH:4. All other invariants trivially

hold.

If PC(p) = 10, then p moves from P ′ to P and writes x(p).buf into mybuf p.

Then, invariant 1 holds by IH:2 and invariant 4 by IH:4. All other invariants triv-

ially hold. ut

Lemma 53 Let Oi be some Weak-LL/SC object in the array O0 . . M − 1. Let OP

be some WLL operation on Oi , and OP′ be the latest successful SC operation on

173

Oi to execute Line 9 prior to Line 1 of OP. If the VL operation at Line 3 of OP

returns true, then at the end of OP, retval holds the value written by OP ′.

Proof. Let v be the value that OP′ writes in Oi . Let p be the process executing

OP, and q be the process executing OP′. Let t1 be the time when p executes Line 1

of OP, t2 the time when p starts executing Line 2 of OP, and t3 the time when p

completes executing Line 2 of OP. Since OP′ is the latest successful SC operation

on Oi to execute Line 9 prior to Line 1 of OP, it follows that p reads from Xi at

time t1 the value that q writes in Xi at Line 9 of OP′. Therefore, p reads during

(t2, t3) the same buffer B that q wrote v into at Line 8 of OP ′. Let t4 be the time

when q starts writing into B at Line 8 of OP′, t5 the time when q completes writing

into B at Line 8 of OP′, and t6 the time when q writes into Xi at Line 9 of OP′.

Then, the following claim holds.

Claim 6 During (t4, t5), no process other than q writes into B. During (t5, t3), no

process writes into B.

Proof. Suppose not. Then, either some process other than q writes into B during

(t4, t5), or some process writes into B during (t5, t3). In the first case, let r1 be the

process that writes into B during (t4, t5). Then, at some point during (t4, t5), we

have mybufr1 = mybufq , which is a contradiction to Invariant 4. In the second case,

let r2 be the first process to start writing into B at some time τ1 ∈ (t5, t3) and k be

the index of buffer B. Then, by the earlier argument, τ1 6∈ (t5, t6). Furthermore,

by Invariant 4, r2 does not write into B as long as Xi holds value (∗, k). Since Xi

holds value (∗, k) at time t6 and doesn’t change during (t6, t1) nor during (t1, t3), it

means that τ1 > t3. This, however, is a contradiction to the fact that τ1 ∈ (t5, t3).

Hence, we have the claim. ut

174

The above claim shows that (1) during (t4, t5), no process other than q writes

into B, and (2) during (t5, t3), no process writes into B. Consequently, p reads v

from B during (t2, t3), which proves the lemma. ut

Lemma 54 (Correctness of WLL) Let Oi be any Weak-LL/SC object in the array

O0 . . M − 1. Let OP be any WLL operation on Oi , and OP ′ be the latest successful

SC operation on Oi such that LP(OP′) < LP(OP). If OP returns “success”, then

retval contains the value written by OP′. If OP returns (failure, q), then there exists

a successful SC operation OP′′ by process q such that: (1) LP(OP′′) lies in the

execution interval of OP, and (2) LP(OP) < LP(OP ′′).

Proof. Let p be the process executing OP. If OP returns success (at Line 3), let SCq

be the latest successful SC operation on Oi to execute Line 9 prior to Line 1 of OP,

and vq be the value that SCq writes in Oi . Since all SC operations are linearized at

Line 9 and since OP is linearized at Line 1, we have SCq = OP′. Furthermore, by

Lemma 53, retval contains value vq . Therefore, the lemma holds in this case.

If OP returns (failure, q) (at Line 5), then p reads (q, ∗) from Xi at Line 4 of

OP. Let SC′
q be the successful SC operation by q that wrote that value into Xi .

Since the VL at Line 3 of OP fails, it means that Xi changes between Lines 1 and 3

of OP. Therefore, SC′
q must have written (q, ∗) into Xi after Line 1 of OP (and

before Line 4 of OP). Since SC′
q is linearized at Line 9 and since OP is linearized

at Line 1, it follows that (1) LP(SC′
q) lies in the execution interval of OP, and (2)

LP(OP) < LP(SC′
q), which proves the lemma. ut

Lemma 55 (Correctness of SC) Let Oi be any Weak-LL/SC object in the array

O0 . . M − 1. Let OP be any SC operation on Oi by some process p, and OP ′ be

175

the latest WLL operation on Oi by p prior to OP. Then, OP succeeds if and only

if there does not exist any successful SC operation OP ′′ on Oi such that LP(OP′) <

LP(OP′′) < LP(OP).

Proof. If OP succeeds, then between Line 1 of OP ′ and Line 9 of OP, variable Xi

does not change. Since all SC operations are linearized at Line 9 and since OP ′ is

linearized at Line 1, it follows that there does not exist any successful SC operation

OP′′ on Oi such that LP(OP′) < LP(OP′′) < LP(OP).

If OP fails, then variable Xi changes between Line 1 of OP ′ and Line 9 of

OP. Since all SC operations are linearized at Line 9 and since OP ′ is linearized at

Line 1, it follows that there exists some successful SC operation OP ′′ on Oi such

that LP(OP′) < LP(OP′′) < LP(OP). Therefore, we have the lemma. ut

Lemma 56 (Correctness of VL) Let Oi be any Weak-LL/SC object in the array

O0 . . M − 1. Let OP be any VL operation on Oi by some process p, and OP ′ be

the latest WLL operation on Oi by p that precedes OP. Then, OP returns true if

and only if there does not exist some successful SC operation OP ′′ on Oi such that

LP(OP′) < LP(OP′′) < LP(OP).

Proof. Similar to the proof of Lemma 55. ut

Theorem 8 Algorithm 6.1 is wait-free and implements an array O0 . . M −1 of M

N-process W-word Weak-LL/SC objects. The time complexity of LL, SC, and VL

operations on O are O(W), O(W) and O(1), respectively. The implementation

requires O((N + M)W) registers and M small LL/SC objects.

Proof. This theorem follows immediately from Lemmas 54, 55, and 56. ut

176

A.3.2 Proof of Algorithm 6.2

Let H be any execution history of Algorithm 6.2. Let OP be some LL operation,

OP′ some SC operation, and OP′′ some VL operation on Oi in H, for some i . Then,

we define the linearization points for OP, OP ′, and OP′′ as follows. If the CAS at

Line 5 of OP succeeds, then LP(OP) is Line 3 of OP. Otherwise, let t be the time

when OP executes Line 2, and t ′ be the time when OP performs the CAS at Line 5.

Let v be the value that OP reads from BUF at Line 8 of OP. Then, we show that

there exists a successful SC operation SCq on Oi such that (1) at some point t ′′

during (t, t ′), SCq is the latest successful SC on Oi to execute Line 12, and (2)

SCq writes v into Oi . We then set LP(OP) to time t ′′. We set LP(OP′) to Line 12

of OP′, and LP(OP′′) to Line 10 of OP′′.

Lemma 57 Let p be some process, and L L p some LL operation by p in H. Let

t and t ′ be the times when p executes Line 2 and Line 5 of L L p, respectively.

Let t ′′ be either (1) the time when p executes Line 2 of its first LL operation after

L L p, if such operation exists, or (2) the end of H, otherwise. Then, the following

statements hold:

(S1) During the time interval (t, t ′, exactly one write into Helpp is performed.

(S2) Any value written into Helpp during (t, t ′′) is of the form (∗, 0, ∗).

(S3) Let t ′′′ ∈ (t, t ′ be the time when the write from statement (S1) takes place.

Then, during the time interval (t ′′′, t ′′), no process writes into Helpp.

Proof. Statement (S2) follows trivially from the fact that the only two operations

that can affect the value of Helpp during (t, t ′′) are (1) the CAS at Line 5 of L L p,

177

and (2) the CAS at Line 21 of some other process’ SC operation, both of which

attempt to write (∗, 0, ∗) into Helpp.

We now prove statement (S1). Suppose that (S1) does not hold. Then, during

(t, t ′, either (1) two or more writes on Helpp are performed, or (2) no writes on

Helpp are performed. In the first case, we know (by an earlier argument) that each

write on Helpp during (t, t ′ is performed either by the CAS at Line 5 of L L p, or

by the CAS at Line 21 of some other process’ SC operation. Let C AS1 and C AS2

be the first two CAS operations on Helpp to write into Helpp during (t, t ′. Then,

by the algorithm, both C AS1 and C AS2 are of the form CAS(Helpp, (∗, 1, ∗), (∗, 0, ∗)).

Since C AS1 succeeds and Helpp doesn’t change between C AS1 and C AS2, it fol-

lows that C AS2 fails, which is a contradiction.

In the second case (where no writes on Helpp take place during (t, t ′), Helpp

doesn’t change throughout (t, t ′. Therefore, p’s CAS at Line 5 of L L p succeeds,

which is a contradiction to the fact that no writes on Helpp take place during (t, t ′.

Hence, statement (S1) holds.

We now prove statement (S3). Suppose that (S3) does not hold. Then, at least

one write on Helpp takes place during (t ′′′, t ′′). By an earlier argument, any write

on Helpp during (t ′′′, t ′′) is performed either by the CAS at Line 5 of L L p, or

by the CAS at Line 21 of some other process’ SC operation. Let C AS3 be the

first CAS operation on Helpp to write into Helpp during (t ′′′, t ′′). Then, by the

algorithm, C AS3 is of the form CAS(Helpp, (∗, 1, ∗), (∗, 0, ∗)). Since Helpp

holds the value (∗, 0, ∗) at time t ′′′ (by (S2)), and since Helpp doesn’t change

between time t ′′′ and C AS3, it follows that C AS3 fails, which is a contradiction.

Hence, we have statement (S3). ut

178

1. For any process p, we have |Q p| ≥ N .

2. For any process p such that PC(p) = 15, we have |Q p| ≥ N + 1.

3. For any process p and any value b in Q p, we have b ∈ 0 . . M+(N+1)N−1.

4. For any processes p ∈ P , we have mybuf p ∈ 0 . . M + (N + 1)N − 1.

5. For any process p ∈ P ′, we have Helpp.buf ∈ 0 . . M + (N + 1)N − 1.

6. For any process p ∈ P ′′, we have x p.buf ∈ 0 . . M + (N + 1)N − 1.

7. For any process p ∈ P ′′′, we have b(p) ∈ 0 . . M + (N + 1)N − 1.

8. For any index i ∈ 0 . . M − 1, we have Xi .buf ∈ 0 . . M + (N + 1)N − 1.

9. Let p and q (respectively, p ′ and q ′, p′′ and q ′′, p′′′ and q ′′′), be any two
processes in P (respectively, P ′, P ′′, P ′′′). Let r be any process and b1 and
b2 any two values in Qr . Let i and j be any two indices in 0 . . M − 1. Then,
we have mybufp 6= mybufq 6= b1 6= b2 6= Xi .buf 6= X j .buf 6= Helpp′.buf 6=

Helpq ′.buf 6= x p′′ .buf 6= xq ′′ .buf 6= b(p′′′) 6= b(q ′′′).

Figure A.3: The invariants satisfied by Algorithm 6.2

In Figure A.3, we present a number of invariants satisfied by the algorithm. In

the following, we let PC(p) denote the value of process p’s program counter. For

any register r at process p, we let r(p) denote the value of that register. We let P

denote a set of processes such that p ∈ P if and only if PC(p) ∈ {1, 2, 7−13, 16−

21, 23, 24} or PC(p) ∈ {3 − 5} ∧ Helpp ≡ (∗, 1, ∗). We let P ′ denote a set of

processes such that p ∈ P ′ if and only if PC(p) ∈ {3 − 6} ∧ Helpp ≡ (∗, 0, ∗).

We let P ′′ denote a set of processes such that p ∈ P ′′ if and only if PC(p) = 14.

We let P ′′′ denote a set of processes such that p ∈ P ′′′ if and only if PC(p) = 22.

Finally, we let |Q p| denote the length of process p’s local queue Q p.

Lemma 58 The algorithm satisfies the invariants in Figure A.3.

179

Proof. (By induction) For the base case, (i.e., t = 0), all the invariants hold by

initialization. The inductive hypothesis states that the invariants hold at time t ≥ 0.

Let t ′ be the earliest time after t that some process, say p, makes a step. Then, we

show that the invariants holds at time t ′ as well.

First, notice that if PC(p) = {1−4, 7−11, 13, 16−20, 23, 24}, or if PC(p) =

{5, 12, 21} and p’s CAS fails, then none of the invariants are affected by p’s step

and hence they hold at time t ′ as well.

If PC(p) = 5 and p’s CAS succeeds, then p moves from P to P ′ and writes

mybufp into Helpp.buf. Consequently, invariant 5 holds by IH:4 and invariant 9

by IH:9. All other invariants trivially hold.

If PC(p) = 6, then, by Lemma 57, p was in P ′ at time t . Furthermore, p is in

P at time t ′. Since p writes Helpp.buf into mybuf p, invariant 4 holds by IH:5 and

invariant 9 by IH:9. All other invariants trivially hold.

If PC(p) = 12 and p’s CAS succeeds, then p moves from P to P ′′. Let Xi be

the variable that p writes to. Then, since p’s CAS is successful, we have Xi .buf =

x p.buf at time t , and Xi .buf = mybuf p at time t ′. Consequently, invariant 8 holds

by IH:4, invariant 6 by IH:8, and invariant 9 by IH:9. All other invariants trivially

hold.

If PC(p) = 14, then p leaves P ′′. Furthermore, p enqueues x p.buf into the

queue Q p. Consequently, invariant 1 holds by IH:1, invariant 2 by IH:1, invariant 3

by IH:6, and invariant 9 by IH:9. All other invariants trivially hold.

If PC(p) = 15, then p joins P . Furthermore, p reads and dequeues the front

element of the queue Q p. Consequently, invariant 4 holds by IH:3, invariant 1 by

IH:2, and invariant 9 by IH:9. All other invariants trivially hold.

180

If PC(p) = 21 and p’s CAS succeeds, then p moves from P to P ′′′. Let

Helpq be the variable that p writes into during this step. Then, we have b(p) =

Helpq.buf at time t , Helpq.buf = mybuf p at time t ′, and Helpq changes from

value (∗, 1, ∗) at time t to a value (∗, 0, ∗) at time t ′. Therefore, by Lemma 57,

we have PC(q) ∈ {3 − 5} at times t and t ′, and Helpq.buf = mybufq . Hence, q

moves from P to P ′, and b(p) = mybufq . Consequently, invariant 5 holds by IH:4,

invariant 7 by IH:4, and invariant 9 by IH:9. All other invariants trivially hold.

If PC(p) = 22, then p moves from P ′′′ to P . Furthermore, p writes b(p) into

mybufp. Consequently, invariant 4 holds by IH:7 and invariant 9 by IH:9. All other

invariants trivially hold. ut

Lemma 59 Let t0 < t1 < . . . < tK be all the times in H when some variable Xi

is written to (by a successful CAS at Line 12). Then, for all j ∈ {0, 1, . . . , K }, the

value written into Xi at time t j is of the form (j, ∗).

Proof. Suppose not. Let j be the smallest index such that, at time t j , a value k 6= j

is written into Xi by some process p. (By initialization, we have j ≥ 1.) Then, by

the algorithm, p’s CAS at time t j is of the form CAS(Xi , (k − 1, ∗), (k, ∗)). Since

Xi holds value j − 1 at time t j , and since k 6= j , it follows that p’s CAS fails,

which is a contradiction to the fact that p writes into Xi at time t j . ut

Lemma 60 Let Oi be an LL/SC object. Let t be the time when some process p

reads Xi (at Line 3 or 18), and t ′ > t the first time after t that p completes Line 4

or Line 19. Let OP be the latest successful SC operation on Oi to execute Line 12

prior to time t, and v the value that OP writes in Oi . If there exists some process q

181

such that Helpq holds value (∗, 1, ∗) throughout (t, t ′) and doesn’t change, then

p reads value v from BUF at Line 4 or Line 19 (during (t, t ′)).

Proof. Let r be the process executing OP. Since OP is the latest successful SC

operation on Oi to execute Line 12 prior to time t , it follows that p reads from Xi

at time t the value that r writes in Xi at Line 12 of OP. Therefore, p reads during

(t, t ′) the same buffer B that r wrote v into at Line 11 of OP. Let t1 be the time

when r starts writing into B at Line 11 of OP, t2 the time when r completes writing

into B at Line 11 of OP, t3 the time when r writes into Xi at Line 12 of OP, and t ′′

the time when p starts reading B during (t, t ′). Then, the following claim holds.

Claim 7 During (t1, t2), no process other than r writes into B. During (t2, t ′), no

process writes into B.

Proof. Suppose not. Then, either some process other than r writes into B during

(t1, t2), or some process writes into B during (t2, t ′). In the first case, let r1 be the

process that writes into B during (t1, t2). Then, at some point during (t1, t2), we

have mybufr1 = mybufr , which is a contradiction to Invariant 9. In the second case,

let r2 be the first process to start writing into B at some time τ1 ∈ (t2, t ′), and k be

the index of buffer B. Then, by an earlier argument, τ1 6∈ (t2, t3). Furthermore, by

Invariant 9 , r2 does not write into B as long as Xi holds value (∗, k). Therefore,

Xi changes during (t3, τ1).

Since Xi doesn’t change during (t3, t), it means that (1) τ1 > t and (2) some

process writes into Xi during (t, τ1). Let r3 be the first such process, τ2 ∈ (t, τ1) the

time when r3 writes into Xi , and SCr3 the SC operation during which r3 performs

that write. Let τ3 be the time when r3 executes Line 14 of SCr3 . Then, at time

182

τ3, r3 enqueues k into Qr3 . Furthermore, by Invariant 9, r2 does not write into

B during (τ2, τ3), nor does it write into B during the time Qr3 contains value k.

Therefore, we have τ3 ∈ (τ2, τ1). Finally, we know that k is dequeued from Qr3

during (τ3, τ1).

Let τ4 be the first time after τ3 that k is dequeued from Qr3 . (Notice that, by

the above argument, τ4 ∈ (τ3, τ1).) Then, by Invariant 1, r3 executes Lines 16–23

N times during (τ3, τ4). Since during each execution of Lines 16–23 r3 increments

variable indexr3 by 1 modulo N , there exists an execution E of Lines 16–23 during

which indexr3 = q. Because Helpq holds value (∗, 1, ∗) throughout (t, t ′) and

doesn’t change, it follows that (1) r3 satisfies the condition at Line 16 of E , and

(2) r3’s CAS at Line 21 of E succeeds. This, however, is a contradiction to the fact

that Helpq = (∗, 1, ∗) throughout (t, t ′). Hence, we have the claim. ut

The above claim shows that (1) during (t1, t2), no process other than r writes

into B, and (2) during (t2, t ′), no process writes into B. Consequently, p reads v

from B during (t, t ′), which proves the lemma. ut

Lemma 61 Let Oi be an LL/SC object and OP some LL operation on Oi . Let SCq

be the latest successful SC operation on Oi to execute Line 12 prior to Line 3 of

OP, and vq the value that SCq writes in Oi . If the CAS at Line 5 of OP succeeds,

then OP returns value vq .

Proof. Let p be the process executing OP. Let t time when p executes Line 3

of OP, and t ′ > t be the time when p completes Line 4 of OP. Since the CAS at

Line 5 of OP succeeds, it follows by Lemma 57 that Helpp holds value (∗, 1, ∗)

throughout (t, t ′) and doesn’t change during that time. Therefore, by Lemma 60,

183

p reads vq from BUF at Line 4 of OP, which proves the lemma. ut

Lemma 62 Let Oi be an LL/SC object, and OP an LL operation on Oi such that

the CAS at Line 5 of OP fails. Let p be the process executing OP. Let t and t ′ be the

times, respectively, when p executes Lines 2 and 5 of OP. Let x and v be the values

that p reads from BUF at Lines 7 and 8 of OP, respectively. Then, there exists a

successful SC operation SCq on Oi such that (1) at some point during (t, t ′), SCq

is the latest successful SC on Oi to execute Line 12, and (2) SCq writes x into Xi

and v into Oi .

Proof. Since p’s CAS at time t ′ fails, it means that Helpp = (s, 0, b) just prior to

t ′. Then, by Lemma 57, there exists a single process r that writes into Helpp dur-

ing (t, t ′) (at Line 21). Let t1 ∈ (t, t ′) be the time when r performs that write, and

E be r ’s execution of Lines 16–22 during which r performs that write. Then, r ’s

CAS at Line 21 of E (at time t1) is of the form CAS(Helpp, (s, 1, ∗), (s, 0, ∗)), for

some s. Therefore, at time t1, Helpp has value (s, 1, ∗). Hence, by Lemma 57,

p writes (s, 1, ∗) into Helpp at Line 2 of OP (at time t). Since a value of the

form (s, ∗, ∗) is written into Helpp for the first time at time t , it follows that r

reads (s, 1, ∗) from Helpp at Line 16 of E at some time t2 ∈ (t, t1). Conse-

quently, r reads variable Announcep at Line 17 of E at some time t3 ∈ (t2, t1).

Since p writes i into Announcep at Line 1 of OP, it follows that r reads i from

Announcep at time t2. Hence, r reads Xi at Line 18 of E .

Let t4 be the time when r reads Xi at Line 18 of E , t5 the time when r starts

Line 19 of E , t6 the time when r completes Line 19 of E , and t7 the time when

r executes Line 20 of E . Let SCq be the latest successful SC operation on Oi to

execute Line 12 prior to time t4, xq the value that SCq writes in Xi , and vq the value

184

that SCq writes in Oi . Then, at time t4, r reads xq from Xi . Furthermore, since t1 is

the first (and only) time that Helpp is written during (t, t ′), it follows that Helpp

holds value (∗, 1, ∗) at all times during (t4, t6) and doesn’t change during that time.

Therefore, by Lemma 60, r reads vq from BUF during (t5, t6).

Let B be the buffer that r writes vq into during (t5, t6). Then, at time t7, r

writes xq into BW . Furthermore, since r writes the index of buffer B into Helpp

at Line 21 of E (at time t1), it follows that p reads buffer B at Lines 7 and 8 of

OP. Let t8 be the time when p reads BW at Line 7 of OP, t9 the time when p starts

reading B at Line 8 of OP, and t10 the time when p completes reading B at Line 8

of OP. Then, we show that the following claim holds.

Claim 8 During (t5, t6), no process other than r writes into B, and during (t6, t10),

no process writes into B.

Proof. Suppose not. Then, either some process other than r writes into B during

(t5, t6), or some process writes into B during (t6, t10). In the former case, let r1 be

the process that writes into B during (t5, t6). Then, at some point during (t5, t6), we

have mybufr1 = mybufr , which is a contradiction to Invariant 9. In the latter case,

let r2 be the first process to write into B at some time τ1 ∈ (t6, t10). Then, by an

earlier argument, we know that τ1 6∈ (t6, t1). We now show that τ1 6∈ (t1, t10).

Let b be the index of buffer B. We know by Invariant 9 that r2 does not write

into B as long as (1) Helpp = (s, 0, b), and (2) p is between Lines 2 and 6 of OP.

Furthermore, since p sets mybuf p to b at Line 6 of OP, r2 does not write into B after

p executes Line 6 of OP and before it completes OP. Therefore, throughout (t1, t10),

r2 does not write into B. Hence, τ1 6∈ (t1, t10). Since, by an earlier argument,

τ1 6∈ (t6, t1), it follows that τ1 6∈ (t6, t10). This, however, is a contradiction to the

185

fact that r2 writes into B during (t6, t10). ut

The above claim shows that (1) during (t5, t6), no process other than r writes

into B, and (2) during (t6, t10), no process writes into B. Consequently, p reads xq

from BW at time t8 and vq from B during (t9, t10). Since SCq is the latest successful

SC operation on Oi to execute Line 12 prior to time t4, and since t4 ∈ (t, t ′), we

have the lemma. ut

Lemma 63 (Correctness of LL) Let Oi be some LL/SC object. Let OP be any LL

operation on Oi , and OP′ be the latest successful SC operation on Oi such that

LP(OP′) < LP(OP). Then, OP returns the value written by OP ′.

Proof. Let p be the process executing OP. We examine the following two cases:

(1) the CAS at Line 5 of OP succeeds, and (2) the CAS at Line 5 of OP fails. In the

first case, let SCq be the latest successful SC operation on Oi to execute Line 12

prior to Line 3 of OP, and vq be the value that SCq writes in Oi . Since all SC

operations are linearized at Line 12 and since OP is linearized at Line 3, we have

SCq = OP′. Furthermore, by Lemma 61, OP returns value vq . Therefore, the lemma

holds in this case.

In the second case, let t and t ′ be the times, respectively, when p executes

Lines 2 and 5 of OP. Let v be the value that p reads from BUF at Line 8 of OP.

Then, by Lemma 62, there exists a successful SC operation SCr on Oi such that (1)

at some time t ′′ ∈ (t, t ′), SCr is the latest successful SC on Oi to execute Line 12,

and (2) SCr writes v into Oi . Since all SC operations are linearized at Line 12 and

since OP is linearized at time t ′′, we have SCr = OP′. Therefore, the lemma holds.

ut

186

Lemma 64 (Correctness of SC) Let Oi be some LL/SC object. Let OP be any SC

operation on Oi by some process p, and OP′ be the latest LL operation on Oi by

p prior to OP. Then, OP succeeds if and only if there does not exist any successful

SC operation OP′′ on Oi such that LP(OP′) < LP(OP′′) < LP(OP).

Proof. We examine the following two cases: (1) the CAS at Line 5 of OP ′ succeeds,

and (2) the CAS at Line 5 of OP′ fails. In the first case, let t1 be the time when p

executes Line 3 of OP′, and t2 be the time when p executes Line 12 of OP. Then,

we show that the following claim holds.

Claim 9 Process p’s CAS at time t2 succeeds if and only if there does not exist

some other SC operation on Oi that performs a successful CAS at Line 12 during

(t1, t2).

Proof. Suppose that no other SC operation on Oi performs a successful CAS at

Line 12 during (t1, t2). Then, Xi doesn’t change during (t1, t2), and hence p’s CAS

at time t2 succeeds.

Suppose that some SC operation SCq on Oi does perform a successful CAS at

Line 12 during (t1, t2). Then, by Lemma 59, Xi holds different values at times t1

and t2. Hence, p’s CAS at time t2 fails, which proves the claim. ut

Since all SC operations are linearized at Line 12 and since OP ′ is linearized at

time t1, it follows from the above claim that OP succeeds if and only if there does

not exist some successful SC operation OP′′ on Oi such that LP(OP′) < LP(OP′′) <

LP(OP). Hence, the lemma holds in this case.

In the second case (when the CAS at Line 5 of OP ′ fails), let t and t ′ be the times

when p executes Lines 2 and 5 of OP′, respectively. Let x and v be the values that

187

p reads from BUF at Lines 7 and 8 of OP′, respectively. Then, by Lemma 62, there

exists a successful SC operation SCr on Oi such that (1) at some time t ′′ ∈ (t, t ′),

SCr is the latest successful SC on Oi to execute Line 12, and (2) SCr writes x into

Xi and v into Oi . Therefore, at Line 7 of OP′, p reads the value that variable Xi

holds at time t ′′. We now prove the following claim.

Claim 10 Process p’s CAS at time t2 succeeds if and only if there does not exist

some other SC operation on Oi that performs a successful CAS at Line 12 during

(t ′′, t2).

Proof. Suppose that no other SC operation on Oi performs a successful CAS at

Line 12 during (t ′′, t2). Then, Xi doesn’t change during (t ′′, t2), and hence p’s CAS

at time t2 succeeds.

Suppose that some SC operation SCq on Oi does perform a successful CAS at

Line 12 during (t ′′, t2). Then, by Lemma 59, Xi holds different values at times t ′′

and t2. Hence, p’s CAS at time t2 fails, which proves the claim. ut

Since all SC operations are linearized at Line 12 and since OP ′ is linearized at

time t1, it follows from the above claim that OP succeeds if and only if there does

not exist some successful SC operation OP′′ on Oi such that LP(OP′) < LP(OP′′) <

LP(OP). Hence, the lemma holds. ut

Lemma 65 (Correctness of VL) Let Oi be some LL/SC object. Let OP be any VL

operation on Oi by some process p, and OP′ be the latest LL operation on Oi by

p that precedes OP. Then, OP returns true if and only if there does not exist some

successful SC operation OP′′ on Oi such that LP(OP′′) ∈ (LP(OP′), LP(OP)).

188

Proof. Similar to the proof of Lemma 64. ut

Theorem 10 Algorithm 6.2 is wait-free and implements an array O0 . . M − 1 of

M linearizable N-process W-word LL/SC objects. The time complexity of LL,

SC and VL operations on O are O(W), O(W) and O(1), respectively. The space

complexity of the implementation is O(Nk+(M+N 2)W), where k is the maximum

number of outstanding LL operations of a given process.

Proof. The theorem follows immediately from Lemmas 63, 64, and 65. ut

A.4 Proof of the algorithms in Chapter 7

A.4.1 Proof of Algorithm 7.1

Let H be the execution history of Algorithm 7.1. Then, we show that the following

lemmas hold.

Lemma 66 Let t1, t2, . . . , tm be all the times in H that variable D is written. Let

di , for all i ∈ {1, 2, . . . , m}, be the value written into D at time ti . Let d0 be the

initializing value for D. Then, we have d0 6= d1 6= . . . 6= dm . Furthermore, for all

i ∈ {0, 1, . . . , m}, we have: (1) di→size = 2i , (2) di→A is an array of size 2i , (3)

di→B is an array of size 2i+1, and (4) di→A = di−1→B for i > 0.

Proof. Suppose that the first part of the claim doesn’t hold. Then, there exist some

indices i and j in {0, 1, . . . , m} such that di = d j . Let t ′
i (respectively, t ′

j) be the

latest time prior to ti (respectively, t j) that di was returned by a malloc at Line 6

(or during initialization). Then, by the algorithm, di (respectively, d j) is not freed

189

after time ti (respectively, t j). Hence, by the uniqueness of allocated addresses, we

have t ′
j < t ′

i and t ′
i < t ′

j , which is a contradiction. Therefore, we have the first part

of the claim.

We prove the second part of the claim by induction. Suppose that that the

claim holds for all i < j ; we show that the claim holds for j as well. Let p

be the process that writes d j into D at time t j . Let t be the latest time prior to

t j that p reads D (at Line 1). Then, since p’s CAS at time t j succeeds, p reads

d j−1 from D at time t . Furthermore, since, by the first part of the claim, we have

d0 6= d1 6= . . . 6= d j−1 6= d j , it follows that t ∈ (t j−1, t j). By inductive hypothesis,

we have (1) d j−1→size = 2 j−1, (2) d j−1→ A is of size 2 j−1, and (3) d j−1→B is

of size 2 j . Therefore, during time (t, t j), p (1) writes 2 j into d j →size (Line 9),

(2) sets d j → B to be a new array of size 2 j+1 (Line 8), and (3) sets d j → A to be

d j−1→B (Line 7). Hence, we have the claim. ut

In the following, let K be the maximum i such that write(i, ∗) is invoked

in H. Let Ei , for all i ∈ {0, 1, . . . , K }, be the collection of all executions of

write(i, ∗) in H. Let ti , for all i ∈ {0, 1, . . . , K }, be the earliest time some

execution in Ei is invoked. Let t ′
i , for all i ∈ {0, 1, . . . , K }, be the earliest time

some execution in Ei completes. (Notice that, by the definition of DynamicArray,

ti > t ′
i−1 for all i ∈ {1, 2, . . . , K }.) Let vi , for all i ∈ {0, 1, . . . , K }, be the value

written by an execution in Ei . Let c(i), for all i ∈ {1, 2, . . . , K }, be the smallest

power of 2 greater or equal to i , and c′(i) be the largest power of 2 smaller or

equal to i . (If i = 0, then c′(i) = 0.) If E is an execution of procedure write

in H, then, in the following, we slightly abuse notation, and say that “E executes

Line 4”, instead of “process p executing E executes Line 4.”

190

Lemma 67 For all i ∈ {0, 1, . . . , K }, we have the following.

If i is not a power of 2:

(1) Ei 6= ∅.

(2) Let d be the value of variable D at time ti . Then, we have d→size = c(i).

(3) For all E ∈ Ei , E does not execute Lines 6–11. (Notice that this implies that

E does not invoke the write procedure at Line 11; therefore, we can say,

for example, “Line 4 of E,” without being ambiguous.)

(4) Variable D doesn’t change during (ti , t ′
i).

(5) Let E be any execution in Ei , and d be the value that E reads from D at

Line 1. Then, E writes vi into d→Ai at Line 3.

(6) Let E be any execution in Ei , and d be the value that E reads from D at

Line 1. Then, E writes vi into d→Bi at Line 4.

(7) Let E be any execution in Ei , and d be the value that E reads from D at

Line 1. Then, E copies d→Ai − c′(i) into d→Bi − c′(i) at Line 5.

If i is a power of 2:

(8) Ei 6= ∅.

(9) Let d be the value of variable D at time ti . Then, we have d→size = i .

(10) For all E ∈ Ei , E executes write at Line 11 at most once. (In the following,

let E ′
i ⊂ Ei be the collection of all executions in Ei that execute write at

Line 11, and E ′′
i ⊂ Ei be the collection of all executions in Ei that do not

191

execute write at Line 11. Let E(1) and E(2), for all E ∈ E ′
i , denote E’s

first and second execution of Lines 1–11, respectively.)

(11) Exactly one execution E ∈ Ei performs a successful CAS at Line 10. Fur-

thermore, E performs this CAS at some time t ′′
i during (ti , t ′

i).

(12) Variable D changes exactly once during (ti , t ′
i), at time t ′′

i .

(13) Let E (respectively, E ′) be any execution in E ′
i (respectively, E ′′

i). Then, E(2)

(respectively, E ′) executes Line 1 after time t ′′
i .

(14) Let E (respectively, E ′) be any execution in E ′
i (respectively, E ′′

i), and d be

the value that E(2) (respectively, E ′) reads from D at Line 1. Then, E(2)

(respectively, E ′) writes vi into d→Ai at Line 3.

(15) Let E (respectively, E ′) be any execution in E ′
i (respectively, E ′′

i), and d be

the value that E(2) (respectively, E ′) reads from D at Line 1. Then, E(2)

(respectively, E ′) writes vi into d→Bi at Line 3.

(16) Let E (respectively, E ′) be any execution in E ′
i (respectively, E ′′

i), and d be

the value that E(2) (respectively, E ′) reads from D at Line 1. Then, E(2)

(respectively, E ′) copies d→A0 into d→B0 at Line 5.

Proof. (By induction) We assume that the lemma holds for all i < j , and show

that it also holds for j . (During the proof of the inductive step, we will also prove

the base case of i = 0.) We first prove the case when j is not a power of 2.

Let d be the value of variable D at time t j . By inductive hypothesis, D has

changed exactly lg (c(j)) times prior to time t j (by Statements (3) and (11)). Then,

by Lemma 66, we have (1) d → size = c(j), (2) d → A is an array of size c(j),

192

and (3) d → B is an array of size 2c(j). Hence, Statement (2) holds. Since,

by Lemma 66, the value of D→ size only increases after time t j , it follows that

all executions in E j satisfy the condition at Line 2. Therefore, no execution in

E j executes Line 6–11, which proves Statement (3). Statements (5), (6), and (7)

follow directly from the algorithm. Statement (1) follows trivially by the definition

of DynamicArray. Statement (4) follows directly from the following claim.

Claim 11 During (t j , t ′
j), variable D doesn’t change.

Proof. The claim follows immediately from the fact that (1) during (t j , t ′
j), no

execution in E j writes into D (by Statement (3)), and (2) during (t j , t ′
j), no execu-

tion in Ei , for all i < j , writes into D (by inductive hypothesis for Statements (3)

and (11)). ut

We now prove the case when j is a power of 2. Let d be the value of variable D

at time t j . By inductive hypothesis, D has changed exactly lg j times prior to time

t j (by Statements (3) and (11)). Then, by Lemma 66, we have (1) d →size = j ,

(2) d → A is an array of size j , and (3) d → B is an array of size 2 j . Hence,

Statement (9) holds. We now prove the following claims.

Claim 12 Let t be either (1) the earliest time during (t j , t ′
j) that some execution

E ∈ E j performs a CAS at Line 10, or (2) t j , if there is no such execution. Then,

throughout (t j , t), variable D holds value d.

Proof. The claim follows immediately from the fact that (1) during (t j , t), no

execution in E j writes into D (by definition of t), (2) during (t j , t), no execution

in Ei , for all i < j , writes into D (by inductive hypothesis for Statements (3) and

(11)), and (3) D holds value d at time t j . ut

193

Claim 13 At least one execution E ∈ E j performs a CAS at Line 10 during (t j , t ′
j).

Proof. Suppose not. Then, during (t j , t ′
j), no execution in E j performs a CAS at

Line 10. Consequently, by Claim 12, variable D holds value d throughout (t j , t ′
j).

Let E ∈ E j be the execution that completes at time t ′
j . Let E(1) be the first execu-

tion of Lines 1–11 by E . Then, E(1) reads d from D at Line 1. Therefore, E(1)

does not satisfy the condition at Line 2 and hence executes Line 6–11, which is a

contradiction to the fact that no execution in E j performs a CAS at Line 10 during

(t j , t ′
j). ut

Claim 14 Let t be the earliest time (by Claim 13) during (t j , t ′
j) that some execu-

tion E ∈ E j performs a CAS at Line 10. Then, E’s CAS at time t succeeds.

Proof. Notice that, by Claim 12, variable D holds value d throughout (t j , t).

Therefore, E reads d from D at Line 1, and E’s CAS at time t succeeds, which

proves the claim. ut

Claim 15 Let t be the earliest time (by Claim 13) during (t j , t ′
j) that some exe-

cution in E j performs a CAS at Line 10. Let E be any execution in E j , and E(l)

any execution of Lines 1–11 of E. Then, if E(l) executes Line 1 prior to time t, it

executes Lines 6–11. Otherwise, it executes Lines 3–5.

Proof. By Claim 12, we know that variable D holds value d throughout (t j , t).

Therefore, if E(l) executes Line 1 before time t , it will find d in variable D. Con-

sequently, E(l) will not satisfy the condition at Line 2, and will hence execute

Lines 6–11.

194

Suppose that E(l) executes Line 1 after time t . Let d ′ be the value that E(l)

reads from D at Line 1. Then, by Lemma 66 and Claim 14, we have d ′→size ≥ 2 j .

Therefore, E(l) satisfies the condition at Line 2, and hence executes Lines 3–5. ut

Claim 16 At most one execution E ∈ E j performs a successful CAS at Line 10.

Proof. Suppose not. Then, two or more executions in E j perform a successful

CAS at Line 10. Let t and t ′ be the earliest two times that some execution in E j

performs a successful CAS at Line 10. Then, by Claim 14, t is the earliest time

during (t j , t ′
j) that any execution in E j performs a CAS at Line 10.

Let E be the execution in E j that performs a successful CAS at time t ′. Let

E(l) be the execution of Lines 1–11 of E during which E performs that CAS. Let

t ′′ be the time when E(l) executes Line 1, and d ′ be the value that E(l) reads from

D at time t ′′. Then, since E(l)’s CAS at time t ′ succeeds, it follows that t ′′ ∈ (t, t ′)

(by Lemma 66). Therefore, by Claim 15, E(l) executes Lines 3–5, which is a

contradiction to the fact that E(l) performs a successful CAS at Line 10. ut

Notice that, by Claim 15, if an execution E ∈ E j executes write at Line 11,

it will not execute Lines 6–11 again. Therefore, we have Statement (10). State-

ment (11) follows directly from Claims 14 and 16. Statement (13) follows directly

from Claim 15. Statements (14), (15), and (16) follow directly by the algorithm.

Statement (8) follows trivially by the definition of DynamicArray. Statement (12)

follows directly from the following claim.

Claim 17 During (t j , t ′
j), variable D changes exactly once, at time t ′′

i .

Proof. The claim follows immediately from the fact that (1) during (t j , t ′
j), no

execution in Ei , for all i < j , writes into D (by inductive hypothesis for State-

195

ments (3) and (11)), and (2) during (t j , t ′
j), exactly one execution in E j writes into

D (by Statement (11)). ut

ut

Lemma 68 No execution E in H writes or reads an unallocated memory region at

Lines 3, 4, or 5.

Proof. Let E be an execution in H, and Es the collection that E belongs to, for

some s ∈ {1, 2, . . . , K }. If s is not a power of 2, let d be the value of variable D

that E reads at Line 1. Then, by Statement (2) of Lemma 67 and by Lemma 66,

we have d → size ≥ c(s). Furthermore, arrays d → A and d → B are of sizes at

least c(s) and 2c(s), respectively. Therefore, E writes into a valid array location at

Lines 3 and 4. Since s > c′(s), E reads and writes a valid array location at Line 5

as well.

If s is not a power of 2, we examine two possibilities: either E ∈ E ′
j or E ∈ E ′′

j .

In the first case, let d be the value of variable D that E(2) reads at Line 1. Then,

by Statement (13) of Lemma 67 and by Lemma 66, we have d → size ≥ 2s.

Furthermore, arrays d→ A and d→B are of sizes at least 2s and 4s, respectively.

Therefore, E(2) writes into a valid array location at Lines 3 and 4. Since s = c ′(s),

E reads and writes a valid array location at Line 5 as well. (The argument for the

second case is identical, and is therefore omitted.) ut

Lemma 69 Let R be any read(i, ∗) operation in H, for some i ∈ {0, 1, . . . , K }.

Then, R returns vi .

196

Proof. (In the following, let D(t) to denote the value of variable D at time t .) Let

td and tr be the times when R executes Lines 12 and 13, respectively. Then, we

show that the following claim holds:

Claim 18 The length of the array D(td)→A is at least i + 1.

Proof. Notice that, by the definition of DynamicArray, at least one execution

E ∈ Ei completes before R starts. Then, the claim follows immediately by State-

ments (2), (9), and (12) of Lemma 67 and by Lemma 66. ut

Suppose that the lemma doesn’t hold. Then, the value that R reads from

D(td)→ Ai at time tr is different than vi . By Lemma 67, we know that at least

one execution in Ei writes vi into both D(ti) → Ai and d ′ → Bi during (ti , t ′
i).

Furthermore, D doesn’t change during (ti , t ′
i) and no other execution in E j , for all

j < i , writes into D(ti)→ Ai and D(ti)→ Bi during (ti , t ′
i). Therefore, we have

D(t ′
i)→Ai = vi and D(t ′

i)→Bi = vi at time t ′
i .

Let t be any time in (t ′
i , tr). Let t1, t2, . . . , tm(t) be all the times during (t ′

i , t)

when D changes. Let A j , for all j ∈ {1, 2, . . . , m(t)}, be the array in D(t i)→ A.

Let B j , for all j ∈ {1, 2, . . . , m(t)}, be the array in D(t i)→B. Let A0 be the array

in D(t ′
i)→A, B0 the array in D(t ′

i)→B, and t0 = t ′
i . Then, we prove the following

claim.

Claim 19 If no execution writes a value different than vi at index i (of some array)

during (t ′
i , t), then at all times during (t j , t) and for all j ∈ {0, 1, 2, . . . , m(t)}, we

have A j i = vi .

197

Proof. Suppose not. Then, let t ′ be the earliest time that the following occurs:

for some k, Ak i 6= vi at time t ′ ∈ (tk, t). Notice that, since A0i = vi at time t ′
i ,

and since no execution writes a value different than vi at index i during (t ′
i , t), it

follows that k 6= 0. Similarly, since B0i = vi at time t ′
i , and since no execution

writes a value different than vi at index i during (t ′
i , t), it follows that A1i = vi at

time t1 and A1i = vi throughout (t1, t). Therefore, we have k ≥ 2.

It follows by Lemma 67 that some execution in E2k−2c(i) writes into D at time

tk−1. Furthermore, some execution in E2k−1c(i) writes into D at time t k . Finally, dur-

ing (t k−1, tk), some execution E ∈ E2k−2c(i)+i reads the value in Ak−1i (at Line 5)

and writes that value into Bk−1i (at Line 5). Then, by definition of t ′, E reads vi

from Ak−1i . Therefore, E writes vi into Bk−1i . Consequently, since no execution

writes a value different than vi at index i during (t ′
i , t), it follows that Ak i = vi at

time t k and Ak i = vi throughout (t k, t), which is a contradiction to the fact that

Ak i 6= vi at time t ′. ut

By Claim 19, some execution writes a value different than vi at index i (of

some array) during (t ′
i , tr) (because R reads a value different than vi at time tr).

Let te be the earliest time that some execution E writes a value different than v i at

index i (of some array) during (t ′
i , tr). Then, by Lemma 67, (1) E writes into one

of the arrays A0, A1, . . . , Am(tr) or B0, B1, . . . , Bm(tr), (2) E ∈ E j , for some j > i ,

and (3) E’s write at time te takes place at Line 5 of E . Therefore, E writes into Bki

at time te, for some k ∈ 0, 1, . . . , m(tr).

Notice that E reads Ak i at Line 5 prior to time te. Since te is the first time

during (t ′
i , tr) that some execution writes a value different than vi at index i (of

some array), it follows that during (t ′
i , te), no execution writes a value different

198

than vi at index i (of some array). Therefore, by Claim 19, we have Ak i = vi

throughout (t ′
i , te). Consequently, E reads vi from Ak i at Line 5, and therefore

writes vi into Bki at time te, which is a contradiction. Hence, we have the lemma.

ut

Theorem 11 Algorithm 7.1 is wait-free and implements a DynamicArray object D

from a word-sized CAS object and registers. The time complexity of read and write

operations on D is O(1). The space used by the algorithm at any time t is O(nK),

where n is the number of processes executing the algorithm at time t, and K is the

highest location written in D prior to time t.

Proof. The theorem follows immediately from Lemma 69. ut

A.4.2 Proof of Algorithm 7.3

Lemmas associated with the code in Figure 7.2

We say that node n is allocated at time t if there exists a call to malloc at time t

(at Line 35) that returns n. Node n is released at time t if some process executes

a free operation at Line 45 at time t with the argument n. Node n is installed at

time t if some process executes a successful CAS at Line 50 at time t with the third

argument n.

We say that node n is alive at time t if it has been allocated prior to time t but

hasn’t been released, or if n is the initial dummy node and n hasn’t been released.

Node n is active at time t if it has been installed prior to time t or if it is the initial

dummy node. We let Alive denote the set of all nodes that are alive. We let L denote

the sequence of nodes that are active, arranged in the order of their installation.

199

1. |L| ≥ 1.

2. For any node n ∈ L , we have n ∈ Alive.

3. For any two nodes n i and n j such that i 6= j , we have n i 6= n j .

4. Head = n0.

5. ∗(n i .next) = n i+1, for all i ∈ {0, 1, . . . , |L| − 2}.

6. n|L|−1.next = ⊥.

7. For all p ∈ P ′, we have mynode(p) ∈ Alive.

8. For all p ∈ P ′ and all i ∈ {0, 1, . . . , |L| − 1}, we have ∗mynode(p) 6= n i .

9. For all p and q in P ′ such that p 6= q, we have mynode(p) 6= mynode(q).

10. For all p ∈ P ′′, we have mynode(p)→next = ⊥.

11. For all p ∈ P ′′′, we have ∗cur(p) = n j , for some j ∈ {0, 1, . . . , |L| − 1}.

12. For any p ∈ P ′ such that PC(p) = 53, we have cur(p)→next 6= ⊥.

Figure A.4: The invariants satisfied by Algorithm 7.3

We let PC(p) denote the value of process p’s program counter at time t . For

any register r at process p, we let r(p) denote the value of that register at time t .

We let P ′ denote the set of processes such that p ∈ P ′ if and only if PC(p) ∈

{36 − 45, 47 − 50, 53}. We let P ′′ denote the set of processes such that p ∈ P ′′ if

and only if PC(p) ∈ {38−45, 47−50, 53}. We let P ′′′ denote the set of processes

such that p ∈ P ′′′ if and only if PC(p) ∈ {42−45, 47−50, 53}. We let |L| denote

the length of L . We let n i denote the i th element of L , for all i ∈ {0, 1, . . . , |L|−1}.

Then, Algorithm 7.3 satisfies the following invariants.

Lemma 70 Algorithm 7.3 satisfies the invariants in Figure A.4.

Proof. (By induction) For the base case (i.e., t = 0), the lemma holds trivially

200

by initialization. The inductive hypothesis states that the lemma holds at all times

prior to t ≥ 0. Let t ′ be the earliest time after t that some process, say p, makes a

step. Then, we show that the lemma holds at time t ′ as well.

Notice that, if PC(p) ∈ {36, 38 − 40, 42 − 44, 46 − 48, 51, 52, 54 − 68}, then

none of the invariants are affected by p’s step and hence they hold at time t ′ as

well.

If PC(p) = 35, then p joins P ′ and writes into mybuf(p) a pointer to a newly

allocated node. Consequently, invariant 8 holds by IH:2, invariant 9 by IH:7, and

invariant 7 by definition of Alive. All other invariants trivially hold.

If PC(p) = 37, then p joins P ′′ and writes ⊥ into mynode(p)→next. Hence,

we have invariant 10. Furthermore, invariant 5 holds by IH:8. All other invariants

trivially hold.

If PC(p) = 41, then p joins P ′′′ and writes Head into cur(p). Consequently,

invariant 11 holds by IH:4. All other invariants trivially hold.

If PC(p) = 45, then p leaves P ′, P ′′, and P ′′′, and frees up the node

∗m†\ode(p). Consequently, invariant 2 holds by IH:8 and invariant 7 by IH:9. All

other invariants trivially hold.

If PC(p) = 49, or if PC(p) = 50 and p’s CAS fails, then we have cur(p)→

next 6= ⊥ at both times t and t ′. Consequently, invariant 12 holds. All other

invariants trivially hold.

If PC(p) = 50 and p’s CAS succeeds, then (1) p leaves P ′, P ′′, and P ′′′, (2)

∗mynode(p) joins L , (3) ∗cur(p).next = ⊥ at time t , and (4) ∗cur(p).next =

mynode(p) at time t ′. Let l be the length of L at time t . Then, by IH:11, IH:5, and

IH:6, it follows that ∗cur(p) = n l−1. Therefore, invariant 5 holds. Furthermore,

invariant 1 holds by IH:1, invariant 2 by IH:7, invariant 3 by IH:8, invariant 6 by

201

IH:10, invariant 8 by IH:9. All other invariants trivially hold.

If PC(p) = 53, then p writes cur(p) → next into cur(p). Consequently,

invariant 11 holds by IH:12, IH:5, and IH:6. All other invariants trivially hold. ut

Lemma 71 Let n 6= n0 be any node in L and t be the time when n is installed

in L. Let p be the process that installs n in L. Let t1 (respectively, t2, t3, t4, t5)

be the time when p executes Line 35 (respectively, Line 36, 37, 38, 39). Let B be

the memory block that p allocates at time t4. Then, we have the following: (1) p

allocates n at time t1, (2) n.owned holds value true at all times during (t2, t), (3)

n.next holds value ⊥ at all times during (t3, t), (4) n.loc holds a pointer to B at

all times during (t4, t), (5) B is not released during (t4, t), and (6) B.Help holds

value (0, 0, ∗) at all times during (t5, t).

Proof. The lemma follows immediately by Invariant 9. ut

Lemma 72 Let n be any node in L and t be the time when n is installed in L. If

n 6= n0, let p be the process that installs n in L and t ′ < t be the latest time prior

to t when p executes Line 38. If n = n0, let t ′ = 0. Let B be the memory block

allocated at time t ′. Then, (1) B is not released (at Line 44) after time t ′, and (2)

n.loc points to B at all times after t ′.

Proof. If n = n0, then the lemma holds immediately by Invariant 8. We now show

that the lemma also holds for n 6= n0. Notice that, by Lemma 71, it follows that

(1) p allocates n at Line 35 at some time t ′′ < t ′, (2) n.loc holds a pointer to B

at all times during (t ′, t), and (3) B is not released during (t ′, t). Furthermore, by

Invariant 8, no process writes into n.loc after time t , and no process releases B

after time t . Therefore, we have the lemma. ut

202

Lemma 73 For any two nodes n i and n j in L such that i 6= j , we have n i .loc 6=

n j .loc.

Proof. If i 6= 0 (respectively, j 6= 0), let pi (respectively, p j) be the process

that installs n i (respectively, n j) in L , ti (respectively, t j) be the time when pi

(respectively, p j) executes Line 38, and Bi (respectively, B j) be the block that

pi (respectively, p j) allocates at time ti (respectively, t j). If i = 0 (respectively,

j = 0), let ti = 0 (respectively, t j = 0). Then, by Lemma 72, n i .loc (respectively,

n j .loc) has value Bi (respectively, B j), at all times after ti (respectively, t j), and

Bi (respectively, B j) is not released after time ti (respectively, t j). Without loss of

generality, let ti < t j . Then, by the uniqueness of allocated addresses, we have

B j 6= Bi , which proves the lemma. ut

In the following, we let Bi , for all i ∈ {0, 1, . . . , |L| − 1}, denote the memory

block pointed by n i .loc.

Lemma 74 At the time when some process p starts its kth execution of the loop at

Line 42 we have (1) |L| ≥ k, (2) cur(p) = nk−1, and (3) name(p) = k − 1.

Proof. (By induction) For the base case (i.e., k = 1), notice that by Invariant 1,

we have |L| ≥ 1. Furthermore, by Invariant 4, we have cur(p) = n 0. Finally, by

Line 40, we have name(p) = 0. Therefore, the lemma holds for the base case. The

inductive hypothesis states that the lemma holds for some k ≥ 1. We now show

that the lemma holds for k + 1 as well.

By inductive hypothesis, we have cur(p) = nk−1 and name(p) = k − 1 when

p starts its kth iteration of the loop. Since p increments name(p) at Line 48 during

that iteration, it follows that name(p) = k when p starts its k + 1st iteration of

203

the loop. Furthermore, by Invariants 12 and 5, it follows that L ≥ k + 1 and that

cur(p) = nk when p starts its k + 1st iteration of the loop. Hence, we have the

lemma. ut

Definition 7 If at some time a process p either (1) performs a successful CAS

at Line 43 with cur(p) = n or (2) performs a successful CAS at Line 50 with

mynode(p) = n, then we say that p acquires ownership of a node n ∈ L. If i is the

index of n in L (i.e., n = n i), then we also say that p acquires ownership of name

i and memory block Bi .

Lemma 75 If a process p exits the loop at Line 46 during the kth iteration of the

loop, then we have (1) |L| ≥ k, (2) p has ownership of n k−1, (3) name(p) = k − 1,

(4) ∗cur(p) = nk−1, and (5) ∗mynode(p) 6= nk−1.

Proof. Claims 1, 2, 3, and 4 follow immediately from Lemma 74. Claim 5 follows

immediately by Invariant 8. ut

Lemma 76 If a process p exits the loop at Line 52 during the kth iteration of the

loop, then we have (1) |L| ≥ k + 1, (2) p has ownership of n k , (3) name(p) = k,

(4) ∗cur(p) = nk , and (5) ∗mynode(p) = nk .

Proof. Notice that, by Lemma 74, when p begins its kth iteration of the loop,

we have |L| ≥ k, name(p) = k − 1, and ∗cur(p) = nk−1. Since p’s CAS at

Line 50 is successful, it follows that nk−1.next = ⊥ just before that CAS. Hence,

by Invariant 6, |L| = k just before p executes Line 50. Consequently, p installs

∗mynode(p) into the kth position in L , and so we have ∗mynode(p) = n k and

204

|L| = k + 1 after p’s CAS. Therefore, Claims 1, 2, and 5 hold. Furthermore,

Claim 3 holds by Line 48 and Claim 4 by Line 51. ut

Lemma 77 If a process p captures a node n ∈ L, then p subsequently satisfies

the condition at Line 59 if and only if p captured n at Line 52.

Proof. The lemma follows immediately by Lemmas 75 and 76. ut

Lemma 78 If a process p acquires ownership of some node n ∈ L, then ∗node p =

n at the time when p subsequently executes Line 61.

Proof. The lemma follows immediately by Lemmas 75 and 76, and Line 58. ut

Definition 8 Let t be the time when p acquires ownership of some node n ∈ L,

t ′ > t be the first time after t when p executes Line 61, and i be the position of n

in L (i.e., n = n i). Then, we say that p releases ownership of node n (respectively,

name i , memory block Bi) at time t ′, and that p owns node n (respectively, name i ,

memory block Bi) at all times during (t, t ′).

Lemma 79 For any node n ∈ L, at most one process owns n.

Proof. Suppose not. Then, there exists some time such that two or more processes

own some node in L . Let t be the earliest such time and n the node in L owned

by two processes. Let p and q be those two processes. Without loss of generality,

assume that p acquired ownership of n first, at some time t ′ < t . (Notice that,

by definition of t , q acquires ownership of n at time t .) Then, by Invariant 3,

q acquires ownership of n at Line 43. We examine two possibilities: either p

205

acquires ownership if n at Line 43 or at Line 50. In the first case, p writes true

into n.owned at time t ′. Furthermore, since t is the earliest time that two or more

processes own the same node, it follows that during (t ′, t) no process writes false

into n.owned. Therefore, n.owned = true at time t , and so q’s CAS at time t

fails. This, however, is a contradiction to the fact that q acquires ownership of n at

time t .

In the second case (where p acquires ownership at Line 50), it follows by

Lemma 71 that n.owned = true at time t ′. By the same argument as above,

n.owned = true at time t as well. Therefore, q’s CAS at time t fails, which is a

contradiction to the fact that q acquires ownership of n at time t . ut

Lemma 80 Let t be the time when some process p starts its kth execution of

the loop at Line 44, and t ′ < t be the latest time prior to t when p executes

Line 42. Then, there exists some time t ′′ ∈ (t ′, t) such that the number of nodes

in n1, n2, . . . , nk that are owned by some process at time t ′′ plus the number of

processes (including p) that do not own any nodes but are in their j th execution of

the loop at Line 44 at time t ′′, for j ≤ k, is at least k.

Proof. The proof is identical to the proof of Lemma A.4 in [HLM03b]. ut

Definition 9 A memory block Bi , i ∈ {0, 1, . . . , |L| − 1, becomes active the first

time some process that captures Bi (at Line 52) completes its Join procedure.

Lemma 81 At the moment when a memory block Bi , i ∈ {0, 1, . . . , |L| − 1, be-

comes active, we have (1) Bi .N = 1, (2) |Bi .BUF| = 2, (3) Bi .mybuf = (1, i, 0),

(4) |Bi .Q| = 1, (5) the value in Bi .Q is (1, i, 1), (6) Bi .index = 0, and (7)

Bi .name = i .

206

Proof. Let p be the process that first captures Bi (at Line 52). Then, by Lemma 77,

p subsequently satisfies the condition at Line 59. Hence, p executes steps at

Lines 62–68. Since, by Lemma 77, no other process ever writes into Bi at Lines 62–

68, the lemma follows trivially by Lines 62–68. ut

Lemma 82 After a memory block Bi , i ∈ {0, 1, . . . , |L| − 1, becomes active, no

process writes into Bi at Lines 62–68.

Proof. The lemma follows immediately by Lemma 77. ut

Lemma 83 Any process that executes Line 47 during the i th iteration of the loop

(at Line 42) writes a pointer to Bi−1 into the i − 1st location of NameArray.

Proof. The lemma follows immediately by Lemma 74. ut

Lemma 84 If a process p exits the loop at Line 43 during the i th iteration of the

loop, then p writes Bi−1 into the i − 1st location of NameArray at Line 54. If

a process p exits the loop at Line 52 during the i th iteration of the loop, then p

writes Bi into the i th location of NameArray at Line 54.

Proof. The lemma follows immediately by Lemmas 75 and 76. ut

Lemma 85 Algorithm 7.3 writes into array NameArray in accordance with the

specification of the DynamicArray object.

Proof. Notice that, by Lemma 83, any process that executes Line 47 during the

i th iteration of the loop writes the same value (namely, a pointer to Bi−1) into the

207

i − 1st location of NameArray. Furthermore, by Lemma 84, if a process exits the

loop at Line 43 (respectively, Line 52) during the i th iteration of the loop, then p

writes the same value, namely, Bi−1 (respectively, Bi), into the i −1st (respectively,

i th) location of NameArray at Line 54. Therefore, all values written into the same

location are the same, and each process writes into the locations of NameArray

in order. Hence, we have the lemma. ut

Lemma 86 The value of N increases with each write into N.

Proof. Suppose not. Let t be the first time that N is written and its value does not

increase. Let p be the process that performs that write. Then, p’s CAS at Line 56

must be of the form CAS(N, i, j), where j ≤ i . This, however, is a contradiction

to the fact that p had satisfied the condition at Line 55 prior to this CAS. ut

Lemma 87 At the moment when a process p exits the loop at Line 55, we have

name(p) < N.

Proof. The lemma follows immediately by Line 55. ut

Lemma 88 Any process p completes the loop at Line 55 after at most name(p)+1

iterations.

Proof. Suppose not. Then, p executes the loop at Line 55 for at least name(p)+ 2

iterations. Notice that, during the first name(p) + 1 iterations, p does not perform

a successful CAS at Line 56 (because, by Lemma 86, p would exit the loop right

after that CAS). Therefore, the value in N changes at least name(p) + 1 times

during those name(p) + 1 iterations. Then, by Lemma 86, it follows that after p

208

executes name(p) + 1 iterations of the loop the value of N is at least name(p) + 1.

Therefore, p does not execute the (name(p) + 2)nd iteration of the loop, which is

a contradiction. ut

Lemma 89 Location i in NameArray holds value Bi at all times, for all i < N.

Proof. Let j be the value of N. If j = 0, then the lemma trivially holds. Otherwise,

let p be the process that first wrote j into N, and t be the time when p performed

that write. Then, we have name(p) = j − 1 at time t . Hence, p had executed

Line 48 exactly j − 1 times prior to t . Consequently, by Lemma 83, p had writ-

ten pointers to memory blocks B0, B1, . . . , B j−2 into locations 0, 1, . . . , j − 2 of

NameArray, respectively. Furthermore, by Lemma 84, p had written a pointer to

B j−1 into NameArray at Line 54. Thus, we have the lemma. ut

Lemma 90 For any memory block Bi , i ∈ {0, 1, . . . , |L| − 1}, if Bi is active then

i < N.

Proof. Let p be the process that first captures Bi (at Line 52). Then, by Lemma 76,

we have name(p) = i when p exits the loop (at Line 42). Consequently, by

Lemma 87, at the moment when p exits the loop at Line 55, we have i < N.

Since, by Lemma 86, the value in N never decreases, we have the lemma. ut

Corollary 2 For any memory block Bi , i ∈ {0, 1, . . . , |L| − 1}, if Bi is active then

location i in NameArray holds value Bi .

We let P denote a set of processes such that p ∈ P if and only if PC(p) ∈

1 . . 34.

209

Lemma 91 For any process p ∈ P , the following holds:

1. locp = Bi , for some i ∈ 0, 1, . . . , |L| − 1.

2. For all q ∈ P such that p 6= q, we have loc p 6= locq .

Proof. The first claim follows immediately by Lemmas 75 and 76. The second

claim follows immediately by the first claim and Lemma 73. ut

Lemmas associated with the code in Figure 7.1

Let H be any finite execution history of Algorithm 7.3. Let OP be some LL oper-

ation, OP′ some SC operation, and OP′′ some VL operation on Oi in E , for some

i . Then, we define the linearization points for OP, OP ′, and OP′′ as follows. If the

CAS at Line 5 of OP succeeds, then LP(OP) is Line 3 of OP. Otherwise, let t be

the time when OP executes Line 2, and t ′ be the time when OP performs the CAS at

Line 5. Let v be the value that OP reads at Line 9 of OP. Then, we show that there

exists a successful SC operation SCq on Oi such that (1) at some point t ′′ during

(t, t ′), SCq is the latest successful SC on Oi to execute Line 16, and (2) SCq writes

v into Oi . We then set LP(OP) to time t ′′. We set LP(OP′) to Line 16 of OP′, and

LP(OP′′) to Line 14 of OP′′.

Lemma 92 Let Bi , for i ∈ {0, 1, . . . , |L| − 1 be any memory block. Let t be the

time when Bi is installed in L. Let t ′ be the end of H. Let L L1, L L2, . . . , L Lm

be the sequence of all LL operations in H such that, if a process p is executing

L L j , then locp = Bi during L L j , for all j ∈ {1, 2, . . . , m}. Let t j and t ′
j , for all

j ∈ {1, 2, . . . , m}, be the times when Lines 2 and 5 of L L j are executed. Then, the

following statements hold:

210

(S1) During the time interval (t j , t ′
j , for all j ∈ {1, 2, . . . , m}, exactly one write

into Bi .Help is performed.

(S2) Any value written into Bi .Help during (t j , t ′
j , for all j ∈ {1, 2, . . . , m}, is

of the form (∗, 0, ∗).

(S3) During the time intervals (t, t1), (t ′
1, t2), (t ′

2, t3), . . . , (t ′
m−1, tm), (t ′

m, t ′), the

value in Bi .Help is of the form (∗, 0, ∗) and doesn’t change.

Proof. Let j be any index in {1, 2, . . . , m}. Statement (S2) follows trivially from

the fact that the only two operations that can affect the value of Bi .Help during

(t j , t ′
j) are (1) the CAS at Line 5 of L L j , and (2) the CAS at Line 31 of some other

process’ SC operation, both of which attempt to write (∗, 0, ∗) into Bi .Help.

We now prove statement (S1). Suppose that (S1) does not hold. Then, dur-

ing (t j , t ′
j , either (1) two or more writes on Bi .Help are performed, or (2) no

writes on Bi .Help are performed. In the first case, we know (by an earlier argu-

ment) that each write on Bi .Help during (t j , t ′
j is performed either by the CAS

at Line 5 of L L j , or by the CAS at Line 31 of some other process’ SC opera-

tion. Let C AS1 and C AS2 be the first two CAS operations on Bi .Help to write

into Bi .Help during (t j , t ′
j . Then, by the algorithm, both C AS1 and C AS2 are of

the form CAS(Bi.Help, (∗, 1, ∗), (∗, 0, ∗)). Since C AS1 succeeds and Bi .Help

doesn’t change between C AS1 and C AS2, it follows that C AS2 fails, which is a

contradiction.

In the second case (where no writes on Bi .Help take place during (t j , t ′
j),

Bi .Help doesn’t change throughout (t j , t ′
j . Therefore, the CAS at Line 5 of L L j

succeeds, which is a contradiction to the fact that no writes on Bi .Help take place

during (t j , t ′
j . Hence, statement (S1) holds.

211

We now prove statement (S3). Suppose that (S3) statement doesn’t hold. Let

(t ′′, t ′′′) be any of the intervals (t, t1), (t ′
1, t2), (t ′

2, t3), . . . , (t ′
m−1, tm), (t ′

m, t ′) during

which the statement doesn’t hold. Notice that, by Lemma 71, Bi .Help = (∗, 0, ∗)

at time t . Furthermore, by statements (S1) and (S2), Bi .Help = (∗, 0, ∗) at times

t ′
1, t ′

2, . . . , t ′
m . Hence, Bi .Help = (∗, 0, ∗) at time t ′′. Let C AS3 be the first CAS

operation on Bi .Help to write into Bi .Help during (t ′′, t ′′′). Then, by the algo-

rithm, C AS3 is of the form CAS(Bi.Help, (∗, 1, ∗), (∗, 0, ∗)). Since Bi .Help

doesn’t change between time t ′′ and C AS3, it follows that C AS3 fails, which is a

contradiction. Hence, we have statement (S3). ut

In Figure A.5, we present a number of invariants that the algorithm satisfies.

In the following, we let PC(p) denote the value of process p’s program counter.

Without loss of generality, we assume that when a process completes any of the

procedures its program counter immediately jumps to the start of the next proce-

dure it wishes to execute. For any register r at process p, we let r(p) denote the

value of that register. We let P1 denote a set of processes such that p ∈ P1 if and

only if PC(p) ∈ {1, 2, 7−17, 24−31, 33, 34} or PC(p) ∈ {3−5}∧loc p.Help ≡

(∗, 1, ∗). We let P2 denote a set of processes such that p ∈ P2 if and only if

PC(p) ∈ {3 − 6} ∧ locp.Help ≡ (∗, 0, ∗). We let P3 denote a set of processes

such that p ∈ P3 if and only if PC(p) = 18. We let P4 denote a set of processes

such that p ∈ P4 if and only if PC(p) = 32. We let B1 (respectively, B2, B3)

denote a set of memory blocks such that B ∈ B1 (respectively, B2, B3) if and only

if (1) B ∈ B, and (2) there exists some process p such that loc p = B and p ∈ P1

(respectively, P2, P3). We let B0 denote a set of memory blocks such that B ∈ B0

if and only if (1) B ∈ B, and (2) there does not exist any process p ∈ P such that

212

locp = B. Finally, for any buffer B ∈ B, we let |B.Q| denote the length of the

queue B.Q, and |B.BUF| denote the length of the array B.BUF.

Lemma 93 Algorithm 7.3 satisfies the invariants in Figure A.5.

Proof. For the base case, (i.e., t = 0), all the invariants hold by initialization.

The inductive hypothesis states that the invariants hold at time t ≥ 0. Let t ′ be the

earliest time after t that some process, say p, makes a step. Then, we show that the

invariants holds at time t ′ as well.

First, notice that if PC(p) = {1−4, 7−9, 11−13, 15, 17, 24−30, 35−58, 60−

67}, or if PC(p) = {5, 16, 31} and p’s CAS fails, then none of the invariants are

affected by p’s step and hence they hold at time t ′ as well. In the following, let

B = locp.

If PC(p) = 5 and p’s CAS succeeds, then B moves from B1 to B2 and p writes

B.mybuf into B.Help.buf. Consequently, invariant 5 holds by IH:5 and invariant 6

by IH:6. All other invariants trivially hold.

If PC(p) = 6, then, by Lemma 92, B was in B2 at time t . Furthermore, B is in

B1 at time t ′. Since p writes B.Help.buf into B.mybuf, invariant 5 holds by IH:5

and invariant 6 by IH:6. All other invariants trivially hold.

If PC(p) ∈ {10, 14, 17, 34}, then B moves either from B1 to B1 (if the next

operation that p executes is LL, VL, or SC), or from B1 to B0 (if the next operation

that p executes is Leave). In either case, invariant 5 holds by IH:5 and invariant 6

by IH:6. All other invariants trivially hold.

If PC(p) = 16 and p’s CAS succeeds, then B moves from B1 to B3. Let

Xi be the variable that p writes to. Then, since p’s CAS is successful, we have

Xi .buf = B.x .buf at time t , and Xi .buf = B.mybuf at time t ′. Consequently,

213

1. For any memory block B ∈ B, we have |B.Q| ≥ B.N .

2. For any memory block B ∈ B, we have |B.BUF| ≤ B.N + 1.

3. For any process p ∈ P such that PC(p) ∈ {19, 20, 23}, we have |loc p.Q| ≥

locp.N + 1.

4. For any process p ∈ P such that PC(p) = 21, we have |loc p.BUF| ≤

locp.N .

5. Let B0 (respectively, B1, B2, B3) be any memory block in B0 (respectively,
B1, B2, B3). Let B be any memory block in B, and b be any value in B.Q. Let
p4 be any process in P4. Let i be any index in 0 . . M − 1. If b (respectively,
B0.mybuf, B1.mybuf, B2.Help.buf, B3.x .buf, c(p4), X j .buf) is of the form
(0, j), then we have j ∈ 0 . . M − 1. If b (respectively, B 0.mybuf, B1.mybuf,
B2.Help.buf, B3.x .buf, c(p4), X j .buf) is of the form (1, n, j), then we have
(1) Bn ∈ B, (2) the j th location in array Bn.BUF holds a pointer to a buffer
of length W + 1, and (3) there does not exist any process p ∈ P such that
locp = Bn, PC(p) = 22, and locp.N = j .

6. Let B0 and C0 (respectively, B1 and C1, B2 and C2, B3 and C3) be any
two memory blocks in B0 (respectively, B1, B2, B3). Let B be any memory
block in B, and b1 and b2 any two values in B.Q. Let p4 and q4 be any two
processes in P4. Let i and j be any two indices in 0 . . M −1. Then, we have
B0.mybuf 6= C0.mybuf 6= B1.mybuf 6= C1.mybuf 6= b1 6= b2 6= Xi .buf 6=

X j .buf 6= B2.Help.buf 6= C2.Help.buf 6= B3.x .buf 6= C3.x .buf 6= c(p4) 6=

c(q4).

7. For any memory block B ∈ B, we have 0 < B.N ≤ N.

8. For any process p ∈ P such that PC(p) = 20, we have 0 < loc p.N < N.

9. For any memory block B ∈ B, we have B.index < B.N .

Figure A.5: The invariants satisfied by Algorithm 7.3

214

invariant 5 holds by IH:5 and invariant 6 by IH:6. All other invariants trivially

hold.

If PC(p) = 18, then B leaves B3. Furthermore, p enqueues B.x .buf into

the queue B.Q. Consequently, invariant 1 holds by IH:1, invariant 3 by IH:1,

invariant 5 by IH:5, and invariant 6 by IH:6. The other two invariants trivially

hold.

If PC(p) = 19, then we have B.N < N. Consequently, invariant 8 holds by

IH:7. All other invariants trivially hold.

If PC(p) = 20, then p increments B.N by one. Consequently, invariant 1

holds by IH:3, invariant 4 by IH:2, and invariant 7 by IH:8. All other invariants

trivially hold.

If PC(p) = 21, then the length of B.BUF increases to at least B.N + 1. Con-

sequently, invariant 2 holds by IH:4. Notice that, by IH:4, the length of B.BUFwas

at most B.N prior to this step. Therefore, location B.N does not hold a pointer to

a buffer of length W + 1. Consequently, by IH:5, none of the values appearing in

the inequality of invariant 6 were of the form (1, B.name, B.N) prior to this step.

Hence, invariant 5 holds. All other invariants trivially hold.

If PC(p) = 22, then B joins B1. Furthermore, p writes (1, B.name, B.N)

into B.mybuf. Notice that, by IH:5, none of the values appearing in the inequality

of invariant 6 were of the form (1, B.name, B.N) prior to this step. Consequently,

invariant 6 holds. Invariant 5 holds by the fact that p had written a buffer of length

W + 1 into location B.N of B.BUF at Line 21. All other invariants trivially hold.

If PC(p) = 23, then B joins B1. Furthermore, p reads and dequeues the front

element of the queue B.Q. Consequently, invariant 1 holds by IH:3, invariant 5 by

IH:5, and invariant 6 by IH:6. All other invariants trivially hold.

215

If PC(p) = 31 and p’s CAS succeeds, then B moves from B1 to B4. Let B ′

be the memory block pointed to by l(p). Then, we have c(p) = B ′.Help.buf at

time t , B ′.Help.buf = B.mybuf at time t ′, B ′.Help changes from value (∗, 1, ∗)

at time t to a value (∗, 0, ∗) at time t ′. Therefore, by Lemma 92, there exists some

process q such that (1) locq = B ′ and PC(q) ∈ {3 − 5} at times t and t ′, and

(2) B ′.Help.buf = B ′.mybuf at time t . Hence, B ′ moves from B1 to B2, and

c(p) = B ′.mybuf. Consequently, invariant 5 holds by IH:5 and invariant 6 by IH:6.

All other invariants trivially hold.

If PC(p) = 32, then B moves from B4 to B1. Furthermore, p writes c(p)

into B.mybuf. Consequently, invariant 5 holds by IH:5 and invariant 6 by IH:6. All

other invariants trivially hold. ut

If PC(p) = 59 and p does not satisfy the condition at Line 59, then, by

Lemma 77, B moves either from B0 to B1 (if the next operation that p executes is

LL), or from B0 to B0 (if the next operation that p executes is Leave). In the latter

case, none of the invariants are affected by p’s step and hence they hold at time

t ′. In the former case, invariant 5 holds by IH:5 and invariant 6 by IH:6. All other

invariants trivially hold.

If PC(p) = 59 and p satisfies the condition at Line 59, then none of the

invariants are affected by p’s step and hence they hold at time t ′ as well.

If PC(p) = 68, then, by Lemma 77, B joins B. Furthermore, B either joins

B1 (if the next operation that p executes is LL), or B0 (if the next operation that p

executes is Leave). Let i be the name that p captures during the Join procedure.

Then, we have B = Bi . Notice that, by Lemma 81, we have invariants 1, 2, 5,

and 9. Furthermore, by IH:5, all the values in the inequality of invariant 6 are

either of the form (0, ∗) or (1, n, ∗), for some Bn ∈ B. Since B has just joined

216

B and since all memory blocks in B are different (by Lemma 73), it follows that

n 6= i . Hence, by Lemma 81, we have invariant 6. Invariant 7 follows immediately

by Lemmas 81 and 90. All other invariants trivially hold. ut

Lemma 94 Algorithm 7.3 reads array NameArray in accordance with the spec-

ification of the DynamicArray object.

Proof.

Let p be any process. Then, the only two places where p reads NameArray is

at Lines 12 and 24 of the algorithm. If p reads NameArray at Line 12, let i be the

location in NameArray that p reads. Then, by Invariant 5, it follows that B i ∈ B.

Consequently, by Corollary 2, location i of NameArray had already been written,

which means that the lemma holds.

If p reads NameArray at Line 24, let j be the location in NameArray that

p reads. Then, by Invariants 9 and 7, it follows that i < N. Consequently, by

Lemma 89, location i of NameArray had already been written, which means that

the lemma holds. ut

Lemma 95 Let Bi , for i ∈ {0, 1, . . . , |L| − 1} be any memory block. Then, Algo-

rithm 7.3 reads and writes into the array Bi .BUF in accordance with the specifica-

tion of the DynamicArray object.

Proof. Let p be the first process that captures ownership of Bi . Then, by

Lemma 77, p is the only process that writes into Bi .BUF at Lines 63 and 64,

and that p writes into locations 0 and 1 of Bi .BUF. Notice that, by Lemma 81,

Bi .N = 1 when Bi becomes active. Since Bi .BUF is written at Line 21 only after

217

Bi .N is incremented at Line 20, it follows that locations 2, 3, . . . are written in or-

der. Hence, the writes into Bi .BUF are in accordance with the specification of the

DynamicArray object.

Let q be any process that reads some location j of array Bi .BUF at Line 13.

Then, by Invariant 5, we have (1) Bi ∈ B and (2) the j th location in Bi .BUF had

already been written. Consequently, the lemma holds. ut

Lemma 96 Let t0 < t1 < . . . < tK be all the times in H when some variable Xi

is written to (by a successful CAS at Line 16). Then, for all j ∈ {0, 1, . . . , K }, the

value written into Xi at time t j is of the form (j, ∗).

Proof. Suppose not. Let j be the smallest index such that, at time t j , a value k 6= j

is written into Xi by some process p. (By initialization, we have j ≥ 1.) Then, by

the algorithm, p’s CAS at time t j is of the form CAS(Xi , (k − 1, ∗), (k, ∗)). Since

Xi holds value j − 1 at time t j , and since k 6= j , it follows that p’s CAS fails,

which is a contradiction to the fact that p writes into Xi at time t j . ut

Lemma 97 Let Oi be an LL/SC object. Let t be the time when some process p

reads Xi (at Line 3 or 27), and t ′ > t the first time after t that p completes Line 4

or Line 29. Let OP be the latest successful SC operation on Oi to execute Line 16

prior to time t, and v the value that OP writes in Oi . If there exists some process

q ∈ P such that locq .Help holds value (∗, 1, ∗) throughout (t, t ′) and doesn’t

change, then p reads value v at Line 4 or Line 29 (during (t, t ′)).

Proof. Let r be the process executing OP. Let B be the buffer that q owns (i.e.,

B = locq). Since OP is the latest successful SC operation on Oi to execute Line 16

218

prior to time t , it follows that p reads from Xi at time t the value that r writes in Xi

at Line 16 of OP. Therefore, p reads during (t, t ′) the same buffer b that r wrote v

into at Line 15 of OP. Let t1 be the time when r starts writing into b at Line 15 of

OP, t2 the time when r completes writing into b at Line 15 of OP, t3 the time when

r writes into Xi at Line 16 of OP, and t ′′ the time when p starts reading b during

(t, t ′). Then, the following claim holds.

Claim 20 During (t1, t2), no process other than r writes into b. During (t2, t ′), no

process writes into b.

Proof. Suppose not. Then, either some process other than r writes into b during

(t1, t2), or some process writes into b during (t2, t ′). In the first case, let r1 be

the process that writes into b during (t1, t2). Then, at some point during (t1, t2),

we have locr1 .mybuf = locr .mybuf, which is a contradiction to Invariant 6. In the

second case, let r2 be the first process to start writing into b at some time τ1 ∈

(t2, t ′), and k be the index of buffer b. Then, by an earlier argument, τ1 6∈ (t2, t3).

Furthermore, by Invariant 6 , r2 does not write into b as long as Xi holds value

(∗, k). Therefore, Xi changes during (t3, τ1).

Since Xi doesn’t change during (t3, t), it means that (1) τ1 > t and (2) some

process writes into Xi during (t, τ1). Let r3 be the first such process, τ2 ∈ (t, τ1)

the time when r3 writes into Xi , SCr3 the SC operation during which r3 performs

that write, and B ′ the memory block that r3 owns during SCr3 (i.e., B ′ = locr3).

Let τ3 be the time when r3 executes Line 18 of SCr3 . Then, at time τ3, r3 enqueues

k into B ′.Q. Furthermore, by Invariant 6, r2 does not write into b during (τ2, τ3),

nor does it write into b during the time B.Q contains value k. Therefore, we have

τ3 ∈ (τ2, τ1). Finally, we know that k is dequeued from B ′.Q during (τ3, τ1).

219

Let τ4 be the first time after τ3 that k is dequeued from B ′.Q. (Notice that, by

the above argument, τ4 ∈ (τ3, τ1).) Then, we have the following subclaim.

Subclaim 1 There exists some process r5 and an execution E of Lines 24–32 by

r5 such that (1) E takes place during (τ3, τ4), (2) locr5 = B ′ during E, and (3)

B ′.index = B.name during E.

Proof. Let n, m, and j denote the values of B ′.N , shared variable N, and B ′.index,

respectively, at time τ3. Then, by Invariant 1, there are n items already in B ′.Q

before b’s index is inserted at time τ3. So, b is not dequeued until at least n + 1

dequeues are performed on B ′.Q. Notice that, each time some process r6 ∈ P ,

such that locr6 = B ′, satisfies the condition at Line 19, the following holds: (1) r6

does not dequeue an element from B ′.Q, and (2) the values of B ′.N and B ′.index

both increase by one (at Lines 20 and 33). Moreover, each time r6 does not satisfy

the condition at Line 19, the following holds: (1) r6 dequeues an element from

B ′.Q, and (2) the value of B ′.N remains the same and B ′.index increases by one

modulo B ′.N (at Line 33). As a result of the above two facts, the value of B ′.index

wraps around to 0 (at Line 33) after exactly n − j elements are dequeued from

B ′.Q. Let τ5 > τ3 be the first time after τ3 when B ′index wraps around to 0, and

let n ′ be the value of B ′.N at time τ5. Notice that, since b is not dequeued until at

least n + 1 dequeues are performed on B ′.Q, we have τ5 ∈ (τ3, τ4). By the same

argument as above, at most j elements are dequeued from B ′.Q before B ′.index

again reaches value j (at Line 33). Therefore, during (τ3, τ5), variable B ′.index has

gone through the values j, j +1, . . . , n ′ −1, 0, 1, . . . j −1, j . Since B has become

active prior to time τ3, it follows by Lemma 90 that B.name < n ′. Therefore, there

exists some process r5 and an execution E of Lines 24–32 by r5 such that (1) E

220

takes place during (τ3, τ5), (2) locr5 = B ′ during E , and (3) B ′.index = B.name

during E . Hence, we have the subclaim. ut

Since B.Help holds value (∗, 1, ∗) throughout (t, t ′) and doesn’t change, it

follows that (1) r5 reads B at Line 24 of E (by Lemma 2), (2) r5 satisfies the

condition at Line 25 of E , and (3) r5’s CAS at Line 31 of E succeeds. This,

however, is a contradiction to the fact that B.Help = (∗, 1, ∗) throughout (t, t ′).

Hence, we have the claim. ut

The above claim shows that (1) during (t1, t2), no process other than r writes

into b, and (2) during (t2, t ′), no process writes into b. Consequently, p reads v

from b during (t, t ′), which proves the lemma. ut

Lemma 98 Let Oi be an LL/SC object and OP some LL operation on Oi . Let SCq

be the latest successful SC operation on Oi to execute Line 16 prior to Line 3 of

OP, and vq the value that SCq writes in Oi . If the CAS at Line 5 of OP succeeds,

then OP returns value vq .

Proof. Let p be the process executing OP. Let t time when p executes Line 3

of OP, and t ′ > t be the time when p completes Line 4 of OP. Since the CAS at

Line 5 of OP succeeds, it follows by Lemma 92 that loc p.Help holds value (∗, 1, ∗)

throughout (t, t ′) and doesn’t change during that time. Therefore, by Lemma 97,

p reads vq at Line 4 of OP, which proves the lemma. ut

Lemma 99 Let Oi be an LL/SC object, and OP an LL operation on Oi such that

the CAS at Line 5 of OP fails. Let p be the process executing OP. Let t and t ′ be the

times, respectively, when p executes Lines 2 and 5 of OP. Let x and v be the values

221

that p reads at Lines 8 and 9 of OP, respectively. Then, there exists a successful

SC operation SCq on Oi such that (1) at some point during (t, t ′), SCq is the latest

successful SC on Oi to execute Line 16, and (2) SCq writes x into Xi and v into

Oi .

Proof.

Since p’s CAS at time t ′ fails, it means that loc p.Help = (s, 0, k) just

prior to t ′. Then, by Lemma 92, there exists a single process r that writes into

locp.Help during (t, t ′) (at Line 31). Let t1 ∈ (t, t ′) be the time when r per-

forms that write, and E be r ’s execution of Lines 24–32 during which r per-

forms that write. Then, r ’s CAS at Line 31 of E (at time t1) is of the form

CAS(locp.Help, (s, 1, ∗), (s, 0, ∗)), for some s > 1. Therefore, at time t1,

locp.Help has value (s, 1, ∗). Hence, by Lemma 92, p writes (s, 1, ∗) into

locp.Help at Line 2 of OP (at time t). Since a value of the form (s, ∗, ∗) is writ-

ten into locp.Help for the first time at time t , it follows that r reads (s, 1, ∗) from

locp.Help at Line 25 of E at some time t2 ∈ (t, t1). Consequently, r reads variable

locp.Announce at Line 26 of E at some time t3 ∈ (t2, t1). Since p writes i into

locp.Announce at Line 1 of OP, it follows that r reads i from loc p.Announce at

time t2. Hence, r reads Xi at Line 27 of E .

Let t4 be the time when r reads Xi at Line 27 of E , t5 the time when r starts

Line 29 of E , t6 the time when r completes Line 29 of E , and t7 the time when

r executes Line 30 of E . Let SCq be the latest successful SC operation on Oi to

execute Line 16 prior to time t4, xq the value that SCq writes in Xi , and vq the value

that SCq writes in Oi . Then, at time t4, r reads xq from Xi . Furthermore, since

t1 is the first (and only) time that loc p.Help is written during (t, t ′), it follows

222

that locp.Help holds value (∗, 1, ∗) at all times during (t4, t6) and doesn’t change

during that time. Therefore, by Lemma 97, r reads vq at Line 29.

Let d be the buffer that r writes vq into during (t5, t6). Then, at time t7, r writes

xq into dW . Furthermore, since r writes the index of buffer d into loc p.Help at

Line 31 of E (at time t1), it follows that p reads buffer d at Lines 8 and 9 of OP. Let

t8 be the time when p reads dW at Line 8 of OP, t9 the time when p starts reading

d at Line 8 of OP, and t10 the time when p completes reading d at Line 8 of OP.

Then, we show that the following claim holds.

Claim 21 During (t5, t6), no process other than r writes into d, and during

(t6, t10), no process writes into d.

Proof. Suppose not. Then, either some process other than r writes into d during

(t5, t6), or some process writes into d during (t6, t10). In the former case, let r1 be

the process that writes into d during (t5, t6). Then, at some point during (t5, t6), we

have locr1 .mybuf = locr .mybuf, which is a contradiction to Invariant 6. In the latter

case, let r2 be the first process to write into d at some time τ1 ∈ (t6, t10). Then, by

an earlier argument, we know that τ1 6∈ (t6, t1). We now show that τ1 6∈ (t1, t10).

Let k ′ be the index of buffer d . We know by Invariant 6 that r2 does not write

into d as long as (1) loc p.Help = (s, 0, k ′), and (2) p is between Lines 2 and 6

of OP. Furthermore, since p sets loc p.mybuf to k ′ at Line 6 of OP, r2 does not

write into d after p executes Line 6 of OP and before it completes OP. Therefore,

throughout (t1, t10), r2 does not write into d . Hence, τ1 6∈ (t1, t10). Since, by an

earlier argument, τ1 6∈ (t6, t1), it follows that τ1 6∈ (t6, t10). This, however, is a

contradiction to the fact that r2 writes into d during (t6, t10). ut

223

The above claim shows that (1) during (t5, t6), no process other than r writes

into d , and (2) during (t6, t10), no process writes into d . Consequently, p reads xq

from dW at time t8 and vq from d during (t9, t10). Since SCq is the latest successful

SC operation on Oi to execute Line 16 prior to time t4, and since t4 ∈ (t, t ′), we

have the lemma. ut

Lemma 100 (Correctness of LL) Let Oi be some LL/SC object. Let OP be any

LL operation on Oi , and OP′ be the latest successful SC operation on Oi such that

LP(OP′) < LP(OP). Then, OP returns the value written by OP ′.

Proof. Let p be the process executing OP. We examine the following two cases:

(1) the CAS at Line 5 of OP succeeds, and (2) the CAS at Line 5 of OP fails. In the

first case, let SCq be the latest successful SC operation on Oi to execute Line 16

prior to Line 3 of OP, and vq be the value that SCq writes in Oi . Since all SC

operations are linearized at Line 16 and since OP is linearized at Line 3, we have

SCq = OP′. Furthermore, by Lemma 98, OP returns value vq . Therefore, the lemma

holds in this case.

In the second case, let t and t ′ be the times, respectively, when p executes

Lines 2 and 5 of OP. Let v be the value that p reads at Line 9 of OP. Then, by

Lemma 99, there exists a successful SC operation SCr on Oi such that (1) at some

time t ′′ ∈ (t, t ′), SCr is the latest successful SC on Oi to execute Line 16, and (2)

SCr writes v into Oi . Since all SC operations are linearized at Line 16 and since

OP is linearized at time t ′′, we have SCr = OP′. Therefore, the lemma holds. ut

Lemma 101 (Correctness of SC) Let Oi be some LL/SC object. Let OP be any

SC operation on Oi by some process p, and OP′ be the latest LL operation on

224

Oi by p prior to OP. Then, OP succeeds if and only if there does not exist any

successful SC operation OP′′ on Oi such that LP(OP′) < LP(OP′′) < LP(OP).

Proof. We examine the following two cases: (1) the CAS at Line 5 of OP ′ succeeds,

and (2) the CAS at Line 5 of OP′ fails. In the first case, let t1 be the time when p

executes Line 3 of OP′, and t2 be the time when p executes Line 16 of OP. Then,

we show that the following claim holds.

Claim 22 Process p’s CAS at time t2 succeeds if and only if there does not exist

some other SC operation on Oi that performs a successful CAS at Line 16 during

(t1, t2).

Proof. Suppose that no other SC operation on Oi performs a successful CAS at

Line 16 during (t1, t2). Then, Xi doesn’t change during (t1, t2), and hence p’s CAS

at time t2 succeeds.

Suppose that some SC operation SCq on Oi does perform a successful CAS at

Line 16 during (t1, t2). Then, by Lemma 96, Xi holds different values at times t1

and t2. Hence, p’s CAS at time t2 fails, which proves the claim. ut

Since all SC operations are linearized at Line 16 and since OP ′ is linearized at

time t1, it follows from the above claim that OP succeeds if and only if there does

not exist some successful SC operation OP′′ on Oi such that LP(OP′) < LP(OP′′) <

LP(OP). Hence, the lemma holds in this case.

In the second case (when the CAS at Line 5 of OP ′ fails), let t and t ′ be the

times when p executes Lines 2 and 5 of OP′, respectively. Let x and v be the values

that p reads at Lines 8 and 9 of OP′, respectively. Then, by Lemma 99, there exists

a successful SC operation SCr on Oi such that (1) at some time t ′′ ∈ (t, t ′), SCr is

225

the latest successful SC on Oi to execute Line 16, and (2) SCr writes x into Xi and

v into Oi . Therefore, at Line 8 of OP′, p reads the value that variable Xi holds at

time t ′′. We now prove the following claim.

Claim 23 Process p’s CAS at time t2 succeeds if and only if there does not exist

some other SC operation on Oi that performs a successful CAS at Line 16 during

(t ′′, t2).

Proof. Suppose that no other SC operation on Oi performs a successful CAS at

Line 16 during (t ′′, t2). Then, Xi doesn’t change during (t ′′, t2), and hence p’s CAS

at time t2 succeeds.

Suppose that some SC operation SCq on Oi does perform a successful CAS at

Line 16 during (t ′′, t2). Then, by Lemma 96, Xi holds different values at times t ′′

and t2. Hence, p’s CAS at time t2 fails, which proves the claim. ut

Since all SC operations are linearized at Line 16 and since OP ′ is linearized at

time t1, it follows from the above claim that OP succeeds if and only if there does

not exist some successful SC operation OP′′ on Oi such that LP(OP′) < LP(OP′′) <

LP(OP). Hence, the lemma holds. ut

Lemma 102 (Correctness of VL) Let Oi be some LL/SC object. Let OP be any

VL operation on Oi by some process p, and OP′ be the latest LL operation on Oi

by p that precedes OP. Then, OP returns true if and only if there does not exist

some successful SC operation OP′′ on Oi such that LP(OP′′) ∈ (LP(OP′), LP(OP)).

Proof. Similar to the proof of Lemma 101. ut

226

Theorem 12 Algorithm 7.3 is wait-free and implements an array O0 . . M − 1 of

M linearizable W-word LL/SC objects. The time complexity of LL, SC and VL

operations on O are O(W), O(W) and O(1), respectively. The time complexity of

Join and Leave operations is O(K) and O(1), respectively, where K is the maxi-

mum number of processes that have simultaneously participated in the algorithm.

The space complexity of the implementation is O(Kk + (K 2 + M)W), where k is

the maximum number of outstanding LL operations of a given process.

Proof. The theorem follows immediately from Lemmas 100, 101, and 102. ut

A.4.3 Proof of Algorithm 7.4

Let H be any execution history of Algorithm 7.4. We say an SC operation is

successful if the CAS operation at Line 19 or 20 of that SC succeeds; otherwise,

we say an SC operation has failed. We say an SC operation by some process p is

first-successful if it is the first successful SC operation by p in H.

In the rest of this section, let b denote the number of bits in X reserved for the

sequence number. We show Algorithm 7.4 is correct, under the following assump-

tion:

Assumption A: During the time interval when some process p executes one LL/SC

pair, no other process q performs more than 2b − 3 successful SC operations.

Lemma 103 Let OP be an SC operation in H by some process p. Then, p satisfies

the condition at Line 18 of OP if and only if p didn’t perform a successful SC prior

to OP.

227

Proof. If p didn’t perform a successful SC operation prior to OP, it means that

p never satisfied the condition at Line 20 prior to OP. Therefore, first p has the

initializing value of true at the start of OP, and hence p satisfies the condition at

Line 18 of OP.

If p did perform a successful SC operation prior to OP, let OP ′ be the first

successful SC operation by p in H. Then, by the above argument, p satisfies

the condition at Line 18 OP′. Furthermore, since OP′ is successful, p satisfies the

condition at Line 20 as well. Therefore, p writes false into first p at Line 21 of OP′.

Since p never writes true into first p (except during initialization), it follows that

firstp has value false at all times after OP′. Hence, p does not satisfy the condition

at Line 18 of OP. ut

Corollary 3 Once a process writes a value of the form (1, ∗) into X, it never writes

another value of the form (1, ∗) into X again.

Corollary 4 Let OP be a first-successful SC operation in H by some process p.

Let k be the value that p reads from N at Line 19 (by Lemma 103) of OP. Then, at

all times after Line 19 of OP completes, we have loc p.name = k.

Lemma 104 Let t1 < t2 < . . . < tm be all the times in H that variable N is written.

Then, for all i ∈ {1, 2, . . . , m}, the value written into N at time ti is i .

Proof. Suppose not. Let j be the smallest index such that, at time t j , a value

different than j is written into N. Let k be that value and p the process who wrote

it. Then, p performed the write with a CAS at Line 6 and that CAS must have been

of the form CAS(N, k − 1, k). Since N holds a value j − 1 at time t j , and since

228

k − 1 6= j − 1, it follows that p’s CAS fails, which is a contradiction to the fact

that p writes into N at time t j . ut

In the following, we assume that the initializing step was performed by some

process during its first-successful SC, and that the memory block allocated during

the initialization belongs to that process.

Lemma 105 Let SC0, SC1, . . . , SCM be the sequence of all first-successful SC

operations in H, ordered by the time they write into X. Let pi , for all i ∈

{0, 1, . . . , M}, be the process executing SCi , ti be the time when pi writes into

X during SCi (at Line 20), and t ′
i < ti be the time when pi reads N at Line 19 of

SCi . (If i = 0, then t ′
i = ti = 0.) Let SC ′

i , for all i ∈ {0, 1, . . . , M}, be the first

successful SC operation to write into X after SC i , and t ′′
i be the beginning of the ex-

ecution of SC ′
i . Let p′

i , for all i ∈ {0, 1, . . . , M}, be the process executing SC ′
i , and

L L ′
i be the latest LL operation by p ′

i prior to SC ′
i . Then, for all i ∈ {0, 1, . . . , M},

we have (1) t ′′
i > ti , (2) L L ′

i is executed entirely during the time interval (ti , t ′′
i),

and (3) during (t ′
i , t ′′

i), variable N is written at least once.

Proof. Let j be any index in {0, 1, . . . , M}. Then, by Lemma 103 and initializa-

tion, p j writes (1, &locp j) into X at time t j . Let t be the time when SC ′
j writes

into X. Since SC ′
j is the first successful SC operation to write into X after time t j ,

it means that X has value (1, &loc p j) throughout (t j , t). Furthermore, since SC ′
j

is successful, the value that p ′
j reads from X at Line 1 of L L ′

j is (1, &locp j). By

Corollary 3, t j is the only time during H that value (1, &loc p j) is written into X.

Consequently, p′
j performs a read at Line 1 of L L ′

j after time t j , and hence we

have (1) t ′′
j > t j , and (2) L L ′

j is executed entirely during the time interval (t j , t ′′
j).

229

We now show that N is written at least once during (t ′
j , t ′′

j). Suppose not. Let

c be the value that p j reads from N at time t ′
j . Then, throughout (t ′

j , t ′′
j), N has

value c. Notice that, during (t ′
j , t j), p j writes c into locp j .name (at Line 19).

Furthermore, by Corollary 4, loc p j .name has value c at all times after t j . Since p′
j

reads (1, &locp j) from X at Line 1 of L L ′
j after time t j , it means that p′

j reads c

from locp j .name at Line 6 of L L ′
j . Therefore, the CAS at Line 6 of L L ′

j is of the

form CAS(N, c, c + 1). Since p′
j executes that CAS during (t j , t ′′

j), and since N has

value c throughout (t j , t ′′
j), it follows that p′

j performs a successful CAS at Line 6

of L L ′
j , which is a contradiction to the fact that N is not written during (t ′

j , t ′′
j).

Hence, we have the lemma. ut

Lemma 106 Let SC0, SC1, . . . , SCM be the sequence of all first-successful SC op-

erations in H, ordered by the time they write into X. Let ti , for all i ∈ {0, 1, . . . , M},

be the time when SCi writes into X. Let pi , for all i ∈ {0, 1, . . . , M}, be the process

executing SCi , and ci be the value that pi reads from N at Line 19 of SCi . Then,

we have c1 6= c2 6= . . . 6= cM .

Proof. Suppose not. Then, j be the smallest index such that, when SC j writes

into X at time t j , we have c j = ci , for some i < j . Let t ′
j be the time when SC j

begins its execution. Let OP be the first successful SC operation to write into X

after SCi , t be the time when OP begins its execution, and t ′ be the time when OP

writes into X. Let t ′
i < ti be the time when pi reads N at Line 19 of SCi . (If i = 0,

then t ′
i = ti = 0.) Then, by Lemma 105, we have (1) t > ti , and (2) variable N

is written during (t ′
i , t). Since we have c j = ci , it follows by Lemma 104 that (1)

SC j 6=OP, and (2) t ′
j < t . Furthermore, by definition of OP, we have t ′ ∈ (t, t j).

Let L L j be the latest LL operation by p j prior to SC j . Let t ′′
j be the time

230

when p j reads X at Line 1 of L L j , and v j the value that it reads from X. Then,

by Corollary 3 and the fact that t ′ ∈ (t ′′
j , t j), we have v j 6= (1, ∗). Therefore, it

follows that (1) t ′′
j < ti , and (2) v j = (0, k, s), for some k and s.

Notice that, by definition of j , if a value (0, k, ∗) is written into X two or more

times during (0, t j), then all those writes are performed by the same process. Let

q be the process that writes v j into X. Let τ be the latest time prior to t ′′
j that q

writes v j into X, and OP′ be the SC operation by q during which it performs that

write. Then, since SC j is successful, it means that X holds value v j at time t j .

Furthermore, since ti ∈ (t ′′
j , t j), value v j is written into X at some time τ ′ ∈ (ti , t j).

Notice that, at times τ and τ ′, we have seqq = s. Since, during OP′, q incre-

ments seqq by one (at Line 24), it follows that during (τ, τ ′), seqq is incremented

at least 2b times. Therefore, q performs at least 2b − 1 successful SC operations

during (τ, t j). Since OP′ is the latest successful SC operation to write into X prior

to time t ′′
j , it follows that q performs at least 2b − 1 successful SC operations dur-

ing (t ′′
j , t j). Hence, during p j ’s LL/SC pair consisting of operations L L j and SC j ,

process q performs at least 2b − 1 successful SC operations, which is a contradic-

tion to Assumption A. ut

Lemma 107 Let SC0, SC1, . . . , SCK be the sequence of all successful SC opera-

tions in H, ordered by the time they write into X. Let ti , for all i ∈ {0, 1, . . . , K },

be the time when SCi writes into X, and pi be the process executing SCi . Let L L i ,

for all i ∈ {1, 2, . . . , K }, be the latest LL operation by pi prior to SCi . Then, for

all i ∈ {1, 2, . . . , K }, L L i is executed entirely during (ti−1, ti).

Proof. Let j be some index in {1, 2, . . . , K }. Let t ′
j be the time when L L j starts

231

(i.e., when p j executes Line 1 of L L j). Then, we show that t ′
j > t j−1. Suppose

not. Then, let v j be the value that L L j reads from X at time t ′
j . By Corollary 3 and

the fact that t j−1 ∈ (t ′
j , t j), we have v j 6= (1, ∗). Consequently, v j = (0, k, s), for

some k and s.

We know by Lemma 106 that if a value (0, k, ∗) is written into X two or more

times during H, then all those writes are performed by the same process. Let q be

the process that writes v j into X. Let τ be the latest time prior to t ′
j that q writes v j

into X, and OP′ be the SC operation by q during which it performs that write. Then,

since SC j is successful, it means that X holds value v j at time t j . Furthermore,

since t j−1 ∈ (t ′
j , t j), value v j is written into X again at some time τ ′ ∈ (t j−1, t j).

Notice that, at times τ and τ ′, we have seqq = s. Since, during OP′, q incre-

ments seqq by one (at Line 24), it follows that during (τ, τ ′), seqq is incremented

at least 2b times. Therefore, q performs at least 2b − 1 successful SC operations

during (τ, t j). Since OP′ is the latest successful SC operation to write into X prior

to time t ′
j , it follows that q performs at least 2b −1 successful SC operations during

(t ′
j , t j). Hence, during p j ’s LL/SC pair consisting of operations L L j and SC j , pro-

cess q performs at least 2b − 1 successful SC operations, which is a contradiction

to Assumption A. ut

Lemma 108 Let SC0, SC1, . . . , SCM be the sequence of all first-successful SC op-

erations in H, ordered by the time they write into X. Let ti , for all i ∈ {0, 1, . . . , M},

be the time when SCi writes into X. Let pi , for all i ∈ {0, 1, . . . , M}, be the process

executing SCi , and ci be the value that pi reads from N at Line 19 of SCi . Then,

we have c1 < c2 < . . . < cM .

Proof. Let j be some index in {0, 1, . . . , M − 1}. Let t < t j be the time when p j

232

reads N at Line 19 of SC j . (If j = 0, then t = 0.) Then, by Lemma 104, the value

of N is greater than or equal to c j at all times after t . Since, by Lemma 107, SC j+1

starts after time t j , and since c j+1 6= c j (by Lemma 106), we have c j+1 > c j ,

which proves the lemma. ut

Lemma 109 Let SC0, SC1, . . . , SCM be the sequence of all first-successful SC op-

erations in H, ordered by the time they write into X. Let ti , for all i ∈ {0, 1, . . . , M},

be the time when SCi writes into X. Let pi , for all i ∈ {0, 1, . . . , M}, be the process

executing SCi , and ci be the value that pi reads from N at Line 19 of SCi . Then,

we have ci = i , for all i ∈ {0, 1, . . . , M}.

Proof. Suppose not. Let j be the smallest index such that c j 6= j . (By ini-

tialization, j > 0). Then, by Lemma 108, c j > j . Let t ′
j−1 and t ′

j be the times

when operations SC j−1 and SC j , respectively, read the N at Line 19. (If j = 1, let

t ′
j−1 = 0). Then, variable N is written at least two times during (t ′

j−1, t ′
j). Further-

more, by Lemma 107, we have t ′
j ∈ (t j−1, t j).

Let τ1 and τ2 be the first two times that N is written during (t ′
j−1, t ′

j). Let L L1

and L L2 be the LL operations that write into N at times τ1 and τ2, respectively.

Then, the CAS at Line 6 of L L1 and L L2 is of the form CAS(N, j − 1, j) and

CAS(N, j, j + 1), respectively. Let t < t ′
j be the time when L L2 reads X at Line 1,

and v be the value that it reads from X. Then, since L L 2 executes Line 6, it follows

that v = (1, l), for some value l . Let t ′ < t be the time when value (1, l) is written

into X, and OP be the operation that performs that write. Then, OP = SCk , for some

k < j . Therefore, by definition of j , OP reads k from N at some time t ′′ < t ′ (at

Line 19), and writes k into l →name at some time t ′′′ ∈ (t ′′, t ′). (If t ′ = 0, then

t ′′′ = t ′′ = t ′ = 0, and k = 0.) Furthermore, by Corollary 4, l→name = k at all

233

times after t ′′′. Therefore, L L2 reads k from l→name, which is a contradiction to

the fact that the CAS at Line 6 of L L2 is of the form CAS(N, j, j + 1). ut

Lemma 110 Let SC0, SC1, . . . , SCM be the sequence of all first-successful SC op-

erations in H, ordered by the time they write into X. Let ti , for all i ∈ {0, 1, . . . , M},

be the time when SCi writes into X. Let pi , for all i ∈ {0, 1, . . . , M}, be the pro-

cess executing SCi . Let OP be any LL operation in H. If OP reads (1, l) from X

at Line 1, then we have (1) l = &loc pk , for some k ∈ {0, 1, . . . , M}, and (2) OP

executes da write(k, &loc pk) at Line 5.

Proof. The first part of the lemma follows immediately from the algorithm. We

now prove the second part of the lemma. Let t ′
k < tk be the time when SCk reads

N at Line 19 of OP′. (If k = 0, then t ′ = 0.) Then, during (t ′
k, tk), pk writes k

into locpk .name (by Lemma 109). Consequently, by Lemma 4, at all times after tk ,

locpk .name holds value k.

Let t be the time when OP executes Line 1. Then, by Corollary 3, we have

t > tk . Therefore, OP reads k from loc pk .name at Line 5, and hence executes

da write(k, &locpk) at Line 5, which proves the lemma ut

Lemma 111 Let SC0, SC1, . . . , SCM be the sequence of all first-successful SC

operations in H, ordered by the time they write into X. Let pi , for all i ∈

{0, 1, . . . , M}, be the process executing SCi , and ti be the time when pi writes

into X during SCi . Let SC ′
i , for all i ∈ {0, 1, . . . , M}, be the first successful SC

operation to write into X after SCi , and t ′
i be the beginning of the execution of

SC ′
i . Then, at least one da write(i, &loc pi) operation is executed entirely dur-

ing (ti , t ′
i).

234

Proof. Let j be any index in {0, 1, . . . , M}. Let, p ′
j be the process executing SC ′

j .

Let L L ′
j be the latest LL operation by p ′

j prior to SC ′
j . Then, by Lemma 107, L L ′

j

is executed entirely during (t j , t ′
j). Furthermore, since X doesn’t change during

(t j , t ′
j), L L ′

j reads (1, &locp j) from X at Line 1. Consequently, by Lemma 110,

L L ′
j executes da write(j, &loc p j) at Line 5, which proves the lemma. ut

Lemma 112 Let SC0, SC1, . . . , SCM be the sequence of all first-successful SC op-

erations in H, ordered by the time they write into X. Let ti , for all i ∈ {0, 1, . . . , M},

be the time when SCi writes into X. Let pi , for all i ∈ {0, 1, . . . , M}, be the

process executing SCi . Let OP be any LL operation in H. If OP reads (0, k, ∗)

from X at Line 1, then we have (1) k ∈ {0, 1, . . . , M}, and (2) at least one

da write(k, &locpk) operation is executed entirely before the start of OP.

Proof. Let OP′ be the latest successful SC operation prior to OP. Then, OP ′ writes

(0, k, ∗) into X at Line 22. Let q be the process executing OP ′, and t be the time

when OP′ performs that write. Then, at time t , we have locq .name = k.

Let OP′′ be the first successful SC operation by q in H. Let t ′ be the time

when q reads N at Line 19 of OP′′. Then, since we have locq .name = k at time t , it

follows by Lemma 4 that q reads k from N at time t ′. Therefore, by Lemma 109, we

have (1) q = pk , (2) OP′′ = SCk , and (3) k ∈ {0, 1, . . . , M}. Then, by Lemma 111,

it follows that at least one da write(k, &loc pk) operation is executed between

SCk and OP′. Since OP′ starts before OP starts, we have the lemma. ut

Lemma 113 Let SC0, SC1, . . . , SCM be the sequence of all first-successful SC op-

erations in H, ordered by the time they write into X. Then, the algorithm performs

235

read and write operation on D in accordance with the specification of DynamicAr-

ray object. Furthermore, for any da write(k, ∗) or read(k) operation, we have

k ∈ {0, 1, . . . , M}.

Proof.

Let SC0, SC1, . . . , SCM be the sequence of all first-successful SC operations

in H, ordered by the time they write into X. Let ti , for all i ∈ {0, 1, . . . , M}, be the

time when SCi writes into X. Let pi , for all i ∈ {0, 1, . . . , M}, be the process exe-

cuting SCi . Then, by Lemma 110, any LL operation that reads (1, &loc pi) from X

at Line 1 executes da write(i, &loc pi) at Line 5, for all i ∈ {0, 1, . . . , M}. Since

no other LL operations invoke da write at Line 5, it means that all the values

written into the same location are the same. Furthermore, for any da write(k, ∗)

operation, we have k ∈ {0, 1, . . . , M}.

Notice that, by Corollary 3, ti is the first time that value (1, &loc pi) is written

into X, for all i ∈ {0, 1, . . . , M}. Then, by the above argument, da write(i, ∗) is

not invoked until time ti , for all i ∈ {0, 1, . . . , M}. Let t ′
i , for all i ∈ {0, 1, . . . , M},

be the time when SCi begins its execution. Then, by Lemma 111, at least

one da write(i, ∗) operation is executed entirely during (ti , t ′
i+1), for all i ∈

{0, 1, . . . , M −1}. Consequently, before da write(i +1, ∗) operation is invoked,

at least one da write(i, ∗) operation completes, for all i ∈ {0, 1, . . . , M − 1}.

Notice that, by the algorithm, da read(k) is invoked by an LL operation OP

only after OP reads (0, k, ∗) from X at Line 1. Then, by Lemma 112, at least one

da write(k, ∗) operation completes before the start of da read(k). Further-

more, we have k ∈ {0, 1, . . . , M}. Therefore, the lemma holds. ut

236

In the following, let SCp,i denote the i th successful SC by process p, and v p,i

denote the value written in O by SCp,i . The operations are linearized according

to the following rules. We linearize each SC operation at the instant it attempts to

write into X (either at Line 20 or Line 22). We linearize each VL at Line 29. Let

OP be any execution of the LL operation by p. The linearization point of OP is

determined by two cases. If OP returns at Line 11, then we linearize OP at Line 1.

Otherwise, let SCq,k be the latest successful SC operation to write into X prior to

Line 1 of OP, and let v ′ be the value that p reads at Line 12 of OP. We show that

there exists some i ≥ k such that (1) at some time t during the execution of OP,

SCq,i was the latest successful SC operation to write into X, and (2) v ′ = vq,i .

Then, we linearize OP at time t .

Claim 24 At the beginning of SCp,i , seqp holds the value i mod 2b.

Proof. Prior to SCp,i , exactly i − 1 successful SC operations are performed by

p. Therefore, variable seq p was incremented exactly i − 1 times prior to SC p,i .

Since seqp is initialized to 1, it follows that at the beginning of SC p,i , seqp holds

the value i mod 2b. ut

Claim 25 During SCp,i , p writes (i − 1) mod 2b into locp.oldseq at Line 25.

Proof. According to Claim 24, at the beginning of SC p,i , seqp holds the value

i mod 2b. Therefore, p writes (i − 1) mod 2b into locp.oldseq at Line 25. ut

Claim 26 From the moment p performs Line 17 of SC p,i , until p completes

SCp,i+1, locp.vali mod 2 holds value vp,i .

237

Proof. According to Claim 24, at the beginning of SC p,i , seqp holds value

i mod 2b. Since (i mod 2b) mod 2 = i mod 2, it follows that p writes v p,i into

locp.vali mod 2 at Line 17 of SCp,i . Furthermore, since p increments seq p at

Line 26 of SCp,i , value vp,i (in locp.vali mod 2) will not be overwritten until

seqp reaches value (i + 2) mod 2b, which in turn will not happen until p executes

Line 26 of SCp,i+1. Therefore, variable loc p.vali mod 2 holds value vp,i from the

moment p performs Line 17 of SCp,i , until p completes SCp,i+1. ut

Claim 27 During SCp,i , p writes vp,i−1 into locp.oldval at Line 24.

Proof. By Claim 26, loc p.val(i − 1) mod 2 holds the value vp,i−1 at all times

during SCp,i . As a result, p writes vp,i−1 into locp.oldval at Line 24 of SCp,i . ut

Claim 28 Let OP be an LL operation by process p, and SCq,k the latest successful

SC operation to write into X prior to Line 1 of OP. If OP terminates at Line 11, then

it returns the value vq,k .

Proof. Let I be the time interval starting from the moment q performs Line 17 of

SCq,k until q completes SCq,k+1. According to Claim 26, variable locq .valk mod

2 holds value vq,k at all times during I . Furthermore, if k = 1, q writes (1, &locq)

into X at Line 20 of SCq,k; otherwise, q writes (0, locq .name, k mod 2b) into X at

Line 22 of SCq,k . In either case, p reads k mod 2b at either Line 4 of OP or at Line 8

of OP. Furthermore, by Lemmas 112 and 113, p reads &locq at either Line 3 of

OP or at Line 7 of OP. Consequently, since (k mod 2b) mod 2 = k mod 2, p reads

locq .valk mod 2 at Line 9 of OP. Our goal is to show that p executes Line 9 of

OP during I , and therefore reads vq,k from locq .valk mod 2.

238

At the moment when p reads X at Line 1 of OP, q must have already executed

Line 17 of SCq,k and not yet executed Line 22 of SCq,k+1. Hence, p executes Line 1

during I . From the fact that OP terminates at Line 11, it follows that p satisfies

the condition at Line 11. Therefore, the value that p reads from locq .oldseq at

Line 10 of OP is either (k − 2) mod 2b or (k − 1) mod 2b. Hence, by Claim 25

and Assumption A, it follows that, when p performs Line 10, q did not yet com-

plete SCq,k+1. So, p executes Line 10 during I . Since p performed both Lines 1

and 10 during I , it follows that p performs Line 9 during I as well. Therefore,

by Claim 26, p reads vq,k from locq .valk mod 2, and the value that OP returns is

vq,k . ut

Claim 29 Let OP be an LL operation by process p, and SCq,k be the latest success-

ful SC operation to write into X prior to Line 1 of OP. If OP terminates at Line 13,

let v′ be the value that p reads at Line 12 of OP. Then, there exists some i ≥ k such

that (1) at some time t during the execution of OP, SCq,i is the latest successful SC

operation to write into X, (2) SCq,i+1 writes into X during OP, and (3) v ′ = vq,i .

Proof. If k = 1, then q writes (1, &locq) into X at Line 20 of SCq,k . Otherwise, q

writes (0, locq .name, k mod 2b) into X at Line 22 of SCq,k . In either case, p reads

k mod 2b at either Line 4 of OP or at Line 8 of OP. Furthermore, by Lemmas 112

and 113, p reads &locq at either Line 3 of OP or at Line 7 of OP.

Since OP terminates at Line 13, the condition at Line 11 of OP doesn’t hold.

Therefore, p reads a value different than (k − 1) mod 2b and (k − 2) mod 2b from

locq .oldseq at Line 10 of OP. Then, by Claim 25, q completes Line 25 of SCq,k+1

before p performs Line 10 of OP. Consequently, q completes Line 24 of SCq,k+1

before p performs Line 12 of OP. As a result, the value v ′ that p reads at Line 12

239

of OP was written by q (into locq .oldval at Line 24) in either SCq,k+1 or a later

SC operation by q. We examine two cases: either v ′ was written by SCq,k+1, or it

was written by SCq,i , for some i ≥ k + 2.

In the first case, by Claim 27, we have v ′ = vq,k . Furthermore, by definition

of SCq,k , at the time when p executes Line 1 of OP, SCq,k is the latest successful

SC to write into X. Finally, by definition of SCq,k and an earlier argument, SCq,k+1

writes into X between Lines 1 and 5 of OP. Hence, the lemma holds in this case.

In the second case, by Claim 27, we have v ′ = vq,i−1. Since, at the time when

p executes Line 1 of OP, SCq,k is the latest successful SC to write into X, it means

that SCq,i−1 and SCq,i did not write into X prior to Line 1 of OP. Furthermore,

since SCq,i had executed Line 24 prior to Line 12 of OP, it follows that SCq,i−1 and

SCq,i had written into X prior to Line 12 of OP. Consequently, SCq,i−1 and SCq,i

had written into X during OP, which proves the lemma. ut

Lemma 114 (Correctness of LL) Let OP be any LL operation, and OP ′ be the

latest successful SC operation such that LP(OP ′) < LP(OP). Then, OP returns the

value written by OP′.

Proof. Let p be the process executing OP. Let SCq,k be the latest successful SC

operation to write into X prior to Line 1 of OP. We examine the following two

cases: (1) OP returned at Line 11, and (2) OP returned at Line 13. In the first case,

since all SC operations are linearized at the instant they attempt to write into X, and

since OP is linearized at Line 1, we have SCq,k = OP′. Furthermore, by Claim 28,

OP returns the value written by SCq,k . Therefore, the lemma holds. In the second

case, by Claim 29, there exists some i ≥ k such that (1) at some time t during the

execution of OP, SCq,i is the latest successful SC operation to write into X, and (2)

240

OP returns vq,i . Since all SC operations are linearized at the instant they attempt

to write into X, and since OP is linearized at time t , it follows that SCq,i = OP′.

Therefore, the lemma holds in this case as well. ut

Lemma 115 (Correctness of SC) Let OP be any SC operation by some process p,

and OP′ be the latest LL operation by p that precedes OP. Then, OP succeeds if and

only if there does not exist any successful SC operation OP ′′ such that L P(OP′) <

L P(OP′′) < L P(OP).

Proof. Suppose that OP returned false. Let SCq,k be the latest successful SC

operation to write into X prior to Line 1 of OP ′. Let t be the time when p executes

Line 1 of OP′, and t ′ be the time when p performs the CAS at Line 20 or 22 of

OP. We examine the following two cases: (1) OP ′ returned at Line 11, and (2)

OP′ returned at Line 13. In the first case, from the fact that OP returned false,

it follows that the CAS at Line 20 or Line 22 of OP has failed. Then, during

(t, t ′), variable X has changed. Consequently, some successful SC operation OP ′′

writes into X during (t, t ′). Since all SC operations are linearized at the instant

they attempt to write into X, and since OP′ is linearized at Line 1, it follows that

L P(OP′) < L P(OP′′) < L P(OP), and OP is therefore correct to return false.

In the second case, by Claim 29, there exists some i ≥ k such that (1) at some

time t during the execution of OP′, SCq,i is the latest successful SC operation to

write into X, (2) SCq,i+1 writes into X during OP′, and (3) v′ = vq,i . Since OP′ is

linearized at time t and since all SC operations are linearized at the instant they

attempt to write into X, we have L P(OP′) < L P(SCq,i+1) < L P(OP). Hence, OP

is correct to return false.

241

If OP returned true, let t ′′ be the time when OP writes into X. Let t ′′′ be the

latest time prior to t ′′ that some successful SC operation writes into X. Then, by

Lemma 107, OP′ is executed entirely during (t ′′′, t ′′). Since all SC operations are

linearized at the instant they attempt to write into X, it follows that no successful

SC is linearized between L P(OP ′) and L P(OP) (regardless as to where OP′ is lin-

earized). Hence, OP is correct to return true. ut

Lemma 116 (Correctness of VL) Let OP be any VL operation by some process

p, and OP′ be the latest LL operation by p that precedes OP. Then, OP returns

true if and only if there does not exist any successful SC operation OP ′′ such that

L P(OP′) < L P(OP′′) < L P(OP).

Proof. Similar to the proof of Lemma 115. ut

Theorem 13 Algorithm 7.4 is wait-free and, under Assumption A, implements a

linearizable 64-bit LL/SC object from 64-bit CAS objects and registers. The time

complexity of Join, LL, SC, and VL is O(1). The space complexity of the algorithm

is O(K 2 + K M), where K is the total number of processes that have joined the

algorithm and M is the number of implemented LL/SC objects.

Proof. This theorem follows immediately from Lemmas 114, 115, and 116. ut

242

	Efficient Wait-Free Algorithms for Implementing LL/SC Objects
	Recommended Citation

	tmp.1601052848.pdf.NJaWX

