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1 Introduction

Because public-key cryptography can enable secure information exchange between parties that do not share
secrets a priori, PKI has long promised the vision of enabling secure information services in large, distributed
populations.

A number of useful applications become possible with PKI. While the applications differ in how they use
keys (e.g., SIMIME uses the key for message encryption and signing, while client-side SSL uses the key for
authentication), all applications share one assumption: users have keypairs. Where these user keypairs are
stored and used is the primary focus of this research.

Traditionally, users either put their key on some sort of hardware device such as a smart card or USB token,
or they place it directly on the hard disk such as in a browser or system keystore. Most modern operating
systems (such as Windows and Mac OSX) include a keystore and a set of Cryptographic Service Providers
(CSPs) which use the key. In fact, many cross-platform software systems, such as the Java Runtime and
the Netscape/Mozilla Web browser include their own keystore so that they may use a user’s keypair without
having to rely on the underlying OS (thus enhancing portability).

Most keystores fall into one of four basic categories:

e A software token which stores the key on disk (most likely in some sort of encrypted format). Exam-
ples of this approach include the default CSP for Windows and the Mozilla/Netscape Web browser.

e A hardware token which stores the key and performs key operations. The interaction between an
application and the key is typically mediated by the OS (although in some cases, the application may
interact with the device directly, e.g., Mozilla). In order for the OS or application to be able to speak
to the token, the token vendor must provide a driver for the device which adheres to one of the two
common standards for communicating with cryptographic devices: CAPI for Microsoft [37], and
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RSA’s PKCS#11 [60] for the rest of the world. Examples of hardware tokens include the Aladdin
eToken and Spyrus Rosetta USB tokens, as well as more powerful devices (sometimes referred to as
cryptographic accelerators or Hardware Security Modules (HSM)) such as nCipher’s nShield [41].

e A secure coprocessor which stores the key, can perform key operations internally using cryptographic
hardware, and can even house the applications directly, such as the IBM 4758 [7, 68]. These devices
can also be used as cryptographic accelerators or HSMs by not placing the applications inside of the
device.

e A credential repository which is a dedicated machine that stores private keys for a number of users.
When a user Alice wishes to perform key operations, she must first authenticate to the repository.
The repository then certifies a temporary key with the Alice’s permanent key via a digital signature,
or actively participates in the requested key operation. Examples of credential repositories include
MyProxy [42], hardened MyProxy [30], and SEM [4]. These systems will all be discussed in some
detail throughout this proposal.

Problems with the Status Quo In previous work, we examined the security aspects of some of the stan-
dard keystores and the their interaction with the OS [34]. We concluded that software tokens are not safe
places to store private keys, and we demonstrated the permeability of keystores such as the Microsoft default
CSP and the Mozilla keystore. Our experiments showed that it is possible for an attacker to either steal the
private key or use it at will.

In addition to being unsafe, software keystores have the disadvantage of being immobile. Once a key
is installed on a desktop, the only way to transport it to another machine is to export it and re-import it
on the new machine. As user populations become more mobile and acquire multiple devices (e.g., it’s
not uncommon for someone to have a computer, PDA, and a cell phone), this immobility becomes more
problematic.

Hardware tokens (e.g., the Aladdin and Spyrus USB tokens) claim to solve both of these problems—they get
the key off of the desktop and give users mobility. We experimented with these devices as well, and found
that an attacker is still able to use the key at will. With respect to mobility, devices such as USB tokens can
add some benefit, provided that the appropriate software is installed on each machine, and that users use
supported OSes (the tokens we experimented with did not have Apple or Linux support).

A more detailed analysis of these problems and their impact on the PKI vision will be discussed in Section 2
(see [34] for details of our experiments). Can secure coprocessors and credential repositories do any better
than hardware and software tokens?

Secure Coprocessors In other previous work, we examined secure coprocessors (e.g., [63, 79, 80]): care-
ful interweaving of physical armor and software protections can create a device that, with high assurance,
possesses a different security domain from its host machine, and even from a party with direct physical
access. Such devices have been shown to be feasible as commercial products [7, 68] and can even run
Linux and modern build tools [22]. In our lab, we have explored using secure coprocessors for trusted
computing—both as general designs (e.g., [46]) as well as real prototypes (e.g., [23])—but repeatedly were
hampered by their relatively weak computational power. Their relatively high cost also inhibits widespread
adoption, particularly at clients.

In some sense, secure coprocessors offer high-assurance security at the price of low performance (and high



cost). However, in industry, two new trusted computing initiatives have emerged: the Trusted Computing
Platform Alliance (TCPA) (now renamed the Trusted Computing Group (TCG) [45, 71, 72, 73]) and Mi-
crosoft’s Palladium (now renamed the Next Generation Secure Computing Base (NGSCB) [11, 12, 13, 14]).
These also seem to be tied up with Intel’s LaGrande initiative [69].

Many in the field ([1, 59] are notable examples) have criticized these initiatives for their potential negative
social effects; others (e.g, [20, 54, 55]) have seen positive potential. (Felten [17] and Schneider [57] give
more balanced high-level overviews.)

These new initiatives target a different tradeoff: lower-assurance security that protects an entire desktop
platform (thus greatly increasing the power of the trusted platform) and is cheap enough to be commercially
feasible. Indeed, the TCG technology has been available on various IBM platforms, and other vendors have
discussed availability. Some academic efforts [29, 36, 70] have also explored alternative approaches in this
“use a small amount of hardware security” space, but no silicon is available for experiments yet.

Last year, we built a trusted computing platform based on the TCG specifications and hardware, and we
called this platform “Bear”. Section 4 will give an overview of Bear and details can be found in previous
work [31, 33].

This Thesis  The picture painted by these previous projects suggests that common desktops are not secure
enough for use as PKI clients, and adding USB hardware tokens does not provide a solution either. The
picture also suggests that trusted computing can improve the security of client machines.

In practice, the Grid computing community has embraced the credential repository approach in order to
provide security and mobility to clients. Their repository is called MyProxy [42], and there have even been
efforts to harden a MyProxy repository with an IBM 4758 [30].

The question that | propose to investigate is: Can | build a system which applies trusted computing hardware
in a reasonable manner in order to make desktops usable for PKI? This question will be further defined
throughout the course of this proposal, but in essence, I’m asking if it is possible to build a system which
uses secure hardware to store private keys in a credential repository, prevents private key disclosure, and
allows relying parties to reason about the system. It is worth noting that the application of trusted computing
hardware in a reasonable manner implies that clients should not have to be equipped with high-end HSMs
to participate in the system. The system should be flexible enough to accommodate clients with high-end
HSMs, but should not require clients to have such a device.

Concretely, | plan to start with the hardened MyProxy design, and extend it in the following ways:

o | will place the entire repository application on a secure platform (as opposed to just the keys in the
hardened MyProxy approach),

I will take advantage of secure hardware on the clients, if available,

I will incorporate a policy framework into the system so that users can clearly express their wishes
with respect to delegation, and

o | will formally reason about the design to ensure that relying parties have a sound reason to trust
certificates generated by the system.



The idea is to extend the MyProxy system to take full advantage of secure hardware—on the servers, clients,
and in the policy framework. The resulting design is called Hardware Enhanced MyProxy (SHEMP).

Since SHEMP is based on the MyProxy design, it can be used for the same purpose: to serve as an online
credential repository for Grid PKIs. However, the incorporation of secure hardware and a policy framework
allow SHEMP to be used for a number of additional applications such as general PKIs and mobile PKI
clients (discussed in Section 6). Additionally, some of the tools used to build the SHEMP system have
interesting applications of their own, outside the context of SHEMP (discussed in Section 4).

This Paper Section 2 examines the problem in detail. Section 3 discusses the criteria that a solution to the
problem should meet. Section 4 discusses the SHEMP toolkit in detail and Section 5 applies those tools to
build a system. Section 6 explores a number of applications which could benefit from the proposed system.
Section 7 discusses other approaches and finally, Section 8 concludes and presents a proposed timeline.

2 TheProblem

Put simply, the problem that | propose to solve is that modern desktops are unsuitable for use as PKI clients.
They allow a user’s private key to be stolen or used at an attacker’s will, they make it difficult for users (and
application authors) to do the “right thing”, they are inherently immobile, and they do not allow relying
parties to make good trust judgments about the system (i.e., they allow the key to be used for transactions
which the user was not aware of or did not intend). A more detailed description of the experiments used to
draw this conclusion can be found in previous work (see [34]); this section presents a brief analysis of some
of those results.

Software One cause of the problem is the software which runs on the client’s desktop and its interaction
with the underlying hardware. Given the complexity of modern software, it has become almost impossible
to know exactly what is happening during a given computation. Is the machine executing the right code?
Has critical data been altered or stolen?

One unfortunate consequence of this increase in complexity is a reduction in the level of usability of the
system. Clearly, it becomes difficult for users to make reasonable trust judgments about the system if the
system is difficult to use. In a security setting, this inability to reason about the system can thwart the
security efforts that the system’s designers have implemented.

A second unfortunate result of modern software’s complexity is an expansion in the set of software that must
be trusted in order for the system to operate correctly. This set of software is often referred to as the Trusted
Computing Base (TCB). A good discussion of the TCB can be found in the “Orange Book” [43], and the
motivations to keep the TCB small are clear: minimize the attacker’s target and maximize the chance for
developers to build secure systems.

Placing a private key on such a complex system is problematic. By exploiting the complexity, it is possible
for an attacker to trick users into giving away their key directly, or use it for purposes which they are unaware
of or did not intend. By exploiting the fact that so much of a complex system needs to be trusted in order
for it to behave correctly, it is possible for an attacker to either get the key directly, or be able to use it at
will without alerting the key’s owner. We found that getting one user-level executable to run on the client is
enough to accomplish a successful attack.



Hardware Many in the field suggest getting the private key off of the desktop altogether and placing it
in a separate secure device of some sort. Taking the key to a specialty device (such as an inexpensive USB
token) would seem to reduce the likelihood of key theft as well as shrink the amount of software which has
to be trusted in order for the system to be secure. Specifically, at first glance, it would appear that just the
device and the software which provides access to the device (i.e., its CSP) need to be trusted.

However, relying on such a device is also problematic. Just putting the private key on a token is not enough.
The token’s CSP is still interacting with the whole system (the OS and CAPI), and the entire system still has
to be trusted. Putting the private key on a token gives some physical security and makes it harder to steal
the key (physical violence notwithstanding), but it does not protect against malicious use, and it does not
increase usability.

Secure coprocessing is an improvement from a security standpoint, but it is not a magic bullet either. From
a practical standpoint, high end devices such as the 4758 are far too expensive to deploy at every client.
On the other end of the spectrum, lower priced devices (e.g., the TPM) probably cannot withstand many
common attacks (such as hardware attacks, or attacks from root) without additional measures (e.g., aid from
the processor, such as what is being considered in the literature [29, 36, 69, 70]).

Immobility In addition to the security and cost considerations mentioned above, the desktop PKI client
paradigm suffers another problem: immobility. Modern computing environments are becoming increasingly
distributed and user populations are becoming increasingly mobile. To further the problem, the number of
computing devices that a typical user owns is growing. It is not uncommon for someone to own a desktop,
a laptop, a cell phone, and a PDA. Which device(s) should house the private key?

One proposal is to use inexpensive tokens (such as USB tokens) and allow users to carry their token with
them across devices and computing environments. This approach has a number of drawbacks in addition to
the security problems mentioned above. First, some devices may not have the proper hardware or software
installed, or may not have support altogether. Second, a particular machine may not be trustworthy, or may
have malware installed which abuses the private key. Again, getting the private key in a token does not
shrink the TCB.

Another proposal is to move the key around on some removable media (e.g., a floppy) and export the key to
some intermediate format (e.g., PKCS#12 [61]) and then import the key at the destination. This approach
suffers a number of drawbacks as well. First, some devices may not support the media—e.g., I’m unaware
of cell phones with floppy drives. Second, the intermediate format may be insecure. Peter Gutmann revealed
a vulnerability in the way that the key is stored on disk once it has been exported (in a .pwl or .pfx file).
There is a tool named breakms, available from Gutmann’s Web site [21], which performs a dictionary attack
to discover the password used to protect the file and outputs the private key.

3 Criteriafor a Solution

In order for any proposed solution to succeed in making desktops usable for PKI, it must address a range
of issues including security, usability, and mobility. For the solution to be of any practical interest, it must
safely store and use the private key, give application developers flexibility while maintaining security, match
the model of real world user populations, and allow relying parties to make reasonable judgments about the
system.



Security The notion of security is difficult (or impossible) to measure in a practical system. Within a
formal framework, one can prove that a system is secure, but once the formal frameworks give way to
implementations, problems often arise. As a result, the operating definition of security in this proposal
involves minimizing the risk, impact, and window of opportunity for misuse of a user’s key.

One design force at work in the SHEMP system is the notion of using very secure hardware in some places
and less or no secure hardware in others. In SHEMP, machines which house users’ private keys are called
key repositories. Machines which actually use the key on a user’s behalf are called clients. In general, both
repositories and clients can have very secure hardware such as a secure coprocessor, less secure hardware
such as a TPM, or no secure hardware at all.

In order to make any real claims of security, key repositories should be able to withstand a wide range of
attacks. In designing the repository, | assume that an attacker can get root privileges on the repository’s host
machine. This implies that the attacker can watch any process’s memory, and run any code of his choice
on the host. Furthermore, since secure hardware could be involved, | assume that an attacker has physical
access to that hardware and can attempt to perform local hardware attacks. As a result, repositories should
be able to resist local physical and software attacks, and should refuse to disclose any user’s private key,
even if the attack is running with root privileges.

In practice, this may involve using a device such as an IBM 4758 to house the repository, thus giving the
repository a different security domain than its host. Although using a device such as the 4758 is necessary to
achieve maximum security, the design | am proposing is flexible enough to deal with any type of hardware
on the repository. No matter what type of hardware is used, the system must be able to give all parties
enough information about the repository so that it can make informed decisions.

The model for clients is different—clients cannot be trusted with users’ private keys. The system | am
proposing is designed to be flexible enough to accommodate clients with a range of security levels, as well
as provide a means for expressing those security levels. The mechanisms used to achieve this extensibility
will be discussed in Section 5, but for the purposes of defining a threat model, it is safe to assume that clients
should not be trusted to house the user’s private key directly.

Concretely, clients obtain an authorization to use the private key which lives in the repository. The strength
of this authorization will depend on the security level of the client and repository. For instance, clients with
attestation capabilities will be able to use those in order to enhance authorization. In defining a threat model,
it is only fair to assume that this authorization process can be compromised as well, allowing an attacker to
use the key without actually obtaining it (the difficulty of the attacker’s task depends on the security level
of the client). In the event that the authorization is compromised, the system must minimize the time that
the authorization is valid. In previous work, we found that the status quo allows an attacker to use the key
indefinitely [34].

Usability The second feature that a proposed solution should provide is usability. Developers must be
able to use this platform to build and deploy real applications. This requires that the platform must be
easily programmable with modern tools. The platform must also allow easy maintenance and upgrade of its
software. Finally, the platform must permit installation and upgrade of software to happen at the end user’s
site since forcing software developers to ship hardware stifles innovation, limits user choice, and complicates
trust [67].



Mobility The third feature that a proposed solution must provide is mobility. Modern user populations in-
creasingly use multiple computing platforms from multiple locations. A solution should allow for mobility,
and should not risk key disclosure any time the user moves geographically or uses different devices.

Reasoning About the System  All of the above features are meaningless unless relying parties can reason
about the system. To this end, the last feature that any proposed solution should provide is the ability to
reason about it. Specifically, if Alice is given a pile of certificates from Bob, and Bob was issued these
certificates from the system, what can Alice deduce about Bob—does she have any real reason to trust him?

In the context of this proposal, the relying party Alice makes decisions about Bob based on the certificate(s)
that the target Bob gives her. Specifically, it is not enough for these certificates to express some transitive
trust relationship which begins at one of Alice’s trust anchors and ends with Bob. Those certificates must
express something about the environment Bob is operating in. How secure is his client machine? How
secure is the key repository? Was the software Bob used to authorize himself the “right” software? How
likely is it that his authorization was compromised?

In addition to providing a mechanism for relying parties to answer such questions, the system should be
flexible and expressive enough to allow Alice to answer domain-specific security questions about Bob’s
environment (e.g., is Bob’s machine inside the firewall?).

4 My Toolkit

As a researcher in the Dartmouth PKI Lab, | have had a chance to explore and develop a number of tools
which will serve as the building blocks for constructing a solution. Essentially, my toolkit can be divided into
four major categories: secure hardware which is used as the basic keystores (both at repositories and clients,
when available), a delegation infrastructure which is used to establish secrets across multiple platforms, a
policy language which is used to express private keys’ usage and delegation policies at the repository as well
as express attributes of repositories and clients, and a formal framework which is used to reason about the
system.

Secure Hardware Over the years, the Dartmouth PKI Lab has built a number of systems which involve
and/or enhance secure coprocessors. Most of our initial systems were constructed around the IBM 4758,
as Sean Smith brought it to the PKI Lab from IBM [7, 63, 67, 68]. Members of our group have used these
devices to enhance privacy [23], harden PKI [25, 32, 64], and enhance SIMIME [46].

The 4758 is a secure coprocessor which provides secure storage facilities, cryptographic acceleration, and a
platform on which to run third-party applications. The 4758 is a very secure device, having been validated
to FIPS 140-1 Level 4. It can withstand both software and hardware attacks, and effectively provides a
different security domain from its host machine.

An extremely useful feature of the 4758 is what it calls Outbound Authentication, which enables applications
running inside of the 4758 to authenticate themselves to remote parties [65]. A good overview of the 4758
and its capabilities can be found in the literature (e.g., [7, 63, 67, 68]).

More recent projects have involved constructing a “virtual” coprocessor out of commodity hardware. Our
initial design and prototype was based on the TCG specification (see [45, 71, 72, 73]) and was called



“Bear” [33].

The Bear platform is less secure than the 4758. It does provide a means to ensure file integrity for files
which a Security Admin decides are necessary. However, since the design is based on the TCG specification
and hardware, it is susceptible to local hardware attacks, as well as attacks from root [31, 33].

Bear has a mechanism which allows it to “attest” to the integrity of the platform when challenged. The TCG
specifications refer to this mechanism as attestation. More information about Bear can be found in previous
work (e.g., [31, 33]), and a summary of the attestation mechanism can be found in earlier work [31] as well
as the literature (e.g., [45, 56, 71, 72, 73]).

Delegation A detailed description of the design of my solution will be given in Section 5, but the main
idea is to store the user’s private key in a key repository, and issue short-lived keypairs (contained in Proxy
Certificates [74, 77]) to the client. As noted earlier, repositories and clients may vary with respect to the
level of secure hardware they possess, and thus may vary in their methods of generating and storing the
short-lived keypairs. For example, if a client is a Bear platform, then the authorization to use the user’s key
in the repository will be delegated to the temporary key stored in the TPM on the client.

The delegation framework used to create the short-lived keys and certificates should be simple, widely
accepted in practice, and should not require extra infrastructure (such as CRLs, etc). There are a number of
frameworks and certificate formats to choose from, such as X.509 [16], X.509 Proxy Certificates [74, 77],
Permis [6, 47], Keynote Credential Assertions [3, 27], and SDSI/SPKI [8, 9, 10]. Nazareth provides an
overview of a number of these delegation systems, as well as comparisons between them [39].

I chose X.509 Proxy Certificates for a number of reasons. First of all, they are standardized by the IETF,
and are awaiting an RFC number assignment. Second, because they are X.509-based, they can be used in
many places in the existing infrastructure that are already outfitted to deal with X.509 certificates. Third,
they are widely used in the Grid community and are used in the dominant middleware for Grid deployments:
the Globus Toolkit [18]. Fourth, they allow dynamic delegation without the help of a third party, allowing
clients to obtain a Proxy Certificate without having to endure the cumbersome vetting process at the Cer-
tificate Authority. Fifth, the Proxy Certificate standard defines a Proxy Certificate Information (PCI) X.509
extension which can be used to carry a wide variety of (possibly domain-specific) policy statements (e.g.,
XACML statements). Last, the PCI extensions can be used to limit the privileges granted by the delegator
(e.g., perhaps according to the security level of the client).

In all fairness, SDSI/SPKI certificates could probably be used as well. Our lab has a produced a number of
projects which use the SDSI/SPKI format [39, 66], and using Proxy Certificates gives me an opportunity
to explore something new. Further, some of our lab’s projects have encountered difficulties when passing
SDSI/SPKI certificates to relying parties [66].

Policy In order to enhance the expressiveness and usability of the system, users must be able to relay their
wishes regarding key usage to others. Further, the system must also be able to convey attributes of both
key repositories and clients to relying parties. The “Extended Key Usage” field of X.509 certificates allows
users to restrict key usage, but it does not consider attributes of the key’s environment (i.e., the repository
and client). Since I could not find a tool which fit my purposes, I developed my own.

The goal is for the relying party Bob, upon receiving a Proxy Certificate for Alice, to be able to examine the
certificate, Alice’s Key Usage Policy (KUP), and the attributes about Alice’s client and the repository which



houses Alice’s private key, and decide whether to trust the certificate. Additionally, the repository should
enforce Alice’s KUP, and only issue a Proxy Certificate if the client and repository meet the conditions in
the KUP. The Proxy Certificate could possibly be limited to some subset of Alice’s privileges, as expressed
in her KUP.

There are a number of policy frameworks which can be used to accomplish these tasks, and the system
design is agnostic to which framework is used. However, for the sake of implementation, | chose to use
the eXtensible Access Control Markup Language (XACML) [78]. XACML is an XML-based language
for expressing generic policies and attributes. A Policy Decision Point (PDP) takes a policy and a set of
attributes about the requester, and makes an access control decision. From a practical standpoint, XACML
is generic enough to perform the tasks at hand, and has an open-source implementation (thanks to Seth
Proctor at Sun Microsystems) [49] which is implemented in the language of my prototype: Java.

Protocol Analysis Tool The last tool of interest is one which can be used to reason about trust in the
formal sense. If the system is sound, then it should generate valid certificates if and only if Alice authorized
the generation of those certificates.

Again, the details of the architecture will be described in Section 5, but briefly, the overhead incurred by the
system is that users now have chains of certificates as opposed to just one. The first certificate is from the
user’s Certificate Authority (CA) to the user’s keypair, and the second is the Proxy Certificate from the user’s
keypair to the short-lived delegation key. The implication is that relying parties now have to reason about a
chain of certificates instead of just one. Additionally, relying parties also have to consider the attributes of
the repository and server along with Alice’s KUP in making decisions.

A number of formal frameworks exist to reason about bindings between entities and keys and the protocols
used to establish these bindings [5, 28, 35]. My intention is to apply the Maurer-style notation [35] to the
SHEMP design, as it is simple and expressive enough to capture most of the design concepts. It is quite
likely that I will have to extend the notation in order to capture all of the concepts in SHEMP.

5 My System

Using the toolkit presented in Section 4, how can | build a system which meets the criteria of Section 3 and
solves the problems of Section 2, thus answering the question: “Can I build a system which applies trusted
computing hardware in a reasonable manner in order to make desktops usable for PKI?”

Concretely, the goal of the SHEMP system is to allow the relying party Bob to be able to make valid trust
judgments about Alice upon receiving a Proxy Certificate from her. Bob should have some reason to believe
that Alice authorized the issuance of her Proxy Certificate for the intended purpose(s), and that the private
key described in the Proxy Certificate is authentic.

Furthermore, a successful solution must meet the criteria of Section 3, as well as the formal criteria which
will be developed in the thesis (Section 8.1 discusses this issue in more detail). The next section describes
one candidate architecture based on X.509 certificates. Section 5.2 considers how well the architecture
meets the criteria in Section 3, and the formal analysis will be done as part of the thesis.

5.1 TheSHEMP Architecture
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Figure 1. The parties in the SHEMP system. The circles represent individuals or organizations and the boxes represent
machines. The arrows indicate trust relationships between the parties; an arrow from A to B means “A trusts B”.

The Players The first step in developing a system which relies on and enables trust is defining the entities
involved and showing the trust relationships between them.

Initially, there are three familiar parties involved: a CA, a user (Alice), and a user’s machine (Matisse).
As in any typical PKI, Alice trusts her CA to certify members of her population (including herself). This
relationship is depicted as a solid arrow from Alice to the CA in Figure 1.

In order for the CA to trust Alice, it must believe her identity and that she has the private key matching the
public key in her certificate request (typically a Registration Authority (RA) verifies Alice’s identity on the
CA’s behalf). Once the CA/RA believe Alice’s identity is authentic and that she owns the private key, the
CA will express its trust in Alice in the form of a CA-signed identity certificate. This relationship is depicted
as a dashed edge from the CA to Alice in Figure 1.

For an application running on Alice’s machine (Matisse) to trust certificates signed by the CA (such as
Alice’s), it needs to have the CA certificate installed. This relationship is represented by the edge from
Matisse to the CA in Figure 1. To illustrate a concrete example of the necessity of this relationship, assume
that some organization uses SIMIME mail. If Alice and Bob both have identity certificates signed by the
CA and Bob sends Alice a signed message, then Alice’s mail program needs to know Bob’s certificate and
it needs to trust the entity which vouched for Bob’s identity (the CA/RA).

In addition to the three familiar parties described above, the SHEMP system introduces three more: a
Repository Administrator who runs the key repository(s), a Platform Administrator who is in charge of
the platforms in the domain (such as Matisse), and at least one key repository (depicted as Repository 0 in
Figure 1).

The Repository Administrator is in charge of operating the key repository. Since the repository contains the
entire population’s private keys (and is thus a target for attacks), it must be maintained with care. Concretely,
the Repository Administrator is in charge of loading private keys into the repository and vouching for the
repository’s identity and security level (these will be discussed below). Thus, it is necessary for the CA to
trust the Repository Administrator. Since the Repository Administrator is a member of the CA’s domain
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(in fact, probably part of the same organizational unit—such as Dartmouth College Computing Services), it
trusts the CA as well. This relationship is depicted by the edge connecting the Repository Administrator to
the CA in Figure 1.

The Platform Administrator is in charge of the platforms that end users (e.g., Alice) will use. At the base
level, the Platform Administrator has the same responsibilities as a typical system administrator: configuring
machines, installing and upgrading software, applying patches, etc. Additionally, the Platform Administra-
tor is in charge of creating and vouching for platform identities and security properties (discussed below).
Since the Platform Administrator is in charge of the nodes that will be using the keys stored in the repository,
the CA must trust the Platform Administrator. Since the Platform Administrator is a part of the CA’s domain
(again, possibly part of the same organizational unit), it trusts the CA. The relationship is shown in Figure 1
as the edge connecting the Platform Administrator to the CA.

The last entity involved is the actual key repository which holds the users’ private keys. As with individual
platforms (e.g., Matisse), the repository trusts the CA. This relationship makes it possible for entities with
CA-signed certificates to establish SSL connections to the repository. Since the repository trusts the CA, it
believes the identity of an entity with a CA-signed certificate. This relationship is represented by the edge
between Repository 0 and the CA in Figure 1

It is worth noting that there could be more entities involved in the system. For example, there will most
certainly be multiple users (e.g., Alices) and platforms (e.g., Matisses). Further there could be any number
of CAs in virtually any valid architecture (hierarchy, mesh, etc.). There could also be multiple repositories
with different Repository Administrators, as well as multiple Platform Administrators. The only constraint
that must be enforced is that the multiple parties form a valid chain of certificates.

For example, assume that Dartmouth College has one root CA for the college, and each department runs
CAs for their own department. In this case, the Computer Science Department runs a CA, and its CA cer-
tificate is signed by the Dartmouth College root CA, thus forming a chain. In this example, the department
may also run its own repository, and the department’s Repository Administrator is certified by some college-
wide repository administrator (again forming a chain of certificates). A college-wide Platform Administrator
could certify some departmental Platform Administrator to have the department’s machines under her juris-
diction (again, forming a chain). The details of the certificates used by SHEMP will be discussed below,
but it is important to note that the system generalizes beyond the entities in Figure 1. The set of entities in
Figure 1 is the smallest set which is necessary and sufficient to describe the system.

Identity Certificates Setup The way SHEMP (and PKI in general) represents trust is via certificates.
From the initial trust relationships between the entities in Figure 1, a number of certificates can be immedi-
ately issued. Figure 2 illustrates these initial certificates; they are contained in the dashed box which could
possibly represent an LDAP directory where users go to locate certificates.

The certificates are issued from the CA to entities which have a mutual trust relationship with the CA. Since
the administrators and Alice all have such a relationship with the CA, they are all issued identity certificates.
The certificates not shown in Figure 2 are the CA certificates which are installed at the key repository and
at the platform. As previously discussed, these certificates are necessary to allow things like client-side SSL
connections, and are represented by the one-directional edges in Figure 2.

The first phase of setup begins when machines are added to the domain. As a repository is added, the
Repository Administrator must take a number of steps to set it up. First, he must generate a keypair for
the repository. This keypair can be generated in a number of ways depending on what type of platform the
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Figure 2: The entities, trust relationships, and initial certificates in SHEMP. The boxes inside of the dashed area
represent certificates. In this figure, all three certificates are signed by the CA, and are issued to the Repository
Administrator, Platform Administrator, and Alice respectively. In practice, the certificates shown may differ slightly
from one another as they represent different sorts of trust relationships. For example, the Platform and Repository
Administrator certificates may have the basicConstraints X.509 extension set, indicating that they are able to
act as CAs themselves. In contrast, Alice’s certificate may have the extension set to false, indicating that Alice’s
certificate is an end entity certificate.
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Figure 3: The administrators issue identity certificates to the repository and Matisse. The dashed edges indicate the
issuing of a certificate, and the resulting certificates are added to the certificate store.

repository runs on. For instance, if the repository runs in a 4758, then the keypair ought to be generated
there, so as not to be compromised. If the repository runs on a Bear platform, then the keypair should be
generated inside of the TPM. The idea is to use secure hardware, if available.

Second, the Repository Administrator binds the public portion of that keypair to an identifier for the repos-
itory. SHEMP is agnostic about these identifiers. A repository could be identified by a name, a hardware
MAC address, the hash of the newly-generated public key, etc. The only restriction that SHEMP imposes
is that this identifier uniquely identify the repository. The binding of the public key to the identifier is ac-
complished via the Repository Identity Certificate issued by the Repository Administrator (depicted as the
certificate issued from the Repository Administrator to Repository 0 in Figure 3).

A similar procedure is performed by the Platform Administrator each time a new machine is added to the
domain. First, the Platform Administrator generates a new keypair on the platform, using the most secure
method available (e.g., a 4758 or a TPM).

Second, the Platform Administrator binds the public portion of the keypair to a unique identifier for the
platform. This binding is represented as the Platform Identity Certificate (depicted as the certificate issued
from the Platform Administrator to Matisse in Figure 3). As with the repository, SHEMP is agnostic to
the specific mechanism used to identify the platform, but administrators should use the “least spoofable”
identifier possible. For example, if a TPM is present, the TPM’s Endorsement Key could be used, providing
a more secure identifier than a hardware MAC address (which is easily spoofed).

13



Repository | | Repository Platform | | Platform
Attribute 11 Identity Identity 11 Attribute
Certificate : : Certificate Certificate: :Certificate
¥ ¥
11 11
11 11
11 11
A
Repository 0 Alice Matisse
T ETETTTTTEmm__—__——_——— \
Rep. PTat. Rep Adr] [ cA | [Pla Adm)
[ca ][ ea | ea | [Aamin] [agm]

1

1

1 . N
Rep. 0 Alice Matisse

: Rep_. Plat: l AIiceI Rep. 0 Matisse XML Att XML Att

1 LAdmin : L (L_KUP J | J

1

Figure 4. The administrators issue attribute certificates to the repository and Matisse which contains their security
level expressed in XML. The CA issues an attribute certificate to Alice which contains her Key Usage Policy (KUP).
The KUP is an XACML policy which specifies Alice’s delegation policy.
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Attribute Certificates Setup  The final phase of setting up the system involves issuing attribute certificates
to the appropriate entities. These attribute certificates are used to bind the security level of the machines (i.e.,
the repository and client platform) to the machine’s identifier, and to bind a user’s delegation policy to the
user’s identity.

As the Repository Administrator configures the repository, he must also assign some domain-specific se-
curity level to the repository. Concretely, the security level is expressed by the Repository Administrator
generating and signing some XML attributes for the repository. The idea is for the administrator to make
some signed XML statements such as “This repository runs on a Bear platform”, “This repository is in a
secure location and guarded by armed guards.”, etc. These attributes can be arbitrarily complex, and are
stuffed into a Repository Attribute Certificate (RAC). The RAC is identified by the same identifier that the
Repository Administrator used in the Repository Identity Certificate, and thus binds the repository to its
XML attributes. The RAC is then signed by the Repository Administrator and placed in a well-known
location, such as an LDAP directory. This procedure and the resulting certificate is shown in Figure 4.

The story continues when client platforms are added to the network. As the Platform Administrator config-
ures new machines, she constructs some XML attributes for the platform and signs them. These attributes
are expressed in XML, and can state any domain-specific properties that the Platform Administrator feels
are important in determining the security level of the machine. Examples may include statements such as
“This machine is inside the firewall”, “This machine is a Bear platform”, “This machine was patched on
April 21, 2004”, etc.

Like the RAC, these attributes can be arbitrarily complex and are stuffed into a Platform Attribute Certificate
(PAC). The PAC is identified by the same unique identifier that the Platform Administrator used to identify
the platform in the Platform Identity Certificate. Again, machines with no secure hardware may be identified
by a hardware MAC address, whereas a Bear platform may be identified by the TPM’s endorsement key.
In any case, the PAC binds the client platform’s identity to its XML attributes. The PAC is signed by the
Platform Administrator and is placed in a well-known location such as Dartmouth’s LDAP directory. This
procedure and the resulting certificate is shown in Figure 4.

The last part of the setup occurs when a user Alice visits the CA for the first time in order to get her identity
certificate issued. Alice goes through the standard identity vetting process, eventually proving her identity
to the CA/RA.

At the CA, Alice also gets a chance to express her Key Usage Policy (KUP), which governs how her key
is to be used. For example, Alice may specify “If my key lives in a 4758 repository, and | request a Proxy
Certificate from a Bear platform, grant the Proxy Certificate full privileges. If my key lives in a Bear
repository, and | request a Proxy Certificate from any machine outside the firewall, allow my key to be used
for encryption only. etc.” This KUP is expressed as an XACML policy, and is signed by the CA. The signed
KUP is identified by Alice’s name (or public key or possibly stuffed into Alice’s X.509 identity certificate as
an extension—yet to be determined) and is placed into the LDAP along with her identity certificate. Alice’s
private key is then loaded into the repository (actually, it is most likely generated there and the CA receives
a Certificate Request Message Format (CRMF) request), and setup is complete (see Figure 4).

The System in Motion Once setup is completed, Alice is free to wander throughout the domain and use
her key. For example, assume that she needs to register for classes via an SSL client-side authenticated Web
site. Alice begins by finding a computer which is acting as a client (i.e., has the client software installed, and
hence has an Platform Identity Certificate and PAC in the directory). For illustration, assume Alice walks
up to the client named Matisse.
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Figure 5: The basic protocol for generating a Proxy Certificate (PC) under the SHEMP system. Steps 3, 4,
5, 6, 10, and 11 represent my enhancements to the basic MyProxy approach. Step 8 also differs somewhat
in that under SHEMP, the keypair can be generated in the most secure manner that a client has at its disposal
(e.g.,aTPM).
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The protocol for establishing a Proxy Certificate is shown in Figure 5. Matisse first connects to the repository
and establishes a client-side SSL connection. The repository and platform identity certificates are used to
negotiate this connection. Recall that the Repository and Platform Identity Certificates are signed by the
appropriate administrators (Repository and Platform, respectively), and that the administrators have CA-
signed certificates (or a valid chain of certificates back to the CA). The implication is that there is a valid
certificate chain from each of the platforms back to the CA. Since both the repository and platform trust the
CA, they have good reason to believe the client-side SSL authentication.

The second step is for Alice to authenticate herself to the repository. SHEMP is agnostic with respect to how
authentication is accomplished. For prototyping purposes, Alice will use a username/password, but for real
security, Alice needs to use a authentication technique which cannot be intercepted by rogue processes on
the client. For instance, Alice could use some other keypair (possibly stored on a token) for authentication
purposes or she could use biometrics, etc.

Once both Matisse and Alice have authenticated, the repository software uses Matisse’s identifier to look up
Matisse’s PAC. As shown in Figure 5, the repository may also fetch Alice’s identity certificate and KUP if
it is not locally stored on the repository (possibly to save space on the repository). Once the repository has
gathered all of the policy information about the Matisse and Alice (e.g., the PAC, KUP, and Alice’s iden-
tity certificate), it will acknowledge Alice’s and Matisse’s authentication, and waits for a Proxy Certificate
request from Matisse.

Matisse will then generate a temporary keypair for Alice to use. Again, this may be generated a number of
ways depending on the resources available to the client. For example, if the client is a Bear platform, it could
generate a keypair in the TPM so that the key will never leave the TPM. If the client is a standard unarmed
desktop, it may generate a keypair with OpenSSL [44]. In any event, the client (Matisse) generates an
unsigned Proxy Certificate containing the public portion of the temporary key, and sends it to the repository
to be signed by Alice’s private key.

The repository must then decide if it should sign the request with Alice’s private key. The repository takes
the security levels of itself and Matisse (contained in the RAC and PAC, respectively) and generates an
XACML request containing the attributes. This XACML request and Alice’s KUP are then evaluated to
determine whether the operation is allowed. Concretely, an XACML PDP running on the repository (as part
of the repository software) will make this decision.

If the operation is allowed, the repository will stick the PAC into the Proxy Certificate’s PCI extension, and
then sign the Proxy Certificate with Alice’s private key. Placing the PAC into the PCI allows the Proxy
Certificate’s relying party to see attributes of the client platform without having to search for them in a
directory. (It would also be possible to include the RAC and Alice’s KUP into the Proxy Certificate, thus
giving all of the information necessary to recreate the delegation decision to the resource.) The signed Proxy
Certificate is then returned to Alice.

Instead of presenting her actual certificate to services which require it, Alice now presents her Proxy Certifi-
cate which, along with her identity certificate, form a chain: one which includes her real public key which is
signed by the CA, and an X.509 Proxy Certificate which contains a short-lived temporary public key, signed
by her real private key.

5.2 Analyss
In order to claim victory, | need to show that the proposed system can meet the criteria put forth in Section 3.
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Security The precise definition of security in the context of this proposal includes the ability to prevent
private key disclosure, as well as minimizing the risk, impact, and window of opportunity for misuse of the
delegation key.

The system minimizes the risk of private key disclosure by placing all of the private keys under the control
of a trusted entity: the Repository Administrator. A specialist is more likely to protect the private keys than
each individual user is. The Repository Administrator can be an organization, and will probably be closely
related to the organization which issues certificates (i.e., the CA/RA). Consolidating the private keys to a
key repository (or set of repositories) allows an organization to focus its attention and resources on one spot.
For instance, an organization can increase security of the private keys by putting the repository inside of a
very secure coprocessor (as is often done with the CA’s private key), protecting the repositories with armed
guards and security cameras, etc.

The system can prevent private key disclosure entirely by storing the keys inside the 4758 or other similar
device on the repository. The 4758 provides a tamper-resistant environment to store the keys. Security
researchers have subverted applications inside of the device [2], but to date, no one has compromised the
device itself. Placing the repository inside of a 4758 keeps the private keys safe even in the event that the
4758’s host is compromised.

Further, the consolidation of keys into a repository consolidates the audit trail. Having the repository keep
good logs simplifies the amount of data necessary for forensics in the event of a compromise. If the repos-
itory is on a machine with secure hardware capabilities, then the log can be cryptographically protected to
prevent tampering by intruders.

On the client side, the system provides an improvement over current technologies such as software keystores
or USB tokens. The only keys used by clients are short-lived ones contained in the Proxy Certificates. Each
Proxy Certificate contains a signed PAC in the PCI extension which relays the platform’s security properties
to relying parties. Thus, if a specific type of platform (or configuration, or anything else that the domain has
deemed relevant) is known to be susceptible to attacks, the relying parties can adjust their level of trust in
the Proxy Certificate.

Furthermore, the worst-case scenario (i.e., the authorization to the repository is compromised, perhaps by
guessing Alice’s password) results in the attacker being able to use a Proxy Certificate issued to Alice for
a short period of time (i.e., the validity period of the Proxy Certificate, which is on the order of hours).
Additionally, depending on Alice’s KUP, the attacker may only have access to a subset of Alice’s privileges
for that amount of time.

In cases where the client is equipped with secure hardware and the attacker got Alice’s key via a software
attack, the client platform will detect the attack and not use the key (this can be accomplished on a Bear plat-
form by “wrapping” the key to a specific integrity policy). If the attacker gets the key via some undetectable
means, then the window of opportunity for misuse can be rather small.

A very important security feature of the system is its flexibility, which allows it to accommodate a number
of environments. This flexibility is realized through the policy framework (i.e., the XACML attributes
and KUP), and is generic enough to allow different organizations to define security in a manner which is
appropriate for their domain.

Usability  Another goal of the system is to make it usable for organizations which deploy it, and developers
wishing to extend it. As previously mentioned, the use of a policy framework gives organizations the
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freedom to define their own notions of security and make delegation decisions (e.g., whether to issue Proxy
Certificates) based on those definitions. For example, an organization could define secure machines as those
within a certain range of IP addresses, inside of a firewall, with a certain patch level, with a certain piece of
secure hardware, or any combinations of these.

Since the initial prototype will only involve a Bear client and repository, it is natural to assume that devel-
opers will want to extend support other platforms (such as the 4758). Accordingly, it makes sense to write
the repository in a language which is portable across a number of platforms. The most appropriate tool for
this is Java.

The usability of the system is further enhanced by reducing the size of the infrastructure. Concretely, this
advantage comes from the significant reduction in the number of entries in the Certificate Revocation List
(CRL). In current PKIs, when a private key is compromised, an entry is made in the CRL to let relying
parties that check the CRL know that the key is no longer valid. The proposed system does not rely on
revocation lists. Again, a successful attack on the client just yields access to the temporary delegation key
(whose public portion is contained in the Proxy Certificate)—Alice’s real private key is still intact, and thus
does not need to be revoked. In the event that an attacker captures Alice’s authentication information (e.g.,
her password), he could repeatedly get Proxy Certificates in Alice’s name. Once detected, however, there is
still no need to revoke, the Repository Administrator can simply change Alice’s password on the repository.

Mobility In order for the system to have any practical appeal, it must enable real-world populations. As
discussed earlier, these populations are increasingly mobile in terms of geography and across devices. The
proposed system can work from any device or location provided that the client is able to authenticate itself
to the repository. Alice simply requests a Proxy Certificate to use temporarily from whatever client she is
on. Further discussion of this approach and its impact on PKIs is found in Section 6.

While this approach allows Alice to use her key from anywhere within the domain, it also allows Alice to
use her key from a wide range of clients while enforcing Alice’s KUP. This scheme potentially limits the
rights Alice has on lower security devices.

Reasoning For the system to actually work, relying parties must be able to make valid trust decisions
based on the chain of certificates they receive. At first glance, it seems that relying parties can do this—
if site S receives a chain of certificates from Alice, then Alice was aware of and intended that request to
S. However, in addition to prototyping the system described in this proposal, | am proposing to look at
this issue in some detail. More specifically, | intend to show that the chain of certificates generated by the
system—including the RAC and PAC—is necessary and sufficient for a relying party to make sound trust
judgments.

6 Applications

If the proposed solution existed and performed as advertised, | can envision a number of applications which
would become possible or would be enhanced. One desirable property of the system is that it serves as a
platform for further research and the development of practical applications.
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PK1

One interesting application of the proposed system is to make desktops usable as clients in a traditional PKI
setting. As discussed throughout this proposal, trusting standard desktops with users’ private keys is not a
good idea, and using inexpensive hardware such as a USB dongle is no great improvement.

SHEMP takes the user’s key off of the desktop entirely. By keeping the private keys centrally located, they
can be given the same level of care as the CA receives. The proposed system also allows users to roam
throughout the domain and access PKI-enabled applications without having to worry about transporting
their private key (in a USB token, for example). Additionally, users and enterprises are able to express their
intentions regarding key usage. These intentions, along with statements about the security level of the client
and repository, can be used by relying parties to draw sound conclusions about the target (i.e., that they
actually are aware of and intended the request).

As discussed in Section 5.2, the worst case scenario for a faulty client is that the user’s delegation key can be
used for a short amount of time. Damage control under the proposed system in this scenario is much cleaner
than in traditional PKI systems. First, the repository contains (possibly secured) audit logs which make
forensics easier. Second, the need to revoke keys and deal with Certificate Revocation Lists is eliminated.
Revocation in the proposed system is achieved by changing the user’s password at the key repository.

PKI Applications Traditional PKI uses of keypairs include encryption, signing, and authentication. The
Proxy Certificates generated by SHEMP can by used for any of these operations, although the short lifespan
of the Proxy Certificate adds some complexity.

PKI authentication can be accomplished with no modifications to the infrastructure described in this pro-
posal. The short lifespan has no real effect on authentication applications. Proxy Certificates were developed
with authentication scenarios in mind (and dynamic delegation which will be discussed below).

For signing applications, the repository (or some other service) may need to be involved in keeping book-
keeping information which can aid relying parties. For example, suppose Alice signs a message with her
temporary private key (whose public portion is in the Proxy Certificate) and sends it to Bob. What if Bob
attempts to verify the signature after Alice’s temporary key has expired? One possible solution is to have
the repository timestamp signatures. When Alice’s Proxy Certificate expires, the repository generates a new
Proxy Certificate (called a closeout certificate) which contains the hash chain timestamp on all signatures
generated during the time period when Alice’s Proxy Certificate was valid. When Bob attempts to verify
the signature, he checks to see if the signature’s hash value is contained in the closeout certificate covering
the time period in which the signature was generated. If so, then Bob can use the public key in the closeout
certificate to verify the signature. The details of this scheme will be fleshed out in the thesis; this is a sketch
of some initial thoughts.

For encryption, the repository may again need to get involved—this time acting as an “encryption proxy”.
For instance, assume that Bob wants to encrypt a message for Alice. What public key should he use? One
possible solution is to have Bob encrypt the message with Alice’s real public key, and send the message
to Alice. Upon receipt, Alice gives this message to the repository to decrypt with her real private key.
The repository then consults Alice’s KUP to see if it should decrypt the message given Alice’s current
platform. If so, the message is decrypted, re-encrypted with the temporary public key found in Alice’s
Proxy Certificate, and returned to Alice. She can then decrypt the message with the temporary private key
on her current client platform.
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Computational Grids

By far, the largest use of the X.509 Proxy Certificate approach is the Grid community [77]. In fact, the
X.509 Proxy Certificate standards [74] were drafted by members of this community, and the major Grid
toolkit (i.e., Globus [18]) includes Proxy Certificate support.

Furthermore, the Grid community has produced a key repository called MyProxy [42], and has even exper-
imented with adding secure hardware (the IBM 4758) to that repository [30]. Differences between these
system and the proposed system will be explored in Section 7, but it is fair to say that the MyProxy system
served as a starting point for my design (as did our lab’s unpublished AXIS project).

In any case, the key repository and Proxy Certificate paradigms are well accepted in the Grid context, and
developing such systems are an active area of research within that community. It is my hope that added
security, flexibility, and expressiveness of my solution may be useful in the Grid context.

One large motivation for the Grid community’s use of Proxy Certificates is dynamic delegation. In the
Grid context, dynamic delegation refers to the process of allowing a Grid user to delegate some subset
of their privileges to another entity on relatively short notice and only for a brief amount of time. While
dynamic delegation scenarios are seen in a number of places, such as Jini [15] and Greenpass [66], the
Grid’s delegation framework is needed to allow some process to run as a specific user (Alice) on a machine
across the Grid somewhere. Proxy Certificates were developed as a means to give the process some or all
of Alice’s privileges. The SHEMP system performs such delegation in a similar manner as the MyProxy
system. One difference is that SHEMP attempts to take advantage of secure hardware wherever it can find
it. Another difference is that MyProxy allows policy decisions to be made governing the delegation of
privileges, while SHEMP enforces Alice’s delegation policy (her KUP).

Mobile Clients

As discussed in Section 5.2, the proposed system allows users to move freely between a number of machines
and frees them of manually transporting their private key.

Another interesting scenario is one in which Alice has a number of different machines (a “constellation™)
which all have a need to use the key, but vary in computational power. It is not hard to imagine having a
desktop, a PDA, and a Web enabled cell phone. Since all of these devices belong to Alice, she should be
able to use her key from all of these devices. Potentially, Alice’s KUP could limit the temporary key to
performing only certain operations (e.g., encryption) on power-constrained devices.

The use of a policy framework (instead of a rigorous policy language), allows policies to be constructed
which use the computational power (or anything else) as a determining factor in delegation decisions (as
opposed to or in conjunction with security level).

In this area of power constrained devices, schemes such as SWATT [62] enable a form of attestation which
can be used to identify a platform. The system’s flexibility regarding authentication mechanisms allows it
to be extended to new attestation schemes as they become available.
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7 Other Solutions

There are a number of other systems in existence which attempt to solve the same problems as the solution
outlined in this proposal. One major difference is that few of them rely on or consider secure hardware to
operate. Nevertheless, this section will give an overview of such systems.

MyProxy The closest system to the proposed system is the MyProxy credential repository [42]. The
concept of the MyProxy is quite similar to the proposed system: allow users’ private keys to be stored in a
central location and have the repository use those private keys to sign Proxy Certificates. Some researchers
have even investigated placing the private keys inside of a secure device (i.e., the IBM 4758) [30].

There a few major differences between these approaches and the proposed solution. Most notably is the lack
of support for secure hardware at the clients. The proposed system is flexible enough to utilize the secure
hardware available on the client’s machine for identification and temporary key generation and storage
purposes.

Additionally, the security level of the client machine (perhaps expressed as a function of the client’s secure
hardware) is relayed to the relying party so that the relying party can make a more informed judgment on
whether to trust Alice’s Proxy Certificate (and the private key it represents). In this light, the proposed
system is more expressive than the MyProxy and hardened MyProxy systems.

Last, the hardened MyProxy system only placed the users’ private keys in secure hardware, as opposed to
the entire system. The IBM 4758 is a general-purpose computing device, and thus could actually run the
repository software itself. The hardened MyProxy project [30] only places the private keys in the coproces-
sor, leaving other sensitive components (such as the password file) on the host. The proposed solution places
the entire repository software (and all of its components) under the protection of secure hardware. Doing
this allows clients to communicate directly with the repository software inside of the secure coprocessor,
thus eliminating the proverbial “armored car to a cardboard box”.

Kerberos Kerberos is an authentication framework based on secret key cryptography. A good overview
of the IETF standards and workings of Kerberos can be found in the literature (e.g., [26, 58]). Very briefly,
Kerberos consists of a Key Distribution Center (KDC) and a set of libraries which applications must use
to authenticate clients. The KDC holds a master key which is a shared secret between it and each party in
the system. When parties would like to communicate, the KDC generates a short-lived shared secret (i.e., a
session key) and distributes that to the principles.

The first notable difference between Kerberos and the proposed solution is that Kerberos is mainly an au-
thentication framework, whereas the proposed solution could be used to more as a traditional PKI (i.e., to
enable secrecy and signature applications such as S/IMIME as well as authentication). Further, Kerberos
relies on shared keys instead of public key certificates.

Second, there is a lack of dependence on secure hardware in Kerberos. Some research has looked into
placing the KDC inside of a secure coprocessor [24], but there is nothing in the Kerberos standard about
this. Additionally, there is no discussion of hardening clients with secure hardware. Since Kerberos stores
credentials in memory, it is susceptible to the attacks listed in previous work [34].
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Sacred There is a working group within the IETF which is working on protocols for “Securely Available
Credentials” (Sacred). To date, they have established requirements [53], a draft describing a framework [51]
and a protocol [52]. The protocol describes two different methods for a user to transfer his private key
from one device to another. Which protocol to use is based on the relationship between the two devices:
peer-to-peer or client/server.

While the Sacred project shares some of the same goals as this thesis (the secure use of credentials), there
are some key differences. First, the philosophy of this thesis is to leave the keys in one place and use them
(via delegation and certificate chains) from many different locations. Sacred suggests moving the credentials
from device to device as the user moves.

The second major difference is the reliance on trusted hardware. The protocols that the proposed solution
employs takes advantage of the fact that the hardware can speak about its configuration. The Sacred pro-
tocols are more general-purpose, and hence do not rely on or compensate for the presence of specialized
hardware.

PubCookies/Passport Web servers can establish longer state at a browser by saving a cookie at the
browser. The server can choose the contents, expiration date, and access policy for a specific cookie; a
properly functioning browser will automatically provide the cookie along with any request to a server that
satisfies the policy. Many distributed Web systems—such as “PubCookies” [50], and Microsoft’s Pass-
port [38]—use some authentication mechanism such as a password to initially authenticate the browser
user, and then use a cookie to amplify this authentication to a longer session at that browser, for a wider set
of servers.

There are many differences between using single-sign-on cookies for authentication and the proposed so-
lution. First, cookies are application-specific mechanisms only usable by Web browsers. The framework
described in this proposal could be used by a number of applications, including but not limited to Web
browsers.

Second, flaws in the browser can subvert the security of this approach [19, 75]. In the proposed solution, the
application is not able to give away any secrets as it is the underlying hardware which is providing security.
Cookie-based authentication in general does not rely on such hardware for security.

Shibboleth  Shibboleth is an Internet2 project which aims to develop a middleware that supports user
authorization and authentication. Nazareth [39, 40] gives a good overview of Shibboleth and its components,
but the general idea is to allow Alice (from institution A) to access resources at institution B in such a way
that preserves her privacy. This is accomplished by institution A issuing an anonymous handle to institution
B, which it in turn uses to fetch attributes about Alice from the Attribute Authority at institution A.

A number of differences exist between my proposed solution and Shibboleth. First, Shibboleth is not a
general-purpose PKI solution, as it requires the server (at institution B in the above description) to be
equipped with components of the Shibboleth system (e.g., the Shibboleth Indexical Reference Establisher,
and the Shibboleth Attribute Requester)

Second, there is no mention of secure hardware. The protocols used to establish handles and acquire at-
tributes are all specified by Shibboleth, and none of them take advantage of secure hardware’s ability to
attest to the configuration of the machines.
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Greenpass The Greenpass project [66] is a delegation framework which uses SDSI/SPKI delegation on
top of X.509 keypairs in order to authorize guests to Dartmouth’s wireless network. The idea is for a
member of the population (Alice) which holds an X.509 certificate to delegate (i.e., by singing a temporary
SDSI/SPKI certificate) to her friend Bob so that he can access Dartmouth resources during his stay (even
though he is not a member of the Dartmouth population).

While there is quite a bit of similarity in the delegation framework, there are a number of important differ-
ences. As with the others, there is no mention of secure hardware in Greenpass, and thus the protocols used
in the delegation do not take the machine’s configuration under consideration.

Second, there are no constraints on where users store their key under the Greenpass system. Theoretically,
users could store them on their desktop or on a USB token of some sort, and as stated numerous times
throughout this proposal, this is not a good idea.

Online Trusted Third Parties One school of thought is to not only house the users’ private keys on a
remote server, but to actually perform the key operations on that server. The entity responsible for perform-
ing such operations is sometimes referred to as an “Online Trusted Third Party” (TTP) [48]. Variations
on this idea involve letting the user own part of their key and allowing the TTP to own the other part via
some threshold cryptography scheme. These TTPs are sometimes referred to as “Semi-Trusted Mediators”
(SEM) [4].

Philosophically, the proposed solution and these TTPs and SEMs share the vision that the key should be
removed from the desktop. SEMs typically split the user’s private key and place a share of it in the SEM.
Recent work here at Dartmouth has explored adding secure hardware to SEM [76].

There are a number of differences between SEM and SHEMP. First, SHEMP places the entire key inside
of a repository, as opposed to a portion. This results in the repository becoming a “fully-trusted mediator”.
Second, the use of Proxy Certificates allow some operations to be accomplished without the aid of the
repository (such as authentication), whereas SEM requires the mediator to be involved in all private key
operations. Third, SHEMP uses a policy framework to make delegation decisions, perform key operations,
and enforce users” KUPs. Last, SHEMP strives to allow for a number of different client and repository
platforms with varying levels of secure hardware.

8 Summary

This proposal began by describing a practical problem which we discovered, namely, that desktop computers
are not usable as a PKI clients. The TCB is too large and a very small amount of malicious code running
with user privileges can effectively give an attacker access to a user’s private key. Furthermore, current
systems generally do not allow for users to be mobile or use keys across multiple devices.

Common solutions to these problems typically involve a token which the user uses to carry their private key
(such as a USB token). In previous work, we have shown experimentally that such devices do not really
solve the problem either.

I believe that the Grid community has developed an approach to the problem which is worth further in-
vestigation: online credential repositories. By enhancing the online credential repository with trusted
computing—at the client as well as the server—and giving relying parties more information about the client,
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I argue that the desktop can finally be useful as a PKI desktop client.

8.1 Evaluation

| propose to evaluate the SHEMP architecture by executing the following steps:

1. 1 will begin by formally defining (using Maurer’s notation [35]) properties that a successful archi-
tecture must exhibit. Most likely, this will involve defining a set of statements that the relying party
Bob must be able to deduce in order to trust Alice and believe that her private key and the private key
described by her Proxy Certificate is authentic. The formal statement adds to the solution criteria put
forth in Section 3; it is not meant as a replacement.

2. 1 will then develop an architecture which, when formally modeled using Maurer’s notation (possibly
with my own extensions), exhibits the properties set forth in the previous step. The architecture
presented in Section 5 is the first candidate for such formal analysis.

Concretely, this step involves a formal look at what kind of trust judgments a relying party can make
upon receiving Alice’s 1) Proxy Certificate, 2) identity certificate, 3) PAC, and 4) RAC. | intend to
answer the relying party’s question: “Given Alice’s Proxy Certificate, and assuming that the repository
enforced Alice’s KUP, do | have any reason to believe that Alice intended and is aware of this request?”

The formal statement that the SHEMP architecture meets the formal criteria outlined in the previous
step will be treated as the thesis’s main theorem.

3. 1 will then implement the SHEMP architecture in the Java programming language on a pair of Bear
platforms. The choice of the Bear platform gives some level of secure hardware and allows me to use
a number of existing tools such as the Globus’s toolkit, Sun’s XACML implementation, etc. It also
allows me to use a language (Java) which contains a wealth of libraries, thus simplifying tasks such
as parsing certificates, establishing SSL connections, etc.

Prototyping the system will serve to make many design ideas concrete and give a means for evaluating
constructs which cannot be easily formally modeled. For instance, actually implementing the XACML
policy framework will give me a chance to make and maintain sample policies, thus giving a means
to evaluate the framework even though it cannot be formally modeled under Maurer’s notation.

Furthermore, prototyping the decryption and signature verification schemes described in Section 6
will validate the Proxy Certificate-based approach for traditional key usage scenarios (i.e., encryption
and signing).

There is also a possibility of plugging the resulting prototype into Dartmouth’s emerging Grid im-
plementation, using it as a replacement for the MyProxy credential repository. Such an effort would
allow me to observe how the system operates in a real-world environment. Concretely, this could be
accomplished by writing a client API which is a superset of the MyProxy Java client API found in
the Grid’s CoG toolkit (the API will include interfaces to decrypt and verify signatures). This way,
legacy Java-based MyProxy clients can use SHEMP without any code change, and Grid application
developers do not have to learn a new API to use SHEMP.

Deliverables and Road Map
e Proposal. | intend to give the official proposal in front of my committee by June 2004.
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e Formal Reasoning. The formal statement of the design criteria and the application of Maurer’s nota-
tion to the architecture will be completed by July 2004.

e Development. | estimate that the prototype will be complete by October, 2004.

e Writing and Defense. The thesis will be written and | intend to defend it by January, 2005.

Appendix A: Evaluation

In order to show that SHEMP is an interesting system from a research perspective, | need to show that it is
feasible, practical, and can be used to build real applications. This means that | need to demonstrate that
SHEMP offers security, mobility, and flexibility and that the complexity of these features do not overwhelm
users (end users as well as application developers).

9 Evaluation Against Criteria

My thesis proposal sets forth a set of criteria that defines the notion of what it means for a desktop to be
“usable as a PKI client.” My claim is that any solution which claims to be usable as a PKI client should:

1. Minimize the risk/impacts of key disclosure
2. Allow for client mobility
3. Be usable to application developers and users

4. Enable relying parties to make reasonable trust judgments

I then make the claim that the SHEMP system meets these criteria. This section elaborates on the criteria
and outlines my strategy for supporting this claim.

9.1 Minimizingrisk of key disclosure

The notion of minimizing risk can be broken down into a number of subpoints. Since quantifying risk (and
thus minimization of risk) is difficult, support for this claim will come from analysis backed by implemen-
tation.

e SHEMP reduces risk of key disclosure by taking private keys off of the end-user machines (or devices
such as USB tokens) and taking advantage of secure hardware on the end-user machines. SHEMP
offers an improvement because end-user machines are susceptible to attacks which either disclose
the private key or allow the attacker to use it at will—we have shown this experimentally in the
Keyjacking work (which is part of this thesis). | plan to demonstrate (with real software) how SHEMP
can defend against Keyjacking-style attacks, and explain how both the status quo and the MyProxy
solution cannot defend against such attacks.
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e SHEMP reduces risk by getting keys out of the end-users’ control and placing them in the care of
a specialist. As a way to validate this claim, | intend to compile data from Dartmouth’s campus-
wide USB dongle rollout slated to occur this fall with the incoming freshmen class (this exemplifies
keys in the end-user’s control) as well as Dartmouth’s Kerberos implementation (which is an example
of the repository approach—I will also include analysis of Green Grid’s MyProxy, if it is ready in
time). Specifically, | will compare the number of dongle-resident keys revoked due to loss or theft or
whatever against the number of Kerberos Master Secrets revoked during the same time period (fall
term ’04).

Minimizing the impact of disclosure is also a difficult claim to quantify. As with the “minimizing risk”
claim outlined above, I will break this claim down into subpoints and provide analysis and demonstration of
each one.

e As with MyProxy, SHEMP minimizes the impact of private key disclosure at the client by allowing
the key to be used for a short time. The Keyjacking part of this thesis showed that key disclosure is
disastrous within the current client-side infrastructure. In many cases, an attacker is able to obtain the
private key itself, or use it for arbitrary operations for an indefinite period of time. Under SHEMP (and
MyProxy), the key issued on the client’s desktop is valid for a number of hours. | plan to demonstrate
in the prototype that SHEMP’s default behavior is to issue temporary keys with a short lifespan (on the
order of hours), and compare the size of an attacker’s window of opportunity under SHEMP against
the window size under the status quo.

e SHEMP also minimizes the risk of key disclosure through the use of the environmental attributes
(RAC and PAC) and user policy (KUP) found in each Proxy Certificate’s PCI extension. While
MyProxy allows any arbitrary policy statement to be placed in the PCI extension, SHEMP mandates
that the policy be included, and that the policy is expressed in the XACML policy syntax. This
approach gives useful information to relying parties, allowing them to adjust their trust in the client
based on the environment. Relying parties are thus aware when clients generate temporary keys under
conditions which are likely to result in key disclosure, and have the possibility to limit their use. The
policy framework will be demonstrated in the prototype, and the usability of the policy statements in
the context of building a real application will be examined in case studies (described in Section 9.3).

e As with MyProxy, SHEMP minimizes the impact to the organization in the case of a key compro-
mise. In the status quo, compromised keys are revoked by placing their certificate into a CRL or
OCSP server. Keeping CRLs up to date and distributing them are non-trivial problems in the PKI
space. Assuming that the key compromise occurs in the same place (i.e., the desktop) SHEMP (and
MyProxy) revokes keys by changing the authentication information at the repository, thus reducing the
amount of work for IT staff. I plan to gather evidence for this from interviewing Dartmouth College’s
CA, and comparing the current CRL approach to SHEMP’s approach. | am particularly interested in
the usability argument from the CA’s perspective and the amount of time that a revocation takes to
propagate in both systems (as this defines a potential window of opportunity for an attacker).

e As with MyProxy, SHEMP minimizes the impact of a key compromise by consolidating the audit
trail used for forensics in the event of a key compromise. Additionally, since the SHEMP repository
software can run inside of secure hardware (as will be demonstrated in the prototype), SHEMP can
secure its logs inside of the hardware—MyProxy cannot. | plan to show the impact minimization by
comparing the size of the audit trails (in terms of number of logs to sift through for forensics) for
the various approaches, as well as a security analysis of the logs themselves (i.e., how well they are
protected against tampering from an intruder).
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9.2 Allowingfor client mobility

The idea behind client mobility is to allow users to use the system from various locations, possibly on
different platforms with different security properties. Concretely, proper design choices (such as using
portable languages, etc.) can ensure that SHEMP allows clients to move across machines, platforms, and
devices, and the SHEMP prototype will demonstrate these abilities.

More subtlety (and more importantly), it is important to show that SHEMP remains secure in scenarios
involving mobile clients. Our previous experiments have illustrated the danger of simply placing the key on
a device (i.e., a USB dongle) and allowing users to move. | plan to offer an analysis of these earlier results
and compare them to results of a similar experiment run against SHEMP.

9.3 Being usableto application developersand users

So far, this document has outlined my plan to show that SHEMP can achieve security and mobility. As with
most (if not all) systems which try to provide security, the mechanisms which make SHEMP secure can also
make it hard to use. One way that the security and flexibility of SHEMP is achieved is through the use of
SHEMP’s policy language. In order to show that SHEMP is usable to application developers and users, |
need to show that application developers and administrators (users will likely have an administrator (e.qg.,
the CA) construct policies on their behalf) can understand and construct valid policies to solve real security
problems. Usability in this context means that the policy mechanism must be a valid medium for developers
and users to express their mental models.

I intend to show that the policies are usable through the use of a number of case studies. The case studies
will outline real applications (taken from Dartmouth’s Grid community) which could use SHEMP. Once the
applications are designed, | will give the design to a small group of subjects who would likely fill the roles
of the Repository Admin, the Platform Admin, the CA, and users. | will be interested in evaluating whether
the parties can generate a meaningful set of policies which represent a given mental model, how long it takes
them, and their feedback regarding the difficulty of their task. | will not implement these applications, as that
falls into the realm of software development (although one sample application I will develop is discussed
in Section 10) and does not offer much in the way of evaluating the usability of the policies themselves.

Concretely, evaluating the policy for these applications involves having the Platform Admin assign attributes
to a number of machines which represent different security levels, having the Repository Admin assign
attributes to a repository, and having the CA construct a KUP which accurately represents Alice’s wishes.
Then, some of the subjects will act as application developers and generate a specific policy governing their
application. Once complete, subjects will be asked to predict the outcome of a number of operations which
make use of the policies that the subjects just generated. Requests will be made and the policies will be
run through an XACML PDP to see if the request should be allowed according to the application policies
as well as the KUP (one important feature of XACML is that it allows for the combining of policies—such
as the KUP and the application’s policy—when making access control decisions). The predictions will be
compared to actual results in an effort to see how well the system represents the subjects’ mental models.

There are a number of potential applications which arose after meeting with the Greed Grid develop-
ers/administrators, and these applications will be used as the initial case studies.

All of the applications would use secure hardware on the client in a similar manner. The PC’s private key
would live inside of the hardware device if there is one present. Depending on the hardware, this scheme
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could render the PC’s private key unusable if specific conditions were not met on the client (e.g., the OS
or client application is not trusted). Additionally, the secure hardware can be used to uniquely identify the
client machines.

Case Study I: UberFTP  The first possible application which could benefit from SHEMP is the UberFTP
program. UberFTP currently supports the use of Proxy Certificates for authentication. Extending the system
to use SHEMP would involve making the server aware of the policy and attributes included in the PC’s PCI
extension, and using that information to make access control decisions.

A SHEMP-enabled UberFTP server could possibly export different portions of the ftp directory to clients
based on their environment. For example, the server may not make non-anonymized medical data available
to clients coming from public terminals. It may also not allow the PUT operation to be performed from
anyone on public terminals.

Case Study I1: GSI Enabled MySQL A second application which would benefit from SHEMP is the
GSI Enabled MySQL database. Apparently, a large problem in the Grid space involves restricting access to
database information. SHEMP could be used to restrict subsets of data and/or operations (e.g., the JO N
operation) to parties operating within specific parameters. For example, a database of medical information
way wish to hide any record’s NAME field to any client asking from a machine that is not in the hospital due
to HIPPA regulations.

Case Study I1l: GSSKLOG The GSSKLOG application is used by Grid installations (such as Green
Grid) to allow users to obtain AFS tokens. One possible place that SHEMP can enhance the service is to
restrict the circumstances under which the service will hand out administrator tokens. For example, if Alice
the AFS Admin requests an admin token from her desk, the service will grant it, but if she attempts to get
administrative privileges from a machine outside of the firewall, the service will deny the request.

Case Study IV: Grid Job Management Another application of interest would involve a higher level
Job Management application which Grid users can use to gather statistics about their computations. For
example, Dr. Bob submits a large set of brain scans to the grid for some crunching application to chew on
for the next few days. Now, when Dr. Bob leaves his office and has lunch in the cafeteria, he may want to
check the progress of his job, but since he is on a public terminal, he should not be able to get any results
which show a correlation between name and result—-he should just get aggregate results. When he goes to
the hospital, and has a break, he might be able to tinker some parameters of his test as well as see aggregate
date, but he is still not able to get results linking name and result, only when he returns to his desk can he
get that information.

Case Study V: Chiron The Grid community relies on “virtual data” for much of its computational work.
Some data is not gathered from measurements directly, but is derived from other data through the application
of computational procedures. “Virtual data” is an explicit representation of such computational procedures.

The Chiron system is under development by Grid staff at the University of Chicago, Argonne National
Labs, and Dartmouth College. The Chiron system is a “Virtual Data Grid Portal”’, which allows applications
and users to access virtual data. Chiron allows users to manage user accounts, publish data to the Grid,
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configure Grid resources, as well as a number of other applications which are beyond the scope of this
document. SHEMP could be used to enhance these tasks by only allowing certain operations (on accounts,
data, applications, etc.) to be performed under certain circumstances. For example, Charlie may not be able
to change his password unless he is on his own desktop machine.

9.4 Enablingrelying partiesto make reasonable trust judgments

As stated in the thesis proposal, all of the above properties are great, but if the system cannot enable relying
parties to make reasonable trust judgments then there is no point to the system. To clarify, | am not concerned
with issues regarding Ul development or the standard concerns of the Human-Computer Interaction Security
community. | am interested in investigating whether SHEMP allows relying parties to conclude what they
ought to conclude. Thus, the ability to enable such trust judgments should be viewed as a correctness
condition for SHEMP. Using an extended version of Maurer’s calculus (with my own extensions which
allow for the modeling of authentication and time), | plan to formally state and prove SHEMP’s correctness
condition.

10 Putting it all together: areal application

While analysis and proofs are good tools to reason about many aspects of the system, putting the pieces
together and building a real application is a critical part of claiming that SHEMP “can be used to build real
applications.” Since the primary motivation for SHEMP is to “make desktops usable for PKI”, I will build
and evaluate an application which uses SHEMP for the basic PKI operations (encryption/decryption and
signing/verification).

The primary goals of this exercise are to ensure that all the pieces of SHEMP work together, and to evaluate
the performance of SHEMP. While performance is not the most interesting part of this research, if the
system is so slow that it is perceived as unusable, then there is no point. One nice auxiliary fact about
this exercise is that it is exploratory in nature—no one uses Proxy Certificates for encryption/decryption or
signing/verification. Any results in this space are original results in themselves.

The following brief use cases will serve as the starting point for conceptual-level designs for the application.
These are sketches, and are not meant to be read as complete design documents.

Use Case I: Encryption/Decryption

1. Alice sits at a Bear machine in her office, requests a PC from a repository (which houses her long-term
private key), and receives one which allows her to perform encryption (the temporary private key on
her machine is ”sealed” so that if the Enforcer detects a violation of the integrity policy, the TPM’s
PCRS are scrambled and the TPM will not release the key for use).

2. Next, she receives a message from Bob, and Bob has encrypted the message with the public key in
her long-lived ID certificate. In order to decrypt the message, she needs to contact the “encryption
proxy” service which is running on the repository (because it will need to access her long-term private
key which lives in the repository). The encryption proxy fetches the environmental information from
Alice’s current PC’s PCI extension (policy and attributes), and does a check to see if it should decrypt
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messages under the current environment. If so, the message is decrypted with her real private key on
the repository, re-encrypted with her current PC’s public key, and returned to Alice.

One distinct advantage of this approach is that the plaintext is only exposed at the key repository. Since
the repository application (as well as the encryption proxy service) runs inside of secure hardware, the
plaintext is only exposed inside of secure hardware. Depending on the strength of the hardware, this
approach keeps the plaintext safe, even if the machine hosting the repository has been compromised.

3. If Alice’s platform has not been tampered with in a way which Bear can detect, then Alice can use the
short-lived TPM private key to decrypt the message.

4. Now, if Alice goes to the library and uses a machine without any secure hardware, then (if she has
constructed her KUP correctly) she does not want her PC to be used for the re-encryption because she
does not want to expose plaintext on a library machine.

Use Case Il: Signing/\erification

1. Again, Alice sits at a Bear machine in her office, requests a PC from a repository (which holds her
long-term private key), and receives one which allows her to perform signing (the short-term private
key is “sealed” so that if the Enforcer detects a violation of the integrity policy, the TPM’s PCRS are
scrambled and the TPM will not release the key for use).

2. Next, she wants to sign a message and send it to Bob. Since the short-term private key on Alice’s
machine will expire shortly (meaning that Bob will not be able to verify her signature after expiration),
she needs to contact the “timestamping service” and enlist its help. The timestamping service will first
check Alice’s KUP to see if her environment and policy allow her to generate signatures. If so, it will
record the time that the signature was generated. When Alice’s PC expires (a number of hours after it
was generated), the service will generate a “closeout certificate” containing the hashchain timestamp
on all of the signatures generated within the timeframe that her PC was valid and the public key of the
expired certificate.

3. When Bob wants to verify Alice’s signature, he fetches her closeout certificate and checks to see if the
signature is contained in the closeout certificate. If so, then the public key in the closeout certificate
can be used to verify the signature. If an adversary has access to the short-term private key on Alice’s
machine after it has expired and attempts to sigh something, the adversary’s signature will not be
found in the closeout certificate. Thus, Bob will not be able to verify such a signature.

Alternate Use Case I1: Signing/Verification via Proxy

1. Alice sits at a Bear machine in her office, requests a PC from a repository (which holds her long-
term private key), and receives one which allows her to perform signing (the short-term private key
is “sealed” so that if the Enforcer detects a violation of the integrity policy, the TPM’s PCRS are
scrambled and the TPM will not release the key for use).

2. Next, she wants to sign a message and send it to Bob. Since the short-term private key on Alice’s
machine will expire shortly (meaning that Bob will not be able to verify her signature after expiration),
she needs to contact the “signing proxy” and enlist its help. Alice first signs the message with the
temporary private key on her machine. She then sends the message to the signing proxy which is
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running on the repository (because it needs access to Alice’s long-term private key). The proxy service
will make a log entry that Alice is trying to sign something and check Alice’s KUP to see if Alice’s
current environment allows her to generate signatures. If so, the service will verify Alice’s signature
generated with the short-term key, separate the message from the signature, sign the message with
Alice’s long-term private key, and return the message to Alice. The end result is that the message is
signed by Alice’s long-term key if the current environment and Alice’s KUP allow it.

3. Now, when Bob wants to verify the signature, he uses Alice’s long-term public key (as he would
normally do). This way, Bob can verify the signature even after Alice’s PC has expired. This approach
allows SHEMP-users and non-SHEMP-users to securely communicate without non-SHEMP-users
having to install more software or learn new techniques; only SHEMP-users have to deal with the
proxies.

As stated earlier, performance is not the most interesting aspect of this application, but since a third party
is contacted for all operations, | expect some slowdown. To this end, I will run performance tests to see
how much overhead is introduced when a third party is involved in the key operations. The baseline will
be a simple Java application which performs the cryptographic operations using a locally-stored keypair (as
opposed to the Proxy Certificate approach) on the local machine (i.e., without third-party involvement).

11 Shrinkingthe TCB

Some of the feedback I received from the committee was regarding the concern that SHEMP was simply
gluing MyProxy, secure hardware, and some policy framework together. The committee wanted me to
explain the “deeper” and “non-obvious” aspects of SHEMP. | realize that this analysis is not the same type
of evaluation outlined in Section 9 and Section 10, but it is worth discussing.

The Keyjacking results suggest that the reason current desktops are not usable as PKI is that the system
designers operated under the assumption that the entire desktop is trusted. The implication is that the Trusted
Computing Base for modern PKI clients includes the entire desktop—the OS (which has more code than
the space shuttle) and many applications (some of which are inseparable from the OS). The experiments in
the Keyjacking portion of this thesis show that when one malicious executable running with user privileges
is introduced into the TCB (i.e., runs on the desktop), the security of the entire system is undermined.
Additionally, the experiments show that it is difficult (if not impossible) for users to generate accurate
mental models of how, when, and why their private key is being used.

SHEMP solves these issues by shrinking the TCB and giving users a medium to express their key usage
desires in a way that is applicable to their domain (as opposed to the “low”, “medium”, and “high” Microsoft
key policy choices), thus allowing users to construct valid mental models and relay them to relying parties

and applications.

First, SHEMP gets the keys off of the desktop altogether, and places them in safe place: the repository.
Not only does the repository protect the keys themselves, it protects the repository application. Since the
repository application is orders of magnitude smaller than a general purpose OS (and applications which are
tightly coupled to the OS), SHEMP greatly shrinks the TCB.

Second, although humans do not directly contribute to the TCB in the standard sense, placing the keys under
the jurisdiction of one entity (the Repository Admin) versus an entire user population also serves to reduce
the number of entities that must be trusted in order for the system to function and remain secure.
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Third, SHEMP reduces the amount of trust that must be placed in the platforms which use the keys (i.e., the
desktops). The SHEMP administrators (the Platform and Repository admins) vouch for the trustworthiness
of machines, as well as describe the methods by which relying parties can verify the trustworthiness them-
selves (i.e., via the use of secure hardware “challenge” protocols). Assuming the hardware is designed and
implemented correctly, such challenges can never be used to overstate the security properties of the device,
giving relying parties a verifiable upper bound on the trustworthiness of a specific platform.

Putting the pieces together illustrates a system which has a significantly smaller TCB that the status quo.
The private keys no longer live on (or directly interact with) big, bloated desktops that are typically cared for
by end-users and have 6 critical security patches released in a single day. They now live in a secure place,
are used by one application, and are cared for by a specialist. Furthermore, when a user makes a request, the
relying party no longer has to trust the requester’s machine and wonder if the request was intended. Under
SHEMP, the relying party has been given the environmental attributes and policy in the PC. These allow the
relying party to decide for themself how much they should trust the requester’s platform, and whether the
requester really intends their key to be used for this type of request in the first place—thus enforcing the
user’s mental model.

12 Summary

This document has attempted to outline my strategy for evaluating SHEMP on an analytical level (Section 9),
a practical level (Section 10), and a philosophical level (Section 11). Some of this work has been completed
(such as a number of the experiments developed in Keyjacking, as well as some of the design and coding of
SHEMP), but the synthesis of the pieces is not yet complete. My hope is that once construction is complete,
the analysis outlined in this document is sufficient to show that SHEMP is a real solution to a real problem:
desktops are not usable as PKI clients.
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