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Composing a Well-Typed Region

(extended version)

Chris Hawblitzel, Heng Huang, and Lea Wittie
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October 21, 2004

Abstract. Efficient low-level systems need more control over memory
than safe high-level languages usually provide. In particular, safe lan-
guages usually prohibit explicit deallocation, in order to prevent dangling
pointers. Regions provide one safe deallocation mechanism; indeed, many
region calculi have appeared recently, each with its own set of operations
and often complex rules. This paper encodes regions from lower-level
typed primitives (linear memory, coercions, and delayed types), so that
programmers can design their own region operations and rules.

1 Introduction

Efficient low-level systems need more control over memory than safe high-level
languages usually provide. As a result, run-time systems are typically written
in unsafe languages, such as C. The key challenge in safe low-level memory
management is aliasing: if there are many pointers to an object, deallocating
an object through one pointer leaves the other pointers dangling. One approach
to solving this problem is to maintain control over aliasing. For example, linear
types[13] simply ban aliasing, so that every object has only one pointer to it.
Alias types[11] are more sophisticated, allowing a limited degree of aliasing, and
tracking the aliasing to ensure that dangling pointers are never dereferenced.
Another approach is to allow unlimited aliasing within a region of memory[12,14],
but to limit the aliasing of the region itself. In this approach, programs deallocate
entire regions at once, rather than deallocating individual objects within a region.

This paper encodes regions from controlled-memory primitives. From a theo-
retical perspective, the encoding provides a unified framework for controlled-
aliasing and unlimited-aliasing approaches; from a practical perspective, the
encoding lets programmers customize the design of regions for particular ap-
plications, such as typed garbage collection[5,8].

Section 2 of this paper encodes regions as linear tuples and pointers as func-
tions. Each pointer consists of a get function that loads fields from the pointed-to
heap object, and a set function that updates fields in the pointed-to heap object.
Each function accepts a linear region as an argument and returns a new linear
region as a result. The functions themselves are not linear, though — they are
only conduits for linear data to pass through. Therefore, the program can freely
copy the functions to form aliased, mutable data structures.



One problem with this encoding is the overhead of a run-time function call
for each load and store. To eliminate this overhead, sections 3 and 4 of the
paper replace run-time functions with coercions that manipulate capabilities for
accessing memory, rather than actually performing loads and stores. A deeper
problem with the encoding is allocation, since each new object in the region
changes the type of the region. Section 5 proposes delayed types, which allow a
region type to evolve without invalidating existing pointers. Section 6 argues that
the low-level primitives (memory capabilities, coercions, and delayed types) can
implement more than just simple regions: they can also implement forwarding
pointers and aliased regions.

2 Regions as Tuples, Pointers as Functions

This section translates a source language containing explicit regions (roughly fol-
lowing Walker and Watkins[14]) into a target language that lacks built-in support
for regions. The target language uses linear tuples to implement regions and
nonlinear functions to implement region pointers. This implementation, while
neither complete nor realistic by itself, demonstrates the intuition underlying
the rest of the paper.

The target language supports two kinds of data: linear (lin) and nonlinear
(non). Tuple types (lin{7T)) are always linear, while function pointer types (71 —
T9) and integer types (int) are always nonlinear. The expression “lin{e, ..., e,)”
allocates a new linear tuple, and “let (x1,...,z,) = e; ines” deallocates a tuple
e1, binding variables z; ...z, to the contents of the tuple. We assume that
integer and function pointer values fit in a single word, and therefore require no
dynamic allocation (to make this practical, the type rules for functions require
closed functions).

Linear data must be used exactly once, so that a tuple is never used after
its deallocation. Following Walker and Watkins[14], the type rules enforce this
single-use property with an environment splitting notation: writing I = I, I
indicates that I', I'y, and I share the same nonlinear assumptions, but that
each of Is linear assumptions appears in either I} or I3, but not both. For
convenience, we often write a combined context C, defined for the moment to

be C = A; ©;I". The notation nco’n denotes a context with no linear assumptions.

Target language syntaz, typing rules, kinding rules (part 1)

linearity ¢ =non | lin
kinds K=¢
types T=int |[lin(T) |1 — 7|
expressions e=z|n|lin(e)|let(T)=eriney | Ax:7.€ | €1 €2
values v=n|lin(T) | Az:Te

integers n =0 | succ(n)



type variables
type variable env

o
A={

recursive type env o={..,a—~rT1,...}
variable env =/

non(A)
where I ={xw—71e€lAFT:non}

non non(A)

combined env C=A,6;T where C=A4;0; T

Abbreviation: (letx = ejines) = (let (z) = lin{e;) iney)
Abbreviation: 1 = succ(0), 2 = suce(1), ...

non non

At int : non CHFn:int Aa—rkFa:k C,x—71hkx:T
AbF Ty AbF 71, b AbFT1: ¢ AF 19 o
AFlin(ry, ..., ) : lin AF T — 19 :non

A;0; e T OrFr=1 Citer:mn Crbep:m
A0 I'Fe: 7 Cy,...,CpElin{er, ... ex) : lin(ry, ..., T%)
Coboeq:lin{m,. ..., ) Cp,x1—T1,..., 0 — T b ep: T

Co,CpFlet(z1,...,a5) =eqinep : 1

A;0{zx— 1t be:m Ab71,:0 Crlefita—m ColFeq:Ta

non(A) Cs,Co a:
A;0; ' F(Ax:tg.€):7a — T > €€t Th

Source language (extensions to target language), part 1

kinds kK= ...|rgn
types T = ... | Rgn(r) | (11, 72)QTrgn
expressions e=...|rgn(a) |

| getlergnl(epir-n) | setlergn](eptr-n < €yal)

values v=...|rgn(a)| ¢
heaps H={ .0~ (v,v)Qq,...}
heap type env Y =A... .0 (r,7)Qaq,...}
live rgn env r={.,0...}
non non(A)
combined env C = A,60;9;7; T where C = A;0;¢;{}; T
AFT:rgn AbFT ¢ AF 1o ¢o AF Trgn iTgN
AF Rgn(r) : lin Al (11, T2)QTpgp : nON



Y(l) = (11, m2)@p  peT

A;0;9:{};{ v VpeY.(if b — (11, m2)Qp €
A;0;0:{}{Fva 7 thent — (v1,v2)Qp € H)
AbF 1 non AF 15 non Ve € domain(H).(A;0;¢;Y = €— H({))

A;0;0;7 £ (v1,v2)@p A;0;9; T+ H

non(A)
Aja—rgn;0;¢;{a}t; I' Frgn(a): Rgn(a)
CT!]TL H Crgn : Rgn(Trgn) Cptr F Eptr - <7—177-2>@7-rgn

Clisrh 0
LT LT Crans Cotr F 8€t[ergn] (€ptr1) < Lin{REN(Trgn ), Tn)

Crgn F Crgn : Rgn(Trgn) Optr F Eptr : <TlvT2>@Trgn C(val F €val * Tn

Crgn, Cpir, Coai - setlergn](eptr-n — €yar) : Rgn(Trgn)

The source language extends the target language with regions of nonlin-
ear, mutable pairs, along with pointers into the regions (labels ¢, having type
(11, T2)@Trgp) and expressions to get and set the fields of the pairs. (We post-
pone expressions for pair allocation, region allocation, and region deallocation
to section 5.)

The source and target languages use an environment © to map recursive
type names to recursive type definitions. For example, the environment @ =
{apist — (int, ar;st)@p} defines a type name «ay,s: for circular lists of integers
residing in region p. Although the encodings in sections 2-4 work equally well
with iso-recursive types (using explicit roll and unroll coercions), we use equi-
recursive types here to set the stage for section 5’s delayed types. If © contains
the mapping o +— 7, then « is considered equivalent to 7:

O,a—TFa="T

The complete type equivalence rules (the rule shown above, plus structural rules,
reflexivity, symmetry, and transitivity) are found in appendix C.

The source language defines a heap H that maps labels to pairs, where each
pair is marked with its region. For example, here is a heap containing the circular
list shown below, of type ap;s::

H = {1 — (10, £2)Qp, £y — (20, £3)Qp, L3 — (30, £1)@p}

10 20 30

In general, a heap may contain pairs from any number of live regions. Let

Y = {p1,...,pm} be the set of live region names, and let R; contain the pairs
allocated in region p;, so that H = Ry U ... U Ry,:

Rj = {lj1+— (vj1,1,v51,2)Qpj, j2 — (Vj21,v522)Qpj, ...}



To type-check pointer expressions ¢, define a heap type environment ) mapping
labels to pair types. Let ¢; contain the mappings for region R;:

@j =141~ (75,1,1,75,1,2)Qpj, Ly 2 = (Tj2,1,7),2,2)Qpj, ...}

A program may legally hold pointers into deallocated regions, so the heap envi-
ronment ¢ may contain information about labels from dead regions as well as
live regions; we’ll write ¥ = Yiipe U Vdead, Wwhere ¥pipe = 1 U ... U py,. Even
though a program can hold pointers into dead regions, it may not dereference
these pointers. To prove that a region p is still live, a program must present a ca-
pability rgn(p) of type Rgn(p) whenever it dereferences a pointer into the region.
This capability is linear; when a program deallocates a region, it relinquishes
the capability, preventing it from dereferencing dangling pointers. To type-check
the capabilities, 7" is treated linearly: T = 77,15 if each variable in 7" appears in
either 77 or 75, but not both. Each get and set operation consumes the region
capability and reproduces the capability, so that there is always exactly one ca-
pability for each region. For example, if x has type Rgn(p), then the expression
set[z](¢1.1 < 100) sets ¢1’s first field to the value 100, and then returns x.

Throughout the paper, we use semantic brackets [...] to indicate the source-
to-target translation of a program’s environments, types, and expressions. We
start by translating regions into simple linear tuples:

[ren(p;)] = [R;] = lin([vs1.1], [via 2], [vj2.1] [v52,2], [vs3.1], [v)3,2]s - - )
lesl = lindlmj1 1] [75.0,20 [5.2.0 [75.2.20 [75,3.00s [753.20s - - )

We define the region capability [rgn(p;)] to be the region itself, so that get and
set operations can easily extract and update the values from the linear tuple.
For this definition to be well formed, we require that the heap be well typed:
A;0;9;T + H. The type rules for heap-allocated pairs allow only nonlinear
values in the pairs, and nonlinear values cannot contain linear values, so we can
prove that [vj11], [vj,1,2], ... do not contain the linear value [rgn(p;)] that we're
trying to define. On the other hand, we cannot safely define [Rgn(p;)] = [¢;],
since the types 7j11,7j1,2,... could mention the type Rgn(p;); consider, for
example, ;1,1 = Rgn(p;) — Rgn(p;). Therefore, we extend the recursive type
environment © = {3 — 71, 32 — To,...} with recursive types for p; ... pm, and
simply define [Rgn(p;)] to be p;:

[6] = {B1 = [n]. B2 = [72], .-} U{pr = [e1], p2 = 2], - -}
[Regn()] = [7]
Except for pointer types, the translations of other data types are straightforward:
[int] = int
[1 = 7] =[n] — [=]
[lin{ry, ..., )] = lin{[m], ..., [m])
[o] =«

[{r, )@ ] =[] = lin([], [n1], [7e], lin([r D, [, []) — [7])



If data were read-only, a pointer type [(71, 72)@7,.] would consist of a get function
that takes the heap, extracts the pointed-to data, and returns the data along with
the heap: [7.] — lin([7,], [71], [7=])- Since the data supports both reading and
writing, the pointer must also contain a set function of type lin([7.], [71], [72]) —
[7-]- The read-write pointer type shown above combines the get and set functions
by returning the set function from the get function:

getj = Ax:pjlet (x1,...,22,) = xinlin{lin(zy, ..., Ton), Tak—1, T2k, S€t; k)
setjx = Az:lin{pj, [T k1] [756,2]) et {x, y1,y2) = zin
let (x1,...,20n) = xinlin{(zy, ..., Tok—2,Y1, Y2, T2k+1,- -« Tn)

[45,k] = getjx
[getlergn](eptr-n)] = let rgn = [ergn] inlet z4er = [epir] in

let (7., 1, T2, Tset) = Tget Trgn N 1N(T7,, Tn)
[setlergn](eptr-n «— evar)] = let zrgn = [ergn] inlet z4er = [eptr] in

let (2., T1, T2, Tset) = Tget Trgn inlet z, = [epar] in Tser lin(a),y,, 21, T2)

The translated get and set expressions simply call the get and set functions.
Notice that the translated pointer type works for both live and dead regions.
Suppose that ¢, is a “dangling pointer” into a dead region p;. The translation
[¢;.%] is a function that accepts p; as an argument, and this function cannot be
called if no value of type p; exists; this is behavior we expect, since a dangling

pointer cannot be dereferenced.

3 Linear Memory Capabilities

The previous section’s encoding of pointer operations is not particularly efficient.
The most outrageous inefficiency is the way the get and set functions treat a
region — each read or write from a region deallocates and reallocates the entire
region. Rather than using a linear tuple of region values, this section uses a linear
tuple of capabilities that provide access to region values; the region values now
reside in a global memory M, indexed by integer word addresses.

The only operations on M are load and store expressions. In particular, there
are no built-in allocation and deallocation operations on M; allocation is built
from load and store operations (for example, see appendix C for an encoding of a
linear free list in the target language). The expression “store[emem|(€ptr — €var)”
places a value e,q into the memory at integer address ep.. The expression
“load[emem](eptr)” takes an integer address ey, and produces the value held in
that address.

Values in memory may have different types at different times; in order to
know the type 7,4; of a value returned by a load operation, the program provides
a capability emem, of type Tptr = Tyai, which is evidence that memory address
Tptr currently holds a value of type 7,4;. To ensure that loads do not use stale
capabilities with out-of-date information, memory capabilities are linear, so that
each memory operation consumes the current capability for a memory location



and produces a new capability for the memory location. This linearity is the key
to safe deallocation; with the region encoding described in the next section, for
example, a program can deallocate a region by simply extracting the capabilities
from the region and storing different types of data in the memory previously
occupied by the region.

Following alias types[11], we use singleton types to ensure that the correct
capability accompanies an address: rather than giving e, type int, we give
it type Int(7,), a singleton integer type that contains only the integer 7,
mentioned in the capability type 7,: — Tya. For example, the expression “5”
has type Int(5); if Z,em has type 5 — float, then load[zem](5) is well-typed,
but load[z,em](6) is not. We also extend the type system with universal (Vo :
k.7) and existential (Ja: k.7) polymorphism over any kind k; for instance, the
type Ja:int.lin(Int(«), « — float) provides the singleton integer and capability
needed to load a float from some address «. As a more detailed example, the
following function swaps a value y,q; of type o, with a value in memory location
Zper Of type ag, consuming a capability Ty,em of type 5 — o, and producing a
capability x.,.,,, of type 8 — ay:

Az lin{(6 — ag), Int(8), ay) let (Tmem Tpir, Yoar) = zin
let (2], em» Tval) = load[Zmem](zpir) in
let z)..... = store[z), ... |(Tptr — Yvar) INUIN(T), 00, Toai)

As in section 2, the kind system includes kinds for linear and nonlinear data.
The kinds g and 1" not only describe the linearity of data, though, but also
the size of data, measured in words. Values stored to memory M must have

kind mlm Capabilities of type 7, — Tvas are purely static entities used for type

checking; they occupy no space at run-time and therefore have kind lbn.

The environment ¥ maps memory addresses to the types of the values stored
at the addresses. In contrast to the ¢ of section 2, ¥ is linear, so that if ¥ =
¥y, W,, each assumption in ¥ appears in either ¥; or ¥, but not both. This
linearity ensures that there is exactly one capability for each memory location
at any given time in the program’s execution. To represent a capability, the
syntax for the abstract machine defines a special value, “fact”, which has type
N — Tye in the environment ¥ = {n +— 7,4 }-

Target language syntaz, typing rules, kinding rules (part 2)

kinds k= | int

types T=...|Vaik7| Ja:k1 | non{7T)

717 | 0] suce(r) | Int(7)

expressions e=...|non(e)| 0] succ(e) | fact | da:kv | et
| pack[r,e]asJa:k. 72 | unpacka,z = ejiney
| load[emem](eptr) | storelemem](€ptr < €data)

values v = ... | Aa:k.v | pack[ry, v] as Ja:Kk.To



| non(T) | 0| succ(v) | fact
memory M={. n—wv..}
memory type env Uv={..,n—r...}
non non(A)
combined env C =A0;0;I where C = A4;{};0; I
Abbreviation: int = Jo:int.Int(«a)

Abbreviation: 7+ 0 =171, 7 + 1 = suce(T), T + 2 = succ(suce(T)), . ..
Abbreviation: e+ 0 = ¢, e + 1 = succ(e), e + 2 = succ(succ(e)), . ..

Al—ﬁ:ﬁi Al_TQZ'I?fQ A,CYHH'_TZ% A,ou—uﬂ—T:%
AF71—>7'2:nim AFVQ:/{.T:% AFEla:A.T:%
o1 Pk .
AbFT1my,...,AF 7 g n=ny+...+ng AR 7:int
AF dlr,...,m) 5 AFInt(r) : 1
Al 7 int Al :nin AR 7:int
non e AF0:int < T(l)n__ -
Al 0 suce(T) : in
Ct e : Int(7) Cle:Va:km Chrm: ik

C F succ(e) : Int(suce(r)) Cheim:a—mn
C,a—kbwv:T Chke:la—1|mn Ckn

'K CF3da:k.m :%
CkXa:kw:Va:k.T

C + (pack|[r, el asJa:k.12) : (Fa:k.T2)

Cll—eli(ﬂaZIi.Tl) CQ,OU—>I<L,$}—>T1|—€22T2 Cgl—Tg Z’%
C1,Cs b (unpack o, x = ey ineg) : 7o
Cite:m Crbep:m
Cib 7 iny Ci b 15 :mp

(C1,...,Ck) Fnonley, ... ex) :non{ry, ..., 7x)
Cobeq:dlr,..., ) Cp,T1 = T1,..., T — T Fep Ty
Co,CyFlet(xy,...,x1) =eqinep : 7

Omem F €mem * Taddr " Tdata Cptr F Eptr * Int(TaddT)
Cmem7 Cptr F load[emem](eptr) : lin<(7_addr = Tdata)u Tdata>

Omem F €mem * Taddr " Tdata
Cptr = Eptr - Int(Taddr)

non

", / .
Cdata F €data * Tgata Cdata F Tdata - 1

. /!
Cmem7 Cptm Cdata F Store[emem](eptr — 6dai&a) P Taddr 7 Tgata

né’nF 0 : Int(0) né’n, n—r7Hfact:n—r71




4 Coercions

Given section 3’s support for memory capabilities, we can revisit section 2’s
translation of a region type ¢;. Rather than translating into a tuple-of-memory-
values type [o;] = lin([75,1.1], [75.1,2], .- .), as in section 2, we translate it into
a tuple-of-memory-capabilities type. For each pair (v;1,v;k2) in H, choose
unique integer addresses n; ;1 and n; 2 to hold the values v; 1 and vj 2, s0
that n; ;2 = n; %1+ 1. The region type maps the pair addresses to the pair field

types:
les] = lin(njia = [maaln50,2 = [m12]m520 = [721]n522 = [7522], - 2)

Pointer types (11, 72)@7,. are still translated into function types, but the functions
no longer perform actual reads and writes to memory. Instead, each function
merely retrieves capabilities v — [r1],7 + 1 — [r2], where v is the address
contained in the pointer, from the heap type 7. Since the capabilities are linear,
a function cannot return both a capability from 7. and all of 7., as this would
require copying a linear value. Instead, the program calls one function to split
T, into pieces (the capabilities v — [71],7 + 1 — [72] and 3, which contains the
rest of 7,.), and calls a second function to join the pieces back together to form
Tyt

[{(r1,m2)@r.] =38 lbn Fyint.non(Int(Y), Tspiits Tjoin)
where Tspiir = [17] — lin(B,v — [11], v+ 1 — [r=])
where Tjoin = lin(B,y — [n1],v + 1+ [r2]) — [7]
Notice that the functions 7,p;;+ and 74y, exist solely to manipulate compile-

time capabilities — their return values are of kind lbn and are thus erased be-
fore run-time. In fact, there’s no reason to actually call the functions at run-
time. To formalize this optimization, this section introduces coercion expressions
“coerce(e)”, which exist only to perform operations on capabilities, and are erased
before run-time. In order to ensure that erasing coerce(e) causes no changes to
the program’s run-time behavior, e must satisfy three restrictions: it must have

.9, . e e
kind 0, it must neither load nor store to memory, and, to ensure termination, it
must not call any functions. The typing rules enforce these restrictions by ex-
tending the context C' with a new environment A, defined to be = for coercion
expressions and — for ordinary expressions. For example, the rule for function
calls becomes:

Cr,—=Fep:img—m Co,—teq 7,
(Cf,Ca),—>l— ef €q - Tp

If C = A;¥;0;1I'; A, then we define C, A" = A;¥;0;I"; A, so that the ex-
pression ey e, shown above type-checks only in a non-coercion environment.
The rules for load and store are also modified to require a non-coercion envi-
ronment: load’s context must be (Cyem, Cpir), —, and store’s context must be

(Omem; Optr; Odata)a -



Since coercions do not execute at run-time in a real implementation, they
can be thought of as a small logic language rather than a programming lan-
guage. For example, a tuple of capabilities lin({r1, 72) corresponds to the logical
conjunction of 71 and 75. The syntax and rules shown below extend the language
with implication 71 = 7 and disjunction 71 V 72. For example, the expression

Az :lin(m, T2) = (let (z1, x2) = zinlin(za, x1))

has type lin(r, m2) = lin{ma, 71). We use function composition e; o e5 rather
than function application to build implications from other implications. Al-
though banning function applications inside coercion expressions is crude, it
is the simplest way to ensure coercion termination while still allowing coercions
to manipulate recursive types. A simple inductive argument suffices to prove
that if (C,=) e : 7, then the evaluation of e halts in a finite number of steps.

Target language syntaz, typing rules, kinding rules (part 3)

types T=...|nn=2n|nVnr
expressions e = ... |coerce(e) | \z:T=e|ejoes

| disj? ., (e) | caseegofzy.eyorxs.eo

values v=...|Av:T =e|viovy | disj] ., (v)
coercion env A== | =
non non(A)
combined env C =A0;0;I"; A where C=A4;{};0; I ;4
Abbreviation: 71 & 75 = non(r = 72,7 = T1)
1 o2 ¢ ¢
AF 71y AF 1 ms A1 0 A 10
non ¢
AFn=m:0 Ak TV 0
Cr,—ber:img=m Cu,—F ey : 74
(Cy,Cq),—Fefeq:m
¢
Cikey:mp=r1e CobFey:my=m C,=kFe:r CET1:0
C1,Cote10ex: 7 = T C, —F coerce(e) : T
non non ¢ ¢
C,x—T.,=>Fe:n Ckm7:0 Cre:m, CkFrVvm 0
nénl_ ()\x;Ta = e) CTe =Ty C F disj:-ll\/‘rg (6) L T1 \Y T2
Co,=Feg:m V1o Cp,x1—11,=Fe 7 Cp,xo— To,=Fes: T

(Co, Cp),= (caseegof £1.e1 Or 29.€2) : Ty

Using logical implications in place of run-time functions, the translated type
for pointers becomes:

[(1,72)@QT,] =38 :%n Fy:int.non(Int(y), [7] < lin(B,v — [n], v+ 1 — [r2]))

10



where 71 & 75 is an abbreviation for non{(r; = 72,7 = 71). Pointer get and
set operations retrieve the memory capabilities from 7,., perform a load or store,
and then reconstitute 7,.. For example, a get operation becomes:
lget[ergn](epir-n)] = let 2y = [ergn]in
unpack 3, vyt = [ept,] inunpack v, z7,,,.
let (xaaar, zf) = :c;tr inlet (xspiit, Tjoin) = Tfin
let (xg, z1, 2) = Toplit Trgn i
let (x,,,y) = load[zy|(Taddr + (0 — 1)) inlin(zoin lin(zs, 1, 22), Y)
The only run-time operation in this code is the load[z,](zaddr + (n — 1))
expression; all the rest is compile-time unpacking and coercion.

= Tptr 1N

5 Allocation

Consider a region with space for three pairs:
o ={l1— (11,1, T1,2)Qp, lo — (T2,1,T2,2)Qp, {3 — (731, T3,2)Qp}

Section 2 encoded the region type as a tuple: [¢] =lin{[r11],...,[73,2])- The
only way to create such a tuple is to supply all the values of type [11], ..., [73,2]
at once. For large, long-lived regions, this approach is quite unrealistic — pro-
grams must be able to allocate region data incrementally. Very often, the types
for ¢ and /3 will not be known until after the allocation of ¢;. Unfortunately,
the encodings of region p in sections 2-4 define a recursive type mapping p — [¢]
once and for all, and there’s no way to change this mapping to reflect new in-
formation about ¢, nor is there any way to replace p with a new region name p’
without invalidating all the pointers that already exist for p.

To accommodate the incremental determination of the types in regions, we
introduce delayed types, which add new bindings a — 7 to the recursive type
environment at run-time. The program first creates a name « for the binding,
and later commits the name to a particular type 7. Upon committing a to
T, the program may substitute 7 for « in any type it wants. To ensure that a
program only commits « to a single type, the program obtains a linear capability
of type Delay(a) when creating the name «, and relinquishes the capability
when committing «. A linear environment ¢ contains the currently uncommitted
names.

Target language syntaz, typing rules, kinding rules (part 4)

types T = ... | Delay(7)
expressions e = ... | delay(k) | commit|egeiay](€data : (¢ = To I Taata))
uncommittedenv ® = {...,a,...}
non non(A)
combinedenv C = A;¥;$;0; 15 A where C = A;{};{};0; I ;A
AbFT:K

O delay(k) : Ja: k.Delay ()

lin

A F Delay(k) : 0
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@
Cdelay = Tdelay - K Cdelay = Ta K Cdelay = [Oé — Ta]Tdata n

Cdelay = €delay - Delay(Tdelay) Cdata F €data - [CY — Tdelay]Tdata
Odelayv Cdata [ Commit[edelay](edata : (O[ = Ta in Tdata)) : [Oé — Ta]Tdata

on(

non(A)
A {};{a};0; I ; AF fact : Delay(a) where A(a) = k

Source language (extensions to target language), part 2

expressions e = ... | allocleg] (e1,e2) | newrgn | freergn(er)
combined env C=A0:0,0;0:7:1; A

non

Olleln(lm Cobm: 1
Crgns =t ergn : Rgn(7rgn) Cr,—Fe:m Cy,—Fex:

(Crgn, Cl, Cg), —k alloc[ergn] <€1, €2> : lin(Rgn(Trgn), <T1 s T2>@Trgn>

non C L om -
C ,—F newrgn : Jo:rgn.Rgn(a) , = ergn : Rgn(7rgn)

C, —F freergn(e,gn) : lin()

For the sake of simple type-checking algorithms, we expect @ and & to be
empty at compile-time, so that our real compiler|[7] need not implement them.
(Note that © and @ are still important to the theory, particularly for the proof of
the language’s safety.) Even with empty compile-time environments, a program
can still use delayed types to describe and manipulate recursive types at compile-
time. For example, here is an encoding of iso-recursive coercions ;o) and

p
Tunroli(a), Of type 7 = a and a = 7 for any 7 of kind bn:
y
unpack a, z = delay( 6n) inletx = non{Ay:a = y, \y:a = y)in

let (Z;011(a) > Tunroli(a)) = commit[z](z : (o' = Tinnon(a’ = a,a = a')))in ...

Delayed types provide a way to implement incremental allocation inside regions.
For example, rather than defining the type [¢] = lin{[ri1],...,[r3,2]) all at
once, a program makes six names aq 1 . . . @3 2 and defines [¢] = lin{ay1,. .., a3.2).
Then, as the program allocates pairs, it commits a7 to 71,1, a1,2 to 71,2 and
so on. This strategy is still insufficient, though: until « is committed to some 7,
there are no values of type a. Therefore, there’s no way to create a tuple of type
lin{ay1,...,a32) until aq 1 ... ag 2 are all committed. One possible solution uses
tagged union types 71 U 72 to define [¢] = lin{Int(0) U a1 1, ..., Int(0) U a3 2),
using “0” as a pre-commitment placeholder value for each field (much like Java’s
use of default values of “0”, “false”, and “null” to initialize static fields and array
elements), but this introduces unnecessary run-time overhead. We can do better.

12



Rather than committing oy, ., to 7., let’s use three variables aq, a2, a3 and
commit each ay to lin(ng1 — Tk1,nk2 — Tk2), following the encoding from
section 4. A naive definition of [¢] would be lin{ay, az, ag), but this has the
same problem described above: no values of types aj can exist before «y is
committed, making it impossible to instantiate [¢]. Taking inspiration from the
aforementioned tagged unions, we replace «y with a disjunction, which is much
like a union, but without run-time tagging. More specifically, we write:

[¢] = lin(Delay(d1) V a1, Delay(d2) V az, Delay(ds) V as)

where 01, 02, 03 are extra delayed names to assist the use of a1, ao, 3. Each
time an «y is committed to some lin(ng1 — Tk1,Nk2 — Tk2), we'll commit
0k to the type non(). Before di’s commitment, there is one capability with
type Delay(dx), which we use to form a value of type Delay(dr) V ay. After
0r’s commitment, there are no values of type of type Delay(dy), since commit-
ting J; consumes the capability. Therefore, any post-commitment value of type
Delay(dx) V a, must contain an «y, value, not a Delay(dy) value. In particular, if,
starting with a variable zpeiay of type Delay(dx), we commit d; to form a value
xs of type Ok:

let x5 = commit[2 peray](Az:0r = 2) : (6}, = non()ind; = dx))in
letzs = xynon()in ...

then the following expression has type (Delay(dx) V ax) = ag:

)\xdisjunct : (Delay((sk) \ ak) :>(C&SG Ldisjunct OfyDelay-eDelay or ya-ya)
where epeiay = (let (z) = commit[ypeiay|(zs : (0, = non{ay)indy;))inz).
Notice that both epeiqy and y, have type aj. The latter typing is trivial, while
the former relies on a sneaky (but sound) proof by contradiction, exploiting
the impossibility of simultaneously holding values of type Delay(d;) and type

0r: committing d;, allows epeiqy to cast zs to any type of kind nf)n, including
the uninhabited linear-value-inside-a-nonlinear-tuple type non{ay). The same
technique proves lin(Delay(dx) V ag, Delay(ax)) = lin(Delay(dx), Delay(ay)),
which is used to generate the variable peqy in the expression above.

The translated pointer type [(71, 72)@7,] remains the same as in section 4;
the only difference is that to implement the [7.] = lin(3,y — [n],v+1 — [7=])
implication, a pointer [¢(x] uses the (Delay(d;) V ay) = ay coercion to extract
the ay = lin(ng1 — Tk1,MK2 — Ti2) value from the region 7], where [7.] =
[¢] = lin(Delay(d1) V aq, .. .).

The region described above contains only enough space for three pairs. Ide-
ally, a region should be able to grow without bound (or, on a real computer, to
grow until memory is exhausted). Therefore, we revise the region type [¢] to be:

[¢] = Delay(é1) V x1

Delay(&l) V lin<0é1, Delay(ég) V X2>
= Delay(d1) V lin{ay, Delay(d2) V lin{asq, Delay(ds) V x3))

The type [¢] starts small and grows as x1, X2, X3, X4, - - - are committed. Each
Xk is committed to lin{ay, Delay(dx+1) V Xk+1), defining just a little more of
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[#], and using a newly allocated name yj+1 to delay further definition. At any
given time, the region contains only two uncommitted names, d; and y, while
01...0k—1 and x1...xk—1 are already committed. The «ay variables no longer
need to be delayed, and instead are defined immediately when yy is defined.

As [¢] grows, the program needs some way to reach the «y and Delay(dx)V xx
values inside. The following coercion reaches k levels into [¢], shuffling every-
thing in levels 1...k — 1 into a temporary structure of type e:

[¢] < lin(ek, Delay(Bk) V x&)

where ¢, is defined as follows:

€1 = ll?’L<>
ea = lin(lin{), a1)
ez = lin(lin{lin(), a1), az)

When the region grows from size k to size k + 1, the program uses the
[¢] < lin{eg,Delay(Bx) V xk) coercion to generate a new coercion [¢] <
lin{ext1,Delay(dx+1) V xg+1). First, as described above, the delayed definition
0 = non{) proves that (Delay(dx) V xx) = xk- Next, x is committed to
lin{ay, Delay(dk+1) V Xk+1). The rest follows from simple tuple reassociation:

[[ ]] < lin(e, Delay(&k) V Xk>
< lin{ex, X&)

< lin(lin{eg, o), Delay(0r1+1) V Xk+1)

(
(
& lin{ek, lin{ay, Delay(0g4+1) V Xk+1))
(
< lin(er+1, Delay(0p+1) V Xk+1)

The composition of these steps yields [¢] < lin{ert1, Delay(0r+1) V Xkt1)-
The complete state of the region consists of [7,.] = [¢] along with Delay(y) and
[¢] < lin{e, Delay(d) V x) for the current x, J, and e:

lin non lin
[Regn(r)] = 3x:0 .35: 0 .3Fe:0 .lin([r ], Delay(x), [7+] < lin{e, Delay(d) V x))

The program can use the coercion [¢] < lin(ex+1,Delay(dx+1) V Xk+1) to
retrieve the oy, from €x41 = lin{ex, o). For example, if ay, = lin{ng — 751, nk+
1 — 73,2), then it’s easy to construct a coercion of type

[[(p]] & lin(lin(ek, Delay(5k+1) \Y Xk+l>7 Ng — Tg,1, Nk + 1+— Tk72>

Packaging this coercion with a singleton integer for nj forms the translated
pointer type:

[(1,m2)@QT,] =38 :%n Fy:int.non(Int(y), [7] < lin(B,v — [n],v+ 1 — [r2]))
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5.1 Free space management

Free space will consist of a linear linked list of free blocks, each having four words
of memory holding arbitrary values:

FreeBlock = Fy:int.360: 1 .361:1 36a:1 305:1 .
lln<1nt(7)7’y e ﬁ077+ 1 ﬂ17’7+2 = ﬁ277+ 3= ﬁ3>

An abstract recursive data type, Allocator, returns a free block on demand,
along with another allocator. The Allocator data type is simply a closure-
converted function, where the closure contains a nonlinear environment 3 and a
linear environment ~:

non lin
Allocator = 36:1 .Fy:0 .lin{B,,lin{B,~) — lin{Allocator, FreeBlock))

Unfortunately, memory is not infinite, and the allocator will run out of mem-
ory if the program tries to allocate more memory than is available. The best
reaction to this would be to throw an exception, or at least halt the program
gracefully, but the target language contains neither exception handling nor a
“halt” expression. Rather than extend the target language, we simply encode a
fake “halt” expression, implemented in appendix C as an infinite loop (and we
promise that out-of-memory is the only place that the translation uses the “halt”
expression).

Appendix C defines nil Free and consF'ree functions to construct an Allocator,
implemented as a linked list, from linear memory capabilities. The evaluation of
an alloclep] (e1, e2) expression transfers a free block from the current allocator to
region ep, and the evaluation of a freergn(er) expression returns all the blocks
in eg to the current allocator.

The freergn(er) expression needs to find all the blocks in region er. There-
fore, we extend the region implementation with a closure w, lin(Tfree, €,w) —
Tfree, Which transfers all the linear memory capabilities in € back to the alloca-
tor. This closure uses its environment w to hold a pointer to the first block in
the region, which in turn holds a closure that points to the second block, and so
on (these closures require two extra words of space in each block):

lin non lin non
[Rgn(r)] =3x:0 .36:0 .Fe:0 Fw:1
lin([r,], Delay(x), [7+] < lin{e, Delay(d) V x), w, lin{Tfree, €, W) — Tfree)

The type T¢rce contains the allocator, along with roll and unroll functions
for the allocator. The translated program passes a variable zf,c. of type Tfrce
to and from each expression. Appendix C contains the complete source-to-target
translation of expressions, types, and kinds.
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6 Extensions

Sections 2-5 built a source-to-target translation for a particular source language.
The target language is flexible enough to support other translations and other
source language features, though. For example, the encoding of [Rgn(7)] occu-
pies two words, and the type 7. occupies four words. It’s possible to reduce
the sizes of [Rgn(7)] and 7, to one word each, by storing their data in memory
and using a singleton integer to point to the data, as in the following definition:

[Rgn(7)] = Fv:int.lin(Int(y), RCap([7],7))

lin non lin non
RCap([rr],v) = 3x:0 .36:0 .Fe:0 Fw:1 .lin([r], Delay(x),
[[TT]] <~ li?’L<6, Dela‘Y((;) \ X>7 V= W,y + 1 (lin<7'freev €, W> - Tfree)>

This definition splits the region into a nonlinear, one-word handle of type

Int(v), and a linear capability RCap([r],~) of kind lbn. The alloc and freergn
expressions require both the handle and the capability, but get and set expres-
sions require only the capability.

The remainder of this section discusses two other features supported by the
target language (or slightly extended versions of the target language): region
aliasing and forwarding pointers. A separate paper|[7] describes more dramatic
extensions to the target language, integrating integer arithmetic and constraints[16]
into the type system, in order to support stacks, arrays, and efficient memory
layouts.

6.1 Region aliasing

The regions developed in sections 2-5 are linear, which limits their expressiveness.
Crary et al[3] give an example of a function that expects two regions p; and po:

Apr:rgndps irgndz:lin(Rgn(p1), Rgn(ps2), (int, int)Qpy, (int, int)Qpo). . ..

A program cannot call this function with both p; and po instantiated to the same
region p, because this would require duplicating the capability linear Rgn(p). To
overcome this limitation, Crary et al introduce a “calculus of capabilities” that
distinguishes between linear assumptions {7'} and possibly aliased assumptions
{77}, with an operator & to join assumptions together. The function above can
use this notation to indicate that p; and ps are not necessarily distinct:

Ap1:rgndpe irgn Az lin({Rgn(p1) " }@{Rgn(p2)*}, (int,int)Q@py, (int, int)@po). . . .

Sections 4 described how coercions allow aliasing of linear memory capabilities

inside a region; the same technique allows aliasing of any resource of kind lbn,
including the region capablities RCap(p,~) discussed above. To generalize the
technique, we define an abbreviation Alias[Tpe0](7) that indicates a linear re-
source 7 contained in a pool of linear resources 7,0, (notice that even though
and Tpoo are linear, Alias|Tpoo](T) is nonlinear):
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lin
Alias|Tpoot](T) = 36:0 Tpoot < lin(T, 5)

Using this idea, we describe an encoding of a subset of the capability calculus in
our target language. Our encoding is limited, though, by its reliance on explicit
coercions — in the capability calculus, for example, {71} @ {77} = {77}, while
our encoding can only establish a coercion, {77} @ {r7} < {71}, not a type
equivalence =. Therefore, we believe our encoding to be less expressive than the
full capability calculus. On the other hand, our target language supports many
idioms, such as existential quantification of linear resources, that do not appear
in the capability calculus, so it’s difficult to compare the overall expressiveness
of the two systems.

Here is a the definition of capabilities ¢ in the capability calculus, where we

lin
assume that resources 7 and variables € have kind 0 :

c={} [ {r}H{r} elaoanle

Unfortunately, our encoding omits the stripping operator ¢, although we can
imitate some of the functionality of stripped variables € by using variables of

kind 0 . The encoding of the remaining capabilities is as follows:

lin
le] = 3atpooi : 0 lin{cpoot, [¢, Ctpoot]) where o & FV (c)

[} Twoot] = ling)
{7} Tooat] = 7
{7} Thoot] = Alias|Tpoo] (T)
le, Tpoot] = €
[c1 @ 2, Tpoot] = lin([er, Tpoot]s [€2, Tpoot])

Since [c1®c2, Tpoot] 18 just a tuple, it is straightforward to construct coercions
to reorder or reassociate capabilities:

[[Cl S¥ C2, Tpool]] Aad [[CQ S C1, Tpool]]

[[Cl @ (02 S Cg), 7'pool]] Aad [[(Cl @ 02) ® cs, 7'pool]]

Since lin{[e, Tpoot]; ) = [c ® {7}, Tpoot], it is easy to introduce and remove
linear resources in capabilities. Since [{71}, 700:] is nonlinear, it is easy to du-
plicate and discard {71} resources:

[c® {TJr}a Tpool] & [ ® ({TJr} D {T+})7 Tpool]
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Push and pop The capability encoding described so far is much like the region
encoding from sections 2-4: a program can create a capability all at once, but
cannot build capabilities incrementally. This section describes a mechanism for
pushing resources into 7,,,; and popping them back out, in order to support a
stack of regions. The solution is very different from section 5’s use of delayed
types to grow regions. First, the regions from section 5 grew but never shrank —
there was no pop operation. Second, section 5 allowed the program to scatter a
region’s pointers throughout data structures and hide pointers in abstract data
types. The push and pop operations presented here rely on the fact that all a
capability’s resources are kept in the capability itself, so that the operations can
find each aliased resource {7;"} and update the resource’s type to reflect a new
pool type. To allow this update, Alias must be polymorphic over all extensions
v to the current pool Ty

lin lin
AliaS[Tpool] (7’) = Elﬂ :0 V"Y :0 -lin<7-pool7 "Y> < lin<7—a /6’ 7>

Furthermore, we require one extension to the target language, to make it possible
to compose new polymorphic implications from old polymorphic implications:

Extensions to source and target languages for useful coercion polymorphism

expressions e=... | da:k=e
values v=... | da:k=e
non ¢
C,a—r,=Fe:T C,=Fe:r CkFT1:0
né’nF Aok =e):Va:k.T C'F coerce(e) : T

Suppose x has type c® {7'}, and a function f has type c® {77} — c® {7}
Before passing x as an argument to f, the program must weaken z’s type to
¢ @ {r7}. Furthermore, the program should be able to strengthen the return
value from type ¢ @ {71} to type ¢ ® {r!} when f returns. The capability
calculus uses subtyping and bounded quantification to weaken and strengthen
2’s type, but our target language lacks these mechanisms. Instead, the program
must explicitly coerce [c @ {7'}, Tpoot] to type [c @ {77}, 7/,,] by pushing the
resource 7 into the shared resource pool 7,,,. After f returns, the program
explicitly pops T back out of the pool. The push coercion has type Tpush:

Tpush = Lin{Tpool, [[C@{T1}7 Tpool]l) = Lin{lin(Tpoot, ), [cB{T T}, lin{Tpoot, T)]s Tpop)
where

Tpop = Ln(lin{Tpoot, T), [c © {7}, lin(Tpoot, T)]) = 1in(Tpoot, [¢ © {71}, Tpoot]))
To implement the coercion, we first reorder ¢ to put the aliased resources last:

c=¢&..0as{nte..ae{nte{fle...e{r}
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The push operation’s implementation is complicated by the existing aliased
resources in c; the type of each {7;"} must change from Alias[Tpo0](Ti) to
Alias[lin{(Tpoot, T)](7:). The coercion Ax;: Alias|Tpoot](Ti) = €; shown below has
type Alias[Tpoot](1i) = Alias[lin{Tpoor, T)](7%)-

A s Alias|Tpoot] (i) = €;
where e; = unpack 3, x4 = x;in

1
pack[lin(B,7), \':0 = /] as Alias[lin{T o1, 7)](7:)
where 6; = let <-Tt07 'rfrom> = Tall lln<’yla T> in
n0n<6i7post7toOztooeifprefto; eifpostffromoxfromoeifpreffrom>
where €;—pre—to = AT Lin(lin(Tpoor, 7),7') =
let (2,0, 7,) = winlet (Tpool, T7) = 2,5, in
lin{Tpoot, lin(z’,, x+))
where €;—post— from = AL UN(Tpoor, lin(y', 7)) =
let (Zpoot, T4) = inlet (z), ;) = 2, in
lin{lin(Tpool, T+ ), )
where €;_post—to = AT :lin{r;, B, lin(v', 7)) =
let (z;, 25, 2,) = zinlet (z/, z,) = 2, in
lin(z;, lin(xg, v,), v’
where e;_pre— from = Az :lin(r;, lin{B,7),v') =
let (z;, v, 2.,) = vinlet (v, 2,) = 7j3in
lin{zi, zg, lin(x’,, z,))
The following coercion, of type Tpusn, uses the e; expressions to build a new
coercion ¢ @ {77} from the old coercion ¢ ® {r'}:

epush = AT 1in(Tpool, [¢ ® {71}, Tpoot]) =
let (zpoor, ') = xin
let (z¢c0,2,) = 2’ in
let (ze1,21) = Teoin ... let (zek, T) = T p—1in
leta! , =z in
let 3:;:,%1 = lin(z,, y, ex)in ... letz] o = lin(z, 1, e1)in

let 27 = pack[Tpoor, 1y lbn 10N (Vio, Vfrom)] a8 Alias[lin(Tpeor, 7)](T) in
1in{lin{T pool, T ), 1iN(TL, 05 1), €pop)
where vy, = Az lin{lin(Tpool, T), v) =
let (2, 2) = xinlet (Tpoor, xr) = &' inlin(xr, Tpool, T~)
WHETE U from = AT :Lin(T, Tpool, V) =
let (x+, Tpoot, T4) = winlin(lin(Tpool, Tr), T)
where epop = Ay Uin{lin(Tpool, T), [¢ ® {77}, lin{Tpoor, T)]) =
let (', ye0) = yin
let (Ypoot, yr) = ¢’ in
let (Ye,1,y1) = Yeoin ... let (Yo .k, Yk) = Yo, —110
let y;, , = Yekin
let yé,kq = lin(yéﬁk, xp)in .. .let 3/2,0 = lin(yal, x1)in
Lin{Ypoot, 1in{ye. 0, Yr))
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The type Tpop requires a value of type lin(Tpoor, 7) to recover the original
capability ¢, which raises the issue of 7,00;’s scope. Should 7,0, be hidden by ex-

y
istential quantification, as suggested by the definition [¢] = Jo 0 din(a, [e, o),
or should the program’s functions use universal quantification? For example, the
function f of type ¢ ® {77} — ¢ ® {7} could be implemented either way:

3010 linfa, e ® {r+},al) — Ja:0 dina, [e® {7}, al)

Va0 dinla, e @ {r*},a]) — lin(a, [e® {r*},a])

Since 7pop relies on a specific Tpo0r, Only the universally quantified f allows the
caller to pop 7 from the pool after f returns. Therefore, we expect typical func-

tions to have the form Vo :lbn dinfay [e, o, ...) — lin{a,[¢,q],...), where «
is the same in the argument type’s capability and the return type’s capability.
This allows ¢’ to add and remove linear resources, and to reorder, duplicate, and
discard nonlinear resources, but it does not allow ¢’ to push aliased resources
onto c. For example, ¢ = ¢ ® {7'} and ¢’ = ¢ ® {71} would require a different o
for c and ¢'. It’s not clear whether this is a significant limitation; in this example,
the type ¢’ is not very useful anyway, because it is too weak to allow the caller
to pop 7 from ¢/, and too strong to allow the called function to pop 7, which
leaves 7 stranded in ¢’ forever. Moreover, it’s still possible to support functions

of the form Vo :lbn din{a, [c,a],...) — lin{t’,[¢/,7],...) where a # 7/, but the
caller and callee must pass the appropriate push/pop coercions along with the
capabilities to ensure that every pushed capability gets popped, even if the push
happens in a different function than the pop.

6.2 Forwarding pointers

Regions provide a safe deallocation mechanism, but exploiting this deallocation
requires sophisticated program analysis or programmer assistance. Otherwise,
garbage may accumulate in long-lived regions, causing a program to run out of
memory. Wang and Appel[15] observed that a program can copy live data from
one region p; into a second region ps and then deallocate p;, effectively con-
structing a copying garbage collector written entirely with type-safe language
features. Such a typed (or type-preserving) collector offers the generality of tra-
ditional garbage collection without requiring the collector to be trusted. There’s
one troublesome detail: in order to avoid copying the same object multiple times,
the collector establishes forwarding pointers from objects in p; to objects in pa.
In subsequent collections, p2 holds pointers to ps, and ps holds pointers to pq4,
and so on. It’s difficult to write the first region’s object types without knowing
all the region names p1, ps, p3,... in advance (not easy, since it’s hard to say
how many collections will occur before starting the program). Several solutions
have been proposed [15][9][8], but each new proposal changes the typing rules
for regions, often in ad hoc and complex ways.

20



We argue that with only standard, general-purpose extensions, the target
language can implement a “next-region” operator in the style of Fluet and Wang
[5]. Consider a simple recursive linked list type for region p:

List(p) = (int, List(p))@Qp

Imagine a type operator NextRgn with the property that NextRgn(pr) = pi+1-
Then the following list type accommodates forwarding pointers from pj to pr1:

List(p) = ((int U List(NextRgn(p))), List(p))Qp

For simplicity, we use a tagged union type 7 U 1 to allow the first word of
the object to hold an int before the collector copies the object, and a forwarding
pointer List(NextRgn(p)) after the copy, although this causes some unnecessary
run-time overhead to deal with the tagging.

To support type operators like NextRgn at all, the type system requires
extensions for abstraction (A« : k1.7, of kind k1 — k2) and type application
(11 72). Standard rules for kinding and type equality are shown below. In addi-
tion, the extensions include a case operator[4] for integer types, defined so that
(case 0 0f Tero OF Tsuce) = Tzero and (case succ(T) of Toero OF Tsuce) = (Tsuce T)-

Ezxtensions to source and target languages for higher-order types

kinds K=...| K1 — ks
types T=... | A:k.T | 7172 | case TN Of Toero O Tsuce
A= kg7 Ky AFTs:Kg = Ky A T4t Ky
AF (Aa:Kke.T) : K — Kp AbF(T5T0) 2 K
AbF 7y :int AF Toero 1 K AF Toyee 1INt — K

AF case Ty Of Toero OF Toyee : K

OF (Aa:k.my) Tq = [0 Ta]Tp

Ok :kTa=T1 wherea & FV (1)
O + case00f Toero O Tsyce = Tzero

O F case suce(T) of Toero OF Touce = Tsuce T

OFr=17 QQFV(@) @FTlET{ @FTQETQ/
OF \a:k.T= A kT OFmm="1T1)

9"7’157’{ 9"7’257‘5 9"7‘3ET§

O + case T of 79 or T3 = case ] of T, or 74
1 OL 75 Or 73
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There are two obstacles to implementing the NextRgn type operator. First,
the type operator’s range is an infinite set of regions; since the program can
only allocate one region at a time, it will not be able to define the entire infinite
NextRgn function at once. Second, the type system lacks a conditional type that
distinguishes between regions; there’s no direct way to say “if the argument to
NextRgn is ps, return p4.” Delayed types solve the first problem, so that the pro-
gram can define a finite subset of the function and postpone further definitions
until later. The integer case type shown above solves the second problem.

The integer case type applies to integers, not regions, but there’s a trick that
connects regions to integers. Let p have kind int — rgn, and let p, = (pn).
Then define

NextRgn(p) = AB:int.(p succ(F))

so that (NextRgn(p)n) = (p succ(n)). The encoding of the List data structure
remains as shown above, except that @(p0) replaces Qp:

List(p) = ((int U List(NextRgn(p))), List(p))Q(p0)

To hide the (p0), define the following type abbreviations:

(11, T2)Q7,. = (11, 72)Q(7:- 0)
Rgn(r) = Rgn(r 0)
rgn = int — rgn

The definition of the type operator p uses “case” to distinguish between dif-
ferent integer arguments, and delayed types xx to grow as more p; appear:

P = Xo
AQ:int.case § of pg or x1

A3:int.case 3 of pg or A\G' :int.case 3’ of p; or x2

= M\B:int.case 8 of pgor A3’ :int.case 5’ of p1 or A\3” :int.case 8" of p; or x3

where the program commits each delayed type xi to the type
Xt = AQ:int.case §of pj or x k41

Notice that xo = p, x1 = NextRgn(p), x2 = NextRgn(NextRgn(p)), and so
on. The function below, of type

vp:rgn.Delay(p) — lin(Rgn(p), Delay(NextRgn(p)))

exploits the relationship between y and p to generate each “next” region on
demand, given a delayed type capability for the current region:
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AP TGN gelay : Delay(p).
unpack qgp, Trgn = newrgnin
unpack pnezt; TdelayNext = dela}’(@) in
lety = Az: lin(ﬁg\n(p), Delay(NextRgn(p))).zin
let y' = commit[zgeiay](y : (6 = TsinTy))in

'
Y Uin(Trgn, TdelayNewt)
where:

75 = AB:int.case 8 of ;g OF preat
Ty = lin(ﬁg\n(é), Delay(NextRgn(6))) — lin(ﬁg}l(p)7 Delay(NextRgn(p)))

The code is well-typed because:

{}  Ren(rs) = Rgn(argn)
{} F Delay(NextRgn(rs)) = Delay(pnext)

7 Safety and termination

This section summarizes the proofs of safety of the target language (as defined
in appendix A), as well as the termination of the target language’s coercions.

Since delayed types are the target language’s novel feature, we point out the
key aspects of the proofs relating to delayed types:

— Progress relies on © being a function, not a relation: each o € domain(O)
maps to only one type. If this weren’t the case, we could have © = {a —
int, @ — (int — int)}, so that © F int = int — int, which would destroy the
canonical forms lemma.

— Preservation relies on ©(«a) never changing once it has been established; the
program can extend © with new mappings, but it cannot remove or alter old
mappings, as this could potentially invalidate existing typings. Therefore, it’s
crucial that a “commit” expression for a variable « only be well-typed when
a & domain(O). The rule for - C ensures this by requiring ® Ndomain(©) =
{}, and the linearity of ¢ ensures that « disappears from ¢ when it appears
in 6.

7.1 Typing lemmas

Lemma 1. (Typing inversion) If C - e : 7, then one of the typing rules other

than CFG:T/C,_&SH/ET concludes that C &+ e : 7' where C =1 =7/, For example:
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_ . Cre:Int (7o) —
If C'+ succ(e) : 7, then Crencete) Tnt (sucelra))” where C'+ 7 = Int(suce(ro)).

Proof. By induction on C I e : 7. The induction strips away %
rules from C F e : 7 until it finds a rule different from %
Lemma 2. (Type weakening) f A7 :k and A" = A, kg, then A" -7 : k.

Proof. By induction on AF 7 : k.

Lemma 3. (Type equivalence weakening) If O - 11 = 15, and O = 0,0 74,
then @/ = T = T2.

Proof. By induction on O F 71 = 75.

Lemma 4. (Ezpression weakening) If A;W0;$;0; 5 Abe: 1, and A = A,a— R
and ©' = 6,8 — 75 and I = I, T 77, where A b 1o 1y, then A'; W; 8: 0 T"; A+
e:T.

Proof. By induction on A;¥;9:0: Ak e: 7.

Lemma 5. (Type equivalence inversion) If © - 7 = 7/ where 7 and 7' are not
type variables, then:

— If 1 =Va:k.1y and a &€ FV(O), then 7" =Va:k.7f and O F 7y = 7

— Ifr=3a:k.m and a € FV(O), then 7" = Ja:k.7f and O F 7y = 79
—Ifr=mn—>mn,then7 =7 >7rand Ok =7 and O F 1 =7/
—Ifr=n=mn,then7 =7 =7 and Ok =7 and OF =7

-7 =¢(n,...,7%), then 7 =¢(r{,...,77yand O F 1 =7 ... Ok 1, =7},
—Ifr=nVnthen =rfVrand O r =7 and O+ =17
—Ifr=n+—m,then =7 —7and OF 7 =7 and O F 7o = 7

— If 7 = suce(m), then 7/ = suce(r{) and O F 71 = 74

— If 7 = Int(7y), then 7/ = Int(7]) and O -1, = 7{

— If 7 = Delay(7 ), then 7/ = Delay(r{) and O 1, = 7{

Proof. First, rephrase the type equivalence rules © - 7 = 7’ as reduction rules
O + 7 = 7/, simply by taking all the rules except symmetry and transitivity,
and replacing = with =. For example:

OFr=1
O,a—TFa=rT

OFr=1 a g FV(O)
O +Va:k.m = Va:k.1'

OFm =7 Ot =1,
Ok >m=>T1 — T

Also write an alternate (“single-step”) version of the lemma with =, saying
that if © - 7 = 7/ where T and 7’ are not type variables, then:
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—Ifr=Va:kmn and a ¢ FV(O), then 7’ =Va:k.7{ and O F 1 = 7
—Ifr=mn—>m,thenr =7 - 7and OF 7 = 7 and O F 1 = 75

The proof for the single-step version of the lemma follows by simple case analysis
on the derivation of © - 7 = 7.
Now prove, by a standard tiling argument (see Pierce[10], for example), that

* *

if © - 7 = 7/, then there is some 7/ so that @ - 7 = 7" and O F 7 = 77,
*

where = indicates zero or more reductions using =. Repeated applications of

the single-step lemma to O + 7 = 7" and © F 7/ = 7" show that:

—Ifr=Va:k7 and o € FV(O), then 7/ =Va: k.7 and O % 71" and
@"T{%T{/

—Ifr=m — 7o, then 7/ = 7 — 7} and@l—ﬁéT{'andQI—TgéTgand

(9%7’1’*37'{’and9F7’2’§7'§’

The main lemma follows by observing that if © - 7 % 7/, then © F 7 =7’ (an
easy induction).

Lemma 6. (Type equivalence kinds) f O -7 =7 and A+ 7: K andVa — 7 €
O.(AF 7: Aa)), then AF 7' K.

Proof. By induction on O + 7 = 7'.

Lemma 7. (Environment typing) For each typing rule with conclusion C' F e :
7, if we know that = C, then for each premise in the rule of the form C' e’ : 7/,
we know - C'.

Proof. Proved simultaneously with expression kinds lemma below. Note that if
C = C’,C", then the proof is trivial, because C,C’,C” all share the same A
and O, and all assumptions in C also appear in C.

Lemma 8. (Ezpression kinds) If C - e : 7, where C = A;¥;$;0;1; A and
- C, then Ak 1 :h.

Proof. By induction on C'Fe: 7.

[
{}:{}:0; ;—he: 7o ses
Case 1. A’{}’{}’@’{“”:’fg}’_) em  AFTaim The A | To ¢ k condition ensures that
A{}i{ 105 T A AaTrg.€)iTa—Th
! non

A+ {zx — 7,}. Induction proves that A+ 7, :n’, so that A7, — 7, : 1 .

Cabeq:d(T1,..,Tk) Co, 1271, BTl ey Ty ; i Pa
Case 2. =+—= — . 2 . By induction, A F ¢{71,...,Tk) Ng;
Ca,Cbklet (T1,..,xk)=eq 1N ep:7y y ’ ¢< L ’ k> @

inversion on this shows that A + 7 1(;"211 AR T :7?/12, so that - Cy, 1 —
T1,...,Z — Tg. Induction shows that A 7.
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Case 3 Ciley:(Jar.m1) Co,ar—kK,r—T1Fex:To Czl—Tzi’ﬁ,
: Cl,Czi—(unpack a,z=e; 1N €2):T2
’

.Toshow Cy,a+— K,z +—

71, use induction to show A F (Ja:k.71) :n’ and invert this to show Ao — s
¢/
Tl

’

Case 4. % By induction, A - 7/ /. By the type equivalence

kinds lemma, A 7 :n/.

Lemma 9. (Nonlinear value) If C & v :'n", then there is some C' so that
non

c=C'.

Proof. By inductionon C' + v :' 1 . Notice that v = (Az:7.¢) and v = (Az:7 = )
and v = (Aa:k = e) are base cases of the induction, since they only type-check in
nonlinear environments. Also notice that the typing rule for v = non(vy,...,vg),
requires nonlinear vy, ..., vg, which allows induction into the vy, ..., vg.

Lemma 10. (Coercion environment change) If C, A+ v : 71, then C;A' o7
Proof. By induction on C, A+ v : 7. Notice that v = (Az:7.e) and v = (A\z:7 =
e) and v = (Aa:k = e) are base cases of the induction.

7.2 Preservation

Lemma 11. (Type substitution) If A,aq — K1,...,Qn — Kk b7k and A F

TL:K1... ATy Ky, then AF [aq — 71,...qp — T]7 : K.

Proof. By induction on the derivation of A,y — K1, ...,qp, — Ky F 71 k. Let
[6] = [a1 < 71,...an < T,]. Sample cases:

Case 1. Ajay — K1,...,an — Ky b ap @ ki In this case, [o]T = 7%, and we

know A F 7y : K.

3
7 .
Case 2. SRl an oy ak . By weakening, A, — k11 k1L A
A, a1—K1,...,ap—knFYak. 7m0

k F 7, : kn By induction (using environment A, o — k), A, — K = [o]T 1.
The typing of [o]Va: k.7 = Va:k.[o]T follows immediately.

Lemma 12. (Type equivalence substitution) If O F 7 = 7" and a1 & domain(O), . ..

domain(©) and [o] = [a1 « T1,...qn — T, then [0]O F [o]T = [o]7.

Proof. By induction on © - 7 = 7’. Sample cases:

Case 1. ©,a — 7+ a = 7. Since no a4, in [o] appear in domain(©,a — 7), we
know [o]a = a, and can conclude ([0]O@), a — ([o]7) F a = ([o]7).
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Case 2. @Z=—__22FV(O) Alpha-rename Vo : k.7 so that a & {a1,...,an}

and a ¢ FV([0]6). By induction, [0]@ F [o]r = [o]7’. Therefore, [0]O  Va :
k.[o]T =Va:k.[o]T, so [0]O F [o|Va:k.T = [o]Va:k.T.

Lemma 13. (Expression-type substitution) Let C = A;W; P; 0; I'; A. Define the
substitution [0] = [&— 7a). Suppose the following conditions hold:

— no «y, appears in A;¥;P; 0 (note: to satisfy this condition, other lemmas

typically use alpha-renaming to rename the «y, before invoking substitution)

—C,a—FRalte:T

— for each ap « Top In @ 74, A Tak : Kak-
Then we can conclude that [o]C F [o]e : [o]T.

Proof. By induction on C,a g b e : 7. Sample cases:

Case 1. C,a—FRgy F x : 7, where C = A;{};{};@;?‘;, {z — 7}; A. Here,
0]C = A; {}: {}:0: 0] To, {x — [o]7}; A and [o]e = .

Ciley:(3Bkr.7T1) Co,Br—k,x—T1Heq:T Cob :%
Case 2. — Cl,ICQF(uIli)aCkﬁ,w:ell inzegz):rg —

so that 8 & {aa,...,a,}. By induction, [0]C; - [o]e; : [0](30:k.71) (note that
[¢](38:k.11) = (3B :k.[o]m)) and ([0]Ca), 8 — K,z +— [o]T1 F [o]es : [o]m2. By

type substitution, [0]Cs b [o]m 1. Since Cq,Cy is well-formed, each x — 7.1

, where [ is alpha-renamed

in C; and C3 have some A F 7, :ﬁiz, which by type substitution implies
AF [0]7ar 2%, 50 that [0]C = ([0]Ch), ([0]Ca).
Lemma 14. (Ezpression-value substitution) Let C = A;W;®;O0;1'; A. Define

the substitution [0] = [T+ vg,y < vy, Z < 0z]. Suppose the following conditions
hold:

— = =

- ', where C' =C,C,,C,,C, = AW, 9,017, A
— for each 2y, in 7, 2z & domain(I').
-Cr—T,y—T1,e:T

. non
— for each x < Vo In T— Uy, Cop b gk : Tor and A b 7pp Mak.

. lin
— for each y < vy in T—= 0y, Cyr - vyp : Ty and A b Ty nyg.

- N lin
— for each zy — v in Z= v, Cop F v T and A 7ok 0.

Then we can conclude that C, (T, Flole: .

Proof. By induction on C,z— 7,y — 7, - e : 7. Sample cases:

non
Case 1. C, T T,y Ty b T : Tyk, Where C,T— 75, 7= 7y = A;{}; {}; 0; I
non
,{ak — Tux}; A. Since Iy contains no linear assumptions, 7 must be empty, so
—
C,Cy, = C. We know that [o]zy = vz and Cyx F vz @ Tpk. By the nonlinear
environment lemma, C,, is nonlinear. Since C’ = C, C’Z , C—'; , @ and C and Cyy

are nonlinear, C' = Cy, so that C' - vy : Tk

v
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Cl,m,y/ — Tyl—elz(ﬂﬁﬁ.ﬁ) Cg,m,y// — T;/,ﬁHn,xHﬁl—eg:‘Q 02)—7'2:%
Case 2. C1.Co T Tz.Y — Ty-(unpack Bo—e1 N es)ma ’
where z is alpha-renamed so that it does not appear in {@, 7,7z}, and
is alpha-renamed so that it does not appear in [o], and A + {g—=7,} =

{y/ — 7'}, {y" — 7"}. By induction (putting 3" — 7’ in the z variables), C; F
y — 7,3 {y" — 7} By putting y" — 7, v , Cy

[o]e1 : (36:k.71). By induction (putting y’ — 7, into the z variables), Cy, 3 —
K,x+— 11 F [olea : .

Theorem 1. (Preservation) If A;Wspare,We; Pspare, Pe; O;{}; A F (M,e : 7)
and AW Pe;0:{}; A F e : 7 and (M,e) — (M',¢’), then there is some
AW D, 0 sothat A C A and© C O and A’ Wspare, Ul Pspare, Pr; 0':{}; A F
(M',e' :7) and A; WP, 0 {}; AR e o T

Proof. By induction on the derivation of C F e : 7, where C = A; ,; &.; O; { }; A.
Hold A and © and ¥yre = Yspare, Ye and Pure = Popare, Pe fixed throughout the
induction as ¥ypare and ¥, and Ppere and P, and A vary. Sample cases:

Case 1. e =ere, and € = €, e,, where:
f f ’

Ci,—=Fer:ma=m Co,—teq 7,
(Cy,Cp),—Fefeq:m

where C, = A;0,;8,;0;{}; A and Cy = A;¥s;P5;0;{}; A. Note that
Upie = (g/sparev Lpa)v Lpf and e = (qssparev Qa)a @j

By induction, C},—ﬂ— e'f : Tq = Tp, Where C} = A’;W};@};@';{};A and
AC A and © C 0 and Wy, = (Wypare, a), ¥} and &)y, = (Pepare, Ba), &)

Let C!, = A", ,; P,; 0'; {}; A. By expression weakening on A and 6, C/,, -+
€q i Ta- Choose ¥ = W}, VU, and ¢, = Q’f, @, (we know that these are well formed,
because ¥}, = (Yspare; Ya), J/} and @}, = (Pspare, Pa), g[)’f are well-formed). We
can conclude:

Ch—bey it =1 Cl,—Feq: 7,
(C%.Ch),—befeat

Induction also tells us that A’; (wspm,wa),w;; (@spare,éa),é};é’; {}; A+
(M',e% : 7, = 7), which implies that (@spare, P,) N domain(©’) = {} and
Vn € domain(¥').(A; {};{}; 05 {}; =F M'(n) : ¥/(n)), where ¥/ = Uy,qpe, V..
From this, we conclude that A'; Wy,are, UL Pspare, Pr; O {}; A (M’ ¢ @ 7).

Case 2. e = (Az:T, = ef) v, and €' = coerce([z < v,]ey), where

Cr,—=F Aeimpy = ef) 1T =T Co,—F vy 1 74
(Cf,Cq),—F (A1 = €f)va 1 Th

where C, = A;¥,;D,; 0;{}; A. By inversion, Cy = A; {};{}; ©;{}; A and:
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3
Crix— 1y, =Fep 1y Crl16:0
Cit(Azimy =ef)  Ta =T

where O - 7, = 7 = 7, = T3, which we use to show Cy, = v, : 7. By the
coercion-environment-change lemma, C,, =+ v, : 7,. By expression substitution:

(Cy,Ch),=F [x — vales : 7

By the typing rule for coerce:

¢
(Cf,Ca),:>|— [1‘ — va]ef ITf (Cf,Ca) F Tf :0
Cy,Cq & coerce([x «— vglef) : 7f

Choose @ = 0 and ¢, = &, and ¥, =¥, and A’ = A. Since M’ = M, the
well-typing of (M’ e) follows immediately.

Case 3. e = delay(x) and ¢’ = pack[s, fact] as Ja : k.Delay(«), where 3 is fresh
and:

C I delay(k) : Ja: k.Delay(a)

where C = A;{};{};0;{}; A. Choose © = © and ¢, = {8} and ¥ = {}
and A’ = (A, 8 +— k). The type variable 3 is fresh, so that § € domain(©) and
(Pspare, @) Ndomain(©’) = {}. Then we can conclude:
lin
A} {8);0;{}; AF fact : Delay(5) C'HpB:k C' F Ja:k.Delay(a) : 0
A} {8} 05 {}; A (pack[B, fact] as Ja: k.Delay(«)) : (Ja: k.Delay(«))

M' = M, so that weakening on A establishes the typings of each M'(n), so
that A/; Lpsparev Lpé; q)sparaa @)fg; @/; {}7 Ak (Mlv e T)-

Case 4. e = commit[fact](v : (& = 7o In Tyate)) and e’ = v, where:

Cdelay F fact : Delay(Tdelay) Cdata Fo: [a — Tdelay]Tdata

Cleiay, Cdata - commit[fact](v : (o = 7o InTgasa)) : [ < TalTdata

where Ciare = A; Wqata; Paata; ©;{}; A. By inversion, Cyeray = A; {};{6};0:{}; 4
and O & Tgeqy = 5. Choose A" = A, &, = Pyaie, ¥, = Pyata, and O’ = (0,8 —
To). By weakening, ©' b 7geqy = 3. A simple induction on 744, proves that
O’ F [ “— Tdelay]Tdata = [ < Ta]Tdata- With this, we can conclude:

A/; Lpév @é, 8/; {}7 AFv: [04 — Tdelay]Tdata @/ F [a — Tdelay]Tdata = [Oé — Ta]Tdata
AI; !pé;(p/e; 91; {}7 AFv: [O[ — Ta]Tdata

M’ = M, so that weakening on © establishes the typings of each M’'(n), so
that A Wspare, UL, 90 {}; A (M€ 2 7).
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Case 5. e = coerce(ey) and €’ = coerce(e] ), where:

¢
C,=Fer:r CkH71:0
C'F coerce(ey) : 7

By induction, C',=F €} : 7, where C' = A", ¥/, ¢L;0";{}; A and A C A
¢
and © C ©'. By type weakening, C’ I 7 :0, so we can conclude:

¢
C'y=kel:T C'+71:0
C' F coerce(e)) : T

Induction also tells us that A’; Wspure, Uls Popare, Pb; 05 {}; A (M, e} : 7),
which implies that &' Ndomain(©’) = {} and Vn € domain(¥’').(A";{}; {}; ©'; {}; =
M'(n) : ¥'(n)), where ¥ = Wgpqre, P.. From this, we conclude that

A5 Upire, Ul Bspare, @o; 05 {1 A= (M’ coerce(e)) : 7)

Case 6. e = coerce(v) and ¢’ = v, where:

¢
C,=Fv:r CkH71:0
C' - coerce(v) : 7

Choose A" = A and &), = §, and ¥, = ¥, and ©' = O, so that C' = C. By
the coercion-environment-change lemma on C, =+ v : 7, we know that C - v : 7,
so that C' v : 7. Since M’ = M, the typing of (M’ v : 7) follows immediately.

Case 7. ¢ = store[fact](n «— vgate) and €’ = fact and M’ = [n — vgaa| M,
where:

Con, —F fact : Taqdr — Tdata

Cp, —F n : Int(Tqqar)
’ / non
Ca, —F Vdata * Thgra Cat Ty i 1

(Cm, Cp, Cq), —F storelfact](n — vdata) : Taddr = T)ata

By inversion, Cp, = A;{nme — Tma}; {1 0;{}; A and O + Th4ar — Tdata =
Nma — Tmd- Also by inversion, C, = A;{};{};60;{};4 and O + Int(n) =
Int(74qar)- By the non-linear value lemma, Cy; = A;{};{};0;{};A. By type
equality inversion, © - N4 = Tadgar = n and Ny = N.

Choose ¥, = {n+ 7, and &, = b, = {} and © = O and A’ = A. Then
we conclude:

Al {n = Taara b {1 0 {1 = fact : n = 744,
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For all k # n, M'(k) = M(k), so that M’(k) remains well-typed with type
Uiso(k) = Ware(k), where @), = Ugpare, P.. We know that M'(n) = vgqie, and
we USe Ugatq’s typing to type M'(n):

Cq,—F M'(n) : ¥'(n)

The well-typing of (M, e) follows immediately.

7.3 Progress

Lemma 15. (Canonical Forms)

IfCFo:(Va:k.7), then v = Aa:k0" or v =X a:k = e
If CFHo: (3a:k.7), then v = pack[r’,v']| as Ja: k.7
fCrv:1 — 1, thenv=MAz:11.¢

IfCrv:mm=m, thenv=MAr:7y = eorv=uv0v;
HCruv:(mr,..., ), then v = ¢(v1,...,vL)

If CFwv:7 V1, then v = disj?, ., (v)

If CHwv:71 — 7o, then v = fact

If C Fo:Int(r), then v =0 or v = succ(v’)

If C' v : Delay(7), then v = fact

© X0 NSO LN

Proof. For each type 7 above, proof by induction on C' F v : 7. For example, for
Ct v:71 — 75 there are two possible cases:

. ! ,: . . .
Case 1. SHvT _CET=T where 7 = 71 — 7. By type equivalence inversion,

7' = 7] — 75, and we can use induction.
A{}i{ 0 {r—T10 ) —erTy
Ai{}{1:0; A (Aara €)ia -7y

Theorem 2. (Progress) If e is not a value and A;Wpse; Pase; ©;{}; A (M, e :
T), then there is some (M’,€’) so that (M,e) — (M’ €').

Case 2. . In this case, v = (Az:74.€).

Proof. Observe that by the rule for typing (M, e), we know that Ware = Wspare, ¥
and Pyre = Pspare, P and C' e : 7, where C = A; &; &; O; {}; A. Now prove that
(M, e) steps, by induction on the derivation of C F e : 7 (holding M and Wy,
and @)y, fixed throughout the induction as C, e, and 7 vary). Sample cases:

non
Case 1. e = x, where ' .2 — 17k x: 7T

Impossible: our assumptions require that I' = {}, so C' cannot contain x +— 7.
Case 2. e = vy v,, where:

Cry—=Fvp i1 =1 Coy,—F vy 17
(Cf,Ca),—>l— Uf’l)a I Ty

By canonical forms, either vy = Az :7, = e or vy = vy o vyo. In either case,
Vf Vg Steps.
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Case 3. e = load[Umem](Uptr), Where:

Cmemu —k Umem * Taddr ¥ Tdata Cpt’l‘7 —k Uptr * Int(Taddr)

(Cmem7 Cptr)7 —k load[vmem](vptr) : lin<(7-addr — Tdata)a 7'daifa>

By canonical forms, vyenm = fact and vy, = n. By inversion on the typing
of vpy-, we know O - n = 74q4r. By inversion on the typing of vy,em, we know
Cmem = Cops ™+ Thoi, Where © F 790, = n'. By transitivity, © F n = n'.
By type equivalence inversion, n = n’. Therefore, C) . contains the mapping
n = Th.ra, and therefore (Criem, Cpir), == A;¥; ®; 0; {}; A contains the map-
ping n — 7)., 0 n € domain(¥pr.) = domain(Pspare, ¥). By the rule for
A;Wpse; Pare; O;{}; A (M, e : 7), we know that n € domain(M), so that:

(M, load[fact](n)) — (M, lin{fact, M (n)))

7.4 Termination

Define the evaluation size of an expression e to be S(I1,e), where IT = {...,z —
n,...} puts an upper bound on the evaluation size of any expression substituted
for © € domain(II).

S, A kw) = S(IT,v)
S(IT, ha:k =e) = S(I,e)
S(I,eT) —1—|—S(H e)
S(II,pack[r1, el as Ja:k.12) = S(II, €)
S(I,unpack o,z = eyiney) =1+ S, e1) + S((II,x — S(II,e1)), e2)
Sl x) = H( )
S, \x:T.€) =
ST, z:T = e) =
S(II, ey 0e9) = S(H e1) + S(I1, e2)
S(I, coerce(e)) =1+ S(I,e)
S, pler,...,ex)) =S, e1) + ...+ S(I,er)
S(I,let (T) =erineg) = 1+ S(I,e1) + S((II,z — S(I,e1)),e2)
S, disj7, ., (€) = ST e)
S(I,caseegof xy.e;orazg.ea) =1+ S, eq) + S((IT,x1 — S(I,eq)), e

+S((II, o — S(II,ep)), e2)

0
S(ile)

Sr
S, succ(

,0)
)
S(I1, delay(k))
)
)

S(IT, commit[egeay] (€data : (¢ = T iN Tyaia)
S(I1, fact

1
1 (H edelay) + S(H edata)
0
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Let S(I1, e1 e2), S(II,1oad[emem](€epir)), and S(II, storelemem](eptr < €data))
be undefined.

Lemma 16. (weakening) If S(II,e) = n and II' = II,x; — ny,...,x5 — Nk,
then S(I1,e) = S(II',e).

Proof. By induction on e.

Lemma 17. (monotonicity) If S(II,e) = n and Vz € domain(II).(II(z) <
II'(x)), then S(II,e) < S(IT',e).

Proof. By induction on e.

Lemma 18. (substitution) If S(IT',e) =n, and II' = II, 21 — nq, ...,z — ng
and S(IT,v1) < ny,..., ST, v;) < nyg, then S(II, [ad—=7,T < v]e) < n.

Proof. By induction on e. Let [0] = [@ 7, < ¥]. Sample cases:
Case 1. xj, where T—0 = ...,x; — vj,...
S, [o]x;]) = S(I1,v;) < mj = II'(x;) = SUI', ;)
Case 2. let (') = e, inep:
Let 1T, = II,y— S(I,|ole,) and II; = II',y — S(II,[o]e,). Note that by

weakening, S(I1,,v;) = S(II,v;) for all 1 < j < k, so that S(II,,v;) < n;; the
induction on e; below relies on this weakening.

S(I1,[o](let () = eqiney))
= S(I1,let (7)) = [o]eqin [o]ep))
=14 S(I1,[o]eq) + S(IIy, [o]es)
(by induction) < 1+ S(II',eq) + S(IT,,, ep)
=1+ SUI' eq) + S(II',y — S(II, [o]eq)), ep)
(by monotonicity) < 1+ S(I',e,) + S((II',y — ST, eq4)), ep)
= S(IT',1let (7) = e, inep)

Theorem 3. (Termination) If A;W;P;0;{}; =+ e: 7, then S({}, e) is defined,
and the evaluation of (M, e) halts in no more than S({},e) steps.

Proof. Follows from the two lemmas below.

Lemma 19. If A;¥;$;,0;;=F e : 7 and domain(I’) = domain(Il), then
S(e) is defined.

Proof. By induction on e’s typing derivation.

Lemma 20. If S({},e) =n and (M,e) — (M’',€’), then S({},e’) = n’ where
n>n'.
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Proof. By induction on the derivation of (M, e) — (M’,e’). Sample cases:

Case 1. (M, casedisj. ., (v) of 71.e1 or za.e5) —> (M, [z1 < v]e1). Use the sub-
stitution lemma:

n = S({},casedisj’ ., (v) of 71.e1 Or T3.€2)
=1+ S({},disjz, v, (v)) + S({z1 = S{}. disjz, v, ()}, €1)
+5({x2 = S({}. disjr, -, (v)}, €2)
> 14+ S({},disil, ., (v) + S(z — vler) + S(laz — vles)
> S({} [z1 < vlea)

Case 2. (M, (vy ovg)vg) — (M, v (v2v3))
Impossible: S({}, (v o vg) v3) is not defined.

(M,e1)— (M ,e)
(M,e10e3)— (M’ e} oez)

Case 3.

S({},e10e2) = S({},e1) + S({},e2)
S({},el) +S({},e2) (by induction)

S({}, el oer)

\%

8 Conclusions and Related Work

This paper has described an encoding of regions as linear tuples of memory ca-
pabilities, where coercions extract the capabilities from the regions, and delayed
types extend a region’s type as the region grows. Although the region encoding
is elaborate, the primitives that make up the encoding are small, orthogonal,
and general-purpose. For example, the original inspiration for delayed types was
not for building regions or recursive types, but for encoding forwarding pointers,
as described in section 6.2. As another example of the primitives’ generality, the
combination of linear tuples of capabilities and nonlinear coercions not only al-
lows aliasing of data objects inside regions, but also allows aliasing of the regions
themselves, as described in section 6.1. Although the aliasing of regions appears
less expressive than in the capability calculus of Crary et al[3], it comes for free
with our target language, rather than requiring special extensions to the target
language.

The encodings of region types and region operations are efficient: pointers are
only one word in size, and after compile-time coercions are stripped away, a get
operation compiles down to a single load operation, and a set operation compiles
down to a single store operation. The main inefficiency is the use of linked lists
to track the pairs allocated to each region, so that the freergn(e) expression can
find the pairs and return them to a global free list. It would be more efficient to
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allocate pairs from larger blocks of memory (see [7] for extensions to the type
system that remove this inefficiency).

Monnier|[8] describes the construction of a typed garbage collector using a
hybrid of regions, alias types, and a logic language. Regions are built into the
type system, rather than being derived data types. The key challenge in any
typed garbage collector is typing forwarding pointers; Monnier uses the alias-
type aspect of the language to delay the introduction of forwarding pointer types
until needed.

Linear TAL [2] shares our goal of building a memory management system
from low-level linear memory primitives. Their approach uses copying to trans-
form nonlinear data into linear data, eliminating all aliasing, which simplifies
the type system but does not handle cyclic, mutable data.

Many logic languages have been used to prove properties about memory
management. Foundational PCC[6] uses a logic language external to the pro-
gramming language, and can use induction over typing judgments to prove a
heap extension or region extension lemma. By contrast, our approach proves the
well-typedness of region extension from within the program, using delayed types.
Perhaps closer to our approach is separation logic, which was used to prove the
correctness of a garbage collector for a heap with unlimited aliasing[1]. It would
be interesting to see what analogue region extension or delayed types have in a
separation logic treatment of low-level unlimited-aliasing allocation.
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Appendix A: Syntax, typing, and evaluation rules

This section contains the complete target language syntax and rules. It includes the Aa: x = e extension and relaxed coerce(e)
typing rule from section 6.1.1.

linearity: ¢ = non | lin
integers: n =0 | succ(n)

type variables: a = «,3,7,9,€¢,p, X, w, .- .

kinds: & :% | int

types
T=a|Va:ikT | kT | I o2
| &(F) | V]| m—72]0] suce(r) | Int(r) | Delay(r)
expressions
e = Aa:kv | Aa:k = e | eT | pack|[ri, e]as Ja: k.72 | unpack a, z = ey ines

| | Ax:me | Ax:T = e | erea | e10ez | coerce(e)

| (@) |let (T) = eriney | disj) ., (e) | caseegofxy.eiorzo.eo

| load[emem](epir) | storelemem](€ptr < €data)

| 0| succ(e) | delay(k) | commit{egeiay](€data : (¢ = Ta N Tgara)) | fact
values

v =Aa:kv | Aa:k = e | pack[r,v]asJaik.me | AziTe | AxiT = e | vi oy

| 6(T) | disj?,yry(v) | 0 | suce(v) | fact

abbreviations
(letx = ey ines) = (let (x) = lin{e;) inez)
int = Ja:int.Int(«@)
TL < To = TLOH<T1 = T9,To = T1>
1 = suce(0), 2 = suce(1), ...
T+0=7,7+1=suce(r), 7+ 2 = succ(suce(r)),. ..
e+0=c¢, e+ 1=succ(e), e+ 2 = succ(succ(e)),...
(unpack aq, g ..., an,x = e iney) = (unpack oy, = ey inunpack as, . .., ap,x = xiney)
(unpackaq ..., apn, {1,...,Tm) = er1ines) = (unpack ay, ..., an,z = eyinlet (x1,...,2,,) = zines)
(pack|[T1, T2, ..., Tn,€]as o 1K1 T Ke. ... Jay, 1Ky T)=
pack[ry, pack[Ta, ..., T, €] as Jag: ka. ... T, i kp.Jar — T1)7] as Jag i k1. Tag ke, ... Tag, 1Ky T
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environments

memory M ={....n—wv,...}

type variableenv A ={... a— K,...}

memorytypeenv ¥ ={... ,n—T1,...}
uncommittedenv ® = {...,a,...}

recursivetypeenv @ = {...,a—1,...}

#(4)
where T z{xHT€F|A}—T:%}

-

variableenv I' = {...;x —1,...
coercionenv A = — | =

non non(A)
combinedenv C = A;¥;$;0; 15 A where C = A;{};{};0; I ;A

environment splitting and extension
U =0, W iff ¥ =¥ U, and domain(¥y) N domain(¥2) = {} .
¢:¢17¢2 lﬂ‘@:@l U@Q and @1 m¢2 = {}
AT =14,1I5iff

non(A)  lin(A4) non(4) non(A) non(A) lin(4) lin(A)  lin(A)
I'=T17 U T and ' = I1 = Iy and " = I7 U Iy
lin(A) lin(A)

and domain( It )Ndomain( Iz )={}.
0201702 ifFW:%,WQ and@:@l,QQ andAFF:Fl,FQ and:
C=(4/9;0,0;T; 1)
C1 = (4;¥1;91;0;I1; A)
Cy = (A;Wa; D905 I3 A)
We sometimes write C' = (C1,...,C,). This means that if n > 1, then there is some C”’ so that C' = (C4,...,C,_1) and
C =" C,, andif n =0, then C = (.
If n & domain(M), then M,n+— v =M U{n — v}.
If o € domain(A), then A, — k= AU{a— k}.
If n & domain(¥), then ¥.n— 7= U {n— 7}.
If o € P, then &, a0 = P U {a}.
If o & domain(O), then O, a— 7 =0 U{a+ 7}.
If x ¢ domain(I'), then I'Nx — 7 =T"U{z — 7}.
(4;@;9;,0;T7; A),
(A0 0;,0; T A),n— 7= (A0, n—1;,0;,0;; A)
(A;0:0;,0; T N),a = (A 0;D,0;0;T; A)
(A0;8,0: 15 4), 0 — 7= (4980, — 1311 A)
(A;0;,0,0; T3 A), 2 — 7= (40, 8;,0; I x — 1; A)
(49;0;0; 1 A4), A = (A 0;0,0; T )

judgments
AFT:k
CAs T =T2
FC
Chre:r
CkH(M,e:T)
(M, e) — (M', )
We often write (A;¥;®;0;1'; A) F 7 : k as an abbreviation for AF 7 : k.
We often write (A;¥;®;0;1"; A) - 71 = 72 as an abbreviation for © - 71 = 7.
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kinding rules

A,ou—HQFT:??L A,ab—»liFT:%
Aa—KkEa:k — —
AFVYa:k.1m:n AbFda:k.7T:n
AbFm 7(;"211 A1 7(;"222 A1 7%211 A1 7?L22
AF T —> 7 :nin A1 =7 :"6"
o1 o8 4 4
AbFT1my,...,AF 7 g n=ny+...+ng A7 0 A 10
@ ¢
A|_¢<T17"'7Tk>:n AFTl\/TQ:O
AF0:int ACT:nt _AfTime
AF suce(T) @ int AFInt(r): 1
AF 7 int Al—ngnin AFT:kK
lin lin
AFT—1:0 AF Delay(k) : 0

type equivalence rules

Define FV({a; — 11,...,ar — 7% }) ={a1,...,ax } UFV () U...UFV (1)

Or _ @l—TlETQ @"TlETQ 9"7’257’3
T=T
OFmn=mn Okr=m
o o= Orr=7 ag FV(0) OFr=1 a g FV(O)
—> =
e Tha=T O FVYa:k.m=Va:k. 7’ OF Ja:k.T=Ja:k.T’
Ok =T OF =1 OFmn =1 OFrn=r1)
OFmn—-m=1—1) OFmn=>mn=1 =1
OFmn =1 OFm =1, Ok =T Ot r=1)
OF¢(r,...,me) =(r],...,7]) OFnVr=1VTh
OFn=m OFrmn=r1) OFr=7
OFn—mn=1—mn O+ suce(T) = suce(t’)
OFr=71 OFr=1
O+ Int(7) = Int(7) O + Delay(7) = Delay(7’)
typing rules
v . :nOTL
nHTEEP(Al—T 1) ] !p:wspare7!p @:@spare,ée
& N domain(0) = {} & C domain(A) EAW:$O: T A
Ve T €O.(AF T Ala)) n € domain(¥).(A; {};{}: ©: {};—F M (n) : (n))
Vap— 1 € I.(AF 73 nZ) AUe: e, 0: ;A e: T
FAW D0 A AU 00, AF (Mye 1)
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non

Cke:7 Ckr=1 Cia—krkkFuv:T C,a—kKk,=Fe:T
Ckle:7/ CFM:kow:Va:k.T nco'nl— (\aik = e): Vaik.r
Cle:Vaik.m Chrm: ik Che:la—mn]m Ckm K C"HOZZK.TQZ%
Chteim: o mlm C I (pack[r, el as Ja:k.12) : (Ja:k.72)
Ci ke : (Ja:km) Co,a— Kk, — 7 Fey:m Cob 1 :?L non
- C,x—T1hkx:T
C1,Cy F (unpack a,x = ey ines) : 7
1] non non ¢
A {{h0{r— 1) =k e AFT14m C,x—Te,=>Fe:n Ckm:0
A {}:{}; 0 n](’)‘n;/l F(\z:7g.€): 7 — T né’nF ety =€) Ta =T
Cr,—=Fep:img—m Co,—F eq: T Ci,—=Fer:ma=m Co,—Feq 1 7q
(Cf,Ca),—>l— ef €q - Tph (Cf,Ca),—>l— ef €q - Th
¢
Citel:mp=r1 Cobes:my=m C,=ke:r CkHT1:0
Cr,CaFe1oer: 7= e C I coerce(e) : T
Cll—el:n Ckl_ek}:Tk}
Citer:m Cplep:m Ci by Cp b Ty i ip
Cy,...,Cplin(er, ... ex) : lin{ry, ..., 7%) (C1,...,Ck) Fnonler, ... ex) i non{r, ..., 7k)
¢
Cobeq:dlr,...,m) Cp, 1= T1,...,Tp— T ey Ty Clre:m, CtmVm:0

Cu, Cy I let (21,

Co,=Feg:m VT

C LX) = eginep Ty

Cy,x1—11,=>F e 1

Ckdisj} ., (e) : 71V 7o

Cy, 20— To,=F ea: 1

"¢ 0 - Int(0)

(Cu,Ch),= (caseegof z1.e1 or a.€2) : T

Cmem7 —k €mem * Taddr "7 Tdata

Cpt’l‘7 —k Eptr - Int(Taddr)

(Cmem7 Cptr)7 —k load[emem](eptr) : lin<(7-addr — Tdata)a Tdata>

Cmemu —k €mem * Taddr 7 Tdata
Cpt’l‘7 —k Eptr - Int(Taddr)

non

/ .
Clata I Tagata * 1

. /
Cdataa —k €data * Tgata

(Omem7 Cptr7 Cdata)v —b Store[emem](eptr — edata) : Taddr F T(/iata

C e :Int(r)
C F succe(e) : Int(suce(r))

Cdelay F Tdelay - K Cdelay F Ta + K
Cdelay = €delay - Delay(Tdelay)

O delay(k) : Ja: k.Delay(«)

@
Cdelay F [Oé — Ta]Tdata n
Cdata - €data - [CY A Tdelay]Tdata

Odelayv Cdata [ Commit[edelay](edata : (Oé = Ta in Tdata)) : [Oé — Ta]Tdata

non

C,n—71kfact:n—r1

non(A)
As{};{a};0; T ;AL fact : Delay(a)
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evaluation rules

Ele'] = €' 7 | pack|r, €' asJa: k.72 | unpacka, z = €’iney
| ¢ex|vie |€oes|vioe | coerce(e)
| d(v1,...,05,€ ex, ... en) | let (T) = e'iney | disj} \,,,(€¢') | casee’ of x1.e; or x2.e9
| load[e'](eptr) | load[vmem](e”)
| storele'](eptr < €data) | StOre[vmem] (€’ — €data) | store[vmem](vpyr — €')

| succ(e’) | commit|e'](edata : (¢ = To IN Tdata)) | cOMMIit[Vgeray] (€’ (@ = T iN Tdata))

e — ¢ (M,e) — (M’ ¢")
(M,e) — (M, ¢€) (M, Ele]) — (M', E[e'])

(M,load[fact](n)) — (M, lin{fact, M (n)))
(M, n — v),store[fact](n <« v)) — ((M,n — v"), fact)

Aa:k0)T — [ — T]v

(Aa:k = e) T — coerce([a — Tle)

(Az:T.e)v — [x — v]e

(Az:T = e) v — coerce([x — vle)

(v1 0 vg) v3 — 1 (V3 v3)

coerce(v) — v

unpack o, z = (pack[r,v]as o/ :k.7")ine — [a — 7,2 — v]e
let (z1,...,25) = ¢{v1,...,v5)ine — [21 — v1,..., T — Ve
casedisj’ ., (v) of v1.e1 or x2.62 — [T — V]ey,

delay (k) — (pack[3, fact] as Ja: k.Delay(«)) where 3 is fresh
commit{fact](v : (o« = 7o in Tdata)) — v

Appendix B: Source language extensions

This section describes the source language extensions to the target language.

kinds kK= ...|rgn
types 7= ... | Rgn(r) | (11, 72)QTgn
expressions e=...|rgn(a)| ¥

| getlergn](eptr-n) | setlergn](eper-n < €val)
| allocleg](e1,e2) | newrgn | freergn(er)
values v . | rgn(a) | £
heaps H={ . {—(v,vn)Qau...}
heap type env P =
Y
C

live rgn env

non non(A)
0,007 A where O = A {1 {0593y T4

)

combined env

kinding rules

AF7:rgn AFT: ¢ Al 1o ¢o AF Trgn iTgN

non

lin
A [ Rgn(T) 12 A F <TlvT2>@Trgn |
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type equivalence rules

Orr=71
O+ Rgn(r) = Rgn(r')

typing rules

Vn—reW(AbT:1)
& N domain(O) = {} @ C domain(A)
Va—1€0.(AFT1: Aa))
Vo — 1 € F.(A F 7 %2)
Ve (11, 72)Qp € P.(AF p:rgn)
AW 00,0715 A

Y(l) = (11, 72)Qp  peT
A {b L e {h{h—hv i
A {0 v{h{h v i

A 711 non Al 1 inon

Otn =1 OFmn="1) OF13=14

A;0;9; 7 - € (v1,v2)@p

Ao rgn; {1 (1005 {a};

Crgn, —F €rgn : RgN(Trgn)

n(A)
I ;AtFrgn(a): Rgn(a)

O+ (1, 12)Qr3 = (71, 75)Qr7},

U = q/spare; We ¢ = stparev Qe
FAW:D:0,¢;7;1; A
Vn € domain(¥).(A; {}; {}; ©;9; {}; {}; =F M(n) : ¥(n))
AWe; Pe; O;h; Tes I A e m
A;0;0;T+HH

T = Tspara; Te

AU ;0,075 A (H, M, e : 1)

Vo eT.(if L — (11,72)Qp € ¢
thent — (v1,v2)Qp € H)
Ve € domain(H).(A;0;¢; 7 = L— H({))
A;0;9;THH

Cl—T1THL{:T

Cpt’r‘7 —k Eptr - <Tl ) T2>@Trgn

(Crgns Cpir), = getlergn](eper-n) : Lin(Rgn(7rgn ), )

Orgnv —>F 67"gn : Rgn(TTgn)

Cptr; —b Eptr : <7'17 7-2><®7'7"gn

Oval7 — €val * Tn

(Crgn7 Cpt’l‘7 Cval)u —k set[ergn](eptr'n — eval) : Rgn(Trgn)

Crgn, —F ergn : Rgn(Trgn)

on

Ol = T1 Zn(lm 02 = T2 an
Ci,—Fe:m Cy,—Fey:my

(Crgn, Cl, Cg), —k alloc[ergn] <€1, €2> : lin(Rgn(Trgn), <T1 s T2>@Trgn>

non

C ,—F newrgn : Ja:rgn.Rgn(a)

evaluation rules

C, —F ergn : Rgn(,gn)
C, —F freergn(e,gn) : lin()

Ele] = ... | getle'](eptr-n) | get[vpgn](€’.n)

| setle](eptr-n — €var) | s€tlvrgn](e'.n — eyar) | set[vygn](vper.n — €')

| alloc[e/] (e1,e2) | alloc[vg] (¢, ez) | alloc[vg] (v1,€) | freergn(e’)

e—¢ (H,M,e) — (H',M',¢')
(H,M,e) — (H,M,¢') (H,M,Ele]) — (H',M', E[e']))

— (H, M, lin{fact, M (n)))

(H, M,load[fact](n))
(H, (M,n — v),store[fact](n «— v")) — (H, (M, n — v'),fact)

((H,€ > (o1, 03)@p), M, getlrgn(p)| (1) — ((H, € — (o1, 05)@p), M, lin{rgn(p), vn))
((H, £ (v1,02)@p), M, set[rgn(p)|((.1 — v')) — ((H, £ — (v',v2)@p), M,rgn(p))

((H, £ = (v1,02)@p), M, set[rgn(p)](£.2 — v')) — ((H, £ — (v1,v")@p), M,rgn(p))

(H, M, alloc[rgn(p)] (v1,v2)) — ((H, £ — (v1,v2)Qp), M, lin{rgn(«), £)) wherelis fresh
(H, M,newrgn) — (H, M,pack[p,rgn(p)] as Jo:rgn.rgn(a)) where pis fresh

(H, M, freergn(rgn(p))) — ({(¢ — (v1,v2)Qa«) € H|a # p}, M, lin())
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Appendix C: Source-to-target translation

This section describes a compile-time (heap H = {}) translation of a source language expression into a target language
expression, and summarizes a proof of the well-typedness of the translation. The translation does not rely on the Aa:k = e
expression from section 6.1.1.

Suppose that C = A;¥;;0;{};{};I'; A and C F e : 7, where the variables aajioc and z s, appear nowhere in e and C.
Define the translated expression [e] by annotating the derivation of C'F e : 7 as C F e : 7 ~ [e]. For brevity’s sake, we’ll
often omit the premises of the type judgments.

The translation C, —t e : 7 ~» [e] passes a free list from expression to expression, so that [C, —], T free > Trree - [€] :
1in(Trree, [7])- The translation C, =t e : 7 ~» [e] passes no free list, so that [C, =] F [e] : lin{[7]). To aid the passing of the
free list, define the abbrevation:

(letfreex1,...,zx = e1,...,exine) = (let (X free, 1) = €1in ...let (T free, o) = e ine)

where z1, ...,z are fresh variables.
Here are the translations of the form C, —F e : 7 ~ [e]:

Cy,—Fer: 1 =1~ [ef] Co, —F €4 1 7o ~ [ea]

(Cy,Cy),—F efeq : 1 ~ letfree x s, x4 = [ef], [ea] Inlin(x free, X Ta)

Cy,—Fep: 1 — 1~ [ef] Co, —F €4 1 7o ~ [ea]

(Cy,Cy),—F ereq : 1~ letlree x s, x4 = [ef], [ea] inxf 1in(x ree, Ta)

value
Coa Kk, —Fv:7 ~ [valuev]

C,—F da: kv :Va: kT ~ lin(x free, Aa: [].[value v])

eT): 7"~ letfree z = [e] inlin(x free, x [7])
C’ —t (pack[ri, e]asJa:k.12) : T~ letfree x = [e] in lin(x free, pack([m1], ] as Ja: [£].[2])
C, —F (unpack o,z = eyinesy) : 7 ~ letfree x; = [e1] inunpack o, z = 1 in [es]

C,—k () : 7~ lzn(mfree,x)

C,—F Az:7.€e) : 71~ lin@ pree, A2 Uin(Trree, [T]) .16t (X free, ) = zin [e])

C,—F Az:7 =€) : 7/~ lin(Z free, \x: [7] = [e])

C,—tF (e1 0e3) : 7 ~ letfree z1, x2 = [e1], [e2] inlin{x free, x1 0 2)

C, —t (coerce(e )) T~ lin{x pree, coerce([e]))

C,—tF (¢ler, ... ex)) : T~ letfree 1, ...,z = [e1], ..., [ex] Inlin(z free, {(z1, . .., Tk))

C, —t (let (1:1, co, L) =erines) T letfreez = [e1]inlet (x1,...,z) = zin[es]
C, —+ dlSJTlvT2( )) 7~ letfree v = [e] in lin(x free, disjy, v, (2))
C, —tF (load[emem](eptr)) : T ~> letfree Timem, Tptr = [€mem ], [€ptr] I 1iN{Z free, 10ad[Tmem] (Tptr))
C, —F (store[emem](€ptr < €data)) 1 T ~
letfree Tmem s Lptrs Tdata = [[emem]]7 [[eptr]]y [[edata]] in lin<xfreey Store[xmem](xptr — xdata»

(
(
(
(z
E
C,—+ g)\a K= e): T ~ lin{T ree, Aa: [&] = [e])
(
(¢
(
(
(
(

C,—tF (0) : 7~ lin{x free, 0)
C, —tF (succ(e)) : 7 ~ letfree z = [e] in lin(x free, suce(x))
C, —tF (delay(k)) : 7 ~ lin{(z free, delay([<]))

(

C, —F (commit|egeiay](€data : (¢ = Ta INTgara))) : T ~
letfree Ldelays Ldata = IIedelay]]u [[edata]] in lin<mfreea Commit[xdelay] (xdata : (Oé = IIToz]] in [[Tdata]]))>
C,—F (fact) : 7 ~ lin(x fre., fact)
C, —t (allocleg] (e1, e2)) : lin(Rgn(Trgn), (11, T2) QTpgp ) ~>
letfree x g, x1, 22 = [er], [e1], [e2] in alloc[[Trgn], [T1], [T2]l(@ free, TR, T1, x2)
C, —tF (newrgn) : 7 ~» newrgn(Tfree)

C,—k er : Rgn(tr) ~ [er]
C, —t freergn(eg) : lin() ~» letfree xg = [egr] inlin(freergn([Tr]](z free, xr), lin())
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Orgrh —k C€rgn : Rgn(Trgn) ~ Hergn]] Opt’l“7 — Eptr - <7-1; TQ>@Trgn ~ [[eptT]]
(Crgn, Cpir), —=F getlergn](eptr-n) : lin(RgN(Trgn), Tn) ~
letfree Trgn, Tptr = [[ergn]]a [[ept'r]] in lin<zfreea QEtn[[[Trgn]]a [[7-1]]7 [[7-2]]] (:ETg’n.v xptr»

Crgn; —t €rgn * Rgn(TTgn) ~ [[67“!]"]]
Cptru —t Eptr : <T17 7—2>@7-an IIePtT]]
C’ualu — €val - [[e'ual]]

(Crgn; Optr; Oval)7 —k Set[ergn](eptr-n — eval) : Rgn(Trgn) ~
letfree Lrgns Tptr, Lval = [[ergn]]v [[eptT]]v [[e'ual]] in lin<zfreey Setn[[[ﬂ"gn]]; [[7-1]]7 [[7-2]]] (zrgn; Tptr, Ival»

Here are the translations of the form C,=Fe: 7 ~ [e]:

C, =t (caseegofzi.e1 0r x9.€2) : T ~» case [eo] of z1.[e1] or x2.[e2]

C, =+ (Aa:k. v) T~ Aa: [£]-[value v]

C,=F(er): 7"~ [e] [7]

C, =t (pack|ri, elasJa: k.12) : T ~» pack[[1], [e]] as Fa: [K].[7=]

C, =t (unpack o,z = ejiney) : 7 ~ unpack o, z = [e1] in [es]

C,=F (z

C,=F (Az:7.e) 1 71~ Az lin(Trree, [T]) 16t (T free, ) = zin [e]

C,=F Az:r =€) : 7/~ Az 7] = [€]

C,=F Aa:k =€) : 7'~ Az [k] = [€]

C, =t (e10eq) : 7~ [e1] o [ez]
(
(¢
(
(
(0
(
(
(

)T~

C, =+ (coerce(e )) T ~~ coerce([e])

C,=F (pler, ..., ex)) : 7~ ¢([ex],- -, [ex])

C,=F (let (x1,...,x;) = eriney) : 7~ let (x1, ..., zx) = [e1] in [e2]
07 =k dls.]Tl\/Tz( )) T~ disjﬁl71VT2H(ﬂeH)

C,=F (0): 7 ~0

C, =tk (succ(e)) : 7 ~ succ([e])

C, =t (delay(k)) : 7 ~~ delay([])
C, =t (commit|egeiay](€data = (@ =
C, =t (fact) : 7 ~ fact

The translation of the = rule is independent of the environment A:

Che:7~[e] Ctr=1
Clre:1 ~[e]

T N Taata))) o T ~» commit{[egeiay]]([€data] : (@ = [Ta]in [Tdata]))

Finally, to help translate the v inside (Aa:k.v), we define a special translation C' v : 7 valy

value

Ct (Aa:k0) 7~ Aa:[k].[value v]
Aok =e€):T VU e k] = [e]

¢ [value v] for values:

pack[ry,v] as 3o k.72) : 7 "N pack[[r1], [value v]] as 3a: [k].[r2]

= (

= (

F(Az:Te): 7 L N LinTrree, [T]) 16t (X free, x) = zin [e]
FAz:r=e): 7 RECDE I7] = el
Fvpowv):7 valpe [value vi] o [value vs]
F (v, .. on)) T valye o{[valuevi], ..., [value v,])
- (disfF, gy (v) 7 " disi, g ([oaluc ]

)7 value

= (
= (

suce(v )) 7 e succ([value v])

fact) : 7 "% fact

CFU:TU%E[[valuev]] Crr=171

Chov:r 2 [value v]
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Type translation
[a] =a
Va:k.1] = Va:[k].[7]
[Ba:k.7] = Ja:[k].[7]
[m1 — =] = lin(Tree, [T1]) = lin(Tiree, [T2])
[[7'1 = TQ]] = [[Tl]] = [[Tg]]
[o(r1,. ..o e)] = &[], ..., [7x])
[[7'1 \/7’2]] = [[7’1]] V [[7’2]]
[ — 7] =[n] - [r]
[0] =0
[suce(T)] = suce([7])
[Int(7)] = Int([r])
[Delay(7)] = Delay([7])
[Ren(7)] = Rgn([r])
[(r1, 72)@7rgn] = Ptr([m1], [r2], [Trgn])

FreeBlock = 3y:int.360: 1 36101 36o:1 3851 dinInt(7),~ — Bo,y + 1 B,y +2 > B, 7 + 31— Bs)

non lin
Allocator =303:1 Fv:0 .lin{B,~,lin{8,~v) — lin{aaiee, FreeBlock))

Trree = in{Q Ajioc, Allocator — aajioc, ®aiioc — Allocator)

lin non lin non
Rgn(tr) =3x:0 .30: 0 .3e:0 .Fw:1 .lin(rr,Delay(x),r < lin{c, Delay(d) V x), w, lin{Tiree, €, W) — Trree)

lin

PtrCap(tr, 7a) = Ja:0 .7 < lin{a, Tar)

lin non
Ptr(tr,71,72) = Fy:int.3e:0 Jw: 1 .non(Int(y), PtrCap(tr, MTyp(y, 71, T2, €, w)))

MTyP(TN771,T2, TeaTw) = lin<TN — (lin<7_freea7—eu Tw> - Tfree); (TN + 1) = Tw, (TN + 2) = 71, (TN + 3) — T2>

Kind translation
Jod Jod
[n] =n
[int] = int
lin

[rgn] =0

Environment translation

[4;@;2;0;{}: {}; I; 4] = [A]: [#]; 2; [0]; [T A |
K. ..,a—k,..}]={..,a—[x],-..},®4ioc »—>l12n

K....n—mr..}=4{.,n—
{....,a—~7..}=1{..,a—

K...,o—7,..}]={..,z—]7],...}
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nilFree
lin

nco'nl— nilFree : daanioc:2 lin{aaioe, Allocator — aanioe, ¢ ailoc — Allocator)

nilFree = i
unpack @ aioc, T pelay = Delay( Z271) in
let Zpqir = NON(AT: @ Ali0c-T, AT @ AL10c-T) ID
let (Troits Tunrotr) = COMMIt[Z petay] (Tpair : (¢ = Allocator innon(a’ — aaloc, ®alioc — &')))in
lin
let 2y = Az:lin(Int(0), lin()).halt] 3 | lin{cauioe, Free Block) non() in
let £ 4 = pack[Int(0), lin(), lin(0, lin(), x r)] as Allocator in
lin
pa‘Ck[aAllocu lin<mroll TA,Zroll, xunroll” as 3O‘Alloc 12 Tfree

consFree
! .
C'" - consFree[tn, To, T1, T2, T3] (T free, TN, T0, T1, T2, T3) & Tfree
non lin
!
where C" = C', =, ®Alloc = 2 s Tfree = Tfree, TN — Int(Tn), 20 = (T8v + 0= 19),..., 23 — (7§ + 3 +— 73)

consFree[Tn, 10, T1, T2, T3] (T free, TN, To, T1, T2, T3) =
let <=’17A; Troll, mun7"oll> = T free in
unpack 3,7, (3, Ty, Tf) = Tunron T4 in
let o = store[xo)(zn «— zf)in
let 21 = store[z1](zny + 1 — 25)in
let o = store[za](zn + 2 < Tron) in
let x4 = lin{zy, lin(z, xo, T1, T2, T3), consFun) in
let 4 = pack[Int(7n), Teons—~, £a] as Allocator in
lin<zroll TA,ZTroll, mun7"oll>
Tcons—y = lln<77TN — Teons—0, TN + 1 /6), TN + 2 Teons—2, TN + 3= TB>
Teons—0 = lin{B3,v) — lin{aaioc, Free Block)
Teons—2 = Allocator — aajjoc
consFun = Az:lin{Int ('), Teons—n)-
let (zn,2') = xin
let (x, zo, 21,22, 23) = 2’ in
let (xo,zs) = load[zo](xn) in
let (z1,z3) = load[z1](zn + 1)in
let Zpiock = lin{x N, xo, X1, T2, x3) in
let Zpiock = PACK[TN, Teons—0s B Teons—2; T3 Thiock] 88 Free Block in
let x4 = pack[B,~, lin(zs, x~, x )] as Allocator in
Lin{@rot TA s Tolock)

halt If the program runs out of memory, it goes into an infinite loop. The target language lacks direct support for infinite
loops, but the following closure uses a recursive type a;,r to encode an infinite loop:

{qins |—>n§n} + Inf[%] o

nco'n, —, Qin f 9 mf[%] : (Vwﬁ non(in s — Inf[%], ing) — )

né’n, —F halt[%] Ve [%]non() — 7y

Inf[%] =34 T .non(ﬂ,v“y??b non{f, aing) — )
znf[%] = /\’y?ﬁ Azinon(ains — Inf[%], Qinf)-
let (Tunroll, o) = xinunpack 3, (23, 25) = Tunroil To i (27 y) noN(z, q)
halt[%] = /\’y?ﬁ AZempty 11ON).
unpack tin f, Tdelay = delay(nin) in
let pqir = non{(Ax: ains.2), (Ax:qns.z)) in
let (Troits Tunrotr) = cOMMIt[Taeray](Tpair : (@ = Infinnon{a — s, iny — @)))in
let 25, = pack|ainy — Inf, non{Tunroi, mf[%]}] as Inf[%] in (mf[%] ) non(Tunrolts (Troli Ting))
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get
non lin .
C ,—, Qalioc V> 2, R — Rgn(TRr), Tptr — Ptr(tr, T1,72) F getn[Tr, 71, 7] (2R, Tpir) : lin(Rgn(Tr), Tn)

getn[TR, T1, T2) (TR, Tpir) =
unpack x, 9, €, w, (Tr, TDelay—x+ Tfs Tw; Ldone) = TR I
unpacky, €, w’, (TN, Teap) = Tpir i
unpack o, (Tio, T from) = Teap i
let (To, Tmem) = Tto Tr i
let <$mem707 Tmem—15 Tmem—2; Imem73> = Tmem in
let <zmem—(n+l)v $n> - loa’d[xmem—(n-l-l)](zN + (TL + 1)) in
let Ty = Tfrom lin<wo¢7 lin<mmem—07 Tmem—1) Tmem—2; xmem—3>> in
let 2 = lin{x,, Tpelay—xs TS+ Tw, Tdone) i
let g = pack]y, ¢, €,w, xr] as Rgn(Tr) in
lin{xg, T,)

set
non lin
C ,—,Qalioc > 2, TR — Rgn(TR), Tptr — Ptr(Tr, T1,72), Tvai — Tn b setp[Tr, T1, T2) (TR, Tptr; Toal) © Rgn(TR)

SEtn[TRy T1, TQ] (zRa Lptr, Ival) =
unpack x, 9, €, w, (Tr, TDelay—x+ Lf s Tw; Tdone) = TR IN
unpacky, €, w’, (TN, Teap) = Tpir in
unpack o, (Tio, T from) = Teap i
let (To, Tmem) = Tto Tr in
let <$mem707 Tmem—15 Tmem—2; Imem73> = Tmem in
let <zmem—(n+l)> - Store[zmem—(n+l)](zN + (TL + 1) — l'val) in
let Ty = Tfrom lin<wo¢7 lin<mmem—07 Tmem—1) Tmem—2; xmem—3>> in
let £ = lin{x,, Tpelay—xs TS+ Tw, Tdone) i
let xg = pack|x, d, €,w, xg| as Rgn(7g) in

TR
newrgn
non lin lin
C', =, QAlioc 7 2, Tfree 7 Tfree b newrgn(zsree) : Ip:0 .Rgn(p)
newrgn(T free) =

i
unpack X, Zpelay—y = delay( ZOH) in
unpaCk 57 TDelay—6 = delaY(nSn) in

let xr = lin{(disj zDelay(zS)vx) (ZDelay—s)s T Delay—y , non{newRgnT o, newRgnFrom), 0, newRgnDone) in

pack[Delay(6) V x, x, 6, lin(), Int(0), zg] as Hp:lbn .Rgn(p)
newRgnTo = Az:Delay(d) V x = lin{lin(), x)
newRgnFrom = Azx:lin{lin(), Delay(d) V x) =

let (y,z) = zinlet () = yinz
newRgnDone = Az : lin(Tfree, lin(), Int(0)).

let (T free, Te, T) = xinlet () = T inx pree
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freergn
non lin
C,—,QAlloc — 2 yLfree 7™ Tfreey TR RQ”(TR) F freergn[TR](zfree; IR) *Tfree
freergnlma)(@frees 1) =
unpack x, 9, €, w, (Tr, TDelay—x+ Tfs Tw; Ldone) = TR I
let <=Tf—toa «Tf—from> =zyrin
let (ze, xy) = Ty—to Ty in
let () = coerce(freergnCo)in
Tdone lin<xfreey Te,s $w>
freergnCo = casex, of Tpeiay—s.freergnCol or x,.. freergnCo2
freergnCol =
let () = commit|zpeiay—s](non() : (§ = non()innon()))in
commit [ peray— ] ((in() : (6 = lin() inlin()))
freergnCo2 = commit[Z pejay—v | (zy : (x = lin() inx))

alloc
C' F alloc|tr, 1, 72| (T free, TR, T1,T2) : Lin{Tfree, lin{Rygn(Tr), Ptr(Tr, 11, 72)))
where C’ :nén; —, O Alloc '_>l12n7 Lfree ™ Tfrees; TR Rgn(TR)v Tl = T, T2 = T2
alloc[Tr, 71, T2)(X free, TR, T1, T2) =
allocBlock
init Block
addBlockToRegion
allocBlock =
let <:EA7 Troll, xunroll> = Tfree in
unpack 54,74, (Tag, TAys TAfun) = Tunroll TA i
let <:EA7 :EFreeBlock:> = TAfun lin<$A5, :EA'y> in
initBlock =
unpaCk aN, 605 617 62; 637 <:CN7 Tmem—0y Tmem—15 Lmem—2, xmem73> = T FreeBlock in
let Tymem—2 = store[Tmem—2](Tn + 2 < z1)in
let Zmem—3 = store[Tmem—3](xn + 3 «— 22)in
addBlockToRegion =
unpack x, 9, €, w, (Tr, TDelay—x+ Tf Tw; Tdone) = TR IN
let <='17f7t07 xfffrom> =xy in
let (ze, xy) = Tf—to 2y in
let (% petay—x» T Delay—s) = coerce(getDelayDelta) in
unpack X', ¥'pejay - = delay(lz)n) in
unpack &', ¥, 5 = dela,y(na in

n
)i

let z; = commit[zperay—s](zf : (6 = non()in7r < lin{e, Delay(d) V x))) in
let z; = commit[peray—v|(zf : (x = lin{MTyp(an, 71, T2, €, w),Delay(6") V x') in 7r < lin(e, Delay(non()) V x))) in
let <=Tf—toa «Tf—from> =zyrin
let :E'j = non(top 0 104 © T f_1o, Tf—from © fromg o fromy)in
let Zpircap = non(toe 0 t0q © Tf—1o, Tf— from © fromg o from.)in
let zpircap = pack[lin(e, Delay(0”) V X'), Zptrcap) @8 PtrCap(tr, MTyp(an, 11, T2, €,w)) in
let zpi = packlan, €, w, noN(T N, Tptreap)] 88 Ptr(Tr, 71, T2) in
let Zimem—o0 = store[Tmem—o] (TN “— Zdone) in
let Zimem—1 = store[Tmem—1](xny + 1 — 2,,)in
let Ié - Z'Ln<fev lin<xmem707 Tmem—1) Tmem—2, xmem73>> in
let a], = dls-]Delay(zS’)vx’ (z’Delayﬂ;) in
let z,. = (y—from © fromg o fromy)lin{z., x, ) in
let 2 = lin(z.,, x’Delayfx, x’f, xn,deallocBlock) in
let 'y = pack[x’, &', lin(e, MTyp(an, T1, T2, €,w)), Int(an), 2] as Rgn(rg) in
lin{lin{z A, Troil, Tunroit), lin{x'y, Tpir))
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getDelayDelta =
case Ty, Of Tpetay—5-Lin{T pelay—x» T Delay—s) OF Ty -
commit [ peray—] (Ty : (x = lin(Delay(x), Delay(d))in x))
Ty = lin(MTyp(an, 71, T2, €, w), Delay(d’) vV x')
Ts = non)
to — a = A&y :lin(e, Delay(rs) V 7,,) =
let (xe, ) = Ty in
case &y, of Tpelay—s.let (xy) = commit[T peray—s](non() : (0 = non(ry)ind))inlin(z., z,)
orz,.lin(ze, xy)
from —a = Axey:linle, 7)) =
let (zc, xy) = Tey inlin{z., disj2Delay(rg)vTx (xy))
to — b = Axemu linle, lin(MTyp(an, 11, T2, €,w), Delay(§') V x')) =
let (e, Tmu) = Temu inlet (T, 2y) = Tppe Inlin(lin(ze, Ty, Ty)
from —b = Azxepmy lin(lin{e, MTyp(an, 71, T2, €, w)), Delay(§’) V x') =
let (Tem, Tu) = Temu inlet (Te, Tm) = Tem inlin(ze, lin{@,, x,,))
to — ¢ = Aemu :lin(e, lin{(MTyp(an, 11, T2, €, w), Delay(6') V X)) =
let (e, Tmu) = Temu inlet (T, 2y) = Tppe inlin{lin(ze, ), Tim)
from — ¢ = Ateym :lin(lin{e, Delay(8’) V x'), MTyp(an, 71, T2, €,w)) =
let (Tew, Tm) = Temu inlet (e, xy) = T inlin{xe, lin@,,, x.,))
deallocBlock = Ax freeemn 1in{Trree, lin{e, MTyp(an, 1, T2, €,w)), Int(an)).
let <:Efreea Lem s :EN> = T freeemN in
let <=’17A; Troll, mun7"oll> = T free in
let (xe, ) = Tem in
let <$mem 0y Tmem—1; Tmem—2; Tmem— 3> =Tm in
let <:Emem 0, L free— tazl> load[wmem—O] (:EN) in
let (Tmem—1, Tw) = load[@mem—1](zy + 1) in
unpad{ﬁu v, <wAﬁu T Ay, fo> = Tunroll TA in
let Tmem—o = store[zmem—o](zn < zaf)in
let Zyem—1 = store[Tmem—1](xn + 1 «— x43)in
let Zmem—2 = store[Tmem—2](TN + 2 — Zro) in
let o'y = lin{zn, lin(T Ay, Tmem—0, Tmem—1, Tmem—2; Tmem—3), allocatorCode) in
let 2y = pack[Int(an ), Tdgealiocpack, 4] as Allocator in
T free—tail lin<lin<xroll {E:4, Troll, Iunroll>7 Le, $w>
Tdeallocpack = Lin(y, an +— (lin(B,v) — lin{aaioe, FreeBlock)),
any +1— B,any + 2 — (Allocator — aajioc), an + 3 — T2)
allocatorCode = A&y, lin(Int(an ), Tdealtocpack ) -
let (xn, Tm) = Tpm in
let <=’17A'yy Tmem—0y Tmem—1; Lmem—2, xmem73> = Tm in
let (Tmem—0, Tar) = load[Tmem—o](zn) in
let (Zmem—1,248) = load[Tmem—1](zny + 1)in
let (Tmem—2, Trou) = load[Zmem—2](zn + 2)in
letxy = lin<$A5, T A, CL‘Af> in
let x4 = pack[3,, z4] as Allocator in
let © freeBiock = Packlan, lin(8,v) — lin{aauoe, FreeBlock), 3, (Allocator — o anoc), T2,
Un{TN, Tmem—0, Tmem—1s Tmem—2, LTmem—3)] a8 FreeBlock in
lin<mroll TA, xfreeBlock>
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Translation well-kindedness
Lemma 21. If AF 7 : k in the source language, then [A] & [7] : [£] in the target language.

Proof. By induction on the derivation of A F 7 : k. Sample cases:

lin lin

Case 1. A Rgn(7):2 and At 7:rgn and [Rgn(r)] = Rgn([r]). By induction on 7, [A] - [7] : [rgn], where [rgn] =0 .
lin
This implies that [A] - Rgn([r]) : 2.

non lin
Case 2. A1 — 11 and [1n — 7] = lin{Tiree, [T1]) — 1in(Tsree, [12]). Because aajoc — 2 € [A], we can conclude

lin
[A] F Tfree : 4. Using induction on 71 and 7o, we conclude [A] F lin(Tfree, [T1]) = lin(Tsree, [T2]) : 1 .
Translation well-typedness
Lemma 22. All of the following hold:
— If C,—F e: 7~ [e] in the source language, then [C, =], Zree = Trree €] : lin(Tiree, [7]) in the target language.
— If C,=F e: 7~ [e] in the source language, then [C,=] I [e] : [7] in the target language.

value

—Ife=vand CtFwv:7 ~ [valuev] in the source language, then [C] F [v] : [7] in the target language.
Proof. By induction on e’s typing derivation. Sample cases:

Case 1.
80516 i fom ik ein w [e] At
A {00 () nlgn; AF (Az:7q.€) i Ta — Tp valye AT lin(Teree, [Ta]) et (T free, ©) = xin [€]
By induction, [A]; {}; {};[O]; {z — [7al}; T free — Tiree; = [€] : lin{Ttree, [75]). From this, we can conclude that

[AL A} {3 (00 = lin{rpree; [Ta]) }; =1 et (2 free, 2) = win[e] : lin(Tree, [T0])

[
By translation well-kindedness, [A] F [74] :%, and so [A] & lin{Tfree, [Ta]) ', where n’ = n + 4. From this, we can
conclude:
[AL {3 A IO [ T T A F Az lin(Tiree, [ra])det (x pree, @) = zin [e] : [ra — 7]

Case 2.
C,—k er : Rgn(rr) ~ [er]

C, —t freergn(eg) : lin() ~ letfree xg = [er] inlin(freergn([Tr]|(Z free, Tr), lin())

By induction, [C, =], T free — Tfree I [er] : lin{Ttree, Rgn([7r])). Type-checking freergn[rr](xfree, zr) yields:

[[ C ]]7 —,Lfree " Tfree, LR F Rgn([[TR]]) F fT@G’l”g’l’LH[TR]]](CEfree,fL'R) * Tfree

non.

[C1,— % free — Tiree; r — Rygn([tr]) F lin{freergn|[[Tr]](Z free, Tr), lin()) : lin(Ttree, lin())

From this, we can conclude:

non.

[C 1= Zfree ¥ Trree I [freergn(er)] : lin(Tsree, lin())

where [freergn(er)] = let (T free, zr) = [er] inlin{freergn[[Tr]](free, Tr), lin))
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