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Abstract

We present a novel approach to fully dynamic management of physical disk blocks in Unix file
systems. By adding a single system call, zero, to an existing file system, we permit applications
to create holes, that is, regions of files to which no physical disk blocks are allocated, far more
flexibly than previously possible. zero can create holes in the middle of existing files.

Using zero, it is possible to efficiently implement applications including a variety of databases
and I/O-efficient computation systems on top of the Unix file system. zero can also be used to
implement an efficient file-system-based paging mechanism. In some I/O-efficient computations,
the availability of zero effectively doubles disk capacity by allowing blocks of temporary files to
be reallocated to new files as they are read.

Experiments on a Linux ext2 file system augmented by zero demonstrate that where their
functionality overlaps, zero is more efficient than ftruncate(). Additional experiments re-
veal that in exchange for added effective disk capacity, I/O-efficient code pays only a small
performance penalty.

Note: After writing this paper we learned of an earlier paper, which mentions “The ZERO
procedure to punch holes in a file” on page 139.

Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and David
Hitz. “NFS Version 3: Design and Implementation,” Proceedings of the 1994 Summer
USENIX Conference, pages 137–152. June 1994.

Nonetheless, our paper outlines some applications of such a facility and evaluates the performance
benefits to those applications.
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Abstract

We present a novel approach to fully dynamic management of physical disk blocks in Unix �le systems�
By adding a single system call� zero��� to an existing �le system� we permit applications to create holes�
that is� regions of �les to which no physical disk blocks are allocated� far more �exibly than previously
possible�

Using zero��� it is possible to e�ciently implement applications including a variety of databases and
I�O�e�cient computation systems on top of the Unix �le system� zero�� can also be used to implement
an e�cient �le�system�based paging mechanism� In some I�O�e�cient computations� the availability of
zero�� e�ectively doubles disk capacity by allowing blocks of temporary �les to be reallocated to new
�les as they are read�

Experiments on a Linux ext� �le system augmented by zero�� demonstrate that where their func�
tionality overlaps� zero�� is more e�cient than ftruncate��� Additional experiments reveal that in
exchange for added e�ective disk capacity� I�O�e�cient code pays only a small performance penalty�

� Introduction

One of the primary functions of any operating system is to manage resources on behalf of applications� This
is particularly true of bulk resources� such as memory and storage space� that may be required in di�erent
amounts at di�erent times during the execution of an application� The malloc�� and free�� functions
provided in the standard C library on Unix systems are a familiar example of bulk resource management�

Unfortunately� Unix does not provide a fully capable management mechanism for physical disk space�
Allocation of physical disk space is done implicitly� as necessary� by the write�� system call� but �ne�
grained deallocation is not well supported� This technique has drawbacks for a number of important
application classes� including database�management systems and applications of I�O�e�cient computa�
tion �Ven�	� Ven�
�� These applications manage large quantities of disk�resident data� so e�cient use of
physical disk space� including the ability to free unneeded blocks� is critical to their performance� If physical
disk space cannot be easily freed� then the tendency is for signi�cant numbers of unneeded �garbage blocks
to remain on disk� The result is that not all of the disk can be put to useful work� which arti�cially limits the
amount of data that can be manipulated� When restricted to rely on standard Unix �le�system semantics�
many I�O�e�cient computations are forced to dedicate up to half of their disk space to garbage��

Because Unix �le systems do not meet the needs of applications that demand the ability to manage
physical disk blocks� such applications typically resort to working with raw devices� Although this permits
better control over the allocation of physical disk space� it prevents the application from taking advantage
of any other potentially useful services provided by the Unix �le system�

In this paper� we demonstrate that by adding a single system call� zero��� to Unix� we can provide fully
dynamic management of physical disk space� In some cases� applications can make direct use of zero���

� Supported in part by the U�S� Army Research O�ce under grant DAAH������G����� and by the National Science

Foundation under grant DMR��	
�	��� Portions of this work were conducted while visiting the University of Michigan� the

University of Washington� and Syracuse University�
ySupported in part by Dartmouth College� by NSF under grant number CCR �����
�� by NASA Ames Research Center

under Agreement Number NCC 	���� and by Syracuse University�
�We discuss the reasons in Section ��
�
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though more typically they will rely on an intermediate programming interface� such as TPIE �Ven�	� Ven�
��
or a block�management library� such as libba� which we describe in Section 
��� Furthermore� we show how
some virtual�memory systems could bene�t from the availability of zero�� by allowing swap �les to grow
and shrink as necessary� Finally� we describe experiments in Sections 	 and � that illustrate the e�ciency of
an implementation of zero�� inside the Linux ext� �le system�

� Existing Unix File Systems

A wide variety of computers� including personal computers� workstations� and supercomputers �both parallel
and vector� use some variant of the Unix operating system �RT��� Tho���� The Unix �le system treats �les
as addressable� growable sequences of bytes� To support this abstraction� disk space is divided into �xed�size
blocks� and the metadata for each �le includes a set of pointers to disk blocks� The �le�s inode contains ��
pointers to direct blocks� a pointer to an indirect block � a pointer to a doubly indirect block � and a pointer to
a triply indirect block � Indirect blocks contain more pointers to data blocks� doubly indirect blocks contain
more pointers to indirect blocks� and triply indirect blocks contain more pointers to doubly indirect blocks�
Pointers are implemented as block numbers of corresponding to the physical location of the block on the
disk� For more details see �Bac��� LMKQ��� MJLF�
��

In Unix� when an application seeks past the end of an open �le and then issues a write request� the �le is
extended to accommodate the new data� That is� the �le size is updated to include the new data� Reading
�le positions between the old end of �le and the beginning of the new data produces zeroes� Most versions
of Unix implement large zero regions created in this way as holes in the �le� Within a hole� no physical
blocks are allocated to hold the zero data� instead� the corresponding block pointers in the inode metadata
are simply set to zero �LMKQ��� page ��
�� In this way� extremely large but sparse �les can be represented
with relatively little storage space� This is a signi�cant feature of Unix upon which zero�� depends�

��� The Linux ext� File System

The Linux operating system �Joh�	� Wir�	� is a complete re�implementation of Unix that is distributed free
of charge under the terms of the Free Software Federation�s GNU General Public License �Fed�� Linux runs
on platforms based on the Intel ��x�� family of CPUs� From the user�s perspective� Linux is remarkably
like Unix� and can be considered equivalent for the purposes of this paper� The primary �le�system type
supported by Linux is the ext� �le system� designed by R�emy Card� The inode metadata structure is
identical to that described above�

� The zero�� System Call

Our zero�� system call is designed to allow for the creation of holes within �les� Its name� and additional
aspects of its behavior� are derived from the fact that reading from a hole returns data consisting of all
zeroes�

The format of the zero�� system call is

int zero�int fd� unsigned int nbytes��

Its arguments are

fd

A �le descriptor corresponding to an open �le�

nbytes

The number of bytes that should be zeroed� starting at the current �le o�set�

From the perspective of the application� the e�ect of zero�� is to replace nbytes bytes of data in the
�le� beginning at the current logical o�set� with zeroes� It is as if write�� had been called with the same
fd and nbytes and with a bu�er of nbytes zeroes� Unlike write��� however� zero�� frees any blocks that
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are completely zeroed� creating a hole in the �le� and only writes zeroes over partially a�ected blocks� Our
implementation also frees any indirect blocks �single� double� or triple� that contain only zero pointers� The
call is particularly e�cient if the �le pointer is aligned on a block boundary and the number of bytes is a
multiple of the block size� since in such cases only metadata blocks are updated�

If a call to zero�� succeeds� the return value is the number of bytes that were zeroed� If an error
occurs� then the return value is the negated error code� Zeroing past the current EOF extends the EOF
appropriately� If nbytes is positive� then both the mtime and ctime of the �le are updated�

� Applications of zero��

��� I�O�E�cient Computation

In recent years� I�O�e�cient algorithms for a wide variety of problems have been developed� These include
algorithms from the domains of sorting �AV��� Arg�
� NV��� NV��� VS�
�� permuting �CSW�
� Cor���
Cor���� computational geometry �GTVV���� line segment intersection �AVV�	�� graph algorithms �CGG��	��
and scienti�c computation �VV�	�� The TPIE library �Ven�	� Ven�
� supports e�cient implementation of
many of these algorithms�

A common theme in many of these algorithms is that they make a series of passes through their data�
each pass reads most or all of the data from the previous pass and writes a similar amount of data� which
becomes the input for the next pass� Because the reads and writes are not necessarily sequential� ordinary
Unix pipes cannot generally be used between passes� Instead� these algorithms are typically implemented
so that each pass writes a temporary �le� Only when the i� �st pass has completed is it safe to delete the
temporary �le tfi that was its input �and the output of the ith pass�� Thus� at that time both tfi and
tf�i��� are stored on disk� If both are the same size� then neither can be larger than half of the disk space
available before the program ran� If zero�� is available� however� then physical blocks of tfi can be released
as they are read into main memory� These blocks can then be re�used by tf�i��� as it is written� The net
result is that the size of problem that can be solved with a given amount of disk space is e�ectively doubled�
because each temporary �le can occupy all available space�

��� The libba Block Allocation Library

Not all applications that bene�t from the ability to manage physical disk space are amenable to implementa�
tion in the context of TPIE� In particular� applications that use external�memory dynamic data structures�
such B�trees �Com���� grid �les �NHS�
�� or R�trees �Gut�
� and their variants �BKSS��� SRF���� need to be
able to allocate and deallocate space a block at a time� These data structures are widely used in a variety
of database systems� thus there is ample motivation to support them�

Without zero��� it is possible to implement applications that allocate and deallocate �xed sized disk
blocks within a Unix �le system� but there are drawbacks� The standard technique is to maintain a free list
that points to unneeded blocks within a �le� so that when a request to allocate a block is received� one of
the free blocks is used� Only when the free list is empty will another block be added to the end of the �le�
Deallocation requests are handled by putting the block to be deallocated onto the free list� The problem
with this technique is that because deallocated blocks are not physically released back to the �le system� the
�le�s physical space never decrease even when the application needs little space�

With zero��� the same approach can be used� but deallocated blocks can also be physically removed
from the �le� Thus� at any given time� the physical size of the �le is only as large as necessary to meet the
current demands of the application��

Functions to allocate and deallocate blocks can be implemented as a user�level library called libba on
top of the zero�� system call� libba provides six functions�

bfd ba create�int fd�

Create a block allocation on top of an existing �le� whose descriptor is given�

�This is not entirely true� but it is close� If the logical size of the �le is extremely large but only a small number of physical

data blocks are allocated then some additional physical blocks are likely to be needed to store indirect blocks�
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int ba size�bfd bfile�

Return the size of a block in the block �le� This size depends on the implementation and�or the
underlying device�

bid ba alloc�bfd bfile�

Allocate a block in the �le and return its block identi�er�

int ba free�bfd bfile� bid block�

Free a block in the given block �le with the given id�

int ba read�bfd bfile� bid block� void �buf�

Read the contents of the identi�ed block into the main memory bu�er pointed to by buf�

int ba write�bfd bfile� bid block� void �buf�

Write the contents the bu�er pointed to by buf to the identi�ed block�

Database systems are not the only application that can bene�t from the use of libba� The library can
also be used as the basis for a �le�system virtual�memory pager� Some variants of Unix support swapping
to �les instead of dedicated swap partitions �TRY���� Wir�	�� Normally� swapping is done either to a �le
of �xed physical size� as in Linux �Wir�	�� or to a �le whose physical size is as large as the maximum
amount of virtual memory in use at any time since the system was booted� as in some versions of the Mach
operating system �TRY����� Using a �le managed by libba as swap space allows more �exibility is system
administration� since no �xed upper limit on the swap �le size has to be established and only as much
physical disk space as is needed is used at any given time�

� Experimental Methodology

For the sake of experimentation� zero�� was implemented as an extension to the ext� �le system in the
LINUX operating system� kernel version ����	�� The implementation of zero�� was modeled after write���
except that instead of writing data to bu�ers in the bu�er cache� we release the bu�ers and replace metadata
pointers to them by zero pointers�

To verify that zero�� performs as expected� we ran two classes of benchmarks� First� we ran mi�
crobenchmarks to verify that zero�� was working as intended� and to compare its performance to the
existing ftruncate�� system call�� Second� we ran I�O�e�cient computation benchmarks to assess the
costs and bene�ts of using zero�� for such computations�

��� Testbed System

All benchmarks were run on a ���MHz Intel Pentium processor running our modi�ed Linux ����	� kernel�
I�O was done through a Buslogic BT��
�C fast SCSI PCI host adapter to a Connor ����S disk� The partition
on which the tests were run had approximately 
�	Mb of free space� All tests were run while the system
was otherwise idle�

��� Microbenchmarks

To verify that zero�� behaved as expected� we implemented three small benchmarks to test it in controlled
environments� The benchmarks were�

�� write a �le of N blocks� then zero�� all N blocks at once�

�� write a �le of N blocks� then ftruncate�� the �le to � length�

�� write a large �le� then zero�� N blocks in the middle of the �le�

�ftruncate�� provides a subset of the functionality of zero�� by permitting the de�allocation of physical disk blocks at the

ends of �les only�






We designed the �rst two experiments to compare the cost of zero�� to that of the existing ftruncate��

system call� As the results in Section ��� indicate� zero�� actually performed better than ftruncate�� in
our tests� The third experiment bears greater resemblance to expected uses of zero��� Zeroing N blocks in
the middle of a large �le was more expensive than zeroing an N �block �le� especially for small N � because
of the overhead of manipulating indirect and doubly�indirect blocks�

We repeated each of these experiments �ve times� and report the mean execution time� Because each
experiment changed the �le system� we measured both the time for the system call� and the time for the
system call followed by a call to fsync��� which forces all changes to the �le�s data and metadata to be
�ushed to disk� The former represents the latency seen by an application� whereas the latter represents the
true impact of the call on the system�

��	 I�O�E�cient Computation Benchmarks

To test the use of zero�� for I�O�e�cient computing� we modi�ed TPIE �Ven�	� Ven�
�� a Transparent
Parallel I�O Environment� to use zero�� to free blocks of temporary �les as they are read� TPIE presents
a high�level interface to application programs that hides low�level I�O operations� including zero��� Thus�
we only had to make trivial changes to application programs for them to take advantage of zero�� through
TPIE�

Using our modi�ed version of TPIE� we ran two I�O�e�cient computation benchmarks� nas ep� a bench�
mark chosen from the NAS parallel benchmark suite �BBB��
�� whose TPIE implementation is described
in �VV�	�� and s��� a benchmark that merge�sorts records consisting of a 
�byte integer key and �� additional
bytes of data� We ran each benchmark for a variety of problem sizes� up to the limits imposed by available
disk space�

� Experimental Results


�� Microbenchmarks

The benchmarks designed to compare the performance of zero�� and ftruncate�� produced pleasantly
surprising results� as illustrated in Figure �� zero�� proved not only the equal of ftruncate��� but was
actually more e�cient� even when followed by fsync�� to �ush all changes to the disk� We believe� from
inspecting the code� that the di�erence was due to a more e�cient implementation�

The second microbenchmark also produced interesting results� as shown in Figure �� Most notably� the
time decreased as the number of blocks zeroed increased� We speculate that was due to the increasing
number of indirect blocks that could be freed instead of written back to disk�


�� I�O�E�cient Computation Benchmarks

The NAS EP benchmark generates pairs of independently distributed� Gaussian random variates� For
problem size N � the benchmark generates N pairs of ��bit �oating point numbers� then scans them� producing
approximatelyN��
 pairs as output� Without zero��� we need enough free disk space to hold N �����
� �
����N pairs� With zero��� we only need enough space to hold N pairs� See �BBB��
� for a complete
description of the benchmark and �VV�	� for a description of its implementation in TPIE�

The s�� benchmark merge sorts N records consisting of �
 bytes each� Merge sort makes a series of
passes through the data� each of which permutes its input data� Because each pass writes exactly as much
data as it reads� the total size of the problem that can be solved without zero�� is limited to half of the
available disk space� With zero��� problems almost as large as the available disk space can be solved� The
result is an essentially in�place external�memory sort�

The performance of these two benchmarks is illustrated in Figures � and 
� In both cases� the availability
of zero�� allowed us to run larger instances of the problems than we could otherwise have done� The space
savings were o�set by a small increase in the execution time�
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Figure �� The time to zero�� an entire �le of N blocks� for N from ��K to ��
K �i�e�� �le sizes from �� Mb
to ��
 Mb�� For comparison� we also show the time to ftruncate�� a similar �le to zero size� In both
cases� we plot both the time for the system call alone� and for the system call followed by fsync��� which
�ushes all changes to disk� For ftruncate�� there is essentially no di�erence in the times� since Linux�s
implementation of ftruncate�� writes its changes back to the disk� leaving nothing for fsync�� to do�

� Summary

We present zero��� a new system call for Unix �le systems� The zero�� system call allows a programmer
to create �holes in the middle of an existing �le� which subsequently reads as zeroes�

The beauty of the zero�� system call is in its simplicity� and its natural semantic �t with other Unix
�le�system behavior� The power of the zero�� system call� however� is in its connection to the Unix
implementation of �le �holes� Large �block�sized� holes in Unix �les are not allocated any physical disk
space� which gives zero�� the side�e�ect of freeing disk space associated with the newly zeroed region� This
feature makes it possible for applications to control their physical disk�space usage more accurately and
e�ciently than before�

In our implementation we use zero�� in the TPIE I�O library to support I�O�intensive applications�
We show that in I�O�e�cient computation applications� the availability of zero�� allowed us to solve much
larger problems �typically close to a factor of two larger� with tolerable increases in execution time�

Thus far� we have only scratched the surface in terms of applications of zero��� We plan to continue
this research by conducting in�depth studies of the applicability and performance of zero�� for a variety of
additional applications�
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Figure �� The time to zero�� N blocks of data from the exact middle of a �le of ��
K blocks �� ��
Mb��
We plot both the time for the system call alone� and for the system call followed by fsync��� which �ushes
all changes to disk�
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