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An Improved Nuclear Vector Replacement Algorithm for
Nuclear Magnetic Resonance Assignment

Christopher James Langmead∗ Bruce Randall Donald †, ‡, §,¶ ,‖

September 3, 2003

Abstract

We report an improvement to the Nuclear Vector Replacement (NVR) algorithm [24] for
high-throughput Nuclear Magnetic Resonance (NMR) resonance assignment. The new algo-
rithm improves upon our earlier result in terms of accuracy and computational complexity. In
particular, the new NVR algorithm assigns backbone resonances without error (100% accu-
racy) on the same test suite examined in [24], and runs inO(n5/2 log (cn)) time wheren is
the number of amino acids in the primary sequence of the protein, andc is the maximum edge
weight in an integer-weighted bipartite graph.

Dartmouth Computer Science Technical Report TR2004-494.
http://www.cs.dartmouth.edu/reports/abstracts/TR2004-494/

Abbreviations used: NMR, nuclear magnetic resonance; NVR, nuclear vector replacement; RDC, resid-
ual dipolar coupling; 3D, three-dimensional; HSQC, heteronuclear single-quantum coherence; HN,
amide proton; NOE, nuclear Overhauser effect; NOESY nuclear Overhauser effect spectroscopy;dNN,
nuclear Overhauser effect between two amide protons; MR, molecular replacement; SAR, structure ac-
tivity relation; DOF, degrees of freedom; nt., nucleotides; SPG, Streptococcal protein G;SO(3), special
orthogonal (rotation) group in 3D; EM, Expectation/Maximization; SVD, singular value decomposition.

1 Introduction
The technique of Nuclear Vector Replacement (NVR) for Nuclear Magnetic Resonance (NMR)

assignment was introduced by Donald and co-workers in [25, 26], and subsequently enhanced in
[24]. The algorithm discussed in [24] improves upon the one presented in [26] in terms of accuracy
and the ability to handle missing data. Here, we report additional improvements to NVR which
confer still higher levels of accuracy as well as an improvement in asymptotic complexity. Table 1
summarizes the accuracy and complexity of the NVR algorithm as reported in [26], [24], and the
present paper.
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Reference Accuracy Complexity
[26] 90% O(nk3 + n3)
[24] 99% O(n3 log (n))

This paper 100% O(n5/2 log (cn))

Table 1: Incarnations of NVR: The evolution of NVR accuracy and computational complexity in [26], [24], and
the present paper. Each incarnation was tested on the same suite of three test proteins.n is the number of amino
acids in primary sequence of the protein,k is the resolution of a grid overSO(3), reflecting a discrete search over 3D
rotations, andc is the maximum edge weight in an integer-weighted bipartite graph

(A)

(B)

Figure 1: HSQC: (A) The unassigned15N-edited HSQC spectrum of the protein Ubiquitin. The peaks in this
spectrum report the chemical shifts of correlated HN (x-axis) and15N (y-axis) nuclei. (B) The amide group (outlined
in the box) on the backbone of an amino acid.R signifies the side-chain of the protein, which differs by amino-acid
type. Each backbone amide gives rise to a peak in the15N-edited HSQC spectrum.

1.1 Organization of paper
We begin, in Section 2, with a review of the relevant biology and then define the problem NVR
addresses. Section 3 summarizes the NVR algorithm. In Section 4, we detail the enhancements
made in the current paper and analyze the computational complexity of the new algorithm. Finally,
Section 5 presents the results of applying our method on real biological NMR data.

2 Background
Atomic nuclei having the quantum property of spin> 0 resonate when subjected to radio-frequency
energy in a strong magnetic field. The resonant frequency (orchemical shift) is determined by
a number of factors including the atom type (Hydrogen, Nitrogen, Carbon, etc.) and the local
electronic environment surrounding the nucleus. An NMR spectrometer records these resonant
frequencies as time-domain signals. These time-domain signals are almost always analyzed and
interpreted in the frequency-domain where resonances manifest as peaks in a spectrum. NMR data
capture interactions between spin systems (tuples of atomic nuclei) inR2, R3, or R4, where the axes
are the chemical shifts of the constituent nuclei. For example, NVR processes the 2-dimensional
15N-edited Heteronuclear Single-Quantum Coherence (HSQC) spectrum, where each peak iden-
tifies an amide (bonded HN and15N atoms) pair (Fig. 1). Proteins are linear polymers of amino
acids and the backbone of every amino acid (except proline), has a single amide group. Thus, in an
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ideal HSQC spectrum, each residue (amino acid) in the protein gives rise to a single, well-defined
peak.∗

The process of mapping each peak to the spin-system that generated it is known asassignment.
For the purposes of exposition, we will equatespin-systemwith residueas per the particular set
of NMR data upon which NVR operates. Hence, we will (re)define assignment as the mapping of
peaks to residues. The goal of the NVR algorithm is to assign each resonant peak in the HSQC.
In general, resonance assignments are required prior to structure determination, dynamics studies,
and other applications of NMR.

NVR models the assignment problem using weighted bipartite graphs. LetK be the set of
peaks in the HSQC. LetR be the set of residues in the primary sequence of the protein. Each
bipartite graph is defined as follows:B = {K, R,E}, whereE = K × R. Each edgee ∈ E is
weighted,w : K × R → R+ ∪ {0}. The edge weights from each peakk ∈ K are normalized so
that they form a probability distribution. If there are missing peaks in the HSQC then|K| < |R|.
In this casedummypeaks are added to the setK until |K| = |R|.

3 Related Work
AssignedRDCs have previously been employed by a variety of structure refinement [7] and struc-
ture determination methods [18, 3, 41], including: orientation and placement of secondary structure
to determine protein folds [12], pruning an homologous structural database [4, 29],de novostruc-
ture determination [34], in combination with a sparse set of assigned NOE’s to determine the global
fold [30], and a method developed by Bax and co-workers for fold determination that selects hep-
tapeptide fragments best fitting the assigned RDC data [9]. Bax and co-workers termed their tech-
nique “molecular fragment replacement,” by analogy with x-ray crystallography MR techniques.
UnassignedRDCs have been previously used to expedite resonance assignments [43, 9, 36].

The idea of correlating unassigned experimentally measured RDCs with bond vector orien-
tations from a known structure was first proposed by [2] and subsequently demonstrated in [1]
who considered permutations of assignments for RNA, and [19] who assigned a protein from a
known structure using bipartite matching. Our algorithm builds on these works and offers some
improvements in terms of isotopic labelling, spectrometer time, accuracy and computational com-
plexity. Like [19], we call optimal bipartite matching as a subroutine, but within an Expecta-
tion/Maximization framework which offers some benefits, which we describe below. Previous
methods require13C-labelling and RDCs from many different internuclear vectors (for example,
13C ′-15N, 13C ′-HN, 13Cα-Hα, etc.). Our method addresses the same problem, but uses a differ-
ent algorithm and requires only amide bond vector RDCs, no triple-resonance experiments, and
no 13C-labelling. Moreover, our algorithm is more efficient. The combinatorial complexity of
the assignment problem is a function of the numbern of residues (or bases in a nucleic acid) to
be assigned, and, if a rotation search is required, the resolutionk3 of a rotation-space grid over
SO(3). The time-complexity of the RNA-assignment method, named CAP, proposed in [1] grows
exponentially withn. In particular, CAP performs an exhaustive search over all permutations,
making it difficult to scale up to larger RNAs. The method presented in [19] runs in timeO(In3),
whereO(n3) is the complexity of bipartite matching [21] andI is the number of times that the
bipartite matching algorithm is called.I may be bounded byO(k3), the size of the discrete grid

∗In reality however, peaks often overlap and some may not appear at all due to intra-molecular dynamics. These
issues are just some of the challenges faced when analyzing NMR data. Prolines and the N-terminus do not, of course,
generate peaks.
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search for the principal order frame overSO(3) (using 3 Euler angles). Here,k is the resolution
of the grid. Thus, the full time-complexity of the algorithm presented in [19] isO(k3n3). The
method presented in [25, 23] also performs a discrete grid search for the principal order frame over
SO(3), but uses a more efficient algorithm with time-complexityO(nk3). Once the principle order
frame has been computed, resonance assignments are made in timeO(n3). Thus, the total running
time of the method presented in [25] isO(nk3 + n3). [42] has recently reported a technique for
estimating alignment tensors (but not assignments) using permutations of assignments on a sub-
set of the residues identified using either selective labelling orCα andCβ chemical shifts. Ifm
residues can be identifieda priori (using, e.g., selective labelling) as being a unique amino acid
type, then [42] provides anO(nm6) tensor estimation algorithm that searches over the possible
assignment permutations for them RDCs.

The algorithm presented in [24] requires neither a search over assignment permutations, nor a
rotation search overSO(3). Rather, the technique of Expectation/Maximization (EM) [10] is used
to correlate the chemical shifts of the HN-15N HSQC resonance peaks with the structural model.
In practice, the application of EM on the chemical shift data is sufficient to uniquely assign a
small number of resonance peaks. In particular, EM is able to assign a sufficient number of peaks
for direct determination of the alignment tensorS. NVR eliminates the rotation grid-search over
SO(3), and hence any complexity dependency on a grid or its resolutionk, running inO(n3 log n)
time, scaling easily to proteins in the middle NMR size range (n = 56 to 129 residues). Moreover,
our algorithm elegantly handles missing data (both resonances and RDCs). We note that NVR
both adopts a ‘best-first’ strategy and uses structural homology to make assignments; best-first and
homology-based strategies for disambiguating assignments are well-established techniques (e.g.,
[17, 33]). This paper improves the complexity of NVR toO(n5/2 log (cn)).

4 Nuclear Vector Replacement
The experimental inputs to NVR are detailed in Table 2. Our algorithm computes assignments
by correlating topological and geometric constraints to a given model of the protein’s structure.
These constraints are extracted directly from the NMR data and are converted into assignment
probabilities. These assignment probabilities become the edge weights described above. We will
summarize these constraints here and direct the reader to [24] for a detailed explanation of the NVR
algorithm. The topological constraints are obtained from an assay for measuring amide-exchange
rates and serve to identify labile, solvent-accessible amide protons. NVR uses two categories of
geometric constraints, HN-HN NOE’s (dNNs) and RDCs.dNNs may be observed between pairs of
amide protons that are within approximately 5Å of each other.dNNs arelocal measurements. In
contrast, RDCs [37, 38] provideglobal orientational restraints on internuclear bond vectors. For
each RDCD, we have

D = Dmaxv
TSv, (1)

whereDmax is a constant, andv is the internuclear vector orientation relative to an arbitrary sub-
structure frame andS is the3 × 3 Saupe order matrix[35]. S is a symmetric, traceless, rank 2
tensor with 5 degrees of freedom, which describes the average substructure alignment in the di-
lute liquid crystalline phase. If the assignments of five or more RDCs in substructures of known
geometry,S can be determined using singular value decomposition [28].

OnceS has been determined, RDCs may be simulated (back-calculated) given any other in-
ternuclear vectorvi. In particular, suppose an (HN,15N) peaki in an HSQC spectrum is assigned
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Experiment/Data Information Role in NVR
Content

HN-15N HSQC HN,15N Chemical shifts Backbone resonances,
Cross-referencing NOESY

HN-15N RDC (in 2 media) Restraints on amide Tensor Determination,
bond vector orientation Resonance Assignment,

H-D exchange HSQC Identifies solvent exposed Tensor Determination
amide protons

HN-15N HSQC-NOESY Distance restraints Tensor Determination,
between spin systems Resonance Assignment

Backbone Structure Tertiary Structure Tensor Determination,
Resonance Assignment

Chemical Shift Restraints on Tensor Determination,
Predictions Assignment Resonance Assignment

Table 2:NVR Experiment Suite: The 5unassignedNMR spectra used by NVR to perform resonance assignment.
The HSQC provides the backbone resonances to be assigned. HN-15N RDC data in two media provide independent,
global restraints on the orientation of each backbone amide bond vector. The H-D exchange HSQC identifies fast
exchanging amide protons. These amide protons are likely to be solvent-exposed and non-hydrogen bonded and can
be correlated to the structural model. A sparse number (< 1 per residue, on average) of unassigneddNNs can be
obtained from the NOESY. ThesedNNs provide distance constraints between spin systems which can be correlated to
the structural model. Chemical shift predictions are used as a probabilistic constraint on assignment.

to residuej of a protein, whose crystal structure is known. LetDi be the measured RDC value
corresponding to this peak. Then the RDCDi is assigned to amide bond vectorvj of a known
structure, and we should expect thatDi ≈ Dmaxv

T
j Svj (modulo noise, dynamics, crystal contacts

in the structural model, etc).
The NVR algorithm is divided into two phases,Tensor DeterminationandResonance Assign-

ment. In the first phase, chemical shift predictions,dNNs, and amide exchange rates are used
to make a small number of assignments using Expectation/Maximization (EM). Specifically, this
phase attempts to assign at least 5 peaks for the purpose of determining the alignment tensors di-
rectly [28]. The tensors are used to convert RDCs into probabilistic constraints. Algorithmically,
the only difference between phases 1 and 2 is that phase 1 does not use RDCs (because the tensors
have not yet been determined).

NVR uses EM to make assignments. EM is a statistical method for computing the maximum
likelihood estimates of parameters for a generative model; it has been applied to bipartite matching
problems in computer vision [8]. In the EM framework there are both observed and hidden (i.e.,
unobserved) random variables. In the context of resonance assignment, the observed variables are
the chemical shifts,dNNs, amide exchange rates, RDCs, and the 3D structure of the target protein.
Let X be the set of observed variables.

The hidden variablesY = YG∪YS are the true (i.e., correct) resonance assignmentsYG, andYS,
the correct, or ‘true’ alignment tensor. Of course, the values of the hidden variables are unknown.
Specifically,YG is the set of edge weights of a bipartite graph,G = {K ∪R,K ×R }, whereK is
the set of peaks in the HSQC andR is the set of residues in the protein. The weightsYG represent
correctassignments, and therefore encode a perfect matching inG. Hence, for each peakk ∈ K
(respectively, residuer ∈ R), exactly one edge weight fromk (respectivelyr) is 1 and the rest are
0. The probabilities on all variables inY are parameterized by the ‘model’, which is the setΘ of all
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assignments made so far by the algorithm. Initially,Θ is empty. As EM makes more assignments,
Θ grows, and both the probabilities on the edge weightsYG and the probabilities on the alignment
tensor valuesYS will change. The goal of the EM algorithm is to estimateY accurately to discover
the correct edge weightsYG, thereby computing the correct assignments. The EM algorithm has
two steps; the Expectation (E) step and the Maximization (M ) step. TheE step computes the
expectation

E(Θ ∪Θ′|Θ) = E(log P(X, Y |Θ ∪Θ′)). (2)

Here,Θ′ is a non-empty set of candidate new assignments that is disjoint fromΘ. TheM step
computes the maximum likelihood new assignmentsΘ∗,

Θ∗ = argmax
Θ′

E(Θ ∪Θ′|Θ). (3)

Then the master list of assignments is updated,Θ ← Θ ∪ Θ∗. Thus, on each iteration, the EM
algorithm makes the most likely assignments. The algorithm terminates when each peak has been
assigned, and thus is guaranteed to converge in at mostn iterations. In practice, the algorithm
converges in about 10 iterations. The interested reader is directed to [24] for algorithmic details.

5 Algorithmic Improvements
As previously stated, NVR employs weighted bipartite graphs to represent assignment probabil-
ities. Due to a filtering step ([24], pg. 135), these graphs are guaranteed to be sparse. That is,
each vertex is connected to a constant number of other vertices. NVR repeatedly calls maximum
bipartite matching as a subroutine; this subroutine is the dominant term in the time complexity of
NVR. In [24], we used an implementation of the Kuhn-Munkres algorithm for maximum bipartite
matching [21]. On sparse graphs, such as those used in our algorithm, Kuhn-Munkres runs in time
O(n2 log n). The maximum bipartite matching subroutine is called at mostn times, yielding an
O(n3 log n) time complexity.

Alternatively, it is possible to convert the real-valued edge weights to integers by first scaling
each edge weight by some constantc, and then rounding to the nearest integer. When the edge
weights are integers, a different class of weighted bipartite matching algorithms can be used. In
particular, the cost-scaling algorithm for assignment [13] can be used which has a time complexity
of O(n3/2 log (cn)). For sufficiently large values ofc, the matching computed on the integer-
weighted graph will be the same as the matching computed on the real-weighted graph, with high
probability. NMR data is, in general, accurate to no more than 5-6 significant digits. Thus, setting
c = 107 suffices. Once again, the maximum bipartite matching subroutine is called at mostn
times, yielding aO(n5/2 log cn) time complexity. Thus, we obtain an improvement by anO(

√
n)

factor in the time-complexity of our algorithm.

6 Results
NVR was applied to NMR data from 3 different proteins matched to 20 trial structures (Tables
3-4). The experimental data used for our experiments are identical to those used in [24], including
significant amounts of missing data (Table 5). The algorithm reported in [24] achieved an average
accuracy of just over 99%. In contrast, the present version of NVR is 100% accurate on the same

6



Comparison to 1D3Z
PDB ID Exp. Method Sequence Identity RMSD
1G6J [6] NMR 100% 2.4Å

1UBI [32] X-ray (1.8Å) 100% 1.3Å
1UBQ [40] X-ray (1.8Å) 100% 1.4Å
1UD7 [20] NMR 90% 2.4Å

PDB ID Exp. Method RMSD vs. 3GB1
1GB1 [16] NMR 1.3Å
2GB1 [16] NMR 1.3Å
1PGB [14] X-ray (1.92Å) 1.2Å

Table 3:Human Ubiquitin and Streptococcal Protein G (SPG).The 4 structures of human ubiquitin
used in the 4 separate trials of NVR. Both X-ray crystallography and NMR derived structures were tested. The structure
1D3Z (Cornilescu et al. 1998) is the only published structure of ubiquitin to have been refined against RDCs. The
RDCs used to solve that structure have also been published and were used in each of the 4 NVR trials. 1G6J, 1UBI and
1UBQ have 100% sequence identity to 1D3Z. 1UD7 is a mutant form of human ubiquitin. As such, it demonstrates
the effectiveness of NVR when the model is a close homolog of the target protein. The backbone-RMSD (all-atom) is
reported for each protein relative to the 1D3Z structure. The 3 structures of SPG used in the 3 separate trials of NVR.
Both x-ray crystallography and NMR derived structures were tested. The structure 3GB1 (Juszewski et al. 1999) is
the only published structure of SPG to have been refined against RDCs. The RDCs used to solve that structure have
also been published and were used in each of the 3 NVR trials. 1GB1, 2GB1 and 1PGB have 100% sequence identity
to 3GB1. The backbone-RMSD (all-atom) is reported for each protein relative to the 3GB1 structure.

PDB ID Exp. Method RMSD vs. 1E8L
193L [39] X-ray (1.3Å) 2.1Å
1AKI [5] X-ray (1.5Å) 2.1Å

1AZF [27] X-ray (1.8Å) 2.1Å
1BGI [31] X-ray (1.7Å) 2.1Å
1H87 [15] X-ray (1.7Å) 2.1Å
1LSC [22] X-ray (1.7Å) 2.2Å
1LSE [22] X-ray (1.7Å) 2.2Å

PDB ID Exp. Method RMSD vs. 1E8L
1LYZ [11] X-ray (2.0Å) 2.1Å
2LYZ [11] X-ray (2.0Å) 2.1Å
3LYZ [11] X-ray (2.0Å) 2.1Å
4LYZ [11] X-ray (2.0Å) 2.1Å
5LYZ [11] X-ray (2.0Å) 2.1Å
6LYZ [11] X-ray (2.0Å) 2.1Å

Table 4: Hen LysozymeThe 13 structures of hen lysozyme used in the 13 separate trials of NVR. Both x-ray
crystallography and NMR derived structures were tested. The structure 1E8L (Schwalbe et al. 2001) is the only
published structure of lysozyme to have been refined against RDCs. The RDCs used to solve that structure have also
been published and were used in each of the 13 NVR trials. Each protein has 100% sequence identity to 1E8L. The
backbone-RMSD (all-atom) is reported for each protein relative to the 1E8L structure.

set of 20 test cases on test proteins. The improved accuracy is due to small parameter changes
when computing assignment probabilities from the experimental data. The new algorithm is also
very fast; run-times ranged from seconds to a few minutes in our experiments.

7 Conclusion
We have described an improvement to the NVR algorithm [26, 24] for high-throughput NMR res-
onance assignment for a protein of known structure, or of an homologous structure. In particular,
the new algorithm has an improved computational complexity (O(n5/2 log (cn)) vs. O(n3 log (n)))
and improved accuracy. Resonance assignment accuracy is paramount in NMR because incorrect
assignments can lead to incorrect structure determinations. We tested NVR on real NMR data
from 3 proteins using 20 different alternative structures as input. Notwithstanding the fact that
these NMR data sets were missing up to 19% of the (expected) experimental data (Table 5), NVR
achieved 100% assignment accuracy.
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Protein HSQC Peaks RDCs
Observed “missing” #, (%) Observed “missing” #, (%)

medium 1 medium 2 medium 1 medium 2
Ubiquitin 70 2, (3%) 65 64 7 (10%) 8, (11%)

SPG 55 0, (0%) 48 46 7 (13%) 9, (16%)
Lysozyme 126 0, (0%) 107 102 19 (15%) 24, (19%)

Table 5: Missing Data. The data processed on our experiments contained both missing peaks and missing
RDCs. By missing, we mean that if the protein hasn amino acids (excluding prolines and theN -terminus), then the
HSQC spectrum should haven peaks.n RDCs should also be recorded for each medium. In reality, some data is not
obtainable. Column 2 indicated the number of HSQC peaks contained in our test data. Column 3 indicates the number
of missing HSQC peaks (number of expected peaks− number of observed peaks). Columns 4-5 indicates the number
of RDCs obtained in media 1 and 2. Columns 6-7 indicates the number of missing RDCs in media 1 and 2. The NVR
algorithm processed all data as-is, and handles missing data.
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