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Abstract
The long development process of novel pharmaceutical compounds begins with the identification of a lead inhibitor

compound. Computational screening to identify those ligands, or small molecules, most likely to inhibit a target pro-

tein may benefit the pharmaceutical development process by reducing the time required to identify a lead compound.

Typically, computational ligand screening utilizes high-resolution structural models of both the protein and ligand

to fit or ‘dock’ each member of a ligand database into the binding site of the protein. Ligands are then ranked by

the number and quality of interactions formed in the predicted protein-ligand complex. It is currently believed that

proteins in solution do not assume a single rigid conformation but instead tend to move through a small region of

conformation space [14]. Therefore, docking ligands against a static snapshot of protein structure has predictive limi-

tations because it ignores the inherent flexibility of the protein [14]. A challenge, therefore, has been the development

of docking algorithms capable of modeling protein flexibility while balancing computational feasibility. In this paper,

we present our initial development and work on a molecular ensemble-based algorithm to model protein flexibility

for protein-ligand binding prediction. First, a molecular ensemble is generated from molecular structures satisfying

experimentally-measured NMR constraints. Second, traditional protein-ligand docking is performed on each mem-

ber of the protein’s molecular ensemble. This step generates lists of ligands predicted to bind to each individual

member of the ensemble. Finally, lists of top predicted binders are consolidated to identify those ligands predicted

to bind multiple members of the protein’s molecular ensemble. We applied our algorithm to identify inhibitors of

Core Binding Factor (CBF) among a subset of approximately 70,000 ligands of the Available Chemicals Directory.

Our 26 top-predicted binding ligands are currently being tested experimentally in the wetlab by both NMR-binding

experiments (15N-edited Heteronuclear Single-Quantum Coherence (HSQC)) and Electrophoretic Gel Mobility Shift

Assays (EMSA). Preliminary results indicate that of approximately 26 ligands tested, three induce perturbations in

the protein’s NMR chemical shifts indicative of ligand binding and one ligand (2-amino-5-cyano-4-tertbutyl thiazole)

causes a band pattern in the EMSA indicating the disruption of CBF dimerization.
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1 Introduction

Core Binding Factor is a heterodimeric transcription factor involved in hematopoesis and is com-
posed of α and β subunits (Figure 1). The CBF-α:CBF-β heterodimer complex binds DNA,
affecting cell growth through regulation of homeobox (HOX) genes [21]. Translocations in the
CBF-α and CBF-β genes are frequently oncogenic and are implicated in several subtypes of
leukemia [20, 21, 28, 9]. In particular, Acute Myelomonocytic Leukemia (AMML) is associated
with the oncogenic gene fusion CBF-β-MYH11 formed through a chromosome 16 inversion [20].
In the corresponding fused protein, the smooth muscle myosin heavy chain (SMMHC) protein en-
coded by the MYH11 gene is covalently attached to CBF-β. While the CBF-α binding site of the
fusion protein remains functionally intact, the CBF-α:CBF-β-SMMHC complex does not properly
regulate gene expression. Immunofluorescence localization experiments [15, 1] demonstrate that
the CBF-β domain of the CBF-β-SMMHC fusion protein oligomerizes with wild-type α-subunits
while the SMMHC domain binds actin filaments in the cell’s cytoplasm. These interactions cause
the entire complex (including CBF-α) to be sequestered outside the nucleus thereby vitiating tran-
scription [15, 1]. Therefore the ultimate goal of this computer-assisted drug design effort was to
design a small-molecule inhibitor to disrupt the complex formed by the wild-type CBF-α with the
oncoprotein CBF-β-SMMHC. Disruption of the complex would allow copies of CBF-α not bound
to CBF-β-SMMHC to associate with DNA. Alone, CBF-α is capable of regulating gene expression
albeit to a lesser extent than the CBF-α:CBF-β complex [6, 30].

One challenge faced in the design of a small molecule to disrupt CBF-α:CBF-β dimerization
was that at the time we began this project, small molecule dimerization inhibitors were essentially
unknown. The X-ray crystallographer Gregory Petsko wrote: “To my knowledge there is no small-
molecule drug that has yet been designed to disrupt a protein-protein interaction. Such targets
will be of increasing importance as our understanding of signal transduction and transcriptional
regulation deepens” [24]. As the field of drug-design progresses, it will transition to include modifi-
cation of cell signaling and transcription factors such as CBF. Our work on CBF represents a first
step in this direction.

The use of molecular ensembles for drug design presents a challenge. Traditional drug design
algorithms spend significant effort removing conformations from consideration so as to reduce the
computational time required for ligand binding evaluation. In contrast, ensemble-based approaches
seek to accurately sample conformation space by including as many molecular conformations as
possible. In this work, we represent protein flexibility by an ensemble of low-energy molecular con-
formations generated from solution Nuclear Magnetic Resonance (NMR) spectroscopy. Therefore
each conformation of the molecular ensemble is consistent with the experimental NMR restraints
and represents a protein conformation possibly assumed in solution. By including a modest number
of NMR-consistent conformations we incorporate a degree of molecular flexibility without suffering
a combinatorial explosion.

This work presents a description of our use of molecular ensembles to model a target protein’s
flexibility in a novel Computer-Aided Drug Design (CADD) approach. In this paper we describe
the in silico design of a ligand to disrupt dimerization of the wild-type CBF-α and CBF-β subunits.
Our approach was successfully used to discover a novel inhibitor of CBF dimerization. Our inhibitor
could be useful in itself, in that one could potentially disrupt the healthy transcription factor with
a small ligand, allowing new in vivo studies of AMML. Our inhibitor could also serve as a lead
compound to inhibit the oncogenic form of CBF-β. In Section 2 we present previous work on
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Figure 1: Core Binding Factor. (Left) Backbone trace of the first model of the NMR solution structure
of CBF-β (PDB: 2JHB [13]). (Right) The CBF complex (CBF-α (brown) and CBF-β (blue)) are shown
in complex with DNA (PDB: 1IO4 [29]). While CBF-α makes intimate contact with the DNA, CBF-β
‘piggybacks’ on CBF-α and does not directly interact with the DNA. The binding of CBF-β to CBF-α
increases the binding affinity of CBF-α for DNA [6, 30].

molecular modeling using conformational ensembles. Our ensemble scoring approach is described
in Section 3. Section 3.1 presents our method for ensemble generation, Section 3.2 and 3.3 provide
details on our use of the LUDI search algorithm, the ACD database, and our method of identifying
top ensemble binders, Section 3.4 describes the two wetlab experiments (SAR by NMR and EMSA)
performed. Finally, in Section 4 we present the results of applying our ensemble search strategy to
the identification of dimerization inhibitors for CBF.

2 Previous Work

The intuition behind the use of ensembles is straightforward: a ligand predicted to bind multi-
ple structures of an ensemble has the potential to bind the protein as it moves through a region
of conformation space. We can biophysically ground the use of ensembles with the Ergodic hy-
pothesis. The Ergodic hypothesis states that phenomena, such as the binding energy ∆G, are
experimentally measured as a time average and that the time average is equal to the ensemble av-
erage. Therefore, in principle, accurately computing the ensemble average allows one to accurately
predict experimentally observed phenomena.

The ensemble average specified in the Ergodic hypothesis is weighted by the Boltzmann prob-
ability of observing each state. That is for some measured phenomenon, G,

Gobs =
1
τ

∫ t0+τ

t0

G(t)dt =
∫

c
P (c)Gc,

where the first integral represents the time average over a timestep τ and G(t) is the value of G
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at time t. The second integral is taken over all of conformation space, P (c) is the probability of
observing state c, and Gc is the value of G associated with state c. In a Boltzmann distribution, the
probability P (c) is exp(−Ec/RT )/Z where Ec is the energy of conformation c, R is the gas constant,
T is the temperature in Kelvin, and Z is the partition function, Z =

∫
c exp(−Ec/RT ). Thus by

the Ergodic hypothesis, the value of a phenomenon measured as a time average of one molecule is
equal to the value measured as a Boltzmann-weighted ensemble average over a sufficiently large set
of molecules. The challenge that arises when attempting to compute a complete ensemble average
is computing the integral over all of conformation space. Thus attempts to sample conformational
space at ‘high-yield’ positions have been developed [19, 17]. These high-yield conformations are
those with high probability of occurrence (i.e., those with low energies). Therefore there are two
steps to an ensemble based scoring scheme. First, one needs to develop a method for sampling
conformation space (generating the ensemble) and second, one needs to devise a way of combining
or utilizing those conformations (scoring the ensemble).

2.1 Ensemble Generation

There are three main methods for generating ensembles to sample conformational space. The
first technique for generating a molecular ensemble is to perform a Molecular Dynamics (MD)
simulation starting from a known or hypothesized conformation and to save snapshots of the system
throughout the MD simulation [25]. This technique can generate an arbitrary number of molecular
conformations. The drawbacks of MD-based ensembles is that there is no guarantee they evenly or
completely sample conformation space. That is, the conformations sampled are inherently biased
based on the starting conformation. As a result, MD-generated ensembles sample a relatively local
region of conformation space. The second method of generating molecular ensembles uses amino
acid rotamers. Modeling side-chain motions with a discrete set of side-chain conformations, or
a rotamer library, allows a reduced representation of the amino-acid conformational space. In a
rotamer library, each amino acid is represented by a set of commonly assumed conformations [26,
22]. These conformations are typically mined from analysis of high resolution protein structures
in the protein databank; alternatively rotamers may be generated from a sampling of low energy
conformations as scored with an energy function.

In the final ensemble generating method, an ensemble can be created from one or more NMR
experiments or multiple X-ray crystallography experiments[18, 25]. A published NMR ‘structure’
is an ensemble of structures each of which similarly satisfies the experimental constraints. Flexible
regions of a protein generally do not allow sufficient geometric constraints to be measured by NMR
and therefore show increased variance in position among conformations in an NMR ensemble. As
an example, both the N- and C-termini typically have fewer NMR constraints, correspondingly
most published NMR ensembles show increased positional variance at the N- and C-termini. The
structures of an NMR- or crystallography-generated ensemble may demonstrate local structural
differences but tend not to capture extremely large motions. As an ensemble-generating technique,
the use of multiple NMR or crystallographic structures has a limitation in that a relatively small
number of conformations may be sampled (typically on the order of 20); however, these techniques
have the advantage that the crystallographic structures represent protein conformations assumed
in the crystal and the NMR structures are consistent with experimentally measured conformational
constraints.
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2.2 Ensemble Scoring

Several techniques have been developed for utilizing molecular ensembles. When the work presented
in this report was performed (1998) a very limited corpus of previous work existed on ensemble
scoring [16]. However, after the completion of our research, a number of approaches, similar to our
method, have been published [5, 16, 8, 23]. These approaches perform conventional docking against
each member of an ensemble and typically compute the average or best interaction energy between
the protein and ligand. Ensembles have also been used to construct a dynamic pharmacophore and
screen a ligand database [7].

The ensemble model presented in this report represents an initial simple ensemble model, and
has been replaced in our lab by our more recently developed ensemble scoring method [19, 17]. The
more sophisticated method, called K∗, is derived to be an approximation to the true association
(binding) constant KA by expressing each species’ chemical potential as a function of the species’
partition function and solving for the equilibrium condition [19]:

K∗ =
qPL

qP qL

qPL =
∑
b∈B

exp(−Eb/RT ), qP =
∑
f∈F

exp(−Ef/RT ), qL =
∑
l∈L

exp(−El/RT ), (1)

where B, F , and L represent rotamer-based ensembles for the bound protein-ligand complex (PL),
the free protein (P ), and the free ligand (L) respectively, Es is the energy of conformation s, R is
the gas constant, and T is the temperature in Kelvin. The accuracy with which K∗ approximates
KA is proportional to the accuracy of the partition function approximation used. We have also
developed an efficient deterministic approximation algorithm, capable of approximating K∗ to
arbitrary precision [19]. In [19], K∗ was used to model molecular flexibility to predict protein-ligand
binding for protein redesign. K∗ identified two mutation sequences of the Gramicidin Synthetase
A Phenylalanine Adenylation domain with altered ligand specificity; the ligand specificity of the
redesigned proteins switched from phenylalanine to leucine. Predicted mutation sequences were
created in the wetlab and experimentally exhibited the desired change in substrate specificity.

3 Methods

The overall ligand screening algorithm is shown in Figure 2. First, a suite of NMR experiments are
performed to obtain sequence-specific resonance assignments and extract geometrical constraints
(e.g., NOEs and scalar couplings) on the structure of a target protein. Second, the molecular
dynamics simulated annealing program DYANA [11] generates an ensemble of twenty molecular
conformations which best satisfy the NMR experimental constraints. Third, a single-structure
database screening algorithm, LUDI [4], is used to screen the Available Chemicals Directory (ACD)
database (MDL Information Systems, San Leandro, CA) against each of the twenty DYANA gen-
erated conformations. Fourth, the top ACD ligands (as scored by LUDI) are consolidated to find
ligands which rank among the top LUDI-predicted binders for a majority of DYANA-generated
CBF-β conformations. Finally, these top ligands were purchased and screened using two wetlab
experimental techniques: Structure Activity Relationship by NMR (SAR by NMR) [27, 12] and
Electrophoretic Gel Mobility Shift Assay (EMSA).
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NMR

DYANA

Consolidation

20 LUDI Runs

20 Conformations

Wetlab Testing

Figure 2: Ensemble-Based CADD Algorithm. The computational steps developed and described in
this paper are shown in green while the wetlab steps performed by our collaborators in the Speck and
Bushweller labs are shown in blue. Geometric constraints on the protein’s conformation are measured
by NMR spectroscopy, these constraints are utilized by the molecular dynamics program DYANA [11] to
generate an ensemble of 20 protein conformations. The ligand docking program LUDI is run on each
member of the ensemble and generates lists of ligands predicted to bind each conformation. Ligands which
are predicted to bind multiple protein conformations are identified during the consolidation step. These
ligands are then tested experimentally in the wetlab.

3.1 Ensemble Generation

The structure of CBF-β was solved in 1999, by two labs including our collaborators in John Bush-
weller’s lab in the Department of Chemistry at Dartmouth [13, 10]. We therefore had access to
both the initial and final solution NMR ensembles for CBF-β [13]. The first (initial) ensemble was
generated from preliminary NMR data whereas the second (final) ensemble was computed from the
final NMR data and is the ensemble deposited in the protein databank (PDB: 2JHB [13]). In this
paper, both the initial and final molecular ensembles were used in CADD screening; each ensemble
contained 20 low-energy conformations of CBF-β. NMR spectra were collected by the Bushweller
lab using a 500 MHz UnityPlus Varian spectrometer.

Conceptually the molecular structures in each ensemble are the CBF-β structural models that
best satisfy the NMR constraints calculated by experimentally-measured solution NMR. The com-
puter program DYANA [11] generates molecular structures using molecular dynamics subject to the
experimentally measured NMR constraints. While all 20 DYANA-generated conformations satisfy
the NMR constraints to a similar extent, these conformations vary slightly in geometry. For com-
parison, three conformations of the first NMR ensemble are shown in Figure 3. These conformations
illustrate that while the overall protein fold is conserved across generated conformations, portions of
the protein have fewer constraints and are therefore modeled in multiple positions. Specifically, the
loop on the left side of each structure in Figure 3 assumes three drastically different conformations
among the three structures. The residues of the CBF-α binding site (Section 3.2 below) are shown
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Figure 3: Conformations of Core Binding Factor Beta. Three conformations of CBF-β generated by
DYANA using experimentally measured NMR constraints. All three structures have a similar orientation,
significant flexibility is seen in the loop on the left side of the protein and in the residues (green) of the
CBF-α binding site.

in green in Figure 3; these residues also assume different conformations in each structure. The
conformational differences seen in the CBF-α binding site are exactly the structural differences we
want to exploit during the CADD search.

3.2 LUDI Search of the Available Chemicals Directory (ACD)

At the time this research was performed, the hypothesized dimerization interface (CBF-α binding
site) had been localized only by analysis of site-directed mutants [31]. Residues in the vicinity of
Leu66 and Asn106 (2JHB numbering) were identified as important to binding in that when the
amino-acid type of these residues was altered, the binding of CBF-α to CBF-β was affected [31].
With this knowledge, we used LUDI [2, 4] to search the ACD database for ligands predicted to
bind in the dimerization interface of each member of the NMR-based ensemble. The version of
LUDI implemented as part of the InsightII software package (Accelrys, San Diego, CA) was used
in our search. This implementation of the LUDI algorithm consists of two stages. First, LUDI
identifies interaction sites among atoms of the protein and ligand. Interaction sites are labeled as:
lipophilic-aliphatic, lipophilic-aromatic, hydrogen-bond donor, or hydrogen-bond acceptor. Second,
interaction sites are matched so that, for example, a hydrogen-bond donor is matched with a
hydrogen-bond acceptor. LUDI matches interaction sites by computing the distance between three
ligand interaction sites and then searching for three complementary interaction sites in the protein
which share a similar geometry [2]. Matching is done geometrically thereby avoiding the need to
minimize energy functions. Positioned ligands are then scored based on the number and types of
interaction sites satisfied as well as their deviation from ideal geometries. Additional detail of the
LUDI algorithm and scoring function can be found in [2, 3, 4].
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Figure 4: LUDI’s Ligand Search Sphere for CBF-β. CBF-β is shown with the ligand search sphere
circled in yellow. (Left) Solvent accessible surface of CBF-β with residues L66 and N106 colored and the
LUDI search sphere circled in yellow. (Right) A second view containing a backbone trace of CBF-β with
ligand search sphere circled in yellow.

The InsightII distribution of LUDI searches a subset of the ACD database containing approxi-
mately 70,000 small organic ligands with two or fewer rotatable bonds (for reference, the complete
ACD database contains approximately 240,000 commercially available chemicals). To direct the
search and limit the region of the protein to which a ligand may bind, LUDI requires that the
user specify a ligand search sphere. With the goal of disrupting the dimerization of CBF-α:CBF-β,
LUDI was instructed to search for ligands capable of binding CBF-β in the hypothesized CBF-α
binding site. All runs used a ligand search sphere of radius of 8Å, the maximum allowed, centered
midway between residues Leu66 and Asn106 (Figure 4). This region includes the residues identified
by analysis of site-directed mutants as being important in CBF-α:CBF-β dimerization.

Subsequent to the completion of our computational screening, both chemical shift perturbation
experiments1 on CBF-β [13] and solution of the CBF-α:CBF-β crystal structure (Figure 5) to 3.00Å
(PDB: 1IO4 [29]) confirmed that the region enclosed by the ligand search sphere is indeed included
in the CBF-α:CBF-β dimerization interface.

3.3 Consolidation

The output of each LUDI run is a list of ligands with predicted binding affinities above a cutoff
threshold. Therefore, running LUDI on all twenty members of the molecular ensemble generates
twenty sets of ligands each containing molecules predicted to bind CBF-β with high affinity. A
computer program was written to analyze these result files. Because we were looking for ligands

1Chemical shift perturbation experiments identify the regions of the protein involved in complex formation by
examining changes in NMR chemical shifts upon complex formation. A more detailed description is provided in
Section 3.4.
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Figure 5: Core Binding Factor. The bound conformation of CBF-α:CBF-β is shown (PDB: 1IO4). The
backbone of CBF-β is shown in yellow and is positioned in an orientation similar to Figures 3 and 4. CBF-α
is shown in transparent cyan spacefill with the backbone trace in light-cyan. The ligand search sphere used
in each LUDI search (Figure 4) is included in the dimerization interface region of 1IO4.

predicted to bind multiple members of the ensemble, for each ligand that appears in any of the
twenty lists, the number of runs which contain each ligand is computed as well as the average LUDI
score among those runs. The complete list of ligands is then sorted first on the number of lists
in which each ligand appears and second on each ligand’s average LUDI score in those runs. The
result of this analysis is an ordering of ligands (from best to worst) which may then be tested in
the wetlab.

3.4 Wetlab Testing

SAR by NMR. The SAR by NMR assay measures the ability of one molecule (e.g., a ligand) to
perturb the chemical shifts of a second molecule (e.g., the target protein) [27, 12]. The phenomenon
measured in a SAR by NMR assay is therefore similar to that of chemical shift perturbation
experiments. Both experiments exploit the fact that the local electronic environment plays a
dominant role in affecting the chemical shift measured for each atom. The binding of CBF-α (or a
ligand) tends to change the local electronic environment of the residues involved in the dimerization
interface while leaving unchanged the local electronic environment of those residues not involved
in binding. NMR spectroscopy is thus used to measure chemical shifts for each residue both before
and after binding (i.e., two experiments are performed). By looking for atoms with chemical shifts
that differ significantly between the bound (holo) and unbound (apo) experiments one can identify
the residues involved in binding2.

2A simplified version of chemical perturbation analysis and SAR by NMR is described here. In practice, some
residues not involved in binding may also experience a change in chemical shift due to overall changes in protein
conformation.
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Those ligands that do not bind the protein do not alter the local electronic environment and the
chemical shifts of the protein should appear the same as they did before addition of the ligand. The
magnitude of the change in chemical shift as well as the magnitude of the peaks in the original and
moved positions can provide a rough estimate of the strength of ligand binding. Most important,
in addition to answering the question of if the protein binds a target molecule, chemical shift
perturbation analysis and SAR by NMR also answers the question of where the binding occurs.
Therefore, the primary use of the SAR by NMR experiment by our collaborators in this research
was to screen the computationally identified ligands for binding to CBF-β.

The typical NMR experiment performed in chemical perturbation analysis and SAR by NMR
is the 15N-edited Heteronuclear Single-Quantum Coherence (HSQC). This experiment correlates
15N atoms with bound hydrogens and can be recorded in less than an hour. After collecting data
for solutions of pure protein and protein plus ligand, the easily-identified backbone amide (15N,H)
peaks are examined for changes in chemical shift. In the backbone amide region of the HSQC
spectrum, each residue has a single corresponding peak. When performing these assays, only the
protein should be 15N labeled; the ligand should remain unlabeled. This means that no special
processing of the ligand is required3.

Electrophoretic Gel Mobility Shift Assay. The EMSA measures the ability of a protein
to bind DNA (Figure 6). The fundamental principle of the EMSA is that when DNA is loaded into
an agarose gel and an electrical potential is applied, the negatively charged DNA will move towards
the positive electrode with a speed inversely proportional to the mass of the DNA complex (i.e.,
larger DNA complexes move more slowly through the gel). Therefore after a fixed period of time,
unbound DNA will move the furthest through the gel whereas DNA bound to one or more proteins
will move more slowly. In the case of CBF, lanes are run with fixed concentrations of DNA, CBF-α,
and ligand, but with varying concentrations of CBF-β. Ligands which bind CBF-β and prevent the
binding of CBF-α to CBF-β reduce the effective concentration of free CBF-β requiring increased
concentrations of CBF-β to achieve the same amount of CBF-β:CBF-α:DNA complex formation.
Therefore a tightly-binding ligand will defer the formation of the CBF-β:CBF-α:DNA complex (the
slow moving band) until high concentrations of CBF-β are present. With increasing concentration
of CBF-β the CBF-β:CBF-α:DNA complex is formed and a slow moving band appears on the gel.

4 Results

The ensemble search process (Sections 3.1 to 3.3) was performed twice, once using an ensemble
generated from preliminary NMR data and a second time using an ensemble generated from the
final NMR data. For each of the twenty CBF-β structures in each ensemble, LUDI was used to
search the ACD database as provided with the InsightII software distribution. The top binders
identified by each run were then consolidated to identify the ligands which best bind the ensemble
(Section 3.3). Each LUDI run required approximately 5 hours of wall-clock time when run on a
single processor SGI O2 (MIPS R10000 175MHz Processor). The computation of the consolidation
step requires only seconds to complete.

3When screening a large database of ligands by SAR by NMR, a binary search strategy can be employed [12]. In
this strategy, multiple ligands are tested simultaneously in the same NMR experiment. If a positive result is observed
(i.e., chemical shifts move between the protein only and protein + ligand experiments) then the pool of ligands may
be split into two sets and each screened again. If an experiment for a set of ligands shows no chemical shift change
then that entire set of ligands can be removed from consideration. In our screening this binary search strategy was
not employed.
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1 32

Band A

Band B

Band C

Loading
wells

Figure 6: Electrophoretic Gel Mobility Shift Assay (EMSA). A cartoon of an EMSA. Three samples
(1, 2, 3) are shown as having been run in three different lanes on the gel. In this example, lane 1 contains
DNA only, lane 2 contains CBF-α and DNA, and lane 3 contains CBF-α, CBF-β, and DNA. When an
electric potential is applied across the gel, the negatively-charged DNA is attracted to the positive electrode.
The speed with which the DNA moves through the gel (in this diagram starting from the top and moving
toward the bottom of the gel) is dependent upon the size of the DNA complex. When the DNA is free
(band C) it moves the farthest. When CBF-α is bound to the DNA, the complex is not able to move as far
(band B). When DNA is bound to the CBF-α:CBF-β complex the entire complex moves the slowest (band
A). Therefore, in the absence of a dimerization inhibitor a lane with CBF-α, CBF-β, and DNA will have a
strong band A. If a ligand disrupts the binding of CBF-α and CBF-β then one should see a more intense
band B and a lighter band A. Because binding is never complete bands with partial complexes are often seen
(i.e., band C in lane 2 and bands B and C in lane 3).

A peculiarity in the way LUDI returns results forced us to adopt the following search strategy.
LUDI will output a maximum of only 940 ligand hits. Unfortunately, LUDI does not output the
top 940 hits but rather the first 940 hits at which point the search terminates. Therefore, in order
to identify the top hits for each member of the ensemble, the LUDI search parameter Min Score
required adjustment4. LUDI considers ligands with scores larger (better) than Min Score as hits
and writes these molecules to an output file. Setting the value of Min Score too high results in
no ligands being classified as hits whereas setting the value of Min Score too low results in too
many hits. Therefore, Min Score must be set low enough that some ligands are classified as hits
yet high enough that the LUDI ACD search does not prematurely terminate on account of 940
compounds having already been found. Searches were performed with a Min Score of 350, those
searches which returned fewer than 20 hits were rerun with a lower Min Score threshold, down to
a minimum Min Score of 270 (Table 1).

Ligands which appeared in multiple LUDI hit lists were identified as described in Section 3.3.
4All LUDI searches were performed with the default value for each search parameter except the Min Score pa-

rameter.
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PDB Min Score Num. Hits

001 NQ 340 43
002 NQ 340 120
003 NQ 320 71
004 NQ 340 56
005 NQ 340 63
006 NQ 310 40
007 NQ 340 117
008 NQ 330 85
009 NQ 270 46
010 NQ 320 118
011 NQ 320 190
012 NQ 290 60
013 NQ 320 32
014 NQ 320 136
015 NQ 270 43
016 NQ 320 167
017 NQ 320 139
018 NQ 320 61
019 NQ 270 14
020 NQ 280 47

Table 1: LUDI Runs. The twenty LUDI runs performed on the initial ensemble. The ‘PDB’ column
lists the identifier of each ensemble member, the ‘Min Score’ column lists the value of the Min Score LUDI
parameter used, and the ‘Num. Hits’ column lists the number of ligands which satisfy the Min Score LUDI
threshold.

All ligands identified as hits for at least eight of the twenty members of the ensemble are shown in
Tables 2 and 3. While structural differences between the two ensembles prevent the two lists of top
binders from being identical, six ligands, 3, 5, 6, 7, 8, and 11 do appear in both lists. Therefore,
26 unique ligands were identified through the two runs.

All but two of the 26 ligands have a diamide motif, capable of forming two hydrogen bonds
(Figures 7 and 8). The predicted binding modes of these ligands are similar, the rigid ring structure
sterically fits into a small concave binding pocket while the diamide motif forms two hydrogen bonds
with Glu17. By wedging into the CBF-α binding site, these ligands have the potential to disrupt
native CBF-α-CBF-β contacts thereby inhibiting dimerization.

At this point, the list of top predicted binders was handed off to our biological collaborators
in the labs of Nancy Speck and John Bushweller. Wetlab testing of the 26 identified leads is
still in progress. Thus far most of the 26 compounds (Tables 2 and 3) have been purchased and
tested by SAR by NMR in John Bushweller’s lab. Preliminary SAR by NMR results indicated
that of the 26 tested ligands, three induce changes in chemical shifts for atoms of residues in the
proposed binding site. These results are indicative of binding in the CBF-α:CBF-β dimerization
site. These three compounds were next tested for their ability to disrupt CBF dimerization using
an EMSA. These experiments were performed by Yen-Yee Tang in Nancy Speck’s lab. One of the
three tested ligands, 21 (2-amino-5-cyano-4-tertbutyl thiazole) (Table 3 and Figure 8) was found
to inhibit CBF dimerization at millimolar concentrations. Because 2-amino-5-cyano-4-tertbutyl
thiazole both binds CBF-β in the dimerization interface region and inhibits dimer formation it can
serve as a lead compound for pharmaceutical development. The next stage of development will
be to increase the binding strength and specificity of 2-amino-5-cyano-4-tertbutyl thiazole. Thus a
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Top Predicted Binders from Ensemble 1

Molecule MFCD ID Avg. Score Molecule Description
Number (Num Found)

1 MFCD00142855 387.30 (10) 2-AMINO-1-METHYLBENZIMIDAZOLE
2 MFCD00101498 385.10 (10) MAYBRIDGE NRB 01318
3 MFCD00024137 376.60 (10) 1-AMINOISOQUINOLINE
4 MFCD00159978 369.00 (10) SPECS CIF6564
5 MFCD00005789 383.67 (9) 2-AMINO-6-METHYLBENZOTHIAZOLE
6 MFCD00130077 370.78 (9) MAYBRIDGE BTB 11174
7 MFCD00185989 404.75 (8) 2-AMINONAPHTHO(2,1-D)THIAZOLE
8 MFCD00193713 399.62 (8) N-PHENYL-BENZAMIDINE
9 MFCD00205354 385.50 (8) MAYBRIDGE BTB 12069
10 MFCD00183946 376.62 (8) 6-ISOPROPYL-BENZOTHIAZOL-2-YLAMINE
11 MFCD00006322 371.00 (8) 2-AMINO-4,6-DIMETHYLPYRIDINE
12 MFCD00129026 367.75 (8) 2-AMINO-4-PROPYL PYRIDINE
13 MFCD00086324 363.00 (8) 5-AMINO-2,3-DIMETHYLINDOLE
14 MFCD00274654 348.00 (8) 2,2’,3,3’,5,5’-HEXAMETHYL-(1,1’-BIPHENYL)-4,4’-DIOL

Top Predicted Binders from Ensemble 2

Molecule MFCD ID Avg. Score Molecule Description
Number (Num Found)

15 MFCD00224194 345.79 (14) 2-AMINO-6-METHYL-4-PHENYL-NICOTINONITRILE
8 MFCD00193713 344.07 (14) N-PHENYL-BENZAMIDINE
16 MFCD00224193 344.08 (13) 2-AMINO-4-PHENYL-6,7-DIHYDRO-5H-

(1)PYRINDINE-3-CARBONITRILE
17 MFCD00233438 346.83 (12) SPECS CIF3563
18 MFCD00004054 351.73 (11) 1-(2-NAPHTHYL)-2-THIOUREA
19 MFCD00006460 347.64 (11) 3-AMINO-5,6-DIMETHYL-1,2,4-TRIAZINE
3 MFCD00024137 342.18 (11) 1-AMINOISOQUINOLINE
11 MFCD00006322 341.36 (11) 2-AMINO-4,6-DIMETHYLPYRIDINE
6 MFCD00130077 336.64 (11) MAYBRIDGE BTB 11174
7 MFCD00185989 324.36 (11) 2-AMINONAPHTHO(2,1-D)THIAZOLE
5 MFCD00005789 324.50 (10) 2-AMINO-6-METHYLBENZOTHIAZOLE
20 MFCD00136481 361.44 (9) 1-(1-(2-NAPHTHYL)ETHYLIDENE)-3-THIOSEMICARBAZIDE
21 MFCD00214700 340.22 (9) 2-AMINO-5-CYANO-4-TERTBUTYL THIAZOLE
22 MFCD00142856 329.00 (9) 2-AMINO-3-METHYLNAPHTHO(1,2)-IMIDAZOLE
23 MFCD00244146 353.50 (8) 2-AMINO-6-TERT-BUTYL-3-CYANO-4-PHENYLPYRIDINE
24 MFCD00039680 334.88 (8) 2-AMINO-4-PHENYLTHIAZOLE
25 MFCD00051730 329.25 (8) MAYBRIDGE RJC 00685
26 MFCD00168154 291.75 (8) 4,4’-(1,3-ADAMANTANEDIYL)DIPHENOL)

Table 2: Top Predicted Binders. These tables list all ligands predicted to bind at least eight of the twenty
members of each molecular ensemble. Column ‘Molecule Number’ is a reference molecule number used in the
figures and text of this paper, Column ‘MFCD ID’ is the MFCD identifier used to search the ACD database
for the molecular name, Column ‘Avg. Score (Num Found)’ displays the fragment’s average LUDI score and
the number of CBF-β structures the ligand was predicted to bind, Column ‘Molecule Description’ lists the
molecular name or unique catalog identifier. The molecules 3, 5, 6, 7, 8, and 11 appear as top predicted
binders for both ensembles, therefore the two searches produced a total of 26 unique ligands. Compound
21 (2-amino-5-cyano-4-tertbutyl thiazole) (Figure 8) was found to bind CBF-β by SAR by NMR and to
inhibit CBF dimerization by EMSA.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26

Table 3: Molecular Structures of Top Predicted Binders. The 26 ligands which are predicted to bind
at least eight of twenty structures in the molecular ensemble. Most of these ligands possess a relatively rigid
aliphatic ring structure with an amide motif capable of forming two hydrogen bonds. Molecule numbers
correspond to the ‘Molecule Number’ column in Table 2.
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(A) 7 (B) 1

(C) 8 (D) 3

Figure 7: Predicted Binding Modes of Top Ligands. The predicted binding modes for ligands (A)
7, (B) 1, (C) 8, and (D) 3. The ligand is shown in color (C: green, N: blue, H: white, S: yellow). In (A)
7 is shown with the molecular surface of the protein (pink with residues 66 and 106 colored). The region
of the protein shown is highlighted by an orange box in the inset figure. In (B), (C), and (D), the CBF-β
backbone is shown in green with the residues of the binding pocket in grey spacefill. All four molecules have
a diamide motif (circled in panel B) that forms hydrogen bonds with Glu17; this binding mode is predicted
to be present in all 24 ligands possessing a diamide motif.
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(A) (B)

Figure 8: Predicted Binding of 21. The predicted binding mode for ligand 21 (2-amino-5-cyano-4-
tertbutyl thiazole). The location of the binding mode is shown in (A); 21 is shown in yellow wireframe
while the binding site residues are shown in spacefill with Glu17 in orange. Panel (B) shows a closeup of
the binding site in the same orientation; the binding site residues are once again shown in spacefill (Glu17
is orange) and 21 is shown in wireframe with standard CPK colors. The diamide motif of 21 is predicted to
form two hydrogen bonds with Glu17. Molecule 21 was shown to bind CBF-β by SAR by NMR, and was
shown to disrupt CBF-α:CBF-β dimerization by EMSA.
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lead compound has been identified.

5 Conclusion

The molecular ensemble docking method presented here was successfully applied to identify three
lead compounds that bind CBF-β, one of which disrupts CBF dimerization as desired. The use of an
NMR-based ensemble allowed for the modeling of molecular flexibility while keeping the algorithm’s
runtime manageable. Our results — a lead compound capable of binding and disrupting the wild-
type protein-protein interface — were validated in the wet-lab using electrophoretic gel mobility
shift assays and SAR by NMR (15N-HSQC chemical shift perturbation).

The ensemble-based scoring method presented in this report is quite simple. Nonetheless, this
approach successfully identified three ligands capable of binding the target protein as measured by
SAR by NMR with an excellent hit rate of approximately 1 in 9. The simple model presented
here provided the groundwork upon which our more advanced, biophysically derived, K∗ ensemble
model [19] was developed.

In this report we have shown that ligands predicted to bind multiple members of an NMR
ensemble have a high experimental in vitro hit rate. It therefore would be interesting to investigate
the binding affinity of ligands predicted to tightly bind only one or two ensemble members and
compare their actual in vitro binding to those ligands predicted to bind a large number of ensemble
members (i.e., those ligands identified in this work). Such a control experiment could provide
additional support for the use of NMR-based molecular ensembles.

We note that the ensemble-based strategy presented here, screening ligands against each member
of a low-energy NMR molecular ensemble and then searching for ligands predicted to bind well
among multiple members of the ensemble, does not critically depend on the use of LUDI. While
LUDI worked very well for us in this set of experiments, in theory, as ligand docking algorithms
advance, the LUDI screening step could be replaced with any more recently developed scoring
algorithm. The overall screening method would then proceed as follows: 1) generate a molecular
ensemble using NMR spectroscopy, 2) perform docking studies using any desired docking algorithm
on each ensemble member, 3) consolidate the top predicted results to identify the best ensemble
binders, 4) screen top predicted binders in vitro.
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