
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-5-1998

Distributed Route Planning Using Partial Map Building Distributed Route Planning Using Partial Map Building

Christine J. Alvarado
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Alvarado, Christine J., "Distributed Route Planning Using Partial Map Building" (1998). Dartmouth College
Undergraduate Theses. 188.
https://digitalcommons.dartmouth.edu/senior_theses/188

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/188?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Distributed Route Planning Using Partial Map-Building

Christine Alvarado
Senior Honors Thesis (Advisor: Daniela Rus)

Dartmouth College
Computer Science Technical Report PCS-TR98-336

June 5, 1998

Abstract:

Our goal is to manipulate and guide an object across an unknown environment toward a

goal in a known location in space. Our tools include a system of manipulation robots,

which are “blind” and one mobile scout robot who relies on a series of sonar sensors for

information about the environment. Previous solutions to this problem have taken a

simultaneous guiding and manipulating approach, moving the whole system under the

scout’s guidance. My approach, however, presents a separate scouting algorithm that can

return a series of coordinates through which the manipulation system can safely pass to

reach the goal in a static environment. This new approach produces more optimal paths to

the goal, as well as evading the concern of what actions to take should the entire system

reach a dead end. In this paper I will present both the algorithm and the experimental

results I obtained when I built the scouting system.

2

1 Introduction

The work presented in this thesis is based on the desire to solve the moving problem

with a distributed team of robots. We wish to be able to move an inanimate object across a

field of obstacles, and we would like to do this work on-line, that is, without a prior map

of the obstacle field. As motivation, one can imagine trying to position exploratory

equipment in a novel environment, for example, underwater, or on other planets. As in the

aforementioned paper, in this case we would also like the robots’ behavior to mimic the

coordinated series of guiding and following behaviors that human manipulators would

employ. The only difference is that the task of scouting has been separated from the task of

moving the objects. Scouting can be described as using mobile sensors for distributed

object placement. This thesis focuses on the details of getting a robot scout to perform the

necessary steps in seeking out and returning a safe path from a starting point to the goal

point, if such a path exists.

We have separated the problem into the separate tasks of (1) scouting, and (2)

manipulation. We were motivated by (1) maximizing usefulness of our heterogeneous

system of robots and (2) minimizing the errors which occur during changes in our

manipulation system. Our team of robots consists of two RWI B14 robots and an RWI

Pioneer robot. The two B14 robots are adept at pushing large objects, but have no sensory

information about the world in front of them. In this sense they are totally blind, relying

one hundred percent on the external motion commands. The Pioneer scout, on the other

hand, is equipped with eight sonar sensors, seven with fixed direction, and one rotating

sensor. Five of the fixed sensors are positioned at varying angles in front of him, one

faces directly to the scout’s left, and the last faces directly to the scout’s right. The rotating

sonar is positioned so that at the zero angle it faces directly to the scout’s left, and can rotate

approximately forty-five degrees to the scouts rear, and forty-five degrees to the scout’s

front. Thus, although the scout does have a few blind spots, it is designed to detect a large

area in a 180-degree arc in front of it. When we consider the features of the robots, we see

3

neither type of robot is capable of performing the entire task by itself. The B14 robots

must be restricted to object manipulation, while the Pioneer is restricted to scouting.

A key issue that arises is how the scout and the manipulators interact. In our first

system, the scout followed along side the object being manipulated (in this case, a box),

both scouting and directing simultaneously. [RKKS96] This set up was efficient, as long

as no dead ends were encountered, since the system could move toward the goal as a

whole. When obstacles were encountered, the scout would simply direct the manipulators

using the commands turn right, turn left, move straight, and stop.

However, there were several problems with the set-up. First, it was difficult for the

scout to stay positioned along the side of the box using only sonar sensors while the whole

system was moving. Because sonar sensors have a low angle tolerance threshold, when

the system began to turn the scout would often lose its sonar reading and have to stop the

forward progress of the system to relocate the side of the box. In addition, when the

system made right hand turns and the box was pushed into the scout, the scout would often

collide with the box. Second, because the scout had to follow along the right side of the

box, it simply could not detect objects in front of the system which were far enough on the

left hand side. This problem could not be remedied without moving the scout away from

its position on the right side of the box. But the scout’s position was a constraint to that

system and could not be changed. Third, if the system ever did run into a dead end

situation, the manipulators were all but incapable of backtracking.

To solve these problems, I chose to separate the scouting from the manipulation. That

is, the Pioneer robot acted as a mobile sensor in the system, exploring the environment to

find a path while the B14 manipulation robots remained stationery. When the scout

searches for a path on its own, it no longer has to keep track of the rest of the system, it can

view the environment from any position, and it can backtrack relatively easily. My

challenge was to construct an algorithm that exploited these new freedoms. The scout

needed to explore the uncharted world enough to return a path that the manipulators could

4

safely follow blindly to reach the goal. There exist many off-line path-planning algorithms

for similar tasks. If one can determine the visibility graph of an environment for a mobile

object, one can easily compute the shortest safe path from the start to the goal. However,

because we would like to be able to do this work on-line, most of the off-line path planning

algorithms would not apply to our situation. At first glance, then, an existing on-line

algorithm may appear reasonable. However, simply using the right hand rule to maneuver

around obstacles, while it would indeed succeed in getting the scout to the goal, would not

necessarily result in optimal performance. First, the scout may in the worst case have to

circumnavigate every obstacle to determine the optimal path from start to goal. Second,

complications arise when we consider that the scout must take into account the dimensions

of the object it is guiding. Any path which it chooses must also be wide enough at all points

for the team of manipulators and the object.

My algorithm combines an off-line algorithm for finding the shortest path to a goal with

an on-line exploration and mapping of an unknown environment. An on-line algorithm

refers to the algorithm which must be used in a situation where the system has no a priori

knowledge of its environment; to use an off-line algorithm, the system must have a

complete map of its environment which it can explore before it makes its first move. For

an off-line visibility graph algorithm to be successful, we must know two things about the

environment and system: a map of the obstacles in the environment (with obstacles usually

represented by their edges), and the dimensions of the object which must traverse the

environment.

The dimensions of the object are known, so we are simply missing the environment

information. If we can use the scout to locate the corners of all the obstacles that exist

between the object and the goal, we could easily determine an optimal path from start to

goal for the object. However, mapping an entire environment is a difficult and time-

consuming process. In the best case, we only need to map the corners along the path to the

5

goal, but unfortunately, we cannot know where these corners lie. 1 But now we have at

least reduced the problem from mapping the whole environment, to possibly finding a

limited number of corners, so long as a path exists from start to goal.

A high level description of the algorithm is as follows:

1 The scout does a sonar sweep of the area in front of him to locate the corners of the

obstacles which are in range.

2 The scout chooses the corner which minimizes its estimated cost to the goal.

3 The scout proceeds to that corner, adds it to its stored map of the space, and repeats

steps 1-3.

4 If the scout reaches the goal, it returns the path it took to get there, adjusted for the

size of the object that it guides; if it cannot reach the goal, it returns failure.

This way, the scout explores the corners in an organized way, so as to explore the fewest

number while finding an optimal path to the goal. My contributions to the system as a

whole include fully developing and implementing this novel approach, establishing

efficiency bounds on the algorithm and proving its usefulness through several tests runs.

The outline for this paper will be as follows. First I will discuss several works related

to this problem. Then I will discuss in detail my own algorithm and the theory related to it.

Next I will describe the restrictions introduced in the physical system and I will note how

the experimental system differs from the theoretical system. Finally I will discuss

experimental results and discuss extensions to both the experimental and theoretical

systems.

2 Related Work

The work in this thesis has been inspired primarily by previous work by Rus,

discussed in the introduction to this paper [RKKS96]. Both work on the previous system

1 The estimated path cost can be described for each corner in the environment as the length of the distance
traveled to reach that corner, plus the straight line distance from that corner to the goal.

6

[RKKS96], as well as the work presented here has been inspired by related work done in

distributed manipulation, on-line navigation algorithms, and map-making algorithms.

2 . 1 Distributed Robotics

 In the area of distributed robotics, important work on an initial solution to the problem

presented in this paper is presented in [RKKS96]. Another distributed manipulation

algorithm in the form of a search and rescue algorithm is presented by Jennings, Whelan,

and Evans. [JWE97] In their search, a team of robots fans out in several directions to

attempt to locate a lost object. When one robot finds the object, it notifies the others and

they all converge to manipulate the object towards the goal. This fanned out search is

embodied in my algorithm as an initial sonar sweep. The best point from the sweep is

chosen and all efforts converge on this point as the scout moves to it. From there the

sweep repeats.

Another approach to distributed robotics can be found in [KH98]. Kurazume and

Hirose examine ways to use teams of robots to solve the positioning problem in indoor

environments.

2 . 2 On-line Navigation

Another class of algorithms is interested on-line exploration and navigation.

Hoffmann, Icking, Klein and Kriegel describe a competitive on-line strategy for

determining a watchman tour through a polygon. [HIKK] Important work done by Deng,

Kameda, and Papadimitriou explores a competitive on-line algorithm for exploring an

unknown environment. [DKP91] While these works did not prove to be directly applicable

to my own, they were indispensable in that they establish a method a relating the efficiency

of an on-line algorithm to the corresponding off-line solution to the same problem. This

“competitive ratio” strategy will come in useful in arguing that the path found from start to

goal is related by a constant value to the shortest path an off-line algorithm could have

7

found. Any on-line algorithm, in order to be considered noteworthy, must have this

constant relation to the existing off-line algorithm.

Other aspects of on-line navigation are also important in the work I will present and

related work has been done by others. Jean Claude Latombe examines solutions for

Nonholonomic motion planning [BL93][ALMR97], which can be related to the work

presented here because the team of pushing robots form a Nonholonomic, system of

manipulators; that is, the manipulation robots are not connected an must coordinated their

pushing so as to move the object they are manipulating. Latombe also explores navigation

under visibility constraints. [GGLLLMT97] This field is important to my research since I

am developing a method of separating the visibility of a mobile system from its

manipulation. Finally, work by Jon Kleinberg explores in depth the localization problem

for mobile robots. [K94]

2 . 3 Map Making

My work is involved with making a limited map of the environment so as to determine

a path to the goal, so the final area which we explore in this section will be map making

algorithms. Work done by Sebastian Thrun looks at different ways to map indoor

environments using mobile robots. [BCFHLSST98],[T98] Work done by Choset and

Burdick on mapping using the Generalized Voronoi Graph (GVG) [CB95a,b] provides a

way to determine a path through the obstacles in a two-dimensional space. The path

returned by this algorithm would certainly be useful in our work. Since the path returned

by this method is equidistant from all obstacles it is passing between, it would appear that

we could simply examine this graph to find a path to the goal wide enough for the object

which we are guiding. This scheme may indeed work; however, I chose not to use it

because of the time-consuming nature of computing the GVG. As we noted earlier, it is

8

not necessary that we plot a graph of the whole space. We save time by optimizing the

order in which we explore the space.

3 The Scouting Method and its Analysis

3 . 1 The algorithm

To begin, I will give the reader a general feel for how the scout determines the best path

to the goal. I will examine each of these steps in more detail in later sections.

The scout executes the following algorithm in planning a path to the goal for the

pushers to follow:

While (not at goal) and (searchable corners exist)
Sonar sweep to find corners in sight limit
Adjust points detected to account for the object size
If corner not already explored
 Add corner to partial map of space
Repeat
 Choose most optimal point to explore
 Proceed to chosen point
 If not reached safely

 Delete point from tree
Until point reached safely

This algorithm is recursive. At each point the scout scans the area in front of it, localizes

the corners of the objects within a given range, finds the most optimal corner, heads to it

and repeats the process. If the scout encounters problems on its way, it abandons its

current path of exploration and tries another. For a graphical representation of the

algorithm, see figure 1. The algorithm is discussed in more detail in section 3.3.

9

1. Sonar scan for
 points in view

4a. Goal reached

4b. Goal unreachable

 goal

searched

 point to closest point to
3a. find path from current

 from points seen
2. Choose closest point

point is closest
found yet

along another path
closer to goal
there exists a point 3d. return to current

 point

 point
3c. head toward next

 closest point
 point just before
3b. follow path to

next point
successully reached

obstacle
encountered

currently at goal

all searchable points

Figure 1: Graphical representation of the steps of the algorithm. Progress proceeds
along arrows. Conditions for following arrows are given in italics next to each path.

3.2 Motivation

One of the most important parts of any algorithm is that it be logically designed and

more suitable to a specific task than any other algorithm that exists. I argue that my

algorithm is well suited to the search task it was designed for, and I will attempt to argue

this point by justifying some of the points whose presence may not immediately be

obvious.

One argument that could be made is that this algorithm is overly complicated. Why not

just have the scout head toward the goal while avoiding obstacles? The combinations of

these two restrictions should provide a smooth "pull" toward the goal, while leading the

scout down a safe path. It is not really necessary to stop and sweep at every point along

the way.

10

This point can be addressed by observing that this setup provides necessary

checkpoints that facilitate the construction of the tree and simple path to the goal. Consider

a scout whose only task was to head on a safe path to the goal. Simply reaching the goal

would mean that the scout had indeed found such a path as long as the scout had verified

the path as it found it. However, how, then would the scout convey information about this

path to the manipulation system? Any curves would have to be represented by complicated

equations, and the scout would indubitably find curves if it weren't specifically keeping

track of points. In addition, if the scout ever got stuck and had to backtrack, it would not

have a clear reference point to which it could return. The current system not only provides

a clear path to the goal through a series of concrete points, but it is conceptually simple, for

all practical purposes simply building a search tree physically across the search space.

 A further advantage to getting a rough location of corners before moving to them is that

it provides a level of optimization before the scout moves. And since the scout knows

approximately where it is trying to go, it can take a straight-line course to that point. Since

the goal is always to move to the point which optimizes the estimated path length to the

goal, the next point can be chosen easily before it is explored. This process of looking one

step ahead simulates the off-line visibility graph approach instead of making the scout

blindly explore the area in front of it.

3 . 3 Scouting in detail

Since designing an algorithm for any real system is quite complicated, we must now

examine the algorithm in more detail. Through a more detailed examination of the

algorithm, I will give the reader an image of the method which the scout uses to navigate

through and search its environment.

Following the algorithm presented above, I have presented here a detailed description

of the major steps of one iteration through the algorithm:

11

1. The sweep: The scout turns to face the goal, and then does a sonar sweep of the area in

front of it. It records the distances and angles where readings are less than its sight

limit, thus determining the points in which contain an obstacle. This sweep can be

through any angle; increasing the angle swept by the sonar increases the possibility

that the scout will find a path to the goal.

2. Corner localization and adjustment for object size: Next the scout must determine which

points can be considered corners of obstacles. We do this simply by making sure

the point's Euclidean distance from at least one of its neighbors is above some

threshold. Since the scout must take into account that it is guiding an object that has

some known dimension, this threshold should be the dimension of the object.

Eliminating paths that are too narrow at this point will in effect prune unsuitable

branches from the tree before they are expanded. Clearly, because the sonar sweep

does not give totally accurate information about the environment, some paths that

are thought to be acceptable at this point, may turn out later to be unsuitable.

3. Tree construction: The scout loads into the search tree the points which were found to

be acceptable corners to explore as children of the current node.

4. Exploration choice: The scout chooses the next point in the tree to explore. It does this

by optimizing the direction and area it chooses to explore. If there is a straight path

to the goal (which it detects during the sweep step), the scout heads straight toward

the goal until objects are detected at some threshold distance in front of the scout.

Otherwise the scout chooses the point in the tree which would minimize the path

length to the goal (i.e. the distance of the next point to from the goal plus the path

length traveled to reach the point). To locate the point, the scout performs one of

the following actions:

If the point is a child of the current node: the scout turns in the direction of the point,

and heads toward it.

12

If the point is in a different branch of the tree: the scout must navigate back through the

tree to reach the next point. In this case, the scout chooses the path it must traverse

by examining the child lists of the current point and the point it is trying to reach,

and then navigates the path it finds.

5. Detection of unsuitable paths: Because sonar readings are not always accurate, the scout

must be aware that the path it has chosen may not be wide enough for the object it is

guiding. While heading to the next point, the scout may find an obstacle it did not

detect earlier which blocks this section of the path. When it finds such unseen

obstacles, it deletes the point it was trying to reach from the tree, returns to the point

it had been exploring from, and repeats step 4.

6. Advancement in the tree: If the scout reaches the next point successfully, the point

becomes the current point from which to explore and it repeats steps 1 through 5

until it reaches the goal. If it has explored each point in the tree and has not detected

any new points then the search has failed.

3 . 4 The storage structures

The method that the scout uses to find a path to the goal is a recursive one, which

involves both building and searching a tree that represents the environment at once. To

fully discuss how the scout finds and returns the path to the goal, we must first examine the

data structures the scout uses to store the information about the environment around it.

The main data structure is a tree, with each node holding an x and y position, relative to

the start, the point (0,0). The nodes also hold several other facts about the environment,

such as the goal position (and thus the distance to the goal), the current path length, and the

point through which the object would pass to safely reach the goal, and the most important

element: the node’s array of children. Each node contains an array of child nodes in the

path tree. This array contains the points that can be seen, hence explored, from the current

node. Through this representation, the path tree becomes a schematic map of the

13

environment, as well as a search tree that gets built as each point is expanded. As the

algorithm searches forward, it builds nodes onto the tree. When it finally reaches the goal,

all it must do is return the path from start to goal through the tree, and this will be the safe

path from start to goal. To facilitate traversal of the tree (since each node only has pointer

to its children, not to its parents), we store in each node a list of integers, the child list,

which represents the child path that can be traversed from the starting node to reach that

particular node. For example, consider a child list (1, 3, 2). The first node in the path to

this node is the starting node, the next is the second child of the start node (because the list

starts at 0), the next is that node’s forth child, and the final node, would be that node’s

third child.

It is interesting to examine the setup of this path tree. Because we construct the path

tree by sweeping from left right, the children each node are arranged in a spatial manor,

with few exceptions. That is, the array of any node’s children not only represents which

corners can be seen from its position, but it also represents these corners in the order in

which they can be seen from left to right in space.

Now that we have a useful data structure that will virtually construct the path from start

to finish for us, we must find an efficient was of loading this data structure so that the path

we end up with is the most efficient path we can determine.

3 . 5 Assumptions

While ideally we would like for an algorithm to work under any conditions in any

environment, when one is working with a real-time system in an unknown environment,

obviously this idea is not a realistic possibility. While I tried to keep the conditions as

unrestricted as possible, I have placed a few restrictions on the environment.

My first assumption is that the obstacles are convex or concave polygon objects. The

obstacles must all have flat faces which, must be just large enough to have distinct corners,

and in practice, must be at least as long as the scout, so it can position itself along such an

14

edge. The objects must all have corners due to the dependence of the algorithm on locating

corners to build the map to the goal. The length restriction arises from the scout's use of

sonar sensors determine corners by positioning itself parallel to an edge of the obstacle,

which will be discussed when I discuss the implementation of the system. In theory, the

algorithm could work for round objects by approximating them with polygons as long as

the radius of curvature was large enough. But because we would use this approximation,

for the purposes of our discussion of the algorithm and its verification, we shall assume

that we only have flat-sided obstacles.

Our second assumption is on the sensory system. Sonar sensors both restrict the

system as well as offer advantages, differing from a camera in several ways. For example,

they can provide important depth information a camera cannot, but they cannot recognize

objects. Perhaps the greatest restrictions a sonar sensor inflicts are angle sensitivity, and

range. To illustrate this point, let’s consider the things that can occur when we try to use a

sonar sensor to locate an object in space. If the object is too far away, the reading will be a

large number, but not one large enough to represent the distance of the obstacle. If the

object is just a little closer, we get a reading which may be correct, but which is

indistinguishable from the incorrect readings. Thus there exists some threshold distance at

which our readings become garbage. We will call this distance the scout’s sight limit and

only consider readings smaller than this threshold. Any other readings can be considered

to be too far away to be relevant. However, this assumption can also be problematic when

we introduce the sonar’s angle restrictions. Let’s consider what happens when the object

we are trying to locate is within the sight limit. If the angle from which the sonar is taking

a reading is within some critical range, the sonar sensor will return a correct reading.

However, if the sensor is at too great an angle to the face, the sensor will return a reading

that is larger than the sight threshold. Thus, we cannot always be guaranteed that when we

get a large reading that there is really nothing there, and we must make sure we account for

this in our algorithm, to avoid potential problems.

15

Our third assumption is a restriction on the size of the object which the scout can guide

following this algorithm. Because the scout must be able to detect a corridor which is too

small for the object to pass, the object which the scout guides can be at most as long as the

scout’s sight limit. To find the path, the scout will often trace along the edges of obstacles

while checking out of its other side sonar that there is enough room for object it is guiding.

If the object were longer than the scout’s sight limit, the scout would have to move off its

path to make sure the path was wide enough. This deviation from the scout’s exploration

procedure would complicate the process considerably.

Finally, our fourth assumption is on the size of the obstacles in the environment. While

I will not restrict the size of the environment, I will require that the obstacles themselves

must be finite. In other words, the scout will never encounter an obstacle which it cannot

navigate around. This restriction, however, turns out to be a bit arbitrary, as we can

construct a series of obstacles in such a way as to lead the scout infinitely away from the

goal. This distinction will be discussed when we verify the correctness and completeness

of the algorithm.

3.5 Correctness and competitive measures

In this section I will prove several properties about my algorithm, including its

termination, correctness, its running time and a competitive ratio for the length of the path

which it returns.

3.5.1 Termination

To prove that the algorithm terminates, we must break up the possible cases and prove

that each of these cases will lead to termination

16

Theorem 1: The search algorithm will terminate in a space containing finite obstacles if

restrictions are set on the angle of the search or on the distance away from the goal the

scout may search.

Proof:

Case 1: A path to the goal is found

This is a trivial case in which the scout simply needs to recognize the fact that it has

reached the goal point, and halt.

Case 2: No path to the goal is found

This case is considerably more complicated, and involves the scout realizing that it

has exhausted all possible paths to the goal and quitting. We examine this case by

breaking the problem into two possible alternative algorithms that will affect the halting

power of the algorithm.

Before we can examine the algorithm itself, we must recall the restrictions on the

environment and the obstacles. For the purpose of the proof we will not assume any

boundaries on the environment or on the number of obstacles. We will however, assume

that all obstacles are finite for now. We also assume that all obstacles have flat edges,

and thus have corners, since the algorithm is based on these corners.

First, let's consider an algorithm that behaves as described in section 3.3, but, when

sweeping for points, sweeps out an angle of just less than 90 degrees, 45 degrees on

either side of the angle from the current position to the goal. This will restrict the scout to

search always "towards" the goal.

First we shall prove a couple of lemmas which will be useful in proving this case.

Lemma 1: In a sweep which is less than 45 degrees on either side of the goal angle, if

the scout is further than its sight limit from the goal, each point found which is a possible

next point is closer to the goal than the scout's current point. If the scout is within its

17

sight limit from the goal, then each point detected will be less than the sight limit away

from the goal.

Proof:

Draw a line from the goal (G) to the current point (C), and trace out the circle

formed using G as the center and GC as the radius. (See figure 2) Then, if GC is

greater than the sight limit for the scout, the line which has an angle of 45 degrees with

the line GC (on either side) is at least sight limit times the square root of two long. This

distance is too far for the scout to see, thus any line that has an angle of 45 degrees or

less with the line GC, and whose length is less than the sight limit of the scout will fall

within the circle. Therefore, any point chosen must be closer to the goal than the

current point.

|AC| = |CB| >= sightlimit * sqrt(2)

* G

* C

A B

|GC| >= sightlimit

Figure 2: Point C represents the scout’s current position. Point G represents the goal
position. Since the scout can only detect points within the triangle ACB, it is clear that any
point the scout detects will be closer to the goal than the scout’s current position.

18

If the scout is closer than the sight limit from the goal, consider the circle centered at

G whose radius is the sight limit of the scout. Assume the scout is at any point within

this circle. Recall that the scout must face toward the goal, and may only search in a

90-degree angle. It can easily be seen in figure 3 that the scout cannot see any point

outside the circle. Therefore all points which the scout detects must be less than the

sight limit away from the goal.

* GA B

|CF| = |GD| = sightlimit

* C

D E

F H

|GD| = sightlimit
|GC| < sightlimit

Figure 3: In this diagram, the set of lines FCH exactly matches the set of lines DGE.
Since the lengths of DG and EG are equal to the radius of the circle (thus, the sight limit of
the scout), when they are moved back to point C, they will not reach the edge of the circle.
Therefore, the scout cannot see any point that is further than its sight limit away from the
goal.

From the initial restriction and Lemma 1 we obtain the following lemma:

Lemma 2: In the condition where the scout sweeps out a search space of 90 degrees,

there exists a finite number of corners which the scout will explore on its way to the goal.

Proof:

By lemma 1 each new point the scout finds will be either closer than the point

before, or within a distance of the sight limit from the goal. So choose the initial

19

distance from the goal, or the sight limit of the scout, whichever is larger, as the radius

of a circle with center at the goal. This circle partitions off a finite space which the

scout will explore. Therefore, within this finite space there must exist a finite number

of corners.

Proof of the 90-degree case is now easily seen. Since the scout does not explore

each point more than once, the scout will explore each point in a finite list, and then halt

when it has searched them all.

Unfortunately, extending the proof to the general case fails. It is not the case that the

scout will always search towards the goal. And, since we have put no restrictions on the

environment, the scout could therefore end up searching endlessly away from the goal.

Thus, in the general case, when there is no path to the goal, the only way to guarantee

that the algorithm will terminate is to restrict the distance away from the goal that the

scout may search. Once this distance is bounded, the algorithm becomes much like the

case presented previously: a finite search space with a finite number of points to be

searched. By applying this restriction and lemma 2, we have proven theorem 1.

3.5.2 Completeness

Obviously it is not enough that the algorithm terminate. The algorithm must also find a

path to the goal if one exists.

Again the two cases must be considered separately. As we saw above, only the 90-

degree case guarantees that the algorithm will terminate in its pure form. However, this

termination comes with a price: the 90-degree case is less powerful in path finding than the

unrestricted case. Thus, for the 90-degree case we can only prove a restricted version of

path finding to be true, and this restriction reduces the possibilities for obstacle

arrangements considerably. We must assume that all obstacles, when adjusted for the size

of the object to be guided, are seen as convex. Otherwise we could easily conceive of a

20

situation where the scout enters into a "cave" and is trapped because of the fact that it

cannot explore points which are further away from the current point.

Another thing we must note is when we say that the scout has “found” a point, we

mean that the scout has found a path to that point, since the definition of the algorithm

restricts the scout to exploring only along the actual path which it will return. So, to prove

that the scout find a path, we simply need to prove that it can find the goal, and its route is

assumed to be along a valid path. In other words, we will not worry about the length of

the path which it finds at this moment.

Theorem 2: In the 90 degree sweep case with strictly convex obstacles, the scout will

find a path to the goal if and only if a path exists which always "flows" towards the goal,

that is, each point on the path is closer to the goal than the point before it was.

Proof:

By lemma 1 the scout finds points which are each closer to the goal than that current

point when the scout is more than its sight distance away from the goal. So, clearly it is

the case that the scout will not find the path if a path does not exist or if that path leads

away from the goal. We must only prove that if such a path exists, the scout will find it.

We know that a path to the goal exists. Call this path P, with points p0, p1, p2,..., pg,

where p0 is the start point, pg is the goal point and the rest of the points are listed in order.

Let P be any arbitrary path that may exist to the goal from p0 (since the idea is just that the

scout finds a path, one is just as good as another). Now we can prove by induction that

the scout will find each of the points in the path in the correct order. The base case is one

in which the path consists only of two points: p0 and pg. In this case, there are no

obstacles between the scout and the goal and the scout will head toward the goal until it

eventually reaches it and halts.

Now consider the case where there is just one obstacle between the scout and the

goal. The fact that the scout must find the point p1 can easily by seen by contradiction.

21

Say the scout does not find p1. Then it must have found the goal, because if it hadn't it

would only have halted by searching each point in the finite space, thus finding p1. But it

could not have found a path to the goal, because in this case the shortest existing path

must go through p1. Then, by applying the base case, the scout finds pg from p1. For

the general case, assume the scout will find a path of length up to n, and prove that the

scout can find a path of length n+1. In the case where the shortest path has n+1 steps,

we know that the scout will find the path from p1 to the goal by the inductive assumption.

Now we just need to prove that the scout finds p1 before it finds any of the other points.

This can easily be seen to be the case, since if the scout found any other point first, it

would then find a path from that point to the goal (because length < n), and this would

violate the fact that the shortest path goes through p1. Therefore, it must find p1 before it

finds p2 (although of course it may find other points between p0 and p1).

Generalizing the algorithm to the 360 degree case we may remove the restrictions on the

environment (i.e. for convex or concave obstacles) to obtain the following:

Theorem 3: In the 360-degree case, the algorithm will always find a path if one exists.

Proof:

Since we have no restrictions on the area of the space in which we are searching, we

cannot at any point guarantee that we will find a point simply because we have done an

exhaustive search of the area, as we did in the 90 degree case.

Lemma 3: The 360-degree algorithm will find all the points on a path to the goal that are

along the visibility graph if such a path exists. Furthermore, the algorithm will find these

points in order, thus finding the path to the goal.

Proof:

22

To prove this lemma we must do two things: show that the scout will find each

point on the path, and show that it finds these points in the correct order, i.e., the order

in which they occur along the path to the goal.

We can prove the first part with an inductive reasoning must like we used in the

above case. If there are no obstacles, the scout clearly finds the goal. As we did above,

assume that the scout can find paths of length n, and prove the scout can find a path of

length n+1. We know that, once we make it to p1, the scout will find a path from p1 to

pg, since this is a path to the goal of length n. So what we need to prove is that the

scout will find and explore p1. However, unlike the 90-degree case, we cannot assume

that the scout will find p1 through an exhaustive search of the area, since the area in

which the scout searches is no longer bounded.

To begin, we must first show that the algorithm will detect point p1. If p1 is close

to the scout it will be seen directly. If however, it is out of the scout’s sight, we have

two possibilities for what happens next. One, the scout has not seen any obstacles

blocking its path to the goal, and it moves toward the goal and toward detecting point

p1. Two, it does not detect point p1, but instead moves toward another detected

obstacle. If this is the case, this other detected obstacle must form a wall, which

eventually leads the scout back to point p1. If these obstacles did not form a wall, there

would exist a more direct path to the goal, which we are assuming does not exist.

Now that we have seen that the scout will find p1, we can show simply that the

scout will explore it. If the scout is not exploring p1, it must be exploring some other

point closer to the goal. There are a finite number of points closer than p1 to the goal,

so once all those points are explored, p1 will be explored.

Going back to the theorem, if a path to the goal exists, it will exist along the visibility

graph, and thus by lemma 3 the scout will find such a path.

23

3.5.3 Search time

The time the scout takes to find a path is widely variable, and depends mostly on the

speed at which the scout can go from point to point. In the worst case, the scout would

bounce back and forth exploring several paths. While it will not explore a point more than

once, if a series of paths flip-flop distances from the goal as each new point is expanded,

the scout will go back and forth between the paths, causing the scout to move a lot for the

amount of exploration it does. While I will not go into detail in this analysis, some of the

more difficult geographies are shown in figure 4.

24

S

G

> object size

environment a

environment b S

G

Figure 4: Examples of complex environments. Environment a: because the width of the
opening is greater than the width of the object the scout is guiding, the scout will believe
that there is enough room to pass to reach the goal. It will have to explore each trap
separately to realize it is a dead-end. The more traps which are present on the obstacle, the
more difficult it is for the scout to explore. Environment b: A spiral provides a challenge
for the scout as it does in any on-line algorithm. The scout is forced to explore all the way
through to the end of the spiral before realizing it is a dead end.

3.5.4 Path length

25

Now that we have shown that a restricted version of the algorithm will always

terminate, and that the generalized algorithm will find a path if one exists, we can begin to

argue about the length of the path this algorithm will find.

Theorem 4: The path found by the scout can be related with a constant factor to the

shortest path along the visibility graph found by an off-line algorithm. Let L represent the

width of the obstacle which from the side which the visibility graph approaches it. Each

segment in the path found by the scout will either fall exactly on the corresponding segment

of the visibility graph path, or will be a one of a pair which go with a set of segments, S, in

the visibility graph path. In the case where the segment in the scout’s graph is one of a

pair of segments, the total length of these two segments will differ by less than 2L from the

total length of the segments in S.

To get the idea of what this theorem is stating, see figure 5 for an illustration of some

example cases.

26

sightlimit

L

A

G

B

C

Figure 5: How the scout’s path may differ from the optimal path. If the distance from A
to the obstacle is greater than the scout’s sight limit, the scout will head along a straight-line
path toward the goal (segment AB) before turning to rejoin the optimal path (segment BC).
The optimal path is represented with segment AC. The combined lengths of AB and BC
will be less than the length of AC plus 2L.

Proof:

To begin this proof, we will first establish a few necessary facts.

Lemma 4: A greedy search based on the total estimated path length (distance traveled to

reach the point in question plus that point’s distance from the goal) will yield the shortest

path to the goal in two-dimensional space.

Proof:

27

This is simply A* search, which is proven to always yield the shortest path with an

admissible heuristic. Because we know that the distance of a point from the goal must

be at least as great as any path from that point to the goal (i.e. the shortest distance

between two points is a straight line), this heuristic is clearly admissible.

Although we are working in three-dimensional space, we only allow two degrees of

freedom; thus, we have effectively reduced our environment to two dimensions.

Lemma 5: Consider an edge from point pn to point pn+1 in the shortest path from start to

goal (which is on the visibility graph), where pn+1 is not the goal point. Then, if the point

pn is a point on the path that the scout returns, and if there is no apparent straight-line path

to the goal from pn, point pn+1 will be the next point on the scout's path if and only if the

distance between pn and pn+1 is less than the sight limit of the scout.

Proof:

First we prove the forward case: if the distance between the two points is less than

the sight limit of the scout, then there exists an edge from pn to pn+1 on the path returned

by the scout. We can verify this statement through contradiction. Assume that these

two points did not form an edge in the visibility graph. Then it must be the case that

there is an edge from pn to pk where pk is not pn+1. We know that if pk was both

detected and chosen as the next point to explore from point pn, it must be the point that

minimizes the total path estimation that can be detected from pn. But by lemma 4 it can

be seen that if pn+1 is on the path to the goal, then it must have the shortest path length

estimation of any point that can be reached from pn that is along a path to the goal. We

can conclude from this observation that point pk must either be the same point at pn+1 or

not lie along a path to the goal. Both of these statements provide contradictions.

Suppose, however, that the algorithm does not choose to explore any point that can

be detected from pn. In this case, there must be an unblocked straight path to the goal

28

that is longer than the sight limit of the scout, which cannot exist due to the restrictions

of the lemma.

Now we can prove the backward case: If the path the scout returns has an edge

between pn and pn+1, then the distance between these two points must be less than the

sight limit of the scout. This fact is easily seen. If the scout cannot detect pn+1 from

point pn, it simply cannot be the next point the scout explores from, as the scout either

chooses a point it detects, or heads in a straight-line towards the goal.

We know that since the algorithm starts its search for the goal on the visibility graph,

in particular, at the start node. If the next node on the optimal path to the goal is within

the sight limit of the scout, the algorithm will find this point as the next point in its path,

by lemma 5. The algorithm will continue to find the points along the optimal path so long

as they are always close enough to the previous point, and there is no apparent straight-

line path to the goal. To finish our proof of theorem 5, however, we must examine what

happens when the next optimal point from a given point is out of the scout’s sight limit.

Lemma 6: Consider an edge from pn to pn+1 in the optimal path to the goal. If this edge

is longer than the scout’s sight limit, then there exists either an apparent straight-line path

to the goal or an apparent corner corresponding to the point pn+1 which the scout will

find. (See figure 6)

29

P(n)

P(n+1)

segment P(n)A is on line P(n)G

AB

G

|P(n)P(n+1)| > sightlimit

Figure 6: If the distance from P(n) to A is greater than the scout’s sight limit, it will detect
a straight-line path to the goal. Otherwise there must exist some point B between P(n+1)
and A such that the distance from P(n) to B is equal to the sight limit of the scout. B will
be the point that the scout detects as the corner of the obstacle, or the pseudo-corner.

Proof:

Before we prove this lemma, we must qualify our statement and recall the way the

algorithm progresses to corners. Recall that the scout does an initial sweep for corners,

and then proceeds to what it thinks are corners. They may, however, not be the actual

corners of the obstacles, in which case the scout does another sweep, and continues to

30

look for corners. It does, however, list these pseudo-corners2 as points in its path to

the goal.

If the point pn+1 is on the optimal path to the goal, it must be the corner of an

obstacle or the goal point. If it is the goal point, then there must be a straight-line path

from the point pn to the goal. If it is not the goal, then it must be the corner of an

obstacle that either blocks the straight-line path to the goal, or does not. If the obstacle

does not, then there exists a straight-line path toward the goal. If the obstacle does

block the scout's direct path to the goal, then it must be within the sight limit of the

scout, in which case the scout would detect it as an edge. When the scout detects an

edge it will always detect boundaries to the edge because of the limitations of the sonar

sensors. These boundaries will be the pseudo-corners mentioned above.

Now, to finish proving the theorem, we must show that when the scout’s path

deviates from the optimal path, it will eventually regain the optimal path. Furthermore,

we must show that the length by which the path is increased each time it deviates from the

optimal path is less than 2L, where 2L is the length of the side where the scout’s path

reencounters the optimal path. We can show that the scout’s path will reencounter the

optimal path, and using lemma 6, we can establish a correlation between the edges in the

scout’s path and the edges in the optimal path. Once we have established this correlation,

we can then examine it to determine the difference in length.

Clearly, the scout will reencounter the optimal path at the goal if not before. Now we

must make some assertions about how must longer the scout’s path is than the optimal

path. I will examine several scenarios, and eventually show that in the worst case

scenario the scout only loses the path for one edge. In other words, two edges in the

scout’s path correspond to only one edge in the optimal path.

2 We define pseudo-corners as points that the scout perceives as corners from its sonar sweep, but are not
actually corners of obstacles.

31

To begin, let’s examine how the scout can possibly regain the path to the goal to

gather insight on how the scout’s path deviates from the optimal path. By lemma 6 we

know that if the scout does not find the next point in the optimal path, it will either

proceed along a straight-line path toward the goal, or explore one of a set of points

detected from the current point. This set of points will include the pseudo-corner

corresponding to the next point in the optimal path.

If a straight-line path to the goal is detected, the scout will move along this path until

detecting an object at some threshold distance in front of it. We will assume that the

scout started on optimal path to the goal. Clearly, when it takes the straight-line path, it is

not necessarily heading to the next point on the optimal path. But, as the scout travels in

a straight-line path toward the goal, it will eventually encounter an obstacle in its path. At

this point it must navigate around the obstacle by locating the obstacle’s corners.

32

C

(a)

A B

S

G
G

A C
B D

(b)

S

C

G

(c)

A B

S

(d)

C

D

A B

S

G

Figure 7: (a) The scout’s path (SCB) and the optimal path (SB) around the obstacle with
width AB. (b) If the optimal path swings wide of the obstacle (SD) but the scout stays
close, the difference between the two path length is reduced (|SD| > |SB|). (c) If the
distance from S to the obstacle is less than the sight limit of the scout, the scout will find a
pseudo-corner (C). The path in part s through this pseudo-corner will be shorter than the
path in part a on the straight-line path to the goal. (d) If the scout misses more than one
segment of the optimal path (SDB), the difference between the scout’s path and the optimal
path is again reduced, as the length of SDB is greater than the length of SB.

When we examine the possible scenarios for the optimal path, we see that in the

worst case the scout rejoins the optimal path at the outermost corner of the obstacle in its

way. Consider figure 7, part a. Point S represents the location where the scout deviates

from the optimal path. The line AB represents the dimensions of the object in the scout’s

33

way. And point G represents the goal, which is shown in order to establish the straight-

line path from S toward the goal. Now, we note that both the scout and the optimal path

must somehow navigate around the obstacle in order to reach the goal taking the shortest

route possible. The scout begins its path by heading straight toward the goal. It

eventually will reach the obstacle and navigate around it, heading either to the left or the

right. The optimal path must also head around the obstacle. The optimal path around the

obstacle must be shorter than the path the scout chooses around the obstacle, so the

optimal path may swing, slightly wide of the obstacle’s edge, but not too wide.

In the worst case, then, the difference between the length of the optimal path and the

length of the scout’s path caused by this deviation will be no more than the difference

between the sum of length of sides SC and CB, and the length of side SB.3

Before we examine how large this difference could possibly be, we must note that by

lemma 6, the scout either had to detect a straight-line path to the goal, or had to detect

pseudo-corners. We quickly note that the exploration and choice of these pseudo-corners

allows for a more optimal approximation of the optimal path (see figure 7c). Thus,

examining the straight-line path deviation will give us a worst-case bound on the length

of the scout's path relative to the optimal path.

If the scout makes a straight-line deviation from the optimal path, it can skip over any

number of segments in the optimal path. However, we see clearly that the more

segments it skips, the less the difference between the scout's path and the optimal path

(figure 7d). So, to finish our proof of theorem 5, we must only examine the triangle

SCB mentioned above. Referring to figure 7a, I will show that the maximum difference

between the sum of the lengths of SC and CB and the length of the optimal path edge

(SB) is two times the length of segment AB, or twice the width of the obstacle which is

between point S and the goal.

3 We note in figure 7b that if the scout swings wide it causes the rest of the path to be longer, and lessens
the difference between the scout’s path and the optimal path.

34

G

T

S

AB
C

Figure 8: Worst case scout’s path (SAB) could go to the end of the obstacle (BC). The
optimal path goes from S to B.

In the worse case, consider figure 8. Here the scout heads far past the optimal point

while on its straight-line path to the goal, along segment SC. Because the scout does not

detect that there is an obstacle blocking the goal, it actually moves away from the point to

which it will return. Once it detects the obstacle, it marks a point in the path (point C),

and maneuvers to avoid the obstacle, eventually reaching point B. Here the angle SBC is

very large, indicating that the scout has planned a path that deviates greatly from the

optimal path (SB). In the very worst case, the scout travels until it can detect the

obstacle, or in other words, until the end of the obstacle. If it reaches the end of the

obstacle, but does not choose to backtrack, we know that the path that it has found is

shorter than a path that would have been found had it chosen to backtrack to point B. So

we can get a worst case by looking at the case in which it chooses to backtrack to point

B.

The extra length that the scout travels in the very worst case is 2L, where L is the

length of this obstacle. If we subtract the length of SB from SC, we find that the

segment TC is shorter than BC because SBC is less than 180 degrees. Thus, the total

extra length the scout travels is less than two times BC, which is less than two times BA,

or L.

35

By simply applying this theorem, we could infer a worst case bound of two times the

perimeter of every obstacle in the environment. However, because of the nature of our

search, we can combine our search algorithm and theorem 5 to prove a tighter bound.

Theorem 6: In the worst case, the length of the path which this algorithm returns will be

no more than the sum of two times the width of each obstacle in the environment plus the

length of the optimal path.

Proof:

This can be seen rather simply. As we noted before, whenever the scout's path

deviates from the optimal path, both paths will eventually have to navigate around an

obstacle in their path. Each time this happens, we get a maximum deviation noted in

theorem 5, of two times the width of the obstacle. If we consider the algorithm, it is clear

that the optimal path will never navigate around the same object more than once. So,

when sum up all the deviations across all the environment, we get a maximum deviation

of the sum of two times the width of each obstacle in the environment.

4 The Experiment and its Results

4 . 1 System design

4 . 1 . 1 Implementation

I implemented the system with a number of C++ classes. I build the code on basic

classes which Michael Ross and myself wrote for the previous implementation. The basic

classes upon which I built included classes to control the robot’s motion (class

basic_motion), the robot’s sensor readings (class good_sonar), and the robot’s rotating

sonar (class rotating_sonar). These base classes were designed to account for some of the

errors inherent in the hardware and existing in the basic software provided with the scout

robot. The basic_motion class provides a clean way to give the scout motion commands,

as well as slowing down the movements he performs to make them more accurate. In

36

particular it has implemented a slight pause after each rotation command to ensure that the

scout has finished his turn before he attempts his next maneuver. The good_sonar class

attempts to account for erroneous readings the sonar can sometimes return. It takes three

successive readings from one given sensor. If the three readings are sufficiently close

together, the scout assumes they are correct and returns the average of the three. If they are

not close enough together, the scout discards them and takes three more readings. Finally,

the rotating_sonar class uses the robust reading algorithm of good_sonar while providing a

clean way to control the rotation of the sonar.

The two main classes I added are the class to encode the storage structure, discussed in

section 3.4 (class pathTree), and the class to control the exploration of the environment

(class pathFinder). PathFinder used class path tree to store the information it gathered from

its surrounding environment. Class pathFinder itself had three main components--

sweeping, loading, and moving –corresponding to three major sections of the algorithm.

The sweep section controlled the sonar sweep. The load section controlled the scout’s

loading of the points detected into the path tree and the choice of the next point to explore.

The move section controlled the scout’s motion and checked for problems as the scout

proceeded to its next point. Figure 9 illustrates roughly how all the classes outlined here

work together in the implemented system. A listing of all the code is available at

ftp://ftp.cs.dartmouth.edu/TR/TR98-336.code.tar.Z.

37

Path Finder

Load MoveSweep

rotating_sonar good_sonar basic_motion

Tree Data Structure

Figure 9: Diagram illustrating the relationships between the various classes. The circles
represent subsections of the pathFinder class. Connections show which classes use and
depend on which others.

4 . 1 . 2 Experimental platform

I implemented my system in the Dartmouth College Robotics Lab, using an RWI

Pioneer robot as my scout. The scout is equipped with 8 sonar sensors – 7 fixed position

and 1 rotating. Five of its fixed sonar sensors are located in front of the scout and are used

for detecting obstacles as the scout moves forward along a path. Two of the fixed sonar

sensors are located one on either side of the scout. I have used these side facing sensors to

detect when the scout enters a corridor that is too narrow for the system that the scout is

guiding to pass. Finally, the scout has its one rotating sonar located on its left-hand side,

about 20 cm to the rear of the robot from its fixed side sonar. Because its rotating sonar is

located on his left, each time it performs a sweep, it must rotate 90 degrees to the right, and

then rotate back when it is done with its sweep.

The platform limits several variables within the system. The rotating sonar has an angle

range of slightly over 90 degrees, so I used 90 degrees as the sweep angle for the scout.

Recall that with a 90-degree sweep angle the scout will always terminate its search, but will

not find any path that leads away from the goal. Its sonar sensors have a range of about

two and a half meters, but, when confused, can sometimes return a value of just under two

meters. I considered readings of a meter and a half and under to be valid. Thus, in my

38

experiments, the scout’s sight limit was 1.5 meters, implying that in my experiments Jerry

could not plan a path for an object that is more then 1.5 meters in diameter. The robot lab

contains a tile floor on which the robots can move which measures about 6 meters by 6

meters. All of my obstacles were rectangular, as I used cardboard boxes.

4 . 2 Limitations to the system

Implementing any theoretical system always has its difficulties, and this system was no

exception. There were many limitations to the physical system that caused my

implementation to stray from the theoretical model.

To begin with, as I have mentioned before, the sonar sensors have some inherent

limitations. They give approximate readings only, assuming that the reading that they are

receiving comes from a face that is exactly perpendicular to their angle of measurement.

This assumption causes incorrect readings when we do our initial sonar sweep. While the

sensor will get at least one correct reading on any face which it contacts, it will have contact

with any face over a small range of angle positions. Because it gets readings at these

different angles, it assumes that the face is always exactly facing the sonar sensor, which

causes the points that the sensor detects to take on a curved nature, as the sonar rotates,

instead of being represented by a flat face. Also, if the face it too large, the sensors we are

using then not to get readings as far out as the corners, as the angle is too great by the time

the sensor has reached the corner. Finally, the readings the sensors receive are not always

accurate, and often the system receives data points that are not indicative of the edges of

obstacles.

The odometry also induces errors into the system. When the scout moves, it does not

always exactly keep track of how far it has moved, but rather, is off by a small amount.

While this difference does not cause errors in the tests that I performed because they were

not over a sufficiently large environment, in an unlimited environment these differences

39

could begin to add up and cause problems. We will discuss ways later in the paper to

reduce errors caused by faulty odometry readings.

Perhaps the greatest difference between the theoretical system and the physical system

is the actual navigation and orientation of the scout. In theory, the scout can scan for its

corners, proceed to the chosen corner, and repeat the search. However, because of the

limitations mentioned above, the scout cannot simply move blindly to a corner it detects.

For starters, the scout itself must maintain a safe distance away from the obstacle. And

because the scout needs to maintain this safety distance, it must determine to which side of

the corner it should proceed by choosing the side which exists in free space, not blocked by

the box. Orientation of this manner is exceedingly difficult using only sonar sensors. A

fellow researcher and I have developed a robust algorithm for edge localization using two

side sonar sensors, which I will discuss in the following section.

Finally, the scout's speed and accuracy in locating points in space limits the systems

ability to strictly adhere to the optimal algorithm. If the scout had an unbounded amount of

time to search, or if the scout moved much faster than the movers, then it would be to our

advantage to optimize the path the scout returns using the algorithm presented in the

previous section of this paper. However, in the system with which I am working, the

scout moves only minimally faster than the movers do. Therefore, it is to my advantage to

modify the algorithm slightly to prevent the scout from continually abandoning its search

down one portion of the tree to search down apparently more optimal branches. I claim

that the time the manipulation system loses by following a slightly longer path is easily

recovered in the scouting portion of the algorithm through the scout’s saved backtracking.

4 . 2 Deviations from the Theoretical System

Now that I have mentioned the motivations behind straying from the theoretical system,

I will elaborate on the specific aspects of the implementation which differ from the

theoretical model.

40

4 . 2 . 1 Corner localization

Let’s consider what actions the scout must take when it locates a corner that it chooses

to explore. After the scout does its initial sweep, it chooses the next best corner to explore,

and then heads to that corner. In theory these corners may be real corners, if such corners

are within range, or they may be the pseudo-corners mentioned earlier. When the scout

detects such pseudo-corners in the theoretical model, it can treat them as real corners,

proceed to them, and repeat the sweep process.

In the physical system, such pseudo-corners occur frequently, both because the corners

are further than the scout’s sight limit and because of angle limitations of the sonar

mentioned above. In order to repeat the sonar sweep process, the scout must find a corner

and move slightly away from it. So, in contrast to the theoretical system, the scout cannot

simply treat these pseudo-corners as real corners, because they are blocked on both sides

by the obstacle. The scout must find the real corner associated with the perceived corner.

The scout finds this corner is as follows:

If the scout is approaching the edge of the obstacle at a shallow angle:

If the angle at which the scout is approaching is shallow enough (i.e. the scout detects

the obstacle only with one of its side sonar sensors), then the scout is virtually heading

parallel to the side of the obstacle. In this case, the scout simply adjusts its position so it is

exactly parallel to the face of the obstacle as it follows along its edge. It can accomplish

this straightening out by keeping track of its distance from the obstacle’s face. If the scout

is moving toward the obstacle, it turns away. It the scout is moving away from the

obstacle, it turns towards it. If its distance from the obstacle does not change significantly

over time, it is heading parallel to the obstacle’s face, and continues to do so until it no

longer detects the obstacle with its side sonar. The scout has then reached the corner of the

obstacle.

If the scout is approaching the edge of the obstacle at a large angle:

41

In this case, the scout is on a collision course with the obstacle. It must stop before

crashing into it, and consider its position along the obstacle’s face. The first thing the scout

does is rotate 90 degrees to the right to prepare itself to locate the edge of the obstacle.4 It

then moves forward or backward a small distance depending on whether it thinks it is on

the obstacle’s left side (backwards) or right side (forwards). If the scout cannot determine

which side of the obstacle it is on (i.e. it has readings from all its sensors, or only the

middle one), it does not move forward or backward, but will most likely locate the right

corner of the face. The reason for this assertion and for the moves will become clear after I

discuss the edge location algorithm.

Now the scout is ready to locate the side of the box. To position itself parallel to the

side of the box the scout performs the following steps:

1. The scout does a sweep with the rear sonar and keeps track of the angle with the

lowest reading.

2. The scout turns so as to make the angle at which the scout determined the lowest

reading parallel to the face.

3. The scout backs up until the fixed side sonar has contact with the face.

4. The scout sweeps with the rear sonar again. If the lowest reading was found within

a 5-degree angle of the scouts heading, the scout decides it is parallel to the face.

Otherwise the scout repeats steps 1 through 4.

Once the scout has positioned itself parallel to the edge of the box, it moves forward until it

loses contact with the box, having found the corner.

We can now examine why the scout chooses to move forward or backward to locate the

corner. If the scout locates the edge of the obstacle that it approached will find the right

hand corner of the box, due to the fact that the sonar sensors are on the scout’s left side.

However, because the edge finding algorithm involves backing up, the algorithm will cause

the scout to back around the right hand corner if it starts sufficiently close to it. Thus, by

4 Recall that there are two sonar sensors on the scout’s left side, one fixed and one rotating. The scout will
use both in its process positioning itself parallel to the side.

42

backing up, we force the scout closer to the left corner of the face. If the scout was

originally sufficiently close it will back around the corner, find the face which is to just to

the left of original face. When the scout then navigates off the edge of that face, it will have

found the left-hand corner of the original face.

Obviously by this method of corner localization, the scout will find a corner with

slightly different coordinates that the one which it detected in its sonar sweep. Because the

scout has an internal system of coordinates, it can correct for this position change by

simply modifying the coordinates in the node it is exploring to match its current

coordinates. Another piece of information which must be loaded at this point which was

not mentioned in the theoretical system is point through which the manipulators must pass,

that is, the point in the path taking into account the dimensions of the object to be moved.

The scout has a good idea of which side of its current position the obstacle is located, so it

can determine the modified coordinate by simply calculating the point in space which is half

the object’s width away from the obstacle. Then, when the scout moves, it still will still

have the means to return the modified point, even though it no longer has the means to

calculate that point.5

4 . 2 . 2 Path exploration

A second major difference between the physical system and the theoretical system is

that the scout will not backtrack to attempt to find a more optimal path. That is, once the

scout begins to explore a path, it will continue to explore along that branch of the tree

unless it reaches a dead end. In the optimal system, the scout would always explore the

node in the tree that had the minimum estimated path to the goal. This exploration could, in

the worst case, cause the scout to explore a different branch of the tree every time it

explored a new node. In the physical world, the scout has to move back through the nodes

that it has already explored. This movement theoretically should not be a problem, since it

5 This is due to the fact that the data structure simply stores the coordinates of the corner, not how that
corner relates to the obstacle.

43

has exact coordinates for points it has already explored and since it has already determined

that there are no obstacles blocking the path between the coordinates. However, the scout

still requires time to retrace its steps, and since our odometry system is less than ideal, we

would like to minimize the scout’s unnecessary movement. As a side note, if we were to

implement this backtracking part of the algorithm, it would be a simple task to determine

the path from any node to another in the tree since we have each node’s child list from the

start of the tree. So, to determine the path from any node to another, we simply compare

their child lists. The node in the lists where they diverge represents the place in the tree

where the nodes’ branches diverge. We can then easily determine how to navigate up the

branch of the first node and down the branch of the second.

4 . 3 Experimental runs

My goal was to test the system in a variety of different cases, starting very simple and

progressing to more difficult environments. In the previous system on which I worked

solving the same task, the system was able to successfully able to avoid an obstacle

detected on the right about 50% of the time. [RKKS96] Any result which improves on this

percentage would be an improvement to the system, although I also realize that my task is

only concerned with the scouting section of the system and avoids all the errors induced by

the manipulation process.

As I mentioned at the beginning of this paper, a major advantage to separating the scout

from the manipulation process is that the scout can more thoroughly explore the

environment to avoid obstacles. In particular, the scout is able to avoid obstacles that

would not have been detected by the previous system in which the scout was rooted

alongside the object being moved. I was able to test my scout on obstacles that were in all

locations along the path to the goal-- directly in front, to the left, to the right.

44

To run the experiments, the scout was placed at one end of the floor with an

arrangement of boxes in its path toward the goal. The scout was then told where the goal

was located, and set free to plan its path toward the goal.

4.4 Results and analysis

I tested the system over 56 total runs, involving a variety of cases. All of the cases for

which I tested contained a valid path which always "flowed" toward the goal, which the

scout theoretically been able to find. As we noted above, the scout cannot find any path

that heads away from the goal since it uses only a ninety-degree sweep angle. The cases

were broken up into simple cases (n=36) in which the scout was only presented with

spaces which were big enough for the object it was guiding to fit through, and complex

cases (n=18), in which the scout had to recognize gaps which were big enough for it to fit

through, but not big enough for the object to fit though. Furthermore, in each of the simple

cases, one main obstacle blocked the scout from the goal, and it could be oriented squarely

(square, n=29) or at an angle (angled, n=7) relative to the starting direction of the scout.

The scout performed quite well in most of the test cases. Overall, the scout

successfully navigated and found a valid path around the box on 37 of its 54 tries. This is

a 69% success rate, which improves on the previous 50% rate. If we look at individual

cases the number improves for certain cases. In the simple straight case, the scout

successfully planned a path in 22 of 29 tries, or 76% of the time. In the angled case, the

success rate drops to 57%, or 4 of 7 tries. And for the complex case the success rate is

56%, or 10 of 18 attempts. See figure 10 for a complete table of the results.

45

runs
number of
successes

percent
success

straight

angled

Complex

number of

Simple

69%Total 54

29

7

18

37

10

4

22

2736 75%

76%

57%

56%

Figure 10: Results from test runs.

To get a real feel for what the system does well and what it does not do well we must

examine the reasons for failure and the behavior under specific circumstances more closely.

In the simple case, the reasons for the scout's failure included missed commands (2 cases)

and failed location of a corner of the box (8 cases). A missed command cannot be easily

accounted for in my software, but must be improved upon in the communications software.

However, it is the missed corners that are the biggest cause of failure in the simple system.

The scout misses corners when it either fails to pinpoint them using its corner location

system, as described in section 4.2 above, or when it repeatedly locates the same corner

using its corner location system. This repeated location of the same corner can occur

because the sonar sweep fails to identify a corner which is far enough away from the

current point. Failed corner location turned out to be more of a problem for the angled

case, because as the scout faced the goal it had a more shallow angle with the obstacle, and

thus could not get a precise reading on the corner location from its initial sweep.

In the complex case the scout encountered difficulties that it did not encounter in the

simple system, as well as some of the same problems. When the scout had to deal with

gaps that were too small for the obstacle to fit through, it not only failed to locate the

46

corners it was supposed to locate (1 case), but it also got stuck in the gap between the

obstacles which the object could not fit through (6 cases), and incorrectly determined that a

path to the goal did not exist (2 cases). The scout got stuck in the gap when it falsely

identified the corners which made up the gap as valid corners to the path, and then could

not back up enough to locate the valid corners after realizing that the corner which it had

found was not valid. However, on a good note, the scout never chose a point on the path

toward the goal as being valid when it was not (i.e. the scout never planned a path through

a corridor which was too narrow for the object to fit through).

Looking at a couple specific behaviors of the scout, we see patterns worth noting.

First, the scout tended to choose a path around the right hand side of the box, even when

the left-hand side was slightly closer. This behavior is due to the fact that the scout's

rotating sonar is on its left-hand side; thus, when the scout found an edge, it would more

likely be facing the right corner of the box. However, a simple argument by symmetry

shows that if the scout had an additional rotating sonar on its right side it would choose the

left side as often as it chose the right side of the box. Furthermore, if it had two rotating

sonar sensors, it would be better at finding the side of the path that corresponds to the

shorter path. Second, the system is extremely robust. Even if the scout fails to find a

corner on its first try (for example, it looses contact with the box premature to reaching the

corner, and assumes this lost contact indicates a corner) it will almost always find the

corner on its next sweep and corner localization.

Although my system performed quite well in the cases on which I tested it, it has two

major limitations. First, because of the small sweep angle, the scout is unable to locate

paths that , at any point, head away from the goal. The rotating sonar only had a sweep

angle of 90 degrees, and, while the scout could have rotated its own position to sweep the

entire 360-degree field, this would have taken considerable time and risked introducing

errors in odometry caused by excess rotation. The other limitation involves the scouts

inability to locate points accurately enough to determine which points are the same.

47

Because the scout always finds moves to a point just off the corner of the obstacle, and

then adjusts its point, the point which the sonar sensor detects will rarely, if ever,

correspond to the point in space which the scout finds. Thus, in practice, since the scout

cannot tell which points it has explored and which it has not, its search time is not bound

by the number of corners in the space. The scout could search a space for an

undetermined amount of time looking for a path to the goal when none exists.

5 Extensions

Although the system performed quite well in practice, it could be improved through

various means, ranging from simple to more complex.

The first extension to the scouting system would be to add the manipulation system to

move the object along the path that the scout returns. This should be a simple task. It

requires the manipulators to have an internal odometry system. They could then blindly

turn toward the next point in the path and head to it, since the scout has already located a

clear path. The addition of the manipulators must be performed for the system to be

complete, since the scouting system was clearly designed with the manipulation system in

mind.

Another more interesting extension involves the use of the manipulators to help the

scout maintain its position information. As I mentioned earlier, one of the limitations to the

system is that it tends to lose its position the more it moves. It is inspired by the work of

Hirose and Kurazume at the Tokyo Institute of Technology. They describe a way to use a

team of robots to solve the position identification problem, “Cooperative Positioning

System (CPS)”,[KH98] by first moving one of the two robots while using the other as a

landmark, then moving the second, using the first as a landmark. CPS has the advantages

of being more reliable than dead reckoning, and can be used indoors and in unknown

environments [KH98], which are conditions we would like to meet in our system. The

difference between our system and the one described by Kurazume and Hirose is that in

48

our system only one of the robots (the scout) is mobile while exploring the environment.

Since their system depends on the robots being able to detect each other, when the scout

wanders away from the manipulation system, it will not be able to use them as a landmark.

Also, because the scout relies on sonar data it cannot necessarily tell the manipulation

robots from the other landmarks in the environment. Finally, because the manipulators are

supposed to be blind (if they were not we would not have a separate scouting in the first

place), they cannot detect the scout to get a reading on its position.

If a minimum number of these restrictions can be overcome, the scout might gain

critical dependency about its location. This added accuracy would allow the scout more

freedom to move around its environment. It could then backtrack, as called for by the

original algorithm, and find a more optimal path to the goal.

6 Acknowledgements

This work was done entirely in the Dartmouth College robotics laboratory, headed by

Daniela Rus. I would like to thank Professor Rus particularly for her guidance. I would

also like to thank Keith Kotay for his countless hours spent maintaining the equipment in

the lab so that I could do my research. In addition, much of the background work for this

paper was done in conjunction with Michael Ross, whom I would like to especially thank

for the many hours we spent together developing some of the crucial background for my

current work.

References:

[ALMR97] P.K. Agarwal, J.C. Latombe, R. Motwani, and P. Raghavan, Nonholonomic
Path Planning for Pushing a Disk Among Obstacles, Proc. 1997 IEEE International
Conference on Robotics and Automation.

[BCHLSST98] W. Burgard, A.B. Cremers, D. Fox, D. Haehnel, G. Lakemeyer, D.
Schulz, W. Steiner, S. Thrun, 1998. The Interactive Museum Tour-Guide Robot.
To appear at AAAI-98.

[BLA93] J. Barraquand and J.C. Latombe. Nonholonomic Multibody Mobile Robots:
Controllability and Motion Planning in the Presence of Obstacles, Algorithmica,
10(2-3-4):121-155, 1993

49

[CB95a] H. Choset, J Burdick. Sensor Based Planning, part I: The generalized voronoi
graph, In Proc. IEEE Int. Conf. On Robotics and Automation, 1995.

[CB95b] H. Choset, J Burdick. Sensor Based Planning, part II: Incremental construction
of the generalized voronoi graph, In Proc. IEEE Int. Conf. On Robotics and
Animation, 1995.

[DKP91] X. Deng, T. Kameda, C. Papadimitriou, How to Learn an Unknown
Environment (Extended Abstract), 1991.

[GGLLLMT97] H.H. Gonzalez-Banos, L.J. Guibas, J.C. Latombe, S.M. LaValle, D.
Lin, R. Motwani, and C. Tomasi, Motion Planning with Visibility Constraints:
Building Autonomous Observers. The 8th Int. Symp. of Robotics Research,
Hayama, Japan, October 3-7, 1997.

[HIKK] F. Hoffmann, C. Icking, R. Klein, K. Kriegel, The Polygon Exploration
Problem: A New Strategy and a New Analysis Technique.

[JKT97] J. Jennings, C. Kirkwood-Watts, C. Tanis, Distributed Map-making Using
Online Generalized Voronoi Graphs, Dept. of Electrical Engineering and Computer
Science, Tulane University, 1997.

[JWE97] J. Jennings, G. Whelan, W. Evans, Cooperative Search and Rescue with a
Team of Mobile Robots, In IEEE Int. Conf. On Robotics and Automation,
Albuquerque, NM, 1997.

[K94] J. Kleinberg. The localization problem for mobile robots. Proc. 35th IEEE
Symposium on Foundations of Computer Science, 1994.

[KH98] R. Kurazume, S. Hirose, Study on Cooperative Positioning System – Optimum
Moving Strategies for CPS-III, Tokyo Institute of Technology, Tokyo, Japan,
1998.

[RKKS96] D.Rus, A. Kabir, K. Kotay, M. Soutter, Guiding Distributed Manipulation
with Mobile Sensors, Department of Computer Science, Dartmouth College, 1996.

[T98] S. Thrun, 1998. Learning Metric-Topological Maps for Indoor Mobile Robot
Navigation, AI Journal 99(1), 21--71.

[TFL94] H. Takeda, C. Facchinetti, and J.C. Latombe, Planning the Motions of a Mobile
Robot in a Sensory Uncertainty Field, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(10):1002-1017, 1994.

	Distributed Route Planning Using Partial Map Building
	Recommended Citation

	Microsoft Word - my thesis--word5.1

