
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-4-1996

Object Oriented Scenes for Virtual Light Object Oriented Scenes for Virtual Light

Jonathan A. Moore
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Moore, Jonathan A., "Object Oriented Scenes for Virtual Light" (1996). Dartmouth College Undergraduate
Theses. 178.
https://digitalcommons.dartmouth.edu/senior_theses/178

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/178?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Object Oriented Scenes
for

 Virtual Light

An object oriented structure for ray tracing software

Jonathan A. Moore
class of 1996
Honors Thesis

John M. Danskin,
Advisor

Computer Science
Dartmouth College

June, 4 1996
PCS-TR96-291

Object Oriented Scenes
for

Virtual Light

Introduction ... 1

Background

Pinhole Camera Model.. 3

Homogenous Coordinates ... 7

Design Patterns ... 9

Contributions

The Composite Pattern ... 11

The component and leaf participants .. 11

The composite participant .. 13

Support Classes ... 15

The Virtual Frame Buffer ... 17

The vfb widget.. 18

Examples, Discussion and Images

Ray Tracing .. 20

Virtual Frame Buffer... 25

Discussion ... 26

Images, Demo's and Directories.. 28

User's Manual .. 30

Support and Ray Tracing Classes ... 31

tuples and tuples_based ... 31

class color ... 33

class vector ... 34

class point ... 35

class color_point ... 36

class matrix ... 37

rt_base_objects ... 38

class ray ... 38

class intersection ... 39

class rtab_component ... 41

class rtab_composite ... 45

The Virtual Frame Buffer ... 46

pixel ... 46

class pixel_interface ... 46

STORAGE_CLASS ... 48

class vfb_pixel ... 50

vfb ... 52

class vfb ... 52

vfb Widget Commands... 55

C++ code and the vfb widget ... 58

Known Problems ... 59

Bibliography .. 61

1Introduction

Ray tracing is one of many way to use a computer to generate an image. Ray tracers

produce images by simulating light. Normally, ray tracing refers to backwards ray

tracing: rays that represent light are shot from an “eye” into a scene. Objects in the scene

reflect and transmit the ray. Eventually, it reaches a light source. One ray is shot to

determine the color of each pixel of the final image.

Writing a ray tracer can be a daunting endeavor. A great number of details might

distract one from the interesting part of the algorithm that actually models light.

Eliminating these details was the main goal of my thesis project. The software I have

written can be divide into three parts: the virtual frame buffer, the support classes and the

ray tracing abstract base classes.

The virtual frame buffer class, vfb, provides a simple means of rendering and

studying the final image produced by a graphical algorithm. A user may draw to the vfb

with simple calls to put_pixel(), but the flexibility to create new schemes for

representing pixels in memory is also built into the vfb. The vfb implements a Tk

widget with many commands for accessing and resizing the pixels. With a little

knowledge of Tk, a simple script can implement a graphical user interface with individual

pixel access and features like load, save, pan, and zoom.

The support classes provide an elegant notation for the equations involved in ray

tracing. A ray is a geometric object used to find a color. It is defined by a vector and

point. Objects often must be transformed by matrices. None of these types are part of

standard C++. In order to implement a ray tracer all of these classes and their operations

must be represented. The vector, point and matrix classes support homogenous

coordinates which allow one to perform linear transformations uniformly. The same

transformation matrix may be used to modify a point, vector, another matrix, or any

object defined by homogenous objects.

2The ray tracing base classes and associated classes provide a object oriented

structure for defining the objects that make up a scene. Two abstract base classes,

rtab_component and rtab_composite, implement the Composite pattern as discussed in

Design Patterns.1 This structure was designed with some specific goals in mind: allow

users to implement their own primitive objects, composite objects and ray tracing

algorithms, but force all of these elements to be interchangeable. These goals imply that

once an algorithm has been implemented any objects based the abstract classes, either

primitive or composite, will automatically work with the algorithm and visa versa. This

allows students to focus on the particular ray tracing algorithm they are studying, or to

implement new objects without worrying about an algorithm. Because an object may

actually be a group of primitive objects, another goal became necessary: Algorithms

should interface with primitive and composite objects in exactly the same way.

3Pinhole Camera Model2

and

Ray Tracing Concepts

Taking a photograph of a scene in the physical world is one way of creating a two

dimensional image of a three dimensional world. The simplest way to make a

photograph is using a pinhole camera. A pinhole camera is a light proof box with a piece

of film attached to one of the inner sides of the box. A small hole is made in the center of

the side opposite the film and covered. A picture is taken by allowing light to enter the

box through the pinhole.

Light from scene enters
through the pinhole.

Image on film

 Light particles, photons, travel along straight lines called rays. Light sources

continuously emit many photons of various colors in all directions. Photons that hit the

film inside the camera cause a chemical reaction to color the film. The effect of the

photons on the film is additive; the color of a particular point on the film is an average of

the all the photons that hit that point. If a blue photon were to hit a point on the film and

later a red photon hit the same point, it would appear purple, a combination of their

colors.

The hole in the pinhole camera is very small; thus, it limits the number of photons

that hit the film. For a specific point on the film only photons moving along a path

through the pinhole to that point will reach the film. In theory, a pinhole large enough for

one photon would produce the best image by allowing each point on the film to be

colored by photons moving along just one path. The picture would be very sharp;

4however, it would require a long time to produce given the extremely small amount of

light allowed to enter the camera at one time.

A light source emits photons. The photons are reflected, refracted and absorbed

by objects in the scene being photographed. A very small group of photons pass through

the pinhole. The film records the outside scene as it is colored by photons moving along

the rays from the pinhole to each specific point on the film.

Ray tracing produces two dimensional images of virtual three dimensional space

by simulating the process of the pinhole camera. There are many variations on the

general idea, but a few concepts in the model are usually changed. The pinhole is

replaced by a conceptual point sized “eye”. The film is replaced by a viewing window or

a pixmap and it is placed between the eye and the virtual scene. Instead of film

recording rays that pass from the outside world into the camera along paths from the

pinhole to each specific point on the film, the pixmap of the ray tracing algorithm records

rays that originate in the virtual scene and pass through a specific pixel of the pixmap

along a ray from that pixel to the eye.

Eye

Pixmap
Virtual
 scene

Light

Light source

Light emited from source bounces
off objects in the scene.

The light ray, from the point of
reflection, through the pixmap,
to the eye, colors the pixel it
passes through.

Forward ray tracing algorithms model light by following protons progress from

the light source, off the objects, through the pixmap, to the eye. For real photons this

happens almost instantaneously, but to simulate these photons a computer must perform

many calculations whenever the photons encounter objects in the scene. Light sources

emit photons continuously in all possible directions. Very few of these photons

5eventually enter the pinhole in the camera. A computer can only simulate this by tracing

rays one at a time in random directions. Thus, forward ray tracing algorithms are very

slow. If the algorithm were run for an infinite amount of time, a near perfect image

would be produced; however, that much time is usually not available.

Although photons are emitted in all directions the vast majority of these never

pass through the pinhole or reach the eye. A great deal of time is wasted simulating the

photons that will not effect the image. Backwards ray tracing attempts to eliminate these

rays. This algorithm reverses the simulation by tracing rays from the eye, through a

specific point on the pixmap, to objects, and back to the light source. Thus, backwards

ray tracing only studies the particular rays that would have reached the eye if traced

forwards. Unless otherwise specified, ray tracing generally refers to the backwards ray

tracing algorithms.

Photons move at the speed of light along straight paths in one direction. Ray

tracing algorithms simulate photons motion with rays. Usually a ray does not model the

actual photon, instead it represents the photon’s entire path. A ray is defined by its

origin, point and direction vector. Ray tracing algorithms begin their backwards

simulation by defining a number of rays. Each ray's origin is the “eye”. In general, a

vector may be defined by subtracting one point from another. A ray’s direction is the

vector defined by subtracting the eye point from one point of the pixmap. One ray is

studied for each point of the pixmap.

Each of theses rays is tested for an intersection with the objects in the scene. If

the ray does not intersect any object it is disregarded. If it does intersect an object, the

color observed at the point of intersection determines the color of the ray’s pixel. The

color observed at the point of intersection is found by recursively shooting new rays. The

observed color is a combination of the object’s color and the colors found with the new

rays. Many of these rays’ direction vectors are calculated using the surface normal of the

object. One ray is directed at each of the lights in the scene. If the light rays do not

6intersect anything before hitting the light, the color of the light is returned. Other rays are

directed according to the particular algorithm being used. In general they simulate

reflection, refraction, and other properties of light. Each of these rays is tested for

intersection with other objects. If an intersection is found the algorithm recurses on that

point.

The general algorithm implies that every ray shot into a scene must be tested for

intersection with every object in the scene. The total number of rays shot into the scene

not only includes those originating at the eye but also those originating at each

intersection point. A common approach for improving efficiency groups objects to

eliminate intersection tests. For example, one hundred objects are grouped together into a

group object. A ray is shot into the scene and tested for intersection with the group

object. If the ray does not intersect the group object we know that it will not intersect any

of the one hundred objects in the group, thus we save 100 intersection tests.

7Homogenous Coordinates

points and vectors

Normally, 3 coordinates (x, y, z) represent a point in three dimensional space.

This presents a problem. In many graphic algorithms it is necessary to transform groups

of points by rotating, scaling and translating the group. These operations are

accomplished by applying a matrix to the group of points. Translation moves a point by

adding a one column matrix (T) to it:

P' = T + P.

Other transformation are applied by multiplying the point by a matrix. A point is rotated

around the origin by multiplying it by a 3 by 3 matrix (R).

 P' = R * P.

 Since the matrices are of different sizes and the transformations do not rely on the same

operations, the transformations cannot be treated uniformly or composed into one

convenient matrix.

Homogenous coordinates overcome this problem. Homogenous coordinates use 4

coordinates (x, y, z, W) to represent points in 3 dimensions. The point (0, 0, 0, 0) is not

allowed. The points (x, y, z, W) and (x', y', z', W') are equal if they are multiples of each

other. The 3 dimensional sub-space W = 1 of the homogenous coordinates 4 space

represents Cartesian 3 space. These two ideas imply that all homogenous points (x, y, z,

W ≠ 0) give the same point in the 3 dimensional sub-space (x/W, y/W, z/W, 1). Dividing

through by W is called homogenizing the point.

When W = 0 the point is said to be at infinity and only gives a direction. Points at

infinity represent 3 dimensional vectors. In the homogenous coordinate system 3

dimensional points and vectors are represented the same way, as 4 dimensional points.

However, making the distinction between finite points and points at infinity (vectors) can

be helpful when using homogenous coordinates. A point is normally written as a matrix

with only one column,

8x

y

z

W

,

and vector is expressed as a row, x y z 0[].

A point may be translated by adding a vector to it:

 P(x, y, z, 1) + V(dx, dy, dz, 0) = P(x+dx, y+dy, z+dz, 1),

or by multiplying a matrix by it (as a column):

P' = M * P =

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

*

x

y

z

1

=

x + dx

y + dy

z + dz

1

A vector is multiplied by the matrix to transform it,

V' = V * M.

All other transformations are carried out using 4 by 4 matrices.

 The distinction between points and vectors is made because some operations do

not make sense for finite points. We might try to scale a finite point by multiplying it by

a scalar. This gives the same point when the coordinates are homogenized,

s * P(x, y, z, W) = P'(sx, sy, sz, sW).

To scale a point like this we must add a vector or multiply by a matrix (see above).

We may also wish to find a point P' using two finite points P1 and P2. Adding

two finite points also does not work:

 P1(x, y, z, W) + P2(x', y', z', W') = P(x+x'/W+W', y+y'/W+W', z+z'/W+W', 1) not

P'(x+x', y+y', z+z', 1).

To get P' we must use the vector ,

V = P2 - (0, 0, 0, 1),

in the transformation,

 P' = P1 + V.

9Design Patterns

and

The Composite Pattern

The Composite pattern as described in Design Patterns was used as a guide while

developing the ray tracing abstract base classes. Design Patterns is a well known survey

of object oriented design ideas. The introduction provides a general discussion of object-

oriented design, while the bulk of the text catalogs a number of proven Design Patterns

that make use of object oriented technology.

Upon a first reading, Design Patters provides so much information that it is

confusing and seems of little use. Without the understanding of its organization and

terminology that comes from several readings, determining which patterns apply to a

problem is difficult. However, the general suggestions made in the introduction are

immediately beneficial. After working on a problem and determining some design goals,

a second look at Design Patterns becomes useful. The patterns bring clarity to a design,

help answer key questions, and provide a language for documentation. In general, after a

problem's specifications and the programmer's goals have been well thought out Design

Patterns becomes most useful. The patterns provide ideas for solving a problem and a

language for thinking, speaking and writing about it, but do not provide a finished

solution.

Each pattern includes several sections to describe the pattern and its uses. The

intent, motivation, applicability and consequences sections help in choosing a pattern to

apply to a problem. Once a particular pattern has been chosen the structure, participants,

collaborations, implementation, sample code and related patterns sections describe how

to go about applying the design pattern.

The Composite pattern is broken up into the participants, component, leaf,

composite and client. The component declares the interface for objects in the

composition, implements default behavior and declares an interface for managing

10children. Leaf participants have no children and define the behavior for primitive

objects. The composite participant defines the behavior for components having children,

stores child components, and implements child related operations. The client manipulates

the leaf and composite participants through the component’s interface.

The intent and consequences of the Composite pattern provide the closest match

to the design goals of the ray tracing base objects. The intent explains that “clients may

treat individual objects and composite objects uniformly.” The noteworthy

consequences of the composite pattern are: primitive objects may be composed into more

complex composite objects which may recursively be composed into still more complex

composite objects; wherever a client expects a primitive, it can take a composite; the

client code is simplified because it “avoids having to write tag-and-case-statement-style

functions over the classes that define the composition”; and “newly defined Composite or

Leaf subclasses work automatically with existing structures and client code.”3

The implementation section discusses some key issues to consider while when

using the Composite pattern. Of concern in working out the ray tracing base classes was

the discussion about where to declare child operations, in the component or composite

participants.4 If they are declared in the component, a situation occurs where a child

operation could be called on a leaf. But, if they are left to the composite class we lose the

composite-leaf transparency.

11The Composite Pattern in

rtab_component

and

rtab_composite

In ray tracing, a component is any ray traceable object: a polygon, box, or scene.

The leaf is a primitive object, such as a sphere or polygon. The composite is any

combination of primitive objects and composite objects. For example, a box is a

composite of six rectangular polygons, or a scene may be a composite of 2 boxes and

another polygon. The clients are the ray tracing algorithms.

The consequences of using the Composite pattern are the key to how it meets the

design goals. I wanted to make ray tracing algorithms easy to implement: "The

Composite pattern makes the client simple."5 I wanted to make it simple to add new

types of objects and contain them in various types of composite objects: "The Composite

pattern makes it easier to add new kinds of components. Newly defined Composite of

Leaf subclasses work automatically with existing structures and client code."

The component and leaf participants

rtab_component

There are two general classes of ray traceable objects, primitive and composite.

My goal of simplifying ray tracing algorithms depends on objects of the different classes

being treated in exactly the same manner. The Composite pattern achieves this

transparency in the component participant. The component declares the interface for

objects in the composition, implements default behavior and declares an interface for

managing children.

My component participant is the abstract base class rtab_component. It

declares a common interface for primitive and composite objects. Primitive ray traceable

objects must intersect themselves with rays, have a surface normal, know if they contain a

12point, know their size, and have a model for their surface physics. Composite objects

must be able to intersect themselves with rays, know their size, insert new composite or

primitive objects, and free memory used by their sub-objects when they go out of scope.

rtab_component includes an interface for all of the above items.

Leaf participants have no children and define the behavior for primitive objects.

They are the concrete primitive classes that inherit from rtab_component and define or

redefine the surface physics, normal(), intersect(), min_point(), max_point() and

contains() members appropriately.

When designing rtab_component I looked carefully at which functions should

have default behavior. The surface physics model interface given in rtab_component is

based on the Hall Shading Model6. Objects used by a particular algorithm may be

defined by a different person than the algorithm itself. Since all algorithms do not

include the same members of a surface physics model, there may be discrepancies

between the model used by the primitive object and the model used by the algorithm.

Default behavior is given for the entire surface physics model. The default behavior

attempts to reflect what happens if a member is not defined. For example, the default

kdr, 0, means that there is no diffuse reflection for the object. This ensures that

primitive objects which do not implement a particular member of the model may be used

with algorithms that use that member.

Since all algorithms will not rely on bounding volumes I provide default behavior

for the functions concerning an objects size, min_point() and max_point(). By default

they return NaN_point. If they are not redefined the object cannot be inserted into a

bounding volume. If a ray that intersects an object originates inside the object the surface

normal at that point must be negated. Given a point (like the ray's origin) the contains

member is defined to return if that point is inside the object. The contains() member

returns false by default because it only makes sense for objects that contain a volume

inside a surface. For example, can fog contain a point within in its surface?

13While the members of the surface physics model that are used by an algorithm

may vary, there are some functions that always must be defined for primitive objects.

These members, normal() and intersect(), have been declared pure virtual or abstract

(normal(point p) = 0). Without a normal or intersect a object is totally undefined.

The child management members, insert() and delete_all_children(), have

no meaning for primitive objects, but their interface is included in rtab_component.

Maintaining the transparency between primitive and composite objects outweighs

eliminating the possibility of an inappropriate call to one of a primitive’s child

management members. To make their declaration safer, these members print error

messages by default in rtab_component.

The composite participant

rtab_composite

The composite participant defines the behavior for components having children,

stores child components, and implements child related operations. It is important that a

user be able to design new, interchangeable composite objects. Instead of implementing

one concrete composite class I have defined a second abstract base class,

rtab_composite, to serve as a template for concrete composite classes.

 Many concrete composite objects will implement some type of tree structure.

child has been declared for storing an array of pointers to sub-objects. The constructor

initializes child to point to NULL. Assuming the user allocates space for child objects

using new, the default behavior of delete_all_children(), called by the destructor,

should take care of freeing memory when composite objects go out of scope.

insert() may still be undefined (thus returns the error message from

rtab_component) for composite objects. We may have a composite object like box,

which is always made up of 6 polygons. We would never want to insert objects into such

an object.

14The intersect() member has been declared pure virtual or abstract to force its

redefinition. To complete concrete classes the user will have to implement intersect

(and insert() if appropriate). This will most likely recursively call itself on one of the

children until some primitive object is reached. Determining the relationship between

children and the method for choosing a child to recurse on will be the bulk of a concrete

class' s definition. A private find_child() function will usually implement this;

however, since the function would be private, I did not declare it as part of the interface.

Finally, the client participants manipulate the objects through the component ‘s

interface. I have defined a scene class that implements a ray tracing algorithm. It also

includes functions for inputting objects from a file. It is mainly meant to be an example;

however, by inheriting scene and redefining the ray_trace() member it could be used

as the framework for other ray tracers.

15Support Classes

There are a few classes that do not fit into the Composite pattern, but are essential

to making ray tracing and other graphics algorithms easier to write: color, vector,

point, color_point, matrix, ray and intersection. These classes are provided to

simplify the code in ray tracing algorithms.

color, vector and point are all based on an abstract class four_tuple.

four_tuple defines most of the operations that are carried out on colors, vectors and

points. The color, vector and point classes determine which operations are defined

between the various classes. All arguments to the operations are passed as constant

references so that copies of the objects are not created whenever the operations are called.

The transformations from color, point and vector to four_tuple are all done inline

to avoid the overhead associated with function calls.

When ray tracing a scene, a large percentage of the resources go into finding the

intersection of a ray and an object. Container objects divide space to improve the

efficiency of finding ray-object intersections. If a ray does not hit a container object then

it will not intersects the objects within the container. The intersection class provides

class variables for keeping track of how many intersection tests were performed, how

many tests resulted with no intersection found, and how many intersections were found

with container objects but no primitive objects. It does this by incrementing one class

variable each time a new intersection object is created. Two more class variables are

incremented in the destructor depending on what type of intersection was found. This

code is all enclosed in #ifdef's. When the intersection performance flag is not set, the

code is not compiled and it does not slow down the intersection tests at all.

The intersection class has two members for returning a ray object intersection,

t and object_handle. Given a ray and object, t is the value such that the point of ray-

object intersection is given by the equation:

intersection point = ray_origin + t * ray_direction.

16The ray class includes an inline member function, t_point, for converting t to a point,

and operator* has been overloaded to perform the conversion. operator* has also

been overloaded to define ray * matrix.

The object_handle is a pointer to the object that the ray intersected. It should

be noted that in a case where a ray intersects a container object but no primitive object, t

should equal zero and object_handle should point to the container object. This allows

for testing the effectiveness of the container objects by comparing the intersection

class variables (see above).

17The Virtual Frame Buffer

and

vfb_pixel

The virtual frame buffer provides a simple means for rendering images generated

with graphics algorithms including ray tracing. Users do not have to worry about color

maps, graphics contexts, lighting models, windows or any of the other headaches usually

involved with displaying graphics on UNIX systems. The only way to write to the buffer

is one pixel at a time with put_pixel(). The second feature of the virtual frame buffer

is the extreme flexibility of how pixels are represented. Users of the virtual frame buffer

have control over how pixels are represented via the STORAGE_CLASS typedef in

pixel.hh. The vfb_pixel's constructor has been overload so pixels may be thought of

as black or white; shades of gray; rgb colors; z-buffered rgb colors; rgb alpha colors; or

antialiased, z-buffered, rgb colors. If STORAGE_CLASS is not set to support the type of

pixel you want to use, the constructor will automatically make the correct adjustments to

approximate that pixel type.

No matter how pixels are stored, they always have the same interface which is

declared in the abstract base class pixel_interface. The vfb_pixel class inherits from

the STORAGE_CLASS which inherits from pixel_interface and defines its members.

Class vfb_pixel does nothing more than implement a group of constructors. Each of

these constructors allows a different concept of a pixel (black/white, gray, rgb, etc.). All

of the constructors call a protected function, store_pixel() , inherited from

STORAGE_CLASS. store_pixel() does nothing different for the various concepts of a

pixel; however, the way it is called defines what type of pixel is created. For example,

calling store_pixel() with its red, green and blue arguments all set to the same float

variable implements a shade of gray pixel. While calling it with the red, green and blue

arguments set to 3 different float variables implements one of the rgb pixel types.

18The vfb widget

Originally the virtual frame buffer used Open GL functions to create a window

and render virtual pixels. The virtual pixels needed to be drawn only as simple geometric

objects like points, filled circles or rectangles, but developing a user interface demanded a

high level of functionality. Open GL provided a wealth of support for rendering images

with lighting models, clipping, and lots of other complicate graphics functionality that I

did not need. GL's AUX library provided minimal support for creating a user interface.

Writing the virtual frame buffer using GL also bound it to the SGI workstations. The

SGI's most students have access to are known to be rather slow. The vfb was intended to

be used for ray tracing which is a slow process to begin with, so it was rather important to

port the vfb away from the SGI's.

These problems inspired me to re-implement the virtual frame buffer's user

interface as a Tk widget. Tk is an extension of the Tcl scripting language for creating

user interfaces; thus, It provides plenty of support for designing the virtual frame buffer’s

interface. Tk provides a canvas widget that I could have used to implement the vfb;

however, all of the vfb’s functionality would have been carried out by Tk's interpreter.

A ray tracer putting hundreds of thousands of pixels in the buffer would be extremely

slow. I also wanted the vfb to be accessible within my other C++ classes.

I decided to implement a Tk widget and include it as part of the vfb class with

three ideas in mind: make redraws as fast as possible, make it simple to use, and provide

commands for all necessary functionality. Tk essentially takes care of making it simple

to use. The vfb widget is no more difficult to use than any of Tk's built in widgets. I

created a command for each member of the class that might need accessing at runtime.

This is accomplished in the member function, vfbWidgetCmd(). Each command makes

up one section of a large if, else if, statement. (See the user manual for a complete

listing of commands and configuration options.)

19The most difficult part of designing the vfb widget was making the redraws fast.

Redrawing involves accessing the vfb’s array of pixels hundreds of thousands of times.

Anytime the virtual pixel size changes the entire section of the vfb displayed by the

widget must be redrawn. This is carried out in the vfbDisplay() member function. The

initial redraw algorithm called get_pixel() for each of the pixels visible in the widget

and drew a virtual pixel to a pixmap. After all the virtual pixels were drawn on the

pixmap, the pixmap was copied to the widget.

Each virtual pixel was drawn as a filled circle, a rather slow operation. I assumed

that drawing one filled circle was slower than copying a small pixmap to a larger pixmap.

Based on this assumption, the next idea was to draw just one virtual pixel to a small

pixmap. Inside the loop I change the foreground color and copied the small pixmap to

the locations where virtual pixels should be drawn. This idea did not seem to work. In

fact it apparently is slower than the previous method. I have left the type of redraw as a

configuration option.

The final version of the vfb maintains a large pixmap. When the widget needs to

be redrawn the appropriate area of this pixmap is copied to the widget. Consequently,

most redraws are extremely fast. However, anytime the virtual pixel size changes the

redraws are extremely slow, because the entire vfb must be redrawn. The size of the

pixmap has been left as a configuration option, with the default set to twice the width and

height of the screen When the widget needs to display a portion of the vfb that did not fit

on the large pixmap, that portion must be redrawn. The remainder of the pixmap is

copied from its existing location. A larger pixmap requires fewer redraws (except for

pixel size changes), but takes more time to redraw and uses more memory. If the pixmap

is smaller than the widget, the vfb will not display correctly.

20Ray Tracing Examples

This section includes several code fragments to show how to use the ray tracing

abstract base classes and support classes. First, class sphere illustrates how to derive a

primitive concrete class from rtab_component. It is an instance of the leaf participant of

the Composite pattern. sphere is a complete primitive object.

class sphere: virtual public rtab_component {
private:
 double sphere_ksr;
 double sphere_kdr;
 double sphere_n;
 double sphere_zero_t;

public:
 color_point sphere_center;
 double sphere_radius;

 sphere() {};

 // Surface physics
 color clr() {return sphere_center.clr();}
 double ksr() {return sphere_ksr;}
 double kdr() {return sphere_kdr;}
 double n() {return sphere_n;}
 double zero_t() {return sphere_zero_t;}

 istream& read(istream& s)
{s >> sphere_center >> sphere_radius >> sphere_ksr >> sphere_kdr >> sphere_n >> sphere_zero_t;

 return s;}

 ostream& write(ostream& s);
{s << sphere_center << sphere_radius << sphere_ksr << sphere_kdr << sphere_n << sphere_zero_t;

 return s;}

 bool contains(point p)
{return (sphere_center - p).length() <= sphere_radius - sphere_zero_t;}

 vector normal(point p); {return (p - sphere_center.pnt()).unit();}

 intersection intersect(ray r);
 };

The surface physics member functions override the default behavior of

rtab_component and return the corresponding private variables. read() uses the

overloaded operator >> to set the values of sphere’s public variables and private surface

physics variables. write() outputs the same information using <<. normal() and

contains() also rely on operators overloaded for the support classes in their

calculations. The vector normal to a sphere at a point on its surface is found by

subtracting the center from the point. If the distance from a point to the center of a sphere

21is less than the radius of the sphere the point lies within the sphere. intersect() is the

only non inline member function:

intersection traceable_sphere::intersect(ray r) {

 // These variables are used to solve the quadratic equation that results from
 // combining the ray’s and sphere’s equations.
 vector g = r.origin() - sphere_center;
 double b = 2 * (r.direction() * g);
 double c = (g * g) - (sphere_radius * sphere_radius);
 double d = (b * b) - 4 * c;

 double t0, t1;
 intersection i;

 // A root is real iff d >= 0.
 if (d >= 0) {
 t0 = (-b - sqrt(d)) / 2;
 t1 = (-b + sqrt(d)) / 2;
 }

 // Rays only extend in one direction so t must be positive
 if ((t0 > zero_t()) || (t1 > zero_t())) {

 // intersect should return only the first ray-sphere intersection so
// we return the smaller of the positive t’s.
if (((zero_t() < t0) && (t0 < t1)) || ((t1 < zero_t())))
 i.t = t0;
else
 i.t = t1;

i.object_handle = this;
 }

 //The ray does not intersect the sphere
 else {

i.t = 0;
i.object_handle = 0;

 }
 return i;
}

The intersection is found by plugging the equation of the ray,

p = ray.origin() + t * ray.direction(),

into the equation of the sphere,

(p - sphere_center) * (p - sphere_center) = sphere_radius,

and using the quadratic equation to solve for t. Since rays only extend in one direction

we only consider positive values of t. intersect() should indicate the first ray-sphere

intersection, so it returns the smaller of the positive t’s. If the ray intersected the object

at its origin, t would equal zero. As an algorithm recursively shoots rays from a ray-

22object intersection the original intersection point should not be considered. For these two

reason a ray’s origin is not considered part of the ray.

After implementing a new ray traceable class we must also update the

get_type() function (see the User's Manual Appendix for details on doing this). For

sphere, the following line is inserted into get_type()’s if then-else-statement:

else if (strcmp(name, "SPHERE") == 0) return new sphere;

Now that the new concrete class has been defined, the client code to read object

definitions from a file and insert the objects into a container, objects, is simple:

object_list* objects;
rtab_component* object;
do {
 object = get_type(f);
 if (object) {
 object->read(f);
 objects->insert(object);
 }
 while (object);

get_type() works by reading a string from f. It compares the string to a number of

class names. If the string matches a class name an instance of that class is created with

new, and a pointer to the variable is returned. If the string does not match any of the class

names NULL is returned. Since get_type() allocates a new variable of a class derived

from rtab_component, the virtual nature of the call object->read(f) will invoke the

appropriate version of read().

object_list is a linked list of component objects derived from

rtab_composite. object_list is a concrete example of the composite participant. It

holds all of the objects placed in the scene, some of which may be composite objects or

other object_lists, themselves. rtab_component, the component participant, allows

object_list::intersect(), or any other code, to treat all objects exactly the same

way: In the call cur->object->intersect(r), object could point to primitive or

composite objects.

23
intersection
object_list::intersect(ray r) {

 while (cur) {
 tmp_i = cur->object->intersect(r);
 if ((tmp_i.t > 0) &&

 ((tmp_i.t < min_i.t) || (min_i.t == 0))) {
 min_i.t = tmp_i.t;
 min_i.object_handle = tmp_i.object_handle;

 }
 cur = cur->next;
 }
 return min_i;
}

Finally, we take a look at an algorithm for ray tracing the spheres and other

objects in the object_list. This last example is the client participant of the Composite

pattern. Again, note we have inserted many types of objects into the scene, but in the

client code no statement takes different action based on what object points to.

color
scene::trace(ray r, int depth) {

 intersection i = objects->intersect(r);
 point intersection_point = r.t_point(i.t);
 rtab_component* object = i.object_handle;

 if (t > 0) {
color dif_ref_light(0,0,0);
color spec_ref_light(0,0,0);
color spec_ref_objects(0,0,0);

vector V = -r.direction();
vector N = object->normal(intersection_point);

if (object->contains(intersection_point))
 N = -N;

vector I = -V;
vector R = I - 2 * (N * I) * N;
ray r2(intersection_point, R);

 if (depth > 0)
 spec_ref_objects = trace(r2, depth - 1);

 for (int light_index = 0; light_index < num_lights; ligth_index++) {
 color_point light = lights[light_index];
 vector L = (light - intersection_point);
 intersection i2 = objects->intersect(ray(intersection_point, L));
 if ((i2.t == 0) || (i2.t >= L.length())) {

 L = L.unit();
 vector H = ((L + V) / (L + V).length()).unit();
 float spec_factor = pow((N * H), object->n());
 dif_ref_light += (N * L) * light.clr();
 spec_ref_light += spec_factor * light.clr();

 }
 }

24
 return ambient_light * object->clr() * object->kdr() +
 dif_ref_light * object->kdr() +
 spec_ref_light * object->ksr() +
 spec_ref_objects * object->ksr();

 }
 else
 return color(0, 0, 0);
}

Also notice the code relies heavily on the geometric classes, the support classes

and their operators. If the statements were written without the classes and their operators

the components would have to be dealt with separately, making the code cumbersome

and far more difficult to read. For example, if the classes vector and color were

defined without their overloaded operators, the relatively succinct line:

 dif_ref_light += (N * L) * light.clr();

would become nearly incomprehensible:

dif_ref_light = dif_ref_light.add(light.clr().multiply(N.dot_product(L)));

25Virtual Frame Buffer Examples

This example helps explain creating a new STORAGE_CLASS to change the way

vfb_pixel's are stored in memory. Our new STORAGE_CLASS will represent pixels in

memory as simply a gray value. When a new STORAGE_CLASS is to be used we first

update the STORAGE_CLASS typedef:

typedef class gray_pixel_storage STORAGE_CLASS;

Then, the new class must inherit p i x e l _ i n t e r f a c e and be defined.

gray_pixel_storage represents a pixel with one float, value. The definition is rather

simple:

class gray_pixel_storage: public pixel_interface {
private:
 float value;

protected:
 float_storage() : pixel_interface() {}
 int store_pixel(float az, float r, float g, float b, int sub_pixel)

{value = ((r + g + b) / 3); return 1;}

public:
 float az() const {return -INFINITY;}
 float r() const {return value;}
 float g() const {return value;}
 float b() const {return value;}

 void read(ifstream& f) { f >> value;}
 void write(ofstream& f) { f << value << " ";}
};

If the client code using vfb_pixel treats pixels as black/white or gray the above

class will completely handle the code. However, if the client expects rgb pixels some

information will be lost. The client code might include the following line

vfb_pixel rgb_pix(0.4, 0.1, 0.1);

gray_pixel_storage::store_pixel() would translate the three floats to a single float,

value. rgb_pix.r() would return 0.2 instead of the expected 0.4. Although some of the

information would be lost, the client code would still work, because vfb_pixel only has

one interface regardless of how the pixels are being represented in memory.

26Discussion

The examples included above give a glimpse at how my code can be used to

facilitate ray tracing. Far more complex examples are included in the source code and

give an idea of the flexibility built into the software. The first examples show how easily

one can implement simple objects. To some extent the complexity of an object’s

implementation depends the object, but because of the transparency between object types,

complex objects can be built up in simple steps. The fractal spheres that appear in the

included images are an example of a complex object developed in simple steps.

bounding_sphere inherits rtab_composite and traceable_sphere to complete a

concrete container class. Then, frac_sphere inherits bounding_sphere. To complete

frac_sphere’s definition only one new variable is declared, and the read() and

write() functions are redefined. Given the steps that have already been taken to

implement bounding_sphere, frac_sphere makes only the next simple step.

The support classes have been shown to compress cumbersome functionality into

manageable notation. Along with the object type transparency, this notation is essential

to making ray tracing algorithms comprehensible. The example above shows how

difficult writing the tedious ray tracing calculations would be without the support classes.

Similarly, the support classes make ray traceable objects’ definitions more clear. The

code for members like read() and write() would become cluttered without overloaded

operators like >> and <<. Members like intersect() often rely on notation made

possible by the overloaded arithmetic operators.

The virtual frame buffer example continues the emphasis on ease of use and

flexibility. gray_pixel_storage is a very simple example, but it does show an

important concept: a vfb_pixel may not fully represent a particular concept of a pixel but

it will still interface with the client code correctly. This becomes important when more

complex pixels, like antialiased pixels, are implemented. If antialiasing is achieved by

dividing a pixels into sub-pixels the amount of memory needed to store one pixel

27increases by a factor equal to the number of sub-pixels. If a system is low on memory,

recording all of the sub-pixels may be too expensive. In such an instance switching to a

non antailiased STORAGE_CLASS conveniently does not require any changes to the code

using the pixels.

This document was intended to show how my code meets the original goals of my

thesis project: to facilitate the development of ray tracing software by providing an object

oriented structure for the software and a number of support classes. The examples above

are not meant to be a complete guide for using the software in new ray tracing or

graphical pursuits. Reading the code in r t _ b a s e _ o b j e c t s . h h and

rt_base_objects.cc along with the appendix will provide a more complete

understanding of rtab_component, rtab_composite and intersection. Along with

the appendix, the code in vfb.hh and vfb.cc shows all of the vfb’s functionality, while

pixel.hh and pixel.cc will help in creating new pixel types. Finally, scene.hh,

scene.cc and render.cc (in src/render) may be studied as a full example of how all

of the parts fit together.

28Images, Demo's and Directories

The photographs included in this document were all generated using the ray

tracing software in this package. They are all 875 x 700 pixels, traced with 4 rays per

pixel. The color printouts are graphical displays of the information the intersection class

variables provide. Each pixel of these images is colored according to how many

intersection objects were created for the pixel to be ray traced. Along one edge you will

notice a color scale indicating the relative number of intersections. Black is at the low

end of the scale and white indicates the highest number of intersection tests.

To start the virtual frame buffer use the Tk script, vfb,and provide the maximum

virtual coordinates. For example, to open a 301 by 301 pixel (remember (0, 0) is

included in the vfb) vfb, type:

vfb 300 300

The Tk script provided only implements a minimal user interface, but it does take

advantage of most of the vfb's widget commands. To load, save or ray trace (render) an

image click on the load/save button. Then, enter a filename and click on the appropriate

button. Do not include the .vfb or .ray_trace extension. The script adds it for you. All

of the files in the image directory (with the exception of the files in rt_data) may also be

viewed using xv.

If you want to create your own scene to ray trace with the programs provided,

enter data for the objects in it into a .ray_trace file. Look at the files in the rt_data

directory and at the read() function in my_object for the files format. The program rt

will render the file and save the image to disk without opening a widget. rt may be

started with a command like:

rt my_scene.ray_trace

In the scr/tuples directory there is a demo program that reads in a few tuples

and tupels_based variables and then applies a number of operators to them.

On the next page there is a complete list of all the directories and files included

with this project. Directories are in bold face type.

29usr/desolation/morals
documentation

Thesis
Users_Manual

Makefile
objs
bin

vfbsh
rt
vfb (the Tk script)

src
ray_trace

Makefile
rt_base_objects.cc
my_objects.cc
scene.cc
inlude -> ../../include

render
Makefile
time.c
performance.cc
render.cc
include -> ../../include

tuples
Makefile
tuples.cc
tuples_based.cc
tuples_demo.cc
include -> ../../include

vfb
Makefile
pixel.cc
vfb.cc
vfbsh.cc
render.cc
include -> ../../include

include
tuples.hh
tuples_based.hh
pixel.hh
vfb.hh
rt_base_objects.hh
my_objects.hh
scene.hh
time.h
performance.hh
render.hh

images
vfb
intersection_vfb
TIFF
rt_data

30

User's Manual

31Support and Ray Tracing Classes

tuples and tuples_based

The color, vector, point, color_point, and matrix classes are defined by a

number of overloaded operators and a few other member functions. In pratical use the

classes successfully implement homogeneous coordinates, but the implementation may

not completely satisfy the theory behind homogenous coordinates.

The basic tuples classes may all be constructed with only three values passed. For each

constructor a default value is given for the fourth argument:

color (r, g, b, a = 0)
vector (x, y, z, w = 0)
point (x, y, z, w = 1)

The operators << and >> have been overloaded for the tuples and tuples_based

classes. The operators for vector and color are defined similar to point (below).

color_point first reads calls >> or << for color, then for point.

friend istream& operator>>(istream& s, point& p);
friend ostream& operator<<(ostream& s, point p);

First >> reads a string of 0 or more alphabetical characters ('a' .. 'z', 'A' .. 'Z') from s, then

four floats. s may ONLY have white space immediately before the string and each of

the four floats. The string allows an optional label to precede the data defining the

variable. It is ignored. The << operator writes the point to s in the format below.

point (x, y, z, w)

32The lists on the following pages define the remainder of the color, vector and point

classes. They specifie the operand types and return types for all of the operations. A few

associated functions and constants are also listed. All operation symbols have their

normal meaning except where noted.

i => int

d => double

c => color

v => vector

p => point

cp => color_point

m => matrix

r => ray

33class color

(tuples)

c + c = c

c - c = c

c * d = c

d * c = c

c / d = c

c * c = c NOT a dot product: c(r1 * r2, g1 * g2, b1 * b2, a1 * a2)

c += c

c -= c

c *= d

c /= d

(c == c) = i

(c != c) = i

Constant colors

BLACK(0, 0, 0, 0)

WHITE(1, 1, 1, 0)

NaN_color(NaN, NaN, NaN, NaN)

34class vector

(tuples)

v + v = v

v - v = v

v * d = v

d * v = v

v / d = v

v * v = d Dot product

v % v = v Cross product

v += v

v -= v

v *= d

v /= d

v %= v Cross product

v.unit() = v Returns a vector of length 1 parallel to v

v.length() = d Returns the length of v

(v == v) = i

(v != v) = i

Constant vectors

NaN_vector (NaN, NaN, NaN, NaN)

VECTOR_DIRECTION[NEG_Z] (0, 0, -1)

VECTOR_DIRECTION[POS_Z] (0, 0, 1)

VECTOR_DIRECTION[NEG_Y] (0, -1, 0)

VECTOR_DIRECTION[POS_Y] (0, 1, 0)

VECTOR_DIRECTION[NEG_X] (-1, 0, 0)

VECTOR_DIRECTION[POS_X] (1 0, 0)

VECTOR_DIRECTION[NO_DIRECTION] (0, 0, 0)

35class point

(tuples)

p + v = p

p - p = v

p - v = p

p * d = p Protected scaler multiplication*

d * p = p Protected scaler multiplication*

p / d = p Protected scaler division*

p * v = d Protected dot product*

v * p = d Protected dot product*

p * p = d Protected dot product*

p % p = p Protected cross product*

v % p = p Protected cross product*

p += v

p -= v

p *= d Protected scaler multiplication*

p /= d Protected scaler division*

p %= v Protected cross product*

(p == p) = i NOTE: point relational operations compare the HOMOGENIZED

(p != p) = i coordinates of their operands.

p.homogenized() = p p.homogenized() = point(x/w, y/w, z/w, 1)

Constant points

NaN_point(NaN, NaN, NaN, NaN)

*The multiplication, division, dot product and cross product operations for points implicitly convert

their point operands to vectors as if point(0, 0, 0, 1) had been subtracted from the point

operand. The multiplication, division and cross product operators convert the vector back to a point

by adding the vector operand returned to the point(0, 0, 0, 1). All of these operations are

protected and only included so class matrix may treat points as column vectors.

36class color_point

(tuples_based)

The constructor for color_points has been heavily overloaded so that almost any

combination of color, point and float will result in an appropriate color_point.

For the full list see the tuples_based.hh file.

All of the operation that apply to point are defined in exactly the same way (including if

they are protected) for color_point, except that they have a color associated with

them. With the exception of the relational operators, all color_point operations only

effect the point, not the color. The relational operations, == and !=, compare both the

colors and points of their operands.

37class matrix

(tuples_based)

Matrices may be constructed from 16 doubles, 4 row vectors or as 4 column points.

Once a matrix is constructed it may also be accessed as vectors, points or floats:

m.v1() = vector (m.m11, m.m21, m.m31, m.m41)

m.p1() = point (m.m11, m.m12, m.m13, m.m14)

These operations are defined for class matrix:

m * m = m

m * v = v

p * m = p

r * m = r Multiplies both the origin and direction by matrix m.

m * d = m

d * m = m

m + m = m

m - m = m

(m == m) = i Relational operators are applied to the row vectors NOT the

(m != m) = i column points, so that the points are NOT homogenized.

cp * m = cp

m.inverse() = m

Returns matrix Im such that m * Im = I. This function uses row reduction, and

will not work if any of the column points = point (0, 0, 0, 0) at the time their

column is being reduced. This has not been found to cause problems.

These functions may be helpful for creating transformation matrices.

matrix translate_matrix(vector v)

Returns matrix m such that:
point * m = point + v

and
m * vector = vector + v

matrix shear_matrix(double shx, double shy)

Returns a matrix m suitable for shearing the x coordinate of anything that is

multiplied by m by shx, and y coordinate by shy.

38rt_base_objects

class ray

(rt_base_objects)

Given an point origin and a vector direction a ray is defined as all points p such that:

p = origin + t * direction, t > 0

This idea is implemented in the class ray with members and operators:

ray(point origin, vector direction)

The direction vector is always stored as a unit vector.

point origin()
vector direction()
point t_point(double t)

Returns the origin + t * direction

d * r = p
r * d = p

Equivalent to p = t_point(r)

r * m = r

Allows rays to be transformed. Both the origin and direction are multiplied

by the matrix m.

39class intersection

(rt_base_objects)

Any class that is derived from the abstract base class rtab_component will eventually

have to define the intersect() member. intersect() has been declared to return an

intersection class object. There are a few rules that should be followed when

returning intersections.

float t

Should always equal 0 if no primitive object was intersected. Otherwise it should

be assigned so that given a ray, with direction d and origin o, the intersection

point p is given by the equation: p = o + t * d.

rab_component* object_handle

This should only equal NULL if no primitive objected was intersected AND no

composite object was intersected. Otherwise it should point at the deepest node in

the component tree that the ray hits.

A few class variables and functions are provided with intersection to indicate the

number of intersection tests performed. (Since it is usually necessary to use more than

one intersection in intersect functions, these variables will not correspond to the exact

number of intersection tests performed. However, they are adequate for examining the

relative number of intersection tests.) These are only declared if the _INTRSCT_PRFM flag

is set. To set the flag add -D _INTRSCT_PRFM to the CPPFLAGS in your Makefile. The

class variables are:

int Num_Intersections

If flag is set this is incremented by the constructor.

int Num_NULL_Intersections

If flag is set this is incremented by the destructor only if object_handle = NULL.

int Num_t0_Intersections

If flag is set this is incremented by the destructor if t = 0.

Their values can be accessed with the following class functions:

int count()

40int NULL_count()

int t0_count()

void clear_count()

Clears all of the class variables. If the flags are set be sure to call this function

often. Remember that during ray tracing hundreds of thousands of intersection

tests are carried out. If you don't clear the counters they will probably cause the

program to crash.

NOTE: IT IS VERY IMPORTANT TO CALL clear_count() IF THE FLAG IS SET

(See above.)

41class rtab_component

(rt_base_objects)

This is the abstract base class for all ray traceable objects, both primitive and composite.

Some of the member functions have been given default behavior. The following is a list

of all the member functions and how they should be defined in the concrete primitive and

concrete composite classes.

intersection intersect(ray r)

Do not declare extraneous intersection objects. Doing so will throw off the

intersection performance tests. (See intersection class above) The origin

point of a ray should not be considered part of the ray, so if a ray intersects an

object at only its origin t = 0 and there is not an intersection. intersect should

return t = 0 and object_handle = NULL if r does not intersect the primitive.

Rays only extend forward. Follow the convention that t <= 0 indicates the

primitive exists in a direction opposite that of the ray's direction relative to the

ray's origin; therefore, there is no intersection. Always use zero_t() instead of 0

when comparing t to 0. After many calculations a number that would be 0 if we

had infinite precision will often be a very little bit more or less than 0. zero_t()

is meant to solve this problem (see zero_t() below).

Primitive: Primitive objects must define the intersect() member.

Composite: Composite objects will usually call intersect() for some or all of

their children. They should always return the intersection with the smallest

positive t. If r intersects the composite but none of its children return t = 0 and

set object_handle = the composite. This allows the intersection class to keep

track of the number of rays that hit composites but not a primitive.

vector normal(point p)

Primitive: This returns the vector perpendicular to the surface of the object at

point p. The direction of a normal usually depends on which side of the surface

is the front; however, the front of a surface is relative. If we are inside a sphere

the front faces inside, but if we are outside the sphere the front of the surface faces

outside. By convention normal() should assume we are outside of the object and

return a vector pointing towards the outside of an object. We can then safely

42assume that negating the value returned by normal() will give us the correct

vector if we are inside the object. The contains() member is intended determine

if we are inside an object. (See contains() below.)

Composite: Composite objects should not have to define normal().

point min_point()

This should return the left, bottom, back corner of a bounding box just large

enough to enclose the object. This point can be found by taking the x coordinate

of the part of your object with the smallest x value, the y coordinate of the part of

the object with the smallest y, and the z coordinate of the part of your object that

has the least z value.

point max_point()

This should return the right, top, front corner of a bounding box just big enough to

contain the object. Finding this point can be done in a manner similar to the one

described for min_point().

min_point() and max_point() members aid bounding volumes in determining

the size and location of component objects.

Primitive: Primitive objects should, but do not have to define these functions.

Composite: Composite objects should, but do not have to define these functions.

bool contains(point p)

Primitive: This member is used to test if a ray originates inside an object. It

should return true if p lies inside the object. For objects that do not have an

interior, assume that the point always lies outside of the object and return false.

Composite: Composite objects should define this member if they have space

between parts of their surface. For example a box made up of 6 polygons

contains space. Container objects may want to define this member to test if they

contain an objects min_point() or max_point().

istream& read(istream& s)
ostream& write(ostream& s)

43These functions, respectivly, should read data from s to define an object, and

write the data that describes the object to s. Write may include a label telling

what the object is. They should always return s. Since these functions are virtual

and the >> and << operators have been overloaded for rtab_composite*, >> and

<< will work for any concrete classes that implement read() and write(). Also

see get_type() at the end of this section.

Primitive: Primitive objects should redefine these members.

Composite: Composite objects should redefine these members.

int insert(rtab_component object)

This defines the interface for inserting components into a composite object.

Primitive: Primitives should not change the default behavior unless they redefine

it to omit the error message and just return 0.

Composite: All composite objects should redefine this member. For composite

objects that insert does not make sense, like boxes made of polygons, new error

behavior should be defined and the function should still return 0.

void delete_all_children()

Primitive: Since primitive objects have no children the default behavior should

not be changed unless it is redefine to omit the error message and just return 0;

Composite: Default behavior is given for this member in the rtab_composite

class. (See rtab_composite below.)

zero_t()

After many calculation a number that would be 0 if we had infinite precision may

be slightly more or less than 0. This little bit of error can cause huge problems

when we are testing values of t against 0 in the intersect() member and in the

ray tracing algorithm. It is much safer to test against a value just a bit larger than

0. If you intend to view the inside of an object, that particular object's zero_t

should be negative and its class's intersect() should test against the absolute

value of zert_t().

44

Primitive: The default value will work in most cases, but it may be necessary to

redefine it.

Composite: The default value will work in most cases, but it may be necessary to

redefine it.

Surface physics members

The remainder of the members of the component class make up the surface

physics model. While the user is free to chose whatever physics model best fits

the ray tracing algorithm used the members have been named for the Hall Shading

Model7 If the functions and variables defined for the surface physics are not

appropriate for the shading model being used, new variables may be added to the

class. This is the only part of the class rtab_component() that should ever be

changed.

Primitive: Default behavior is intended to mimic the effect of not including the

member in the surface physics model. Redefine all members you want to use in

your algorithm.

Composite: Composite objects should not have to define the surface physics

model.

rtab_component* get_type(istream& s)

This function is not part of the rtab_component class, but whenever you create a

new concrete primative or composite object you should add it to the get_type()

function. get_type() reads the next string in s and compares it against a number

of object names. Then it creates an object of the corresponding type using new

and returns a pointer to it. When you have a new class of object register it in

get_type() by adding line to the if-then-else statement like the following:

else if (strcmp(name, "YOUROBJ") == 0) return new your_obj;

name cannot be more than 10 characters long and should be all upper case letters

('A' .. 'Z'). Currently this function is in the file my_objects.cc. When you create

new object classes it should be moved to your .cc file.

45

class rtab_composite

(rt_base_objects)

rtab_composite is a abstract class that inherits from rtab_component. It defines

default behavior for freeing space allocated for it sub-objects, the child array. See

rtab_component above for more details of how to implement concrete composite

objects. The following are member and member functions that differ in definition from

the rtab_component class.

int num_children

This variable must be maintained so that passes through the child array are

possible.

rtab_component** child

This declares an array of pointers to rtab_components. It is up to the concrete

composite classes to allocate memory for their child array. This should be done

with new so that the default destructor and delete_all_children() members

will work correctly.

rtab_composite()

The constructor should be redefined in concrete classes to set the num_children

and allocate space for the array of pointers, child.

delete_all_children()

By default delete_all_children() calls delete_all_children() on all

objects in the child array then calls delete on each pointer in the array. Calling

delete on a memory that was not allocated by new causes problems, so take care

to use new when inserting new objects and allocating space for the child array.

~rtab_composite()

By default this calls delete_all_children(). If you do not allocate memory for

all of your objects using new you must redefine this or the program will most

likely crash.

46

The Virtual Frame Buffer
pixel

class pixel_interface

(pixel)

pixel_interface declares the interface for all pixel types that can be used in the virtual

frame buffer. It is an abstract base class. It does not define most of the members that it

declares. Storage classes (described below) are responsible for implementing the

members of pixel_interface. Below is a brief description of what each member

declared should do. For a full description see the section on STORAGE_CLASS.

pixel_interface()

This member is protected so that only classes that inherit pixel_interface may

create pixel_interface objects.

int store_pixel(float az, float r, float g, float b, int sub_pixel)

This function converts all pixel types to a common type of storage pixel. It must

be implemented by STORAGE_CLASS.

float az();

Converts back from the storage pixel to float for the alpha or z value. Pixels

cannot be both alpha and z-buffered. It should be implemented by

STORAGE_CLASS. By convention this should return -INFINITY if it is undefined

by the storage pixel.

float r()
float g()
float b()

Functions for converting the storage pixels back to float values for red, green

and blue, respectively. They should be implemented by STORAGE_CLASS.

operator== (pixel p2)

By default returns 1 if the values returned for az(), r(), g() and b() are equal.

operator!= (pixel p2)

47By default returns 1 if the values returned for az(), r(), g() and b() are not

equal.

void clear()

By default clears to color(0, 0, 0) and az value -INFINITY by calling

store_pixel.

48STORAGE_CLASS

(pixel)

The STORAGE_CLASS typedef allows a user to switch between methods for storing pixels

by changing only one line of code (once a storage class has been defined). A storage

class should inherit from pixel_interface and is intended to be inherited by

vfb_pixel. The constructor should always be protected so objects can only be created

by vfb_pixel. The best way to describe a storage class is by example. I will work

through an example implementation of a storage class that stores pixels as a float and 3

chars. Below is a general description of how each of the members declared, but not

defined, in pixel_interface should be defined. Before using the new storage type

STORAGE_TYPE, MAX_PIX and MAGIC_NUMBER must be set at the begining of pixel.hh.

STORAGE_TYPE is the class name. MAX_PIX is the maximum value for one component of a

pixel's color. Depending on how pixels are saved, MAGIC_NUMBER along with MAX_PIX

enable vfbs to be ppm or pbm compatible. (These may not apply for all pixel types.) See

the man pages on ppm for details on setting MAGIC_NUMBER.

class float_3char_storage {
 float alpha_z;
 char red;
 char green;
 char blue;

Storage classes must declare and define the variables they use to store the pixels.

These specific variables are just the ones I choose for the example. Notice the

variables do not allow for antialiasing.

protected :
 float_3char_storage();

The constructor is protected so only vfb_pixel can call it.

int store_pixel(float az, float r, float g, float b, int sub_pixel);

This member must convert the 4 floats r, g, b and az, and a int, sub_pixel,

to the variables chosen to store the pixel. I have held the convention that the red

green and blue values should be between 0 and 1. A check for this may be

appropriate here. Arguments passed to store_pixel that are not used may

simply be ignored. For example float_3char_storage does not use sub_pixel

because it does not implement antialiasing. Code for my example would look

something like:

49

int store_pixel(float az, float r, float g, float b, int sub_pixel) {

if (r < 0) r = 0;
if (g < 0) g = 0;
if (b < 0) b = 0;
if (r > 1) r = 1;
if (g > 1) g = 1;
if (b > 1) b = 1;

alpha_z = az;

// each part of the pixel is stored as a fraction of MAX_PIX
red = (char) (r * MAX_PIX);
green = (char) (g * MAX_PIX);
blue = (char) (b * MAX_PIX);

}

In a case where r, g or b is not between 0 and 1 we still store the pixel. These

values may not fit in the range, but we can just round them to 0 or 1. MAX_PIX

is a constant float value set in pixel.hh.

 float az() {return alpha_z);}

If az was converted before storing it must be changed back to a float .

Antialaising presents a problem here since we can only return one value for all of

the sub-pixels. Should we return the average of the sub-pixels, the greatest, or the

least? (In my code I choose to return the average.) For the example, this is not a

problem since we do not have sub-pixels to.

 float r();
 float g();
 float b();

Theses function must convert the stored type back to a float between 0 and 1. If

we are implementing antialiased pixels these return the average of the sub-pixels.

Code for r() in my example would look something like:

return float(red / MAX_PIX);

operator=(const float_3char_storage& p2);

The operator= should simply copy the right values to the left pixel, unless we are

implementing z-buffering. In that case the new values should only be assigned if

the new pixel's az value is greater than the current az. Antialiased pixel types

should compare the individual sub-pixels az values. Here is the code for my

example:

50if (p2.alpha_z >= alpha_z) {
red = p2.red;
green = p2.green;
blue = p2.blue;

}

Notice that we use the actual variables not calls to az(), r(), g() or b(). This

eliminates any conversions between the float and char.

void read(ifstream& f);
void write(ofstream& f);

These functions require that stream f be open at the correct location to read or

write the particular pixel. Since the values have already been converted to char

we can just write them to a file as binary data:

f.write(&red, 1);

or read them into the variables:

f.read(&red, 1);

Writing pixels to disk as char will make the files ppm compatible if

MAGIC_NUMBER has appropriately been set to "P6".

class vfb_pixel

(pixel)

Class vfb_pixel inherits from whichever type of storage pixel STORAGE_CLASS is set to

in the

typedef class ???? STORAGE_CLASS

line of pixel.hh. This class is used to construct a storage pixel given a set of arguments.

The types and number of arguments given allow the caller to choose how he wants to

think of pixels. For example if he wants to think of pixels as either black or white a call

to vfb_pixel (int c) is appropriate. STORAGE_CLASS restricts which types of pixels are

actually created. Calls to construct pixel of a type more complex than STORAGE_CLASS

can handle are legal, but the extra information will be lost. Take the example of a

program that uses antialiased pixels, but is taking up too much memory. The

STORAGE_CLASS can be changed so that antialiasing is not implemented. The original

code for the program will still work, but the pixels will not be antialiased. Nothing in this

class should be changed. NOTE: if you want to force a pixel to be non-antialiased either

omit the x, y arguments to the constructor or make sure that they are ints. (See the

second to last constructor below.)

vfb_pixel(int c)

51Construct a pixel that is either black (0) or white (1).

vfb_pixel(float c)

Construct a pixel that is a shade of gray between black (0) and white (1).

vfb_pixel(float r, float g, float b)

Construct a pixel that has 3 color components, red (r) green (g) , and blue (b),

between 0 and 1.

vfb_pixel(float az, float r, float g, float b)

Construct a pixel that has 3 color components, red (r), green (g) and blue (b),

between 0 and 1 and either a alpha value or a z value (az). There is no condition

for restricting az other than is should be a float.

vfb_pixel(int x, int y, float zx, float r, float g, float b)

Construct a non-antialiased pixel for a buffer of antialiased pixels by setting all

sub-pixels to the given red (r), green (g), blue (b) and az.

vfb_pixel(float x, float y, float az, float r, float g, float b)

Construct an antialiased pixel by setting the appropriate sub-pixel (based on the x

and y arguments) to the given red (r), green (g), blue (b) and az values.

vfb_pixel(point p, color c)

Construct an antialiased pixel by setting the appropriate sub-pixel (based on the

p.x() and p.y()) to the given red (c.r()), green (c.g()), blue (c.b()) and

p.z() values.

operator=(const vfb_pixel& p2)

Calls the appropriate version of the overloaded operator().

52vfb

class vfb

(vfb)

The vfb class implements virtual frame buffer as Tk widget. It has a number of

operations that can be called from a Tk script to modify and view the buffer. vfb objects

may also be use in C++ code. The only operations that should be called directly from

C++ code on the frame buffer are listed below. Note: type vfb_int is the same as type

int. I used a typedef so that all arguments and return values that should be in virtual

pixels, not actual pixels, are vfb_ints.

vfb(vfb_int maxx, vfb_int maxy)

The constructor allocates memory for the array of vfb_pixels that make up the

vfb. The size of the buffer is specified in the call to the constructor by maxx and

maxy. The coordinate system has the (0, 0) in the lower left corner and (maxx,

maxy in the upper right corner.

int put_pixel(vfb_int x, vfb_int y, vfb_pixel pix)

This puts a pix in the frame buffer. The location is specified in virtual

coordinates. The overloaded operator=(vfb_pixel) is used to make the

assignment. See the vfb_pixel class for details.

vfb_pixel get_pixel(vfb_int x, vfb_int y)

Returns the vfb_pixel at a given location in the frame buffer. The location is

specified in virtual coordinates.

clear()

Calls vfb_pixel::clear() on each pixel in the frame buffer.

load(char* filename, vfb_int x1, vfb_int y1)

Loads a vfb from a file. The saved vfb is transposed so that its (0, 0) will be

written to (x1, y1). First, the file is opened and the header information, including

the virtual size of the saved buffer, is read in. Then load() uses

vfb_pixel::read() to read each pixel from the file.

53KNOW PROBLEM: Reading pixels one at a time causes this function to be very

slow. The load function should be updated to read a large chuck of the file into a

temporary stream. That stream could be interpreted with calls to

vfb_pixel::read().

save(char* filename)

Writes the vfb to a file. Some header information is written to the file before the

vfb. This information is written in the following format:

MAGIC_NUMBER
virtual_width virtual_height
MAX_PIX

MAGIC_NUMBER and MAX_PIX allow the vfb to be interpreted as a pbm or ppm file.

They are defined in pixel.hh. MAGIC_NUMBER indicates how the pixels are stored

and MAX_PIX indicates the maximum intensity of a pixels component. This

information does not guarantee that the file will be compatible. vfb_pixel must

also read and write individual pixels in the corresponding format. (See man pages

on ppm and pbm.)

NOTE: virtual_width and virtual_height indicate the size of the frame

buffer. Since vfbs include (0, 0) these numbers are respectively each one

greater than max_virt_x and max_virt_y.

KNOW PROBLEM: This function should also avoid accessing the file for pixels

one at a time (see load() above.)

render_to_vfb(char* filename, vfb& v)

This function is not part of class vfb nor is it a friend function. It is only

declared with class vfb, not defined. Writing C++ code that uses the vfb

member functions is easy. Using a Tk script and the vfb widget to create a user

interface is also easy. However, linking the vfb object in C++ code with the

particular vfb object used in the script is difficult. This function declaration

provides the link. It is intended to let users invoke C++ code on the particular vfb

associated with the widget. This function is called by the render widget

command described below. It is up to the users of this software to define the

function. render_to_vfb() is expected to return 1 if the C++ code completes

54normally or 0 otherwise. Selecting a rendering algorithm based on filename,

then passing v and filename to the function that implements the algorithm is the

best way to use render_to_vfb(). See src/vfb/render.cc for a simple

example of this with stubs for the rendering functions. A full ray tracing

algorithm is implemented in src/render/render.cc

There are a few friend functions associates with the vfb class. You should not need to

call these. They only serve as an interface for Tk.

55vfb Widget Commands

In order to make use of the vfb widget one must know a little Tcl and Tk. If you

are not familiar with the Tk toolkit consult Tcl and the Tk Toolkit8. Even if you have

never heard of Tcl just a few hours of reading will give you enough background to begin

using the vfb widget. The vfbsh application is the version of the wish shell that

incorporates the vfb widget. The following commands may be used in a vfbsh script

with the vfb widget. Arguments with the prefix vfb_ expect virtual coordinates.

Arguments with the prefix tk_ expect values given in Tk’s coordinate system.

set_min_x vfb_x

Sets the leftmost column of virtual pixels displayed by the widget to vfb_x. Use

this to pan horizontally.

set_min_y vfb_x

Sets the lowest row of virtual pixels displayed by the widget to vfb_y. Use this to

pan vertically.

virtual_x tk_x

Returns the virtual coordinate corresponding to a Tk’s tk_y value. Use this to

convert Tk’s coordinate into virtual coordinates.

virtual_y tk_y

Returns the virtual coordinate corresponding to a Tk’s tk_y value. Use this to

convert Tk’s coordinate into virtual coordinates.

get_pixel vfb_x vfb_y

Returns the red, green and blue float values for the pixel at (vfb_x, vfb_y)

put_pixel vfb_x vfb_y z r g b

Colors the pixel at (vfb_x, vfb_y) according to the floats z r g and b, by calling

put_pixel(). Pixels may be z-buffered. See put_pixel() and vfb_pixel for

more information.

pixel_size size

56Sets the virtual pixel’s size to size. size is a screen distance that Tk converts

into an int9.

clear

Calls vfb_pixel::clear() on each pixel in the vfb..

load filename vfb_x1 vfb_y1

Loads a vfb saved in filename. The vfb being loaded is transposed so that its

(0,0) will correspond to (vfb_x1, vfb_y1). These arguments are optional; the

vfb is loaded to (0, 0) if they are omitted. If the vfb in the file is larger than the

active vfb, only the part that fits will be loaded.

save filename

Saves a vfb to filename.

render filename

This command provides a simple interface for invoking C++ code on a vfb

widget. The command calls the function render_to_vfb() and passes it a

reference to the active vfb (*this) and the string filename (argv[2]):

render_to_vfb(argv[2], *this)

render_to_vfb() is declared, but not fully defined in the provided software. It

is intended to be used to select between rendering algorithms based on filename.

For example if filename ends in .ray_trace, render_to_vfb() could pass the

vfb to ray_trace() which would call put_pixel() on the vfb. (For more

information see render() in the vfb member functions section.)

57vfb Widget Configuration Options

The vfb widget has a few configuration options that determine how redraws are

accomplished. The defaults are given in ().

-grid_on int (1)

A value of 0 indicates that the grid will never be drawn. 1 indicates that a grid

will be drawn when pixel_size is large enough.

-grid_on_at int (7)

The grid is drawn when pixel_size is greater than this value.

-disk_on int (1)

A value of 0 indicates that the pixels will never be drawn as disks. 1 indicates

that pixels will be drawn as disks when pixel_size is large enough.

-disk_on_at int (7)

Pixels are drawn as disks when pixel_size is greater than this value.

-pixmap_drawing_on int (1)

This determines how virtual pixels will be drawn. If its value is 1, a rectangle or

disk will be drawn in a pixel_size, square pixmap. This pixmap will then be

copied to draw virtual pixels. If it is 0, each virtual pixel will be drawn as a

rectangle or disk. If pixel_size = 1 pixels are drawn as points and this has no

effect.

-pm_width int (2560)

This value specifies the width (in actual pixels) of a large pixmap. When the

widget is re displayed a section of this pixmap is copied to the widget's window.

When pixel_size changes the entire pixmap must be redrawn. Larger pixmaps

take longer to redraw. If the widget needs to display a section of the vfb that is

not drawn on the pixmap, part of the pixmap must be redrawn. Smaller pixmaps

require more partial redraws. The pixmap must be at least the size of the widget's

window.

-pm_height int (2048)

Specifies the height (in actual pixels) of the pixmap described above.

58C++ code and the vfb widget

Using render_to_vfb() is the easiest way to invoke C++ code on a vfb widget.

If you have not read about the render vfb widget command and render_to_vfb() do so

before reading this section. It is also possible to create a vfb widget from within a C++

program. A warning, this is far more complicated. What you will actually be doing is

creating a new Tcl command. This command is written in C++. You will have to create

a new Tcl interpreter by registering your command. The command will carry out the

operation you need to perform on the vfb (or call functions to do this), then return

vfb::makewidget(). Here is a more detailed description of what to do10:

1) Write the body of functions that use the vfb.

This is your Tcl command. It must have the following declaration:

int MyCmd(ClientData clientdata,
 Tcl_Interp* interp,
 int argc,
 char* argv[])

The first step in your command procedure will probably be to use some of the

command line arguments. Any arguments that are specific to your command

must be removed so that argv looks something like

"vfb" ".my_vfb" "\0"

The command can use the vfb itself or call other functions to use the vfb, but be

sure to declare the vfb as static. If you do not it will go out of scope when you

return from your Tcl command and will not exist for Tk to use. When you declare

it you will also determine its size (see the constructor above). Your Tcl command

must return with the following call to make_widget:

return (my_vfb.make_widget(clientdata, interp, argc, argv));

2) Register the command. For instructions on doing this consult chapter 31 and section

39.7 of Tcl and the Tk Toolkit.

3) Write a script that uses you new Tcl command to create a vfb widget

59Known Problems

1) vfb::load() and vfb::save() are very slow, because pixels are read and written

one at a time. See vfb member functions for more information about this problem.

2) Signaling NaN's cause floating point exceptions on DEC's Alphas. A function is used

to generate a silent NaN, which defines a constant float and the constants NaN_point,

NaN_vector and NaN_color. When operations are carried out on silent NaN's the

operations must be returning signaling NaNs, because a floating point exception occurs.

3) Exiting the vfb widget causes a Segmentation Fault and core dump on the Alphas.

This problem was only recently discovered and I have not been able to determine the

cause.

4) The Makefiles that have been provided work correctly; however, they are probably

not the best way to compile my code.

60

End Notes
1Gamma, Helm, Johnson, Vlissides, Design Patterns

2This discussion of ray tracing is partially based on Glassner's An Introduction to Ray Tracing, pp 2 - 16.

3Gamma, Helm, Johnson, Vlissides,Design Patterns, pg 166

4Gamma, Helm, Johnson, Vlissides,Design Patterns, pg 167

5Gamma, Helm, Johnson, Vlissides,Design Patterns, pg 166

6For a description of the Hall Shading Model see, Glassner’s An Introduction to Ray Tracing, pg 152.

7Glassner, An in Introdution to Ray Tracing, pg 152.

8Ousterhout, Tcl and the Tk Toolkit

9Ousterhout Tcl and the Tk Toolkit, section 16.1.2.

10Ousterhout, Tcl and the TK Toolkit, Part IV .

61

Bibliography

Foley, James A., van Dam, Andries, Fiener, Steven K., Hughes, John F., Computer

Graphics Principles and Practice, Addison and Wesley Publishing Company, Reading,

MA, 1990.

Gamma, Erich, Helm, Richard, Johnson, Ralph, Vlissides, John, Design Patterns,

Addision Wesley Publishing Company, Reading MA, 1995.

Glassner, Andrew S., Graphics Gems, Academic Press, New York, 1990.

Glassner, Andrew S., An Introduction to Ray Tracing, Academic Press, New York,

1989.

Hanrahan, Pat, "Lecture 9: 2D Projective Geometry", 1996

Hanrahan, Pat, "Lecture 10: 3D Projective Geometry", 1996

Ousterhout, John K., Tcl and The Tk Toolkit, Addison-Wesley Publishing Company,

Reading MA, 1994.

Kaplan Michael R., “Space-Tracing, a Constant Time Ray Tracer”, SIGGRAPH85

Conference - “Tutorial on the Uses of Spatial Coherence in Ray-Tracing” Course Notes,

San Francisco, 1985.

Neider, Jackie, Davis, Tom, Woo, Mason, Open GL Programming Guide, Addison-

Wesley Publishing Company, Reading, MA, 1993 by Silcon Graphics, Inc.

	Object Oriented Scenes for Virtual Light
	Recommended Citation

	Thesis_Apndx

