
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-15-2004

PPL: a Packet Processing Language PPL: a Packet Processing Language

Eric G. Krupski
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Krupski, Eric G., "PPL: a Packet Processing Language" (2004). Dartmouth College Undergraduate Theses.
43.
https://digitalcommons.dartmouth.edu/senior_theses/43

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/43?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

PPL
 a Packet Processing Language

Eric Krupski
15 June 2004

Dartmouth College Computer Science Technical Report TR2004-508

Krupski 1

Table of Contents:

Abstract 2
Introduction 2
Details of PPL 7
C Representations of PPL Data 18
Analysis 19
Future Work 22
Conclusions 23
Appendix 1 25
Appendix 2 30

Krupski 2

Abstract:

Any computing device or system that uses the internet needs to analyze and identify the
contents of network packets. Code that does this is often written in C, but reading,
identifying, and manipulating network packets in C requires writing tricky and tedious
code. Previous work has offered specification languages for describing the format of
network packets, which would allow packet type identification without the hassles of
doing this task in C. For example, McCann and Chandra's Packet Types [3] system
allows the programmer to define arbitrary packet types and generates C functions which
match given data against a specified packet type. This paper will present a packet
processing language named PPL, which extends McCann and Chandra’s Packet Types to
allow the programmer to not only describe arbitrary packet types, but also to control
when and how a matching is attempted, with ML-style pattern matching. PPL is intended
for multiple applications, such as intrusion detection systems, quick prototypes of new
protocols, and IP de-multiplexing code.

Introduction:

Most networking software is written in C, because it is low-level enough to interact with
hardware and be fast. Working with a packet requires identifying what it is, and
extracting fields from the data. However, in many packets, not all fields are byte aligned.
That is to say, the data of some fields may not start on the boundary between words.
Additionally, it is not uncommon for data in sent and received to be byte-ordered
differently than the data stored on the machine. For fields 2 bytes long, for example, the
more significant byte may or may not come across the wire first, depending on the
protocol. Extracting fields from a buffer requires adjusting for byte ordering and
alignment. However, this is a tedious and error-prone task in C. The way the Linux
system deals with this is to describe the layout of a packet with the “struct” construct of C
and re-ordering bytes with a macro called “ntohs”. Here is how the Linux system
represents part of the IP packet using “struct”:

Krupski 3

Sample IP code, from linux source file linux/ip.h (v2.4.20-8)

Here is sample code from the Linux kernel which checks IP packets, from the function
ip_rcv:

struct ip_options {
 __u32 faddr; /* Saved first hop address */
 unsigned char optlen;
 unsigned char srr;
 unsigned char rr;
 unsigned char ts;
 unsigned char is_setbyuser:1, /* Set by setsockopt? */
 is_data:1, /* Options in __data, rather than skb */
 is_strictroute:1, /* Strict source route */
 srr_is_hit:1, /* Packet destination addr was our one */
 is_changed:1, /* IP checksum more not valid */

 rr_needaddr:1, /* Need to record addr of outgoing dev */
 ts_needtime:1, /* Need to record timestamp */
 ts_needaddr:1; /* Need to record addr of outgoing dev */
 unsigned char router_alert;
 unsigned char __pad1;
 unsigned char __pad2;
 unsigned char __data[0];
};

#define optlength(opt) (sizeof(struct ip_options) + opt->optlen)
#endif

struct iphdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)

__u8 ihl:4,
version:4;

#elif defined (__BIG_ENDIAN_BITFIELD)
__u8 version:4,

 ihl:4;
#else
#error "Please fix <asm/byteorder.h>"
#endif

__u8 tos;
__u16 tot_len;
__u16 id;
__u16 frag_off;
__u8 ttl;
__u8 protocol;
__u16 check;
__u32 saddr;
__u32 daddr;
/*The options start here. */

};

Krupski 4

Sample IP code, from linux source file net/ipv4/ip_input.c (v2.4.20-8)

Using C for writing networking code still has its limitations, though. In their paper
“Packet types: abstract specification of network protocol messages” [3], McCann and
Chandra make the case for why writing a language for describing packet formats might
be better than writing all networking code in C. They argue that C is poor for describing
packets formats because the size and structure of fields can be dictated by the values of
previous fields. For example, an IP packet with protocol field set to 6 should have a TCP
packet inside of it. The length of the nested TCP packet can be calculated either with the
header fields of the IP packet or with the header fields of the TCP packet. For the
packets to be well-formed, these calculations will have to agree. In C, there is no way to
express this as one type that can be matched in one action.

McCann and Chandra, and Sekar, et. al. [5], have independently developed similar
specification languages for describing network packets. In the following paragraphs, I
will show both McCann and Chandra’s Packet Types system, and the specification
methods of Sekar, et. al. Since McCann and Chandra’s system seems to offer more
flexibility in describing individual packets and had greater influence over my project, I
will describe the system of Sekar, et. al., first.

The intrusion detection system introduced by Sekar, et.al., in 1999 allows the
programmer to add constraints to a packet type. Here is their definition of an IP packet
[5]:

if (iph->ihl < 5 || iph->version != 4)
goto inhdr_error;

if (!pskb_may_pull(skb, iph->ihl*4))
goto inhdr_error;

iph = skb->nh.iph;

if (ip_fast_csum((u8 *)iph, iph->ihl) != 0)
goto inhdr_error;

{
__u32 len = ntohs(iph->tot_len);
if (skb->len < len || len < (iph->ihl<<2))

goto inhdr_error;

/* Our transport medium may have padded the buffer out. Now we know it
 * is IP we can trim to the true length of the frame.
 * Note this now means skb->len holds ntohs(iph->tot_len).
 */
if (skb->len > len) {

__pskb_trim(skb, len);
if (skb->ip_summed == CHECKSUM_HW)

skb->ip_summed = CHECKSUM_NONE;
}

}

Krupski 5

This system also relates packet types across protocol layers to each other. In the second
line of the above example, the syntax “ip_hdr: ether_hdr” tells us that the fields to follow
come after the fields of the “ether_hdr” packet type. “ip_hdr” is seen as extending
“ether_hdr”; “ip_hdr” is a subtype of “ether_hdr” in that it inherits fields from “ether_hdr”.

The syntax “with e_type=ETHER_IP” means that the “e_type” field of the “ether_hdr” packet
must be 0x0800. This system offers a more descriptive and robust way of defining
packets than C offers. It allows the programmer to define their own packet types by both
describing the field layout and optionally putting constraints on those fields.

McCann and Chandra’s Packet Types system is quite similar to that of Sekar, et. al. The
major semantic difference between the two is in how packet types are related. Here is
their definition of an IP packet, taken from the 2000 paper “Packet types: abstract
specification of network protocol messages”:

ETHER_IP = 0x0800

ip_hdr: ether_hdr with e_type=ETHER_IP {
 {

bit version[4]; /* ip version */
bit ihl[4] ; /* header length */
byte tos; /* type of service */
unsigned short tot_len; /* total length */
unsigned short id; /* Id for IP packet */
bit flag[3]; /* Various flags */
bit frag_of fset [13] ;
byte t ime_tc i ire;
byte protocol; /* high-level protocol */
unsigned short checksum;
unigned int saddr, daddr;
/* Source and destintion IP addresses */

}

Krupski 6

In the system of McCann and Chandra, types are extended by adding constraints, and
packets of lower protocols actually contain packets of higher protocols. Types are related
across protocol layers through inclusion. Note the last field in the above example,
“bytestring payload” . This is refined to an actual packet type with syntax like the following:

IPwithTCP :> IP_PDU where {
protocol = 6;
overlay payload with TCP;

}

Hence, subtypes are created by extending the constraints of a parent.

The work of Chandra and McCann is also similar to that of Sekar, et. al., in that their
systems emit packet matching functions in C. Aside from offering methods for matching
data against a specific packet type and extracting fields from these types, the rest of the
code would have to be written in C.

PPL is an attempt to develop these systems into a flexible language which can not only
describe packets in terms of field layouts with constraints, but can also specify how and
when to match data against these types and operate on instances of these types.

To illustrate these developments, here is a sample of PPL code which defines IP packets
and a procedure. The procedure takes an IP packet and tests whether or not it contains a
TCP or UDP packet:

nybble := bit[4];
short := bit[16];
long := bit[32];
ipaddress := byte[4];
ipoptions := bytestring;

IP_PDU := {
nybble version;
nybble ihl;
byte tos;
short totallength;
short identification;
bit morefrags;
bit dontfrag;
bit unused;
bit frag_off[13];
byte ttl;
byte protocol;
short cksum;
ipaddress src;
ipaddress dest;
ipoptions options;
bytestring payload;

} …

Krupski 7

In the next section, I will discuss the syntax and semantics of my packet processing
language, and why each feature was developed.

Details of PPL, the packet processing language

packet uncheckedIP [signed int length] {
 unsigned int 4 big version;
 unsigned int 4 big header_length;
 unsigned int 8 big TOS;
 unsigned int 16 big datagram_length;
 unsigned int 16 big identifier;
 unsigned int 3 big flags;
 unsigned int 13 big offset;
 unsigned int 8 big TTL;
 unsigned int 8 big protocol;
 signed int 16 big header_checksum;
 unsigned int 32 big source_ip_addr;
 unsigned int 32 big dest_ip_addr;
 bytes [(header_length*4) - 20] options;
 bytes [length - (header_length*4)] data
}

packet IP extends uncheckedIP with {
 length == datagram_length;
 header_length >= 5
 }

import report_not_ip (bytes)->unsigned int
import report_bad_ip (IP)->unsigned int
import do_something_with_udp (bytes)->unsigned int
import do_something_with_tcp (bytes)->unsigned int

procedure ip_switch(IP x)->unsigned int =
 let ip_len = x.length in
 match x with {
 IP with {protocol == 17 }
 [ip_len]
 x_with_udp ->
 do_something_with_udp(x_with_udp->data)
 or IP with {protocol == 6 }
 [ip_len]
 x_with_tcp ->
 do_something_with_tcp(x_with_tcp->data)
 or _ -> report_bad_ip (x)
 }

procedure is_ip(bytes x)->unsigned int =
 match x with {
 IP [x.length] ip -> ip_switch(ip)
 or _ -> report_not_ip(x)
 }

Krupski 8

This section contains details of the language in the form of a tutorial with snippets of
sample code, grammar and syntax. Appendix A contains a full grammar and explanation
of notational conventions.

Describing Packet Types and Types of Fields

The PPL type system started with the ideas of McCann and Chandra and Sekar, et. al.
The simplest definition of packets is as a set of fields, where each field consists of a type
and a name. The grammar for this is as follows1:

fields :=
field
| field “;” fields

simple_packet_description :=
“packet” identifier “{“ fields “}”

There are three classes of types which can be used as fields: basic primitive types, blocks
of bytes, and packet types2. The basic primitive types are “unsigned int” and “signed
int”, and are twos complement and 32 bits in length3. A block of n bytes is n*8 bit long
block of unspecified data.

These constructs are almost enough to describe the header of a UDP packet, as-is:

packet first_udp_header {
 unsigned int source_and_dst_port;
 unsigned int packet_length_and_checksum
}

However, this system falls a little short, as the UDP packet has integer fields of 16 (not
32) bits. By adding modifiers which detail the length of a basic primitive type field, we
get the following solution:

packet second_udp_header {
 unsigned int 16 sourceport;
 unsigned int 16 destport;
 unsigned int 16 packet_length;
 signed int 16 checksum
}

The bit-length modifier is optional, and is only legal after a basic primitive type.

1 The grammar conventions I use are as follows. Anything in italics references another rule in the grammar
and/or a regular expression, anything in “quotemarks” denotes a terminal symbol. Alternate rules are given
on separate lines; if a rule is longer than a line long, it will be indented on the next line so as to differentiate
it from an alternation.
2 However, due to the structure of packets, both “on the wire” and in my language’s runtime representation,
recursive and circular types are simply not possible and are non-intuitive.
3 In the implementation that accompanies this paper, these are simply translated into their C analogues, and
so behave the same way in PPL as they do in C.

Krupski 9

Another thing which PPL has thus far neglected is byte ordering. The UDP protocol
specifies that the higher-order bytes of each field must come first. This is not the normal
byte-ordering for data on x86 personal computers, and not every protocol uses this
ordering (although most do). The way that PPL handles this is by allowing an “endianess
modifier” describing the byte ordering to be placed on basic primitive type fields, as
illustrated in the following:

packet udp_header {
 unsigned int 16 big sourceport;
 unsigned int 16 big destport;
 unsigned int 16 big packet_length;
 signed int 16 big checksum
}

This modifier is optional, and the values it can have are “big”, “little”, and “native”, the
latter of which will use the native byte-ordering. If no modifier is given, native byte-
ordering will be assumed.

These are all the language constructs needed for describing the UDP header, but more are
needed to describe the UDP packet. Here is the description of the UDP packet with the
PPL constructs defined thus far:

packet first_udp {
 unsigned int 16 big sourceport;
 unsigned int 16 big destport;
 unsigned int 16 big packet_length;
 signed int 16 big checksum;
 bytes data
}

The field at the end is for the bytes of data which the UDP packet is transporting across
the network. The problem with this is that we have no way to know the length of this
data, which presents a type-safety issue. For PPL to be safe in any way, it will have to be
able to calculate the length of all runtime data, including packets and blocks of bytes.

To refer to the example given, the UDP packet type will need to carry information about
the length of its fields around with it. Consider the following description of a UDP
packet :

packet uncheckedUDP [signed int length] {
 unsigned int 16 big sourceport;
 unsigned int 16 big destport;
 unsigned int 16 big packet_length;
 signed int 16 big checksum;
 bytes [length - 8] data
}

Here, the number of bytes in the block is calculated by evaluating the expression “length -
8”. A variable environment for this expression consists of variables declared at the

Krupski 10

beginning of the packet layout and all of the preceding fields. The values of these
variables are carried with the packet at runtime. These values are also not changed
during the lifetime of a packet; they are given to the instance of the packet type when it is
first constructed. For this reason, these variables were named “parameters” to the packet.
Only data of basic primitive types can be parameters to a packet type. A packet type can
take multiple parameters.

Parameters to a packet type are a feature which does not appear in McCann and
Chandra’s system nor in the work of Sekar, et. al. Since matchings can be conducted
from within PPL, the length of a PPL packet type needs to be inferable or known at all
times. In the systems of McCann and Chandra or Sekar, et. al., matching functions are
called from C and hence can be passed the length of the data buffer as a parameter in C.

Instead of allowing user-defined parameters, PPL could mandate that the runtime
representation of every packet carry the length of the data buffer as private data. This
was not done because it seemed that there was little disadvantage in allowing user-
defined parameters, but there were advantages in allowing the programmer to give the
packet some extra data.

The following example demonstrates user-defined parameters:

If a field of a packet is of a packet type that takes parameters, the field can take
parameters using the same syntax that the “bytes” type does. Here is an illustration of
this:

packet IP_with_prot [signed int length, unsigned int prot] {
 unsigned int 4 big version;
 unsigned int 4 big header_length;
 unsigned int 8 big TOS;
 unsigned int 16 big datagram_length;
 unsigned int 16 big identifier;
 unsigned int 3 big flags;
 unsigned int 13 big offset;
 unsigned int 8 big TTL;
 unsigned int 8 big protocol;
 signed int 16 big header_checksum;
 unsigned int 32 big source_ip_addr;
 unsigned int 32 big dest_ip_addr;
 bytes [(header_length*4) - 20] options;
 bytes [length - (header_length*4)] data
} with { prot == protocol }

Krupski 11

This example also shows how PPL relates packets across protocol layers: by including
packets as fields of other packets. This example is the first variably-sized packet shown
which has fields of all three classes of types. The runtime-size of a packet is simply the
summation of the size of its fields: no padding is required or permitted.

Expressions

The “with { protocol == 17 }” construct at the end of the above definition is a constraint on
the value of a “protocol”. A constraint is an expression which has a Boolean type. For
data to match a given packet type, all of the constraints must evaluate to true.
Expressions have been thus far been used in constraints and in passing parameters to
fields of packet types and of the “bytes” type. Also, as PPL is an attempt to improve on
previous work by adding the ability to operate on packets, it needs a means of operating
on the data. Before discussing constraints in more depth, expressions need to be
explained.

PPL offers many of the same operators that C does, and most are employed in the same
way. The precedence chart lists all of the operators available in PPL from highest to
lowest:

Operator Operator Name
“(…)” “.” “->” parenthesis/procedure call, member access, field

access
“*” “/” “%” multiplication, division, modulus
“+” “-“ addition, subtraction
“>” “>=” “<”
“<=”

greater-than, greater-than or equal-to, less-than,
less-than or equal-to,

“==” “!=” equal-to, not equal-to
“&&” logical-and
“||” logical-or

packet uncheckedIP_with_UDP [signed int length] {
 unsigned int 4 big version;
 unsigned int 4 big header_length;
 unsigned int 8 big TOS;
 unsigned int 16 big datagram_length;
 unsigned int 16 big identifier;
 unsigned int 3 big flags;
 unsigned int 13 big offset;
 unsigned int 8 big TTL;
 unsigned int 8 big protocol;
 signed int 16 big header_checksum;
 unsigned int 32 big source_ip_addr;
 unsigned int 32 big dest_ip_addr;
 bytes [(header_length*4) - 20] options;
 uncheckedUDP [length - (header_length*4)] udp
} with { protocol == 17 }

Krupski 12

The expressions which use the operators at the top of the chart are called the expression
leaves. These operators are member accesses (“.”) , field accesses (“->”), procedure
calls, variables, and parenthesized expressions. The grammar for them, in order, is:

expression_leaf :=
expression_leaf “.” identifier
expression_leaf “->” identifier
identifier “(“ expressions “)”
identifier
[“0”-“9”]*
“(“ expression “)”

where expressions is a comma separated list of expressions The field access operation
returns the fields of a packet. The member access operation gets the values of the
parameters of a packet. The next two levels of operators are called the arithmetic
operators, the next two the relational operators, and the final two the Boolean operators.
These operators all work in the intuitive way.

Constraints and Extending Packet Types:

So far, we have seen how PPL relates packet types across protocol layers and how
constraints can be added to packet types. This section will show how PPL allows
programmers to create related packet types (perhaps of the same protocol) by refining
them with additional constraints.

The constraints at the end of the packet type are a list of Boolean-typed expressions that
have the parameters and fields of a packet as their variable environment. For a packet to
match a packet type, all of the constraints need to be evaluated as true.

We have already talked about defining packets in terms of a field layout and optional
constraints. An alternate means of defining packet types is to add constraints to an
already defined type. Consider this re-working of a previous example:

Krupski 13

Note how these types describe packets of the same protocol, and how they relate to each
other. In this, the packet type “IP” inherits its field layout and parameters from
“uncheckedIP”. It also inherits constraints, but also adds two new ones. Similarly,
“IP_with_UDP” inherits from fields and constraints from “IP” and extends it with one new
constraint. Packet types that extended previously defined types are automatically
subtypes of the packet types which they extend. Hence, “IP” is a subtype of
“uncheckedIP”, and “IP_with_UDP” is a subtype of both. This is the only way in which
subtypes of packet types can be made. As is typical, the subtype relation is transitive, and
an instance of a subtype can be used anywhere the parent type was expected. Packets
which match the type “IP_with_UDP” will be of a specific subset of all IP packets: those
which ought to contain UDP packets as their payload.

Now that all of the aspects of PPL’s type system have been described, here is the
grammar for it:

packet uncheckedIP [signed int length] {
 unsigned int 4 big version;
 unsigned int 4 big header_length;
 unsigned int 8 big TOS;
 unsigned int 16 big datagram_length;
 unsigned int 16 big identifier;
 unsigned int 3 big flags;
 unsigned int 13 big offset;
 unsigned int 8 big TTL;
 unsigned int 8 big protocol;
 signed int 16 big header_checksum;
 unsigned int 32 big source_ip_addr;
 unsigned int 32 big dest_ip_addr;
 bytes [(header_length*4) - 20] options;
 bytes [length - (header_length*4)] data
}

packet IP extends uncheckedIP with {
 length == datagram_length;
 header_length >= 5
 }

packet IP_with_UDP extends IP with { protocol == 17 }

Krupski 14

Matchings : casting data to types

PPL’s constructs for describing and defining packets are quite similar to the system
employed by McCann and Chandra’s PacketTypes. Where PPL is a marked development
from their system is in the ability to specify how and when to match and cast data to
packet types, and what to do upon success or failure. The PPL construct for this is called
the matching construct.

A matching is a matching expression and a series of cases. Each matching case consists
of a variable declaration (of a type and variable name) and a statement. A matching case
is said to “match” if the data buffer is long enough to be an instance of the type of the
declaration and (if the given type is a packet type) if all constraints evaluate to true. Each
matching case is attempted, in order, until one case matches. When a case matches, the
data in the expression is bound to the variable and the statement is executed. Then, the
matching is exited; no more matching cases are attempted. If the case fails, then the next
matching case is attempt. At the end of the list of matching cases, there is a terminal
catch-all matching case which everything matches. It is similar to the “default” case in the
C “switch” construct.

A first attempt at defining the syntax for a matching statement would yield:

basic_primitive_type :=
“signed” “int”
“unsigned” “int”

type :=
basic_primitive_type
“bytes”
identifier

variable_decl :=
type identifier

variable_decls :=
variable_decl
variable_decl “,” variable_decls

packet_extension :=
identifier “with” “{“ constraints “}”

packet_layout :=
“{“ fields “}”
 “{“ fields “}” “with” “{“ constraints “}”

packet_type_defn :=
“packet” identifier packet_layout
“packet” identifier “[” variable_decls ”]” packet_layout
“packet” identifier “extends” packet_extension

Krupski 15

matching_case :=
variable_decl “->” statement

matching_cases :=
“”
matching_case “or” matching_cases

matching :=
“match” expression “with” matching_cases “or” “_” “->” statement

The variable declarations in the matching case of the above syntax present the same
problems with that packet fields did. That is, if we are trying to match against packet
type, how would we pass the parameters so that the required length can be calculated?
Or, if we are trying to match against a byte of blocks, how would we express the number
of bytes we expect to see? Also, could it be possible to match against a basic primitive
type which has a size other than 32 bits and a different byte ordering than the machine?

The same solution of parameters, bit length modifiers, and endianness modifiers will
work here. Since this is the second time this construct has been used, it will be called a
modified_variable_decl and the grammar will be given:

identifier_opt :=
identifier
“_”

endianness_opt :=
“big”
“little”
“native”
“”

bit_length_opt :=
[0-9][0-9]
“”

packet_type_with_data :=
identifier “[” expressions ”]”
identifier
packet_extension “[” expressions ”]”
packet_extension

modified_variable_decl :=
basic_primitive_type bit_length_opt endianness_opt identifier_opt

 “bytes” “[“ expression ”]” identifier_opt
packet_type_with_data identifier_opt

matching_case :=
modified_variable_decl “->” statement

Krupski 16

In identifier_opt, if a “_” is used instead of a variable identifier, no variable will be bound to
the data upon matching though the statement will still be executed. In the
packet_type_with_data rule, “[” expressions ”]” is the list of values passed to the packet as
parameters to the packet type, and are listed in the same order they are declared in the
packet type. There need to be exactly as many expressions as there are parameters, and
the value of each expression must be the same type or a subtype of the parameter to the
packet type it correlates with. modified_variable_decl is the rule which actually appears in
the syntax of packet fields.

Putting it all together: Procedures and statements

This section presents the rest of PPL by showing how matchings, packet types, and
expressions can be glued together into statements and procedures which can be invoked
from C or run on their own. This is not something that the respective systems of McCann
and Chandra, or Sekar, et. al., are designed to do, and this is the main contribution of PPL
to these systems.

There are two kinds of procedure in PPL, user-defined procedures, and declarations of C
functions which will be linked into the executable. These are called “imported”
procedures.

The grammar for user-defined procedures is:

procedure :=
“procedure” identifier “(“ variable_decls “)” “->” type “=” statement

Note the “->” type part of the syntax. This is the return type of the procedure. For the
procedure to typecheck, the statement requires a value in each possible path of execution,
and the type of each possible value will have to be a subtype of the return type.

There are 4 statements in the definition of PPL: matching statements, let-bindings,
statement lists, and statements of expressions.

statement :=
matching
let_binding
statement_list
expression

The syntax of a matching has already been given, and statement of an expression is
simply an expression.

Let-bindings have been introduced into the language so that that programmer can bind
expressions to variables at their own convenience. The grammar of a let binding is:

let_binding :=
“let” identifier “=” expression “in” statement

Krupski 17

Lists of statements have been introduced as statements to allow a series of events to
happen in place of one. The grammar of a statement list is:

statement_list :=
“{“ statements “}”

where statements is a semi-colon separated list of statements. Note that if the list is
empty, this statement produces no executable code.

Determining if a statement has a value in each possible execution path, and what that
value is, is done as follows:

• a matching statement has a value if the statement of each matching case has a
value,

• a let-binding has a value if the embedded statement has a value,
• a statement list has a value if the list is non-empty, and has the value of the last

statement in the list,
• the value of a statement of an expression is exactly what that expression evaluates

to.

The grammar of imports is:

“import” identifier “(“ types “)” “->” type

where types is a comma separated list of type’s. Here is an example of user-defined
procedure and imported procedures:

Krupski 18

C Representations of PPL Data

The PacketTypes of McCann and Chandra generate code which is meant to be used in
programs written in C. My PPL compiler emits C code, but PPL programs can be run
with minimal C code, which would be needed to do things like open and close files and
read from standard input. This ability to interoperate with C increases the power and
utility of PPL; C functions can be called from PPL, and PPL functions can be called from
C.

To make this interface independent of PPL implementation, some aspects of C
representations of PPL data and types must be standardized. Here are the relevant
implementation details of my PPL compiler.

import report_not_ip (bytes)->unsigned int
import report_bad_ip (IP)->unsigned int
import report_bad_ip_6 (IP)->unsigned int
import report_bad_ip_17 (IP)->unsigned int
import report_udp (UDP)->unsigned int
import report_unchecked_udp (uncheckedUDP)->unsigned int
import report_tcp (TCP)->unsigned int
import report_unchecked_tcp (uncheckedTCP)->unsigned int

procedure ip_switch(IP x)->unsigned int =
 let ip_len = x.length in
 let ip_hdr_len = x->header_length in
 match x with {
 IP with {protocol == 17 }
 [ip_len]
 x_with_udp ->
 match x_with_udp->data with {
 UDP [ip_len - ip_hdr_len*4] udp ->
 report_udp(udp)
 or uncheckedUDP [ip_len - ip_hdr_len*4] udp ->
 report_unchecked_udp(udp)
 or _ -> report_bad_ip_17 (x_with_udp)
 }
 or IP with {protocol == 6 }
 [ip_len]
 x_with_tcp ->
 match x_with_tcp->data with {
 TCP [ip_len - ip_hdr_len*4] tcp ->
 report_tcp(tcp)
 or uncheckedTCP [ip_len - ip_hdr_len*4] tcp ->
 report_unchecked_tcp(tcp)
 or _ -> report_bad_ip_6 (x_with_tcp) }
 or _ -> report_bad_ip (x)
 }

Krupski 19

For C functions and PPL procedures to be able to call each other, the programmer needs
to understand how the PPL namespace maps into C. All PPL procedures will carry the
same names in both languages. Data of the basic primitive types are represented in C as
32 bit int and unsigned int, as appropriate . A packet type named “a” will be called “struct

a” in C, and will have a field for each parameter of the packet type, and also a final field
of type “char called “__ppl_packet_data”. The name of the “bytes” array is “struct bytes”, and
it is has a field of type “int” called “length”, and a second field of type “char *” called
“__ppl_array_data”. PPL makes shallow copies of these structs, and hence does no heap
allocation nor deallocation. In its current incarnation, PPL has no way of creating
packets, and so whoever allocated the space for the data should also free it when it is
done being used.

Note that if a PPL procedure taking a packet type is called from C, it is up to the C
program to check the length of the data and constraints. To be typesafe, the C program
ought instead to call a PPL procedure takes a “bytes” struct, and matching it to the desired
packet type.

Analysis

Identifying packets is a pattern matching activity. This project and previous work on
packet specification languages are attempts at making this task easier. McCann and
Chandra recognize that ML-style pattern matching would be the most intuitive way
expressing the logic of packet identification and network code. However, they are
reluctant to use this as a solution. ML is too slow of a language for writing low-level
networking code. For example, it would require stuffing packet data into ML data type
formats.

PPL is an attempt to use ML-style pattern matching with a PacketTypes-style type system
in a language which is close enough to C to preserve its efficiency. This is illustrated in
the following example:

Krupski 20

This PPL code produces the following C code:

import report_not_ip (bytes)->unsigned int
import report_bad_ip (IP)->unsigned int
import do_something_with_udp (bytes)->unsigned int
import do_something_with_tcp (bytes)->unsigned int

procedure ip_switch(IP x)->unsigned int =
 let ip_len = x.length in
 let ip_hdr_len = x->header_length in
 match x with {
 IP with {protocol == 17 }
 [ip_len]
 x_with_udp ->
 do_something_with_udp(x_with_udp->data)
 or IP with {protocol == 6 }
 [ip_len]
 x_with_tcp ->
 do_something_with_tcp(x_with_tcp->data)
 or _ -> report_bad_ip (x)
 }

/*Importing C Function report_not_ip*/
unsigned int report_not_ip (struct bytes);

/*Importing C Function report_bad_ip*/
unsigned int report_bad_ip (struct uncheckedIP);

/*Importing C Function do_something_with_udp*/
unsigned int do_something_with_udp (struct bytes);

/*Importing C Function do_something_with_tcp*/
unsigned int do_something_with_tcp (struct bytes);

Krupski 21

By offering an ML-inspired matching construct, we allow the programmer to specify
when to try to match data against a packet type, which types to try in this matching, what
to do if it fails, and what to do if it passes. Looking at the above example, it doesn’t
appear that the expense of this system over a straight C implementation would be as bad
as McCann and Chandra might have feared in terms of memory or time. However,
experiments would have to be run to test this for sure. Unfortunately, that was not
something that could have been accomplished in the time allotted for this project.

Furthermore, the C translations of PPL datatypes do not require any more memory than
the memory buffer containing the packet and the parameters to the packet the which the
PPL programmer declares, and perhaps a temporary runtime stack for the functions

/* Defining Procedure ip_switch*/
unsigned int
ip_switch(struct uncheckedIP x) {
 int ip_len = x.length;
 {
 unsigned int ip_hdr_len = __ppl_field_header_length_of_uncheckedIP
 (x);
{
 struct uncheckedIP __ppl_matching_exp = x;
 int __ppl_matching_bitlength = __ppl_length_of_uncheckedIP(
 __ppl_matching_exp);
 unsigned char * __ppl_matching_data;
 __ppl_matching_data = __ppl_matching_exp.__ppl_packet_data;

 int __ppl_annon_3 = ip_len;
 if (__ppl_match___ppl_annon_1(__ppl_annon_3, __ppl_matching_data,
 __ppl_matching_bitlength)){
 struct uncheckedIP x_with_udp = __ppl_pack_uncheckedIP(__ppl_annon_3,
 __ppl_matching_data);
 return do_something_with_udp(__ppl_field_data_of_uncheckedIP
 (x_with_udp));
 }
 else {
 int __ppl_annon_4 = ip_len;
 if (__ppl_match___ppl_annon_2(__ppl_annon_4,
 __ppl_matching_data, __ppl_matching_bitlength
)){
 struct uncheckedIP x_with_tcp = __ppl_pack_uncheckedIP(__ppl_annon_4,
 __ppl_matching_data);
 return do_something_with_tcp(__ppl_field_data_of_uncheckedIP
 (x_with_tcp));
 }
 else {
 return report_bad_ip(x);
 }
 }
 }
 }
}

Krupski 22

defined for a PPL datatype. As these are needed for calculating the length of a packet,
this extra data is a cheap price to pay for type safety.

PPL is a typesafe programming language built around describing and matching packet
types. By implementing packet types and pattern matchings and using the “procedure”
construct to bundle up PPL code in a way easily accessible from C, we abstract the
programmer from low-level and error-prone C programming at little cost in efficiency
and memory. This helps to reduce the amount of networking code that needs to be
manually written in C, in hopes of speeding development time and reducing
programming errors.

Future Work

Although PPL is quite a flexible language, there are various additions that could make it
more powerful.

Some ideas for expanding the language are:

• Making Boolean primitives (“true” and “false”), and allowing variables to be
assigned to Boolean typed values.

• Adding a string type and operators both for typical string manipulation, for
converting integers to strings, and for printing strings to standard output. This
would make packet reporting easier, without deferring to C for string
construction.

• Only allowing C programs to call PPL procedures which take basic primitive
types or bytes of blocks. This would allow PPL to check if data is the correct size
and matches all necessary constraints before allowing it to have a packet type.

• Adding preprocessing so as to include common packet type definitions from
header files.

• PPL has many built-in facilities for packet reading. A useful addition to the
language would be constructs for creating new packets, or modifying packets in
place. If PPL had the ability to both read and write packets, I believe that a
significant portion of a network stack could be written in PPL.

• Adding algebraic types, such as unions, would be an interesting endeavor,
although a similar effect is already created by extending a type into various
different subtypes.

• Linking a mathematical engine in with the typechecker could allow many
complicated relations to be made between the packet types. It could perhaps
prove, for example, that certain matching cases were simply unreachable, or that
the sets of data that would match each case were mutually exclusive, allowing
them to be tested in any order.

• Another idea would be to allow matchings to be labeled with an identifier, and
treat both packet types and labeled matchings as first class objects. Then, we
could add language constructs which would allow runtime-created matching cases
to be added to or removed from labeled matchings. This would be akin to what
other languages like Dylan have as dynamic dispatching to multi-methods. An

Krupski 23

example application of this would be automatically updating router tables: the
table would be stored as a labeled matching, rather than as a more typical data
structure, and as more data comes in, more matching_cases can be constructed
and added to the labeled matching.

Conclusions

PPL, though a small language, is extremely flexible and is capable of describing packets
of various protocols, real or still on the drawing board. PPL is not limited to using only a
subset of current protocols, nor is it limited to simply reporting the packets it identifies.
PPL gives the programmer more power than other systems do by allowing the
programmer to define how a matching should be attempted. PPL lowers the amount of
network code that needs to be written in C while hence hopefully reducing programming
errors and increases safety. I hope that PPL will be the basis of future projects which will
upgrade PPL and use it in the creation real network appliances, such as self-updating
routers, typesafe network stacks, and intrusion detection systems.

Krupski 24

Bibliography ======

[1] Karthikeyan Bhargavan, Satish Chandra, and Peter J. McCann, "What Packets May
Come: Automata for Network Monitoring," 2001.

[2] Yang Guang, "A Real-time Packet Filtering Module for Network Intrusion Detection
System," Jul 1998.

[3] Satish Chandra, Peter J. McCann, "Packet Types: Abstract Specification of Network
Protocol Messages," 1999

[4] R. Sekar, Y. Guang, S. Verma and T. Shanbhag, "A High-Performance Network
Intrusion Detection System," ACM Symposium on Computer and Communication
Security, 1999.

[5] R. Sekar, A. Gupta et al.,"Specification-based anomaly detection: a new approach for
detecting network intrusions," ACM Computer and Communication Security Conference
(CCS), 2002

[6] R. Sekar, R. Ramesh and I.V. Ramakrishnan, "Adaptive Pattern Matching,"
International Colloquium on Automata, Languages and Programming (ICALP), July
1992.

Krupski 25

Appendix 1:
Grammar for PPL

Krupski 26

The grammar conventions I use are as follows. Anything in italics references another rule
in the grammar and/or a regular expression, anything in “quotemarks” denotes a terminal
symbol. Alternate rules are given on separate lines; if a rule is longer than a line long, it
will be indented on the next line so as to differentiate it from an alternation. An identifier,
in PPL, must start with a letter and may have numbers and “_” after the first symbol. As
a regular expression, it is

[a-zA-Z][a-zA-Z0-9_]*

Although many languages allow it, PPL does not allow identifiers to start with “_”. This
is so that PPL compilers can emit private identifiers outside of the legal PPL namespace.

A PPL program is a series of components; component is the top level of the PPL grammar:

component :=
import
procedure
typedef

import :=
“import” identifier “(“ types “)” “->” type

basic_primitive_type :=
“signed” “int”
“unsigned” “int”

type :=
basic_primitive_type
“bytes”
identifier

variable_decl :=
type identifier

variable_decls :=
variable_decl
variable_decl “,” variable_decls

packet_type_defn :=
“packet” identifier packet_layout
“packet” identifier “[” variable_decls ”]” packet_layout
“packet” identifier “extends” packet_extension

packet_layout :=
“{“ fields “}”
 “{“ fields “}” “with” “{“ constraints “}”

Krupski 27

packet_extension :=
identifier “with” “{“ constraints “}”

fields :=
modified_variable_decl
modified_variable_decl “;” fields

modified_variable_decl :=
basic_primitive_type bit_length_opt endianness_opt identifier_opt

 “bytes” “[“ expression ”]” identifier_opt
packet_type_with_data identifier_opt

identifier_opt :=
identifier
“_”

endianness_opt :=
“big”
“little”
“native”
“”

bit_length_opt :=
[0-9][0-9]
“”

packet_type_with_data :=
identifier “[” expressions ”]”
identifier
packet_extension “[” expressions ”]”
packet_extension

constraints :=
expression
expression “;” constraints

expression :=
expression “||” exp_and
exp_and

exp_and :=
exp_and “&&” exp_rel_eq
exp_rel_eq

Krupski 28

exp_rel_eq :=
exp_rel_eq “==” exp_rel_ineq
exp_rel_eq “!=” exp_rel_ineq
exp_rel_ineq

exp_rel_ineq :=
exp_rel_ineq “>=” exp_factor
exp_rel_ineq “>” exp_factor

exp_rel_ineq “<=” exp_factor
exp_rel_ineq “<” exp_factor
exp_factor

exp_factor :=
exp_factor “+” exp_term
exp_factor “-” exp_term
exp_term

exp_term :=
exp_term “*” exp_leaf
exp_term “/” exp_leaf
exp_term “%” exp_leaf
exp_leaf

expression_leaf :=
expression_leaf “.” identifier
expression_leaf “->” identifier
identifier “(“ expressions “)”
identifier
[0-9]*
“(“ expression “)”

procedure :=
“procedure” identifier “(“ variable_decls “)” “->” type “=” statement

statement :=
matching
let_binding
statement_list
expression

let_binding :=
“let” identifier “=” expression “in” statement

statement_list :=
“{“ statements “}”

Krupski 29

matching_case :=
modified_variable_decl “->” statement

matching_case :=
variable_decl “->” statement

matching_cases :=
“”
matching_case “or” matching_cases

matching :=
“match” expression “with” matching_cases “or” “_” “->” statement

Krupski 30

Appendix 2:
“Well Formed” Rules

Krupski 31

The text does not refer to this appendix, but it is included as a resource for some of the
more technical details of the language definition.

Determining Well-Formedness of modified_param_decls:

A modified_param_decl is well-formed if the following conditions hold:

• If the modified_variable_decl has the type “unsigned int” or “signed int”, if it has a bit-
length modifier, the given length is in the range 1-32.

• If the modified_variable_decl is a block of bytes, then the expression dictating the
length is well-formed and has the type “unsigned int” or “signed int”.

• If the modified_variable_decl has a packet type, then exactly as many values are
being passed as parameter to the packet type as the type declares, and the type of
each of these expressions is a subtype of the type of the associated parameter to
the packet type. If the packet type is given by name, then the name must be
previously bound to a packet type.

• If the modified_variable_decl has a packet type which is given as a packet extension,
then the above condition must hold, and the packet extension must be well
formed, as specified bellow.

Determining Well-Formedness of packet_type_defns:

A packet type definition binds a new packet type to an identifier. A packet type
definition is well-formed if the indentifier given is not yet bound to a packet type and the
following conditions hold:

If a packet type is given as an extension, then it must be well-formed. That is:
• The identifier it is claiming to extend has already been bound to by a packet type.
• The constraint list is not empty, and each constraint is a well-formed, Boolean-

typed expression which uses only the parameters and the fields of the packet type
being extended as a variable environment.

If a packet type is given as a layout, then it must be well-formed. That is:
• The formal parameters are either signed or unsigned ints.
• The fields, as modified_variable_decls, are well-formed and use only the parameters

to the packet as a variable environment.
• All fields which are blocks of bytes or have a packet type are byte-aligned.
• All of the identifiers used for fields or parameters to the packet type are

(mutually) unique.
• Each constraint is a well-formed, Boolean-typed expression which uses only the

parameters and the fields of the packet type being extended as a variable
environment.

Krupski 32

Determining the Type and Well-Formedness of an expressions
leaf:

If the expression leaf is a member access, then it is well-formed if the expression being
accessed has a packet type which has a parameter with the same name as the identifier
given. The resulting value has the type of the packet type parameter.

If the expression leaf is a field access, then it is well-formed if the expression given has a
packet type which has a field with the same name as the identifier given. The resulting
value has the type of the packet type field.

If the expression leaf is a procedure call, then it is well-formed if the identifier naming
the procedure is already bound to a procedure (imported or user defined), and the exact
same amount of values are supplied as the procedure is declared to take. Furthermore,
the expressions given for the parameters all have types which are subtypes of the
procedure’s formal parameters. The resulting value has the return type of the procedure.

If the expression leaf is a variable, then it is well-formed if it is bound in the current
environment. If the expression leaf is a constant, then it is well-formed if it is in the
range 0 to (2 32 - 1). If the expression leaf is a parenthesized expression, then it is well
formed if the enclosed expression is.

Determining the Type and Well-Formedness of Statements and
Procedure:

A statement is well-formed if the following conditions apply:
• If the statement is a “let binding”, then it is well-formed if the embedded

statement is well-formed and the expression that the variable is being assigned to
is well-formed and the value is either a block of bytes, is a signed or unsigned int,
or has a packet type.

• If the statement is a statement list, then it is well-formed if and only if each
statement in the list is well-formed.

• If the statement is an expression, then it is well-formed in the expression is well-
formed.

• If the statement is a matching, then it is well-formed if (1) the expression being
matched is well-formed and is either a block of bytes, has a signed or unsigned
int, or has a packet type, (2) each matching case consists of a well-formed
“modified_variable_decl”and a well-formed “statement”, and (3) the statement in the
terminal “_” matching case is well-formed.

A user defined procedure is well-formed if the name of the procedure is not yet bound to
any other procedure (user-defined or imported), every parameter has a unique name, the
statement is well-formed, and any parameter type or return type that is given by name is
previously bound to a packet type. Imported procedures are well-formed if and only if
the name of the procedure is not yet bound to any other procedure (user-defined or

Krupski 33

imported) , and any parameter type or return type that is given by name is previously
bound to a packet type.

	PPL: a Packet Processing Language
	Recommended Citation

	tmp.1596484807.pdf.VVCed

