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Abstract

We have developed an algorithm called Q5 for probabilistic classification of healthy vs. disease
whole serum samples using mass spectrometry. The algorithm employs Principal Components
Analysis (PCA) followed by Linear Discriminant Analysis (LDA) on whole spectrum Surface-
Enhanced Laser Desorption/Ionization Time of Flight (SELDI-TOF) Mass Spectrometry (MS)
data, and is demonstrated on four real datasets from complete, complex SELDI spectra of human
blood serum.

Q5 is a closed-form, exact solution to the problem of classification of complete mass spectra of
a complex protein mixture. Q5 employs a novel probabilistic classification algorithm built upon
a dimension-reduced linear discriminant analysis. Our solution is computationally efficient; it
is non-iterative and computes the optimal linear discriminant using closed-form equations. The
optimal discriminant is computed and verified for datasets of complete, complex SELDI spectra
of human blood serum. Replicate experiments of different training/testing splits of each dataset
are employed to verify robustness of the algorithm. The probabilistic classification method
achieves excellent performance. We achieve sensitivity, specificity, and positive predictive values
above 97% on three ovarian cancer datasets and one prostate cancer dataset. The Q5 method
outperforms previous full-spectrum complex sample spectral classification techniques, and can
provide clues as to the molecular identities of differentially-expressed proteins and peptides.
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Introduction∗

Mass Spectrometry (MS) is a powerful tool for determining the mass of biomolecules and
biomolecular fragments present in a complex sample mixture. The role of MS is similar to that
played by 2D-gels in complex proteomic applications. Unlike gel electrophoresis, MS provides ultra-
high resolution mass information. More specifically, MS measures the mass/charge (m/z) ratio of
biomolecules.

Surface-Enhanced Laser Desorption/Ionization (SELDI) 1, 2 is a variant of the commonly used
Matrix-Assisted Laser Desorption/Ionization (MALDI)3 Mass Spectrometry. In SELDI MS, molec-
ular samples are placed onto protein chips with selective affinity before ionization. Nonbinding
molecules are washed off the chip and remaining molecules are ionized by laser bombardment. Ions
are subsequently processed by a mass analyzer.

A mass spectrum consists of a set of m/z values and corresponding relative intensities. The
biomolecules present in a sample become charged during the MS ionization process. The relative
intensity observed at each m/z value is therefore a function of all ionized molecules present with that
m/z ratio. Thus, the mass spectrum observed for a sample is a function of the molecules present.
Experimental conditions that affect the molecular composition of a sample should therefore affect
its mass spectrum. Hence, mass spectrometry is often used to test for the presence or absence
of one or more molecules. The presence of such molecules may indicate a particular enzymatic
activity, disease state, cell type, or condition. We define a sample as a solution from one of these
‘states’ containing one or more biomolecules.

Researchers often hypothesize that there are differences in molecular composition between two
states even though the molecular differences are not known. One would like to recognize one state
versus another: when the molecular differences between the two states are not known a priori,
this task becomes difficult. MS is increasingly being used to solve this recognition problem by
identifying molecular differences in sample composition.4, 5, 6 Analysis of mass spectra by manual
inspection has been feasible for samples containing one or a small number of molecules. These
manual inspection techniques are impractical however, for samples containing a large number of
protein fragments. Moreover, samples containing a large number of protein fragments tend to be
the most interesting and have the potential to provide the most novel results.

Recently, a number of algorithms have been developed to find spectral differences between mass
spectra of samples taken from two separate conditions. The discrimination of one condition from
another by comparing their mass spectra is the goal of Mass Spectrometry Classification Algorithms
(MSCAs). Several MSCAs have been developed for human disease diagnosis.7, 8, 9, 10, 11, 12 These
MSCAs classify mass spectra as having come from either a healthy or disease blood sample or
biopsy. In addition to disease diagnosis, MSCAs have application in monitoring disease progression,
regression, and recurrence.

In particular, given two states, we would like to know the answers to two questions: I) do
molecular differences exist between the two states? and II) if molecular differences do exist, what
molecules cause these differences? In mass spectrometry, question II) can be split into two parts:
(a) what are the mass/charge ratios of the differently-expressed molecules? and (b) what are the
molecular identities of the differently-expressed molecules? Given only the answers to I) and IIa),

∗Abbreviations used: BPH, benign prostatic hypertrophy; CFES, closed form exact solution; LDA, linear discrim-
inant analysis; MALDI, matrix-assisted laser desorption/ionization; MS, mass spectrometry; MSCA, mass spectrom-
etry classification algorithm; OC, ovarian cancer; PC, prostate cancer; PCA, principal components analysis; PPV,
positive predictive value; PSA prostate specific antigen; SELDI-TOF, surface-enhanced laser desorption/ionization
time of flight.
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sample classification can, in principle, be performed.
Many previous MSCAs11, 12, 8, 7 answer I) but provide only a partial, incomplete answer to IIa).

That is, many previous algorithms discover only a subset, rather than the full set, of discriminating
m/z peaks. Moreover, the peaks in this subset are not guaranteed to be differentially expressed
between the two states.

An MSCA can be tested empirically by comparing its accuracy to known MS data classifications,
and by measuring its running time. Therefore, we compare results of our algorithm, Q5, to known
assignments of MS data, and we also report that Q5 runs in minutes. This provides benchmarks,
by calibration with ground truth. We motivate and define an objective error function by which
linear classifiers of an MSCA can be evaluated. The classifier computed by Q5 is optimal under
this error function with respect to the training set. Our characterization is twofold: (1) Complexity
measures the running time of the algorithm. (2) Correctness measures how well Q5 minimizes the
error function. In the language of computer science, Q5 is said to be an exact algorithm, which
means:

1. Q5 is a combinatorially precise algorithm: we can prove that the training runtime is O(n3 +
n2r) and the testing runtime is O(mrn), where n is the number of training spectra, m is the
number of testing spectra, and r is the resolution of each mass spectrum.

2. Q5 always computes the optimal solution (with respect to the error function) using closed-
form equations.

For exact algorithms such as ours, properties (1) and (2) can be proven mathematically. Hence,
one can formally understand and analyze why a technique performs well, or poorly. We caution
however, that exact does not necessarily imply perfect performance on biological data: it means
the algorithm is guaranteed to optimize an objective error criterion that measures how well the
(noisy) data is classified. In contrast, techniques such as genetic algorithms, neural networks, and
simulated annealing do not admit such guarantees: these methods have neither provable complexity
nor correctness properties, and they are neither exact nor combinatorially precise.

We present a closed-form exact algorithm to answer questions I) and IIa) above. Moreover
Q5 computes the complete set of m/z peaks that are differentially expressed in one state vs. the
other. This information is valuable because these peaks aid in the identification of proteins that are
differentially present in each state. That is, a complete exact answer to IIa) is potentially helpful
in determining the answer to IIb).

If each spectrum is sampled at the same m/z values then we can represent each spectrum as a
point in an r-dimensional space, where r is the number of m/z values for which relative intensities
are recorded per spectrum. We call this space spectral-space. Each spectrum is therefore represented
in spectral-space by the point (p1, . . . , pr), where pi is the relative intensity observed at the ith m/z
value. In this representation, the m/z values are implicitly encoded, they are not lost.

Spectra with similar corresponding m/z peak heights will inherently cluster in spectral-space.
The assumption made by Q5 is that in spectral-space, healthy spectra form one cluster while
disease spectra form a second, non-overlapping cluster (Figure 1). The hypothesis for classification
is that any healthy spectrum lies closer to the healthy cluster than to the disease cluster (and vice-
versa). Unclassified spectra can then be classified by assigning them to their nearest cluster. The
confidence in each classification is thus a function of the distance of a sample to each cluster mean.
In this representation it is reasonable to define an optimal linear discriminant using the hyperplane
that maximizes the across-class variance while minimizing the within-class variance. Q5 computes,
exactly, the hyperplane which satisfies this criterion.
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We have designed and implemented Q5 to classify complex samples from mass spectrometry
data. The major steps of Q5 are illustrated in Figure 1. In our algorithm, each spectrum is
represented by a point in spectral-space, as described above (Figure 1A). The set of all spectra points
in spectral-space is dimensionality-reduced using Principal Components Analysis (PCA)13 (Figure
1, Step 1). In particular, PCA performs a transformation of spectral-space into a lower dimensional
space with little or no information loss. A separating hyperplane, H, is then computed using Linear
Discriminant Analysis (LDA)14, 13 (Figure 1, Step 2). The PCA dimensionality reduced sample
points are projected onto H (Figure 1, Step 3). H is the hyperplane that maximizes the across-
class variance while minimizing the within-class variance of the projected sample points.14 Thus,
the LDA-computed hyperplane H satisfies our exactness criterion. As a result, classification is made
easier in this projected space. Now suppose we wish to classify some number of new (test) spectra
(that were not used in training). A test spectrum is first dimensionality-reduced by projection onto
the retained principal components. Next, it is projected onto the maximally separating hyperplane.
Finally, the point is classified into the healthy or disease state based on the Euclidean distance to
each class mean. The confidence in classification is based on a symmetric Gaussian distribution
centered at each class mean. The process of classifying a test spectrum, represented by a yellow
square, is illustrated in Figure 1.

Q5’s ability to classify complex fragment mixtures was evaluated by testing its ability to dis-
criminate the mass spectra of healthy vs. disease human serum samples. The two disease states
examined in testing were ovarian and prostate cancer. Existing screening methods for both cancers
carry a low positive predictive value (PPV).15, 16 Improved screening techniques would be welcomed
by the medical community.
Ovarian Cancer. There are approximately 23,000 new cases of ovarian cancer each year in the
United States which result in nearly 14,000 deaths.17 Late stage ovarian cancer carries a 5-year
survival rate of 30%. When detected at stage I, the 5-year survival rate increases to over 90%.17 This
statistic suggests early detection as a means of improving outcomes. Current screening modalities
and practices include transvaginal ultrasonography and screening for the biomarker Cancer Antigen
125 (CA125). Combined, these modalities result in the detection of only 20% of ovarian cancers
during stage I. Moreover, these tests carry a PPV of approximately 20%.15 Many research groups are
working to discover novel techniques for ovarian cancer screening. A genetic algorithm based MSCA
for ovarian cancer screening was developed by Petricoin and co-workers.11 Additionally, a variety
of new biomarkers for ovarian cancer are currently under investigation. These include prostatin,18

lysophosphatidic acid (LPA),19, 20 mesothelin,21 polymorphic epithelial mucin (PEM/MUC-1),22

HER2,23, 24, 25 survivin,26 and kallikrein 10 (hK10).27

Prostate Cancer. New prostate cancer cases number 189,000 per year in the United States.
These cases result in 30,200 annual deaths.17 Prostate cancer carries a 5-year survival rate of 100% if
detected early; when detected at late stage the 5-year survival drops to 33%.17 In hopes of detecting
prostate cancer at an early stage two screening techniques are currently employed. At present,
prostate cancer screening involves the Digital Rectal Exam (DRE) and screening for the Prostate-
Specific Antigen (PSA) biomarker. Published values of the sensitivity, specificity, and positive
predictive values for these screening modalities vary widely. One study reports that the combined
positive predictive value of existing tests is roughly 49%.16 While the value of early prostate cancer
detection is currently being debated there has been recent interest in the development of novel
screening methods.28, 29, 30

In the remainder of this section, we first describe a framework in which MSCAs can be compared.
We then review previous work utilizing this framework. Finally we summarize the key differences
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Figure 1: Major Steps of the Q5 Algorithm. Three classes of points are shown in a w-dimensional
space (A). PCA is used to reduce the dimensionality of the sample points (Step 1). For simplicity, in this
example, we’ve projected onto the top 3 principal components. The LDA hyperplane, H, is computed in
step 2. Note that most of the sample points do not lie on this hyperplane; that is, sample points lie above
and below the plane. Sample points are therefore projected onto the hyperplane in step 3. Each cluster is
shown with its 50% classification boundary (D). Test spectra (yellow and purple) are classified by projecting
onto the PCA basis (B) and LDA hyperplane (C,D) computed in training. The yellow sample is shown to
lie in the cluster of blue diamonds (D) and would be classified using a probability classification threshold of
0.5. The purple sample lies outside the 0.5 confidence region and would not be classified using a probability
classification threshold of 0.5.
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between previous work and Q5.

Classification Algorithms

An MSCA accepts as input a set of MS training spectra, together with their correct classifica-
tions. It outputs a classifier (discriminant) capable of classifying new mass spectra into one of the
classes. These new spectra (called test spectra) have not been seen by the algorithm before and
their classifications are unknown to the algorithm; the goal of the MSCA is to determine the correct
classification based on the classifier constructed from the training set. Classification verification is
the testing process by which the discriminant is evaluated for its ability to correctly classify test
samples. MSCAs can be classified by the type of MS data processed, type of algorithm employed,
and method of classification verification used:
Completeness of mass spectrum. Analysis may be performed on either complete or partial
mass spectra. Complete mass spectra consist of the relative intensities of all m/z values acquired
during MS data collection. This includes the relative intensities observed for all m/z values from 0
up to the upper limit of detection. An MSCA that processes complete mass spectra works with the
entire recorded spectra: no values are “manually” excluded through preprocessing. When portions
of a spectrum are excluded from consideration, we say a partial spectrum is generated.
Manual preprocessing. Frequently, spectra are manually preprocessed. In manual preprocess-
ing, parts of the spectrum may be eliminated from consideration based on the magnitude of the
relative intensity or prior (human) knowledge. This spectral manipulation produces a manually-
processed partial spectrum. Modification of the peak intensities in a manner that imparts additional
information represents another type of manual manipulation.
Sample source (the biological source of the MS sample). Spectra may be obtained from either
simple or complex fragment mixtures. Simple mixtures may contain one or only a small number
of proteins. Simple mixtures usually yield relatively “clean” spectra with fewer peaks. Complex
fragment mixtures contain between tens to thousands of biological fragments and produce a corre-
sponding number of m/z peaks. These peaks often present a challenge to MS analysis algorithms:
a particular m/z peak may be the sum of many sub-peaks (contributions) from many different
molecular fragments. Human serum (used in our application) is, for example, a complex fragment
mixture.
Heuristic vs. Exact Classification Algorithms. Heuristic classification algorithms include ap-
proaches such as genetic algorithms, neural networks, and simulated annealing. These algorithms
generally require multiple iterations to converge to a classifier; furthermore, the solution found by
heuristic algorithms is not guaranteed to be optimal. In addition, many heuristic approaches are
non-deterministic. Even when run on the same training set, the same non-deterministic algorithm
often converges to a different discriminant. In contrast, closed-form exact solutions (CFES) com-
pute an exact solution using closed-form equations. CFES algorithms are computationally efficient;
they are non-iterative and deterministic. As described above, our exact solution maximizes a well-
defined scoring function. Linear Discriminant Analysis (LDA), and thus Q5, are CFES algorithms.
The discriminant computed by LDA is the linear predictor that maximizes the across-class vari-
ance while minimizing the within-class variance. Whereas heuristic approaches may converge to a
different “solution” each time they are run, exact algorithms, always compute the same solution,
and that solution is always correct under the scoring function.
Classification Verification. Classification algorithms must be verified, to confirm that the dis-
criminant serves to properly classify samples that were not used in training. By analogy with
the scientific method, the discriminant is the hypothesis, and the verification (by classifying non-
training-set data) is the test of the hypothesis. It is imperative that leave-out experiments be
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performed. In a leave-out experiment, a set of sample spectra are “left-out”, that is, they are not
used to build the classifier; these samples comprise the testing set of spectra, which are often called
masked spectra. The masked spectra are then classified by the previously computed discriminant,
and the accuracy of classification is determined. Thus, we say the available data is partitioned, or
split into training and testing (masked) sets. Often, there exists a split of samples into training
and testing sets that performs significantly better than others. Hence, to test an algorithm, it is
essential to perform multiple leave-out experiments, each with a different split between the training
and testing sets. Classification algorithms may then be verified in a principled way using many
splits. The performance statistics of the classifier against multiple different splits must be reported.
When only one or a small number of splits are tested, classification verification is said to be partial.

Previous Work

We now describe specific examples of existing MSCAs in previous research. Each example is
discussed using the framework introduced above. We then describe Q5’s advantages over previous
techniques.
Heuristic Classification Techniques. Petricoin et al. give a heuristic MSCA on complete com-
plex spectra with classification verification.11 The method employs a genetic algorithm to select
between 5 and 20 m/z peaks for use in classification. This MSCA was applied to SELDI-TOF
spectra of blood serum from 100 women with ovarian cancer, 100 women without cancer, and 17
women with benign gynecological disease. A genetic algorithm was trained on a set of spectra
containing half of the cancer spectra and half of the normal spectra. The remaining 117 spectra
were used in testing. A single training/testing split was performed; a sensitivity of 100%, specificity
of 95%, and PPV of 94% was reported. Petricoin and co-workers have recently tested their MSCA
against two additional sets of ovarian cancer and one set of prostate cancer SELDI mass spectra.31

Adam et al. developed a decision tree based heuristic MSCA on partial complex spectra with
partial classification verification for the diagnosis of prostate cancer.12 A training set containing
85% of the total samples (n=326) was used to build the decision tree. The MSCA started with a
subset of 124 MS peaks and built a three-class decision tree using 9 of these. Partial testing using
a single training/testing split resulted in a sensitivity of 83%, specificity of 97%, and PPV of 96%.

Another heuristic MSCA based on discriminant factorial analysis has been used to discrimi-
nate between betamethasone and dexamethasone.32 Discriminant factorial analysis is an iterative
technique that attempts to converge to the answer directly computed by LDA. Additionally, while
not truly MSCAs, a number of papers have reported on heuristic techniques for the identification
of differentially expressed m/z peaks. Artificial neural networks have been used to identify m/z
peaks associated with astrocytoma7 as well as bacteria involved in urinary tract infections.33

Exact Classification Algorithms. Two recent works applied LDA to MS analysis. Miketova et
al. performed LDA on a subset of peaks to differentiate Gram positive vs. Gram negative bacteria.34

They present an exact algorithm on manually-processed partial complex spectra without classifi-
cation verification. Their analysis used reduced dimensionality electron ionization mass spectra
containing the relative intensities of 36 hand-picked m/z values. These 36 values surrounded 12
low-resolution mass peaks that had been shown in previous work to have discriminating power.
The linear discriminant was computed on a training set of 36 sample spectra (18 Gram positive
and 18 Gram negative). Although the computed discriminant was able to separate the training
samples, its ability to classify novel samples was not evaluated.

Wagner et al. present an exact algorithm on manually-processed partial simple spectra with
classification verification.35 They performed TOF-SIMS (Time-of-Flight Secondary Ion MS) on a
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small number of proteins (12) each prepared as a single protein adsorbed film using one of two
substrates. Replicate experiments were performed which generated spectra covering only the single
amino-acid mass range of 0-200 m/z. Analysis was performed using two sets of peaks, the first set
consisted of a preselected peak list while the second set contained all peaks with an intensity at
least three times greater than the 0-200 m/z background region. They compared the discriminating
power of principal components analysis (PCA), discriminant principal component analysis (DPCA),
and LDA. Leave-one-out experiments were performed on multiple training/testing splits. The
linear discriminant was used to predict the identity of an unknown single protein adsorbed film
from its mass spectrum. Among their results, they showed that LDA and DPCA provide better
discriminating power than PCA.

Goodacre et al. performed LDA on the Electrospray Ionization (ESI) mass spectra collected
from 3 replicates of 6 different bacteria.36 Partial spectra from 100-3050 m/z were used in analysis
and no classification verification was performed. That is, no test spectra were classified using the
computed discriminant.

In summary, of the existing MSCAs, those that use complete complex spectra,11, 12 do not
use exact algorithms. Conversely, those MSCAs that are exact, do not operate on complete com-
plex spectra.34, 35 Moreover, only partial classification verification results have been reported for
essentially all existing MSCAs. In these respects, Q5 differs from all previous MSCAs. Whereas
Petricoin et al. and Adam et al. used heuristic methods, Q5 uses LDA, an exact method. In
contrast to the work of Miketova et al. and Wagner et al., we do not remove from consideration
parts of the recorded mass spectrum based on relative-intensity or a priori (human) knowledge.
Our work utilizes affinity chip filtered human serum containing tens to thousands of proteins and
protein fragments. Q5 uses complete mass spectra, sampled at 15154 (resp. 16382) m/z values over
the range 0-20000 (resp. 0-22500), to compute a discriminant for ovarian (resp. prostate) cancer
datasets. Whereas Wagner et al. classified unknown spectra by assigning them to the nearest class,
we employ a novel probabilistic classification framework. For each unclassified testing spectrum,
Q5 computes both the most likely class assignment as well as the probability that the unknown
spectrum belongs to the specified class. Whereas only partial classification verification has been
reported on existing MSCAs, Q5 is tested with several thousand training/testing splits. Q5 is,
to our knowledge, the first closed-form exact solution to the problem of probabilistically classify-
ing complete mass-spectra of a complex protein mixture. Finally, Q5 employs a novel discriminant
back-projection algorithm to compute clues as to the molecular identities of differentially-expressed
proteins and peptides.

Results and Discussion

Q5 has been applied to classify three ovarian cancer and one prostate cancer dataset. The Q5 al-
gorithm is non-iterative and more stable than previously reported iterative approaches.11, 12, 7, 32, 33

Moreover, Q5 computes an exact solution and the resulting linear discriminant is guaranteed to be
the optimal linear classifier. In this section we report on the performance of the Q5 algorithm and
compare these results, where possible, to previous MSCAs.

The three spaces used by Q5 are spectral-space, PCA-space, and discriminant-space. Spectral-
space has been described above. PCA-space is the space spanned by the principal components
retained from the PCA dimensionality reduction; discriminant-space is the space spanned by the
linear discriminant(s) computed from LDA. Discriminant-space has lower dimensionality than PCA-
space which has lower dimensionality than spectral-space.

The initial dimensionality of spectral-space (15154 for the ovarian cancer spectra,31 16382 for
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the prostate cancer spectra37) is typically larger than the intrinsic dimensionality of the training
set. Although the complete training spectra exist in 15154- or 16382-dimensional space, the intrin-
sic dimensionality of these points is bounded by the number of training samples. LDA can not be
performed on a set of points in a space with dimensionality larger than the set’s intrinsic dimen-
sionality. That is, in order to guarantee a non-degenerate solution for LDA, the dimensionality of
the data must be reduced to at most n− k where n is the number of samples and k is the number
of classes.14 Therefore, since the intrinsic dimensionality of the training samples is no more than
95% of the total number of samples (327 in the largest dataset) we must project the spectra into
a lower dimensional space. For this reason, PCA is performed on each training set. We use the
n − 3 largest principal components in dimensionality reduction since both two- and three- class
LDA experiments are performed.

The Q5 algorithm is detailed in Figure 2. Before any classification tests were performed, datasets
were obtained, processed, and named as described in the methods section. In the first step of an
experiment, the sample spectra are randomly partitioned between a training set T and a testing
(masked) set M . Following this partition, Q5 performs PCA on the spectral points in set T .
The result of PCA is that each spectrum is now a point in the (n − 3)-dimensional PCA-space.
The optimal separating hyperplane is next computed using LDA on the PCA dimensionality-
reduced training spectra. The discriminant-space sample points from each class should be inherently
clustered. The center of each cluster is then computed and used in probabilistic classification.
Consider a 2-class experiment, and let q be the midpoint of the segment connecting two class means.
Intuitively, the probability of q belonging to either class is 0.5. By construction, the probability of
classification is larger for points closer to either class mean than q. Thus we compute a classification
probability based on the weighted distance to each class mean. A Gaussian distribution is centered
at each class mean with the variance chosen such that the probability of classification is 0.5 at
point q (Figure 1D). A spectrum with a probability of classification less than a fixed threshold is
not classified by Q5.

The testing of Q5 against each dataset consists of D-experiments and D-runs. A D-experiment
randomly partitions the dataset into a training set and a testing set, computes the discriminant
from the training samples, and performs classification verification using the testing samples. A
collection of s D-experiments is called a D-run. For each of the four datasets, four D-runs are
performed with training sets consisting of 50%, 75%, 85%, and 95% of the total samples. For
example, the 75% D-Run consists of s D-experiments; in each D-experiment a different random
75% of the total samples is partitioned into the training set. To illustrate the robustness of Q5, 1000
D-experiments are performed in each D-run. For each D-experiment the percent-classified, percent-
correctly classified, positive predictive value (PPV), sensitivity, and specificity are computed using
probability classification thresholds evenly sampled between 0.5 and 1.0. The mean and standard
deviation of these values are computed for each D-run. Figures 3 and 4 show that the percent-
classified, percent-correctly classified, positive predictive value, sensitivity, and specificity vary with
probabilistic classification threshold for each of the four datasets.

Q5 achieves performance results that compare favorably to previous work on these datasets.11, 31, 12

We now describe the application of Q5 to four datasets. For all datasets, a number of the train-
ing/testing splits result in 100% classification accuracy.

Ovarian Cancer. Q5 has been applied to the three ovarian cancer datasets (OC-H4, OC-
WCX2a, and OC-WCX2b).31, 11 The results of this analysis are given in Table 1 and Figure 3. For
each dataset, a D-run was performed with training sets consisting of 50%, 75%, 85%, and 95% of the
total number of sample spectra. Thus a total of 12,000 D-experiments were performed across these
12 D-runs. As one increases the probability classification threshold the percent-classified decreases.
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Probabilistic Classification

Compute LDA Discriminant

Training/Testing Split

Training Data Testing Data

Compute PCA Basis

Compute Class Means, σ 

Complete Complex Spectra Dataset

π

π π

π

Figure 2: One D-experiment. π represents projection: The points to be projected enter via a verti-
cal arrow, the projection basis enters via a horizontal arrow. A complete complex spectral dataset is first
partitioned into training and testing sets. The spectral-space representation of the training spectra is ana-
lyzed with PCA. PCA outputs the principal components, which are used to project both the training and
testing spectral-space points into PCA-space. LDA is then performed on the PCA-space training points.
LDA outputs the optimal linear predictor. The PCA-space training and testing points are projected onto
the optimal linear predictor and into discriminant-space. Next, the discriminant-space training points are
used to compute the class mean and Gaussian probability distribution standard deviation, σ, for each class.
Classifier performance is tested by using the computed class means and σ’s to classify the discriminant-space
spectral representations of the testing data.
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At the same time, increasing the threshold increases the percent-correctly classified, sensitivity,
specificity, and positive predictive value. Thus a higher threshold allows for increased classification
accuracy at the cost of a decreased number of samples classified. A classification threshold exists
that allows Q5 to classify 90.0% of the OC-H4 samples with a PPV of 97.4%, a sensitivity of 97.5%,
and a specificity of 96.8%. Q5 achieves better performance statistics on the WCX datasets. Q5
can classify 93.4% of the OC-WCX2a samples with a PPV of 99.2%, a sensitivity of 98.8%, and a
specificity of 98.9%. Q5’s best performances is achieved on the OC-WCX2b dataset, classification
is perfect in all 3000 D-experiments beyond the 50% training level. That is 100% of the samples
are classified with a PPV of 100%, a sensitivity of 100%, and a specificity of 100%. It is worth
noting that for each dataset tested there exists a probability classification threshold which achieves
perfect classification in a majority of the D-experiments. The variance in classification performance
illustrates the importance of reporting MSCA results on multiple different train/test splits.

Prostate Cancer. Q5 was then tested against the PC-IMAC-Cu prostate cancer dataset.12

Q5 was used to compute both a two- and three- class discriminant. Each sample in the PC-IMAC-
Cu dataset is classified as either Normal Healthy (NH), Benign Prostatic Hypertrophy (BPH),
or Prostate Cancer (PC). For the two-class discriminant tests, both NH and BPH samples were
considered ‘healthy’ while PC samples were considered ‘disease’. The two-class discriminant tests
consist of 4 D-runs, performed with training sets containing 50%, 75%, 85%, and 95% of the total
number of sample spectra. As in the ovarian cancer tests, each D-run of the prostate cancer
tests consisted of 1000 D-experiments. The percent-classified, percent-correctly classified, positive
predictive value, sensitivity, and specificity are reported in Table 2 and Figures (4A and 4B).

One set of three-class experiments were performed. In the three-class experiment each sample
was classified as either NH, BD, or PC, Table 3. Similar to the other datasets, 4 D-runs were
performed with training sets containing 50%, 75%, 85%, and 95% of the total number of sample
spectra. The results of the three-class experiments are shown in Table 3 and Figures (4C and 4D).

As was the case with the ovarian cancer classification, the prostate cancer classification showed
a tradeoff between the accuracy and the percent of samples classified. In the 2-class experiments
Q5 was able to classify 85.6% of the PC-IMAC-Cu samples with a PPV of 94.3%, a sensitivity of
91.3%, and a specificity of 93.0%. In the 3-class experiments Q5 classified 92.0% of the samples
with a positive predictive value of 96.1%, a sensitivity of 93.2%, and a specificity of 96.1%. If we
allow only 67.1% of samples to be classified Q5 achieves a PPV of 99.2%, a sensitivity of 98.1%,
and a specificity of 99.3%. Table 4 shows three-way classification results.

The PCA and LDA computations on the training set require 1.0 to 1.5 minutes of runtime on a
Pentium 4 class workstation. Classification of a novel sample can be performed in under a second.

The consistency of the computed discriminants for each dataset was examined. Each discrimi-
nant is back-projected (see Methods section) from PCA-space into spectral-space. The dot-product
between all pairs of discriminants was computed. The normalized discriminants for each experiment
fall within a small region of the 15154- or 16382-dimension unit-hypersphere (results not shown).
This represents an advantage of Q5 over non-deterministic methods. Non-deterministic heuristic
MSCAs will often produce different solutions when run on different training/testing splits of the
same dataset. In contrast, for a given dataset, the Q5 computed discriminants are similar for all
D-experiments.
Comparison of Results to Other MSCAs

The mean and standard deviation of the sensitivity, specificity, and positive predictive value
for each D-run across each dataset is reported and compared to previous MSCAs. Petricoin et
al.11 report classification statistics for only one training/testing split of the OC-H4 dataset; no
performance statistics have been published for the OC-WCX2a and OC-WCX2b datasets. This
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Dataset T% PCT % Corr % Classif PPV Sens Spec

OC-H4 50% 0.50 88.86 (3.01) 98.04 (1.45) 89.92 (3.71) 87.57 (5.12) 90.15 (4.04)
0.63 92.46 (2.76) 85.46 (3.42) 93.25 (3.49) 91.36 (4.84) 93.49 (3.57)
0.75 95.00 (2.51) 72.22 (4.29) 95.59 (3.33) 94.08 (4.42) 95.82 (3.28)

75% 0.50 92.20 (3.62) 98.60 (1.55) 92.13 (4.71) 92.45 (5.51) 91.95 (5.15)
0.63 95.53 (3.03) 87.83 (4.28) 95.44 (4.21) 95.70 (4.48) 95.35 (4.44)
0.75 97.63 (2.34) 76.54 (5.41) 97.88 (3.22) 97.37 (3.62) 97.90 (3.20)

85% 0.50 92.70 (4.43) 98.82 (1.89) 92.23 (5.86) 93.58 (6.27) 91.82 (6.64)
0.63 96.15 (3.55) 88.61 (5.86) 96.16 (4.72) 96.33 (5.20) 95.95 (5.09)
0.75 98.11 (2.64) 77.18 (7.65) 98.67 (3.19) 97.58 (4.43) 98.62 (3.33)

95% 0.50 93.38 (7.34) 98.98 (3.09) 92.70 (10.00) 95.52 (8.98) 91.27 (12.43)
0.63 97.18 (5.31) 89.96 (9.22) 97.40 (6.69) 97.51 (7.25) 96.81 (8.24)
0.75 98.05 (4.72) 78.66 (12.79) 98.52 (5.45) 97.79 (7.57) 98.20 (6.73)

OC-WCX2a 50% 0.50 96.03 (1.87) 99.78 (0.48) 95.50 (2.97) 96.74 (2.36) 95.32 (3.25)
0.63 97.54 (1.55) 95.05 (2.10) 97.55 (2.25) 97.71 (2.08) 97.36 (2.51)
0.75 98.43 (1.36) 88.78 (3.06) 98.73 (1.74) 98.28 (1.96) 98.58 (2.01)

75% 0.50 97.16 (2.19) 99.92 (0.40) 97.10 (3.02) 97.34 (3.12) 96.99 (3.22)
0.63 98.07 (1.83) 97.09 (2.46) 98.30 (2.38) 97.96 (2.88) 98.19 (2.58)
0.75 98.86 (1.58) 92.41 (3.61) 99.22 (1.74) 98.61 (2.59) 99.13 (1.97)

85% 0.50 97.33 (2.85) 99.97 (0.30) 97.25 (3.83) 97.57 (4.01) 97.08 (4.16)
0.63 97.98 (2.40) 97.78 (2.92) 98.13 (3.18) 97.98 (3.69) 97.99 (3.45)
0.75 98.95 (1.94) 93.04 (4.74) 99.27 (2.12) 98.74 (3.19) 99.17 (2.39)

95% 0.50 97.48 (4.76) 99.99 (0.32) 97.35 (6.37) 98.14 (5.88) 96.82 (7.74)
0.63 97.85 (4.43) 98.34 (3.91) 97.92 (5.69) 98.23 (5.77) 97.46 (6.99)
0.75 98.90 (3.27) 93.41 (7.70) 99.23 (3.54) 98.79 (4.93) 98.98 (4.79)

OC-WCX2b 50% 0.50 99.99 (0.08) 100.00 (0.07) 100.00 (0.05) 99.99 (0.12) 100.00 (0.10)
0.63 100.00 (0.05) 99.93 (0.24) 100.00 (0.00) 100.00 (0.08) 100.00 (0.00)
0.75 100.00 (0.03) 99.49 (0.61) 100.00 (0.00) 100.00 (0.04) 100.00 (0.00)

75% 0.50 100.00 (0.00) 100.00 (0.05) 100.00 (0.00) 100.00 (0.00) 100.00 ( 0.00)
0.63 100.00 (0.00) 99.98 (0.19) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
0.75 100.00 (0.00) 99.67 (0.67) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

85% 0.50 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
0.63 100.00 (0.00) 99.98 (0.20) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
0.75 100.00 (0.00) 99.71 (0.82) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

95% 0.50 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
0.63 100.00 (0.00) 99.99 (0.23) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
0.75 100.00 (0.00) 99.67 (1.50) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

Table 1: Predictive results on all three ovarian cancer datasets. T%: Training Percent, PCT: Probability
Classification Threshold, % Corr: Percent Correctly Classified, % Classif: Percent Classified, PPV: Positive
Predictive Value, Sens: Sensitivity, Spec: Specificity. Values listed are means in percent, standard deviations
are in parentheses.
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Figure 3: The probability classification threshold vs. percent-classified (Classif), percent-correctly classified
(Correct), positive predictive value (PPV), sensitivity (Sens), and specificity (Spec) for six D-runs of Q5
on the ovarian cancer datasets. (A) OC-H4, 50% of samples used in training, (B) OC-H4, 95% of samples
used in training. (C) OC-WCX2a, 50% of samples used in training, (D) OC-WCX2a, 95% of samples used
in training. (E) OC-WCX2b, 50% of samples used in training, (F) OC-WCX2b, 95% of samples used in
training. Increased probability classification thresholds increase Q5’s percent-correctly classified, positive
predictive value, sensitivity, and specificity while decreasing the percent-classified. Performance on the
robotically prepared OC-WCX2b dataset is near perfect, see Table 1
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Dataset T% PCT % Corr % Classif PPV Sens Spec

PC-IMAC-Cu 50% 0.50 85.88 (2.79) 96.42 (1.74) 86.67 (3.74) 85.88 (4.07) 85.89 (4.57)
0.63 89.20 (2.62) 83.25 (3.09) 90.16 (3.70) 88.99 (3.83) 89.41 (4.38)
0.75 91.51 (2.54) 69.24 (3.70) 92.59 (3.62) 91.15 (3.70) 91.87 (4.28)

75% 0.50 88.38 (3.35) 96.73 (2.09) 89.22 (4.38) 88.13 (4.98) 88.65 (5.14)
0.63 91.61 (3.20) 84.51 (3.91) 92.80 (4.24) 90.99 (4.60) 92.25 (4.90)
0.75 93.58 (3.12) 71.23 (4.74) 95.03 (4.02) 92.71 (4.54) 94.50 (4.71)

85% 0.50 89.04 (4.33) 96.98 (2.39) 90.44 (5.10) 88.52 (6.36) 89.62 (6.01)
0.63 92.00 (3.96) 85.32 (4.92) 93.52 (4.73) 91.28 (5.86) 92.78 (5.53)
0.75 94.11 (3.72) 71.87 (6.19) 95.85 (4.33) 93.10 (5.67) 95.24 (5.10)

95% 0.50 89.00 (7.23) 97.08 (3.92) 91.33 (8.28) 88.27 (10.81) 89.87 (10.15)
0.63 92.05 (6.83) 85.57 (8.10) 94.25 (7.74) 91.27 (10.07) 92.98 (9.61)
0.75 94.25 (6.35) 73.12 (10.35) 96.49 (6.70) 93.10 (9.89) 95.54 (8.52)

Table 2: 2-Class Q5 classification results on the prostate cancer dataset. T%: Training Percent, PCT:
Probability Classification Threshold, % Corr: Percent Correctly Classified, % Classif: Percent Classified,
PPV: Positive Predictive Value, Sens: Sensitivity, Spec: Specificity. Values listed are means in percent,
standard deviations are in parentheses.

Dataset T% PCT % Corr % Classif PPV Sens Spec

PC-IMAC-Cu 50% 0.50 93.06 (2.32) 89.12 (3.63) 93.71 (2.98) 92.45 (3.45) 93.73 (3.20)
0.63 95.84 (1.92) 75.76 (4.24) 95.96 (2.69) 95.59 (2.83) 96.08 (2.74)
0.75 97.45 (1.75) 60.17 (4.52) 97.38 (2.52) 97.30 (2.56) 97.57 (2.40)

75% 0.50 94.33 (2.58) 90.33 (3.66) 94.98 (3.33) 93.57 (3.84) 95.15 (3.34)
0.63 96.96 (2.14) 78.36 (4.54) 97.29 (2.80) 96.44 (3.29) 97.46 (2.66)
0.75 98.30 (1.86) 63.84 (5.31) 98.41 (2.49) 98.00 (2.93) 98.58 (2.23)

85% 0.50 94.58 (3.22) 90.81 (4.48) 95.50 (3.93) 93.66 (5.11) 95.57 (3.98)
0.63 97.16 (2.60) 79.22 (5.44) 97.56 (3.30) 96.66 (4.21) 97.67 (3.17)
0.75 98.56 (1.99) 65.27 (6.23) 98.73 (2.68) 98.26 (3.26) 98.84 (2.47)

95% 0.50 94.64 (5.59) 92.02 (6.56) 96.08 (6.33) 93.23 (9.09) 96.05 (6.45)
0.63 97.29 (4.31) 80.63 (9.08) 98.17 (4.83) 96.29 (7.35) 98.19 (4.79)
0.75 98.72 (3.26) 67.13 (10.30) 99.21 (3.64) 98.08 (5.82) 99.27 (3.40)

Table 3: 3-class Q5 classification results on the prostate cancer dataset. Positive predictive value, sensitivity,
and specificity are measured with PC as the ’positive’ result and either NH or BPH as the ’negative’ result.
A sample is considered correctly classified if it is assigned to the proper class, (NH, BD, PC). T%: Training
Percent, PCT: Probability Classification Threshold, % Corr: Percent Correctly Classified, % Classif: Percent
Classified, PPV: Positive Predictive Value, Sens: Sensitivity, Spec: Specificity. Values listed are means in
percent, standard deviations are in parentheses.

A

Classification
Spectra Type NH BPH PC

NH 99.9 (0.5) 0.0 (0.0) 0.1 (0.5)
BPH 0.1 (0.4) 91.1 (6.2) 8.9 (6.2)
PC 0.4 (0.8) 4.0 (2.7) 95.6 (2.8)

B

Classification
Spectra Type NH BPH PC

NH 100.0 (0.0) 0.0 (0.0) 0.0 (0.0)
BPH 0.0 (0.0) 95.2 (13.2) 4.6 (12.5)
PC 0.1 (1.4) 3.6 (7.2) 96.3 (7.4)

Table 4: 3-class classification results for the PC-IMAC-Cu dataset. (A) 50% Training with a 0.63 prob-
ability classification threshold. (B) 95% Training with a 0.63 probability classification threshold. Average
performance is reported with the standard deviation in parentheses. NH: Normal Healthy, BPH: Benign
Prostatic Hypertrophy, PC: Prostate Cancer.
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Figure 4: The probability classification threshold vs. percent-classified (Classif), percent-correctly classified
(Correct), positive predictive value (PPV), sensitivity (Sens), and specificity (Spec) for two D-runs of Q5
on the PC-IMAC-Cu dataset. (A) 2-Class LDA, 50% of samples used in training, (B) 2-Class LDA, 95%
of samples used in training. (C) 3-Class LDA, 50% of samples used in training, (D) 3-Class LDA, 95%
of samples used in training. Increased probability classification threshold increases Q5’s percent-correctly
classified, positive predictive value, sensitivity, and specificity while decreasing the percent-classified.
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makes a comprehensive comparison of Q5 to previous work difficult. The reported performance
of the Petricoin group MSCA (on the OC-H4 dataset) lies within one standard deviation of the
mean performance statistics of Q5. Q5 classification results on the OC-WCX2a and OC-WCX2b
datasets were near perfect. There are, however, no published performance results of MSCAs on
these datasets to which the Q5 results can be directly compared.

Q5’s prostate cancer classification results can be compared to those of Adam et al,12 who
performed a single testing/training split and achieved a sensitivity of 83%, specificity of 97%, and
PPV of 96%. Q5 achieved a higher sensitivity and a similar specificity and PPV (Tables 2 and 3).
Additionally in a 3-way experiment, the decision tree of Adam et al. reports 100% of the normal
healthy samples as normal, 93% of the BPH samples as BPH, and 83% of the PC samples as
PC. Q5’s 3-way classification results are better: Q5 detects a higher percentage of prostate cancer
samples among those it is able to classify (Table 4). Hence Q5 outperformed the decision-tree based
prostate cancer MSCA.12

For the datasets tested, Q5 is able to determine that spectral differences do indeed exist between
the healthy and disease states. These spectral differences are a function of molecular differences
existing between the two sets of samples. Q5’s LDA-computed discriminant provides the m/z values
of peaks differentially present between the two states. Thus Q5 is able to provide full answers to
questions I) and IIa) posed in the introduction (page 2).

In summary, we found that Q5 classification performed at or above the level of existing MSCAs.
It is worth noting that all existing MSCAs reviewed here, including Q5, outperform the currently
used clinical CA125 and PSA tests. The future for MSCAs in analyzing human blood serum appears
promising.
Probabilistic Framework

If a sample spectrum’s projection onto the maximally separating hyperplane is nearly equidis-
tant to two or more class means, then the confidence of classification should be reduced. The prob-
abilistic framework of Q5 allows the user to specify a threshold on either the confidence (probability
classification threshold) or percent classified. A tradeoff exists between confidence in classification
and the number of samples classified. Our results show that a classification threshold can be chosen
for Q5 such that over 90% of the samples are classified with a sensitivity, specificity, and positive
predictive value near 100% (Tables 1, 2, and 3).

At the 85% training level, a classification threshold of 0.63 results in over 97% of samples
being classified and a PPV of over 98% for both the OC-WCX2a and OC-WCX2b datasets. These
numbers decrease slightly for the OC-H4 dataset where 89% of samples are classified with a PPV
of over 96%.
Back-Projection

All MSCAs assume that some m/z peaks are differentially observed between the healthy and
disease classes. Identification of m/z peaks with large class-specific relative intensity differences
can, in principle, allow for the identification of biomolecules affected by the disease process. Most
heuristic MSCAs base classification on a small number of m/z peaks. For example, Petricoin et
al.11 use 5-20 m/z peaks and Adam et al.12 use 9 m/z peaks. Thus information on class-specific
relative intensity differences for most m/z peaks is not available. An advantage of LDA is that the
spectral-space discriminant can be used to compute a classification significance for all m/z values
(see Methods section). Below, we show how to query a protein database using the discriminant
peaks. However, the discriminant can also serve as supporting evidence for biomarkers discovered
via other experimental techniques. The SELDI mass spectrum of a hypothesized serum biomarker
can be checked for consistency with a discriminant.

To test the power of the back-projected discriminant for determining the identities of differently-
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expressed proteins and peptides, we took the largest m/z peaks from the normalized discriminant
(the significance vector), interpreted them as masses, and looked up those masses in two protein
databases (Table 5). While the lookup is likely to yield some false positives due to mass-aliasing, the
database lookup for the ovarian (resp. prostate) queries found 27 (resp. 39) proteins and peptide
fragments that have been implicated in other human cancers, are growth factors, or are known
serum or plasma proteins. While some of the SwissProt and TrEMBL entries are annotated with
known or hypothesized function, many of the entries (particularly in the TrEMBL database) are
of unknown function.38 While these ‘lead’ proteins have masses consistent with the most significant
discriminant peaks, the database lookup does not prove that these proteins are present in the serum.
These ‘lead’ proteins can serve as the starting point for previously-described biomarker identification
protocols. Perhaps the most interesting protein identified among those with known function for the
OC-WCX2b query is TrEMBL entry† Q9BZK8, a 76AA protein of OCR1 (ovarian cancer-related
protein 1). Other interesting results include: Q9NPJ2, a 36AA protein fragment of P53/TP52
(cellular tumor antigen); Q9NP09, a 36AA protein fragment of ERBB2 (polymorphism of the HER-
2/neu oncogene); Q13262, a 44AA estrogen receptor fragment; Q9UH52/Q96B49, a 74AA protein
fragment of OBTP (over-expressed in some breast tumors); and SwissProt entry PS2 HUMAN,
an 84AA protein from TFF1/BCEI/PS2 (a breast cancer associated estrogen-inducible protein).
The PC-IMAC-Cu search identified two known prostate cancer associated proteins: TrEMBL
entry Q9GZR0, a 50AA protein fragment of SCN8A (voltage-gated sodium channel involved with
metastatic human prostate cancer) and Q96P91, a 55AA protein fragment of PON1 (paraoxonase
1, associated with prostate cancer risk). Additional interesting results include: Q9NPJ2, a 36AA
protein fragment of P53/TP52 (cellular tumor antigen) and Q12847, a 45AA protein fragment of
TAP1 (tumor associated protein). Approximately 90 of the genes found in the ovarian cancer search
and 70 of the genes found in the prostate cancer search have novel or unknown function. This raises
the possibility that these genes may have a role or additional roles in ovarian or prostate cancer.
The normalized discriminants are shown in Figure 5; the m/z peaks consistent with the masses of
the described proteins are indicated.

Our work represents the first attempt to compute the molecular identities of the differentially-
expressed proteins in datasets OC-WCX2b and PC-IMAC-Cu. Further investigation of our lead
proteins and peptide fragments may enhance our understanding of the molecular basis of oncogenisis
and could potentially lead to new therapeutic targets.
Other Closed-Form Solutions

The field of pattern recognition is rich, exploiting a broad range of computational techniques.
When faced with a generic pattern classification problem one must choose from this plethora of
techniques. Linear techniques such as LDA have many attractive properties, and it is, therefore,
sensible to choose a linear technique first. There is, of course, no guarantee that a linear technique
will always be effective. As such, it may become necessary to employ a more flexible non-linear
classifier. Even though we achieved very good classification accuracy with linear techniques, we
wondered if our results could be improved upon. To this end, we replaced the LDA classifier with a
non-linear support vector machine (SVM).39, 40, 41, 42, 43 Classification accuracy with the SVM was
as good or slightly worse than the LDA. This suggests that, in our examples, the healthy/disease
spectra are reasonably well-separated by a hyperplane, so that the benefits of a non-linear classifier
will be, at best, minimal. Finally, we note that back-projection to determine molecular identity is
not currently possible with SVMs.

Conclusion
†In this section, TrEMBL entries begin with ’Q’ and have six characters.
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SwissProt Matches TrEMBL Matches

Dataset Window Size Human Mouse Human

OC-WCX2b 15 Da. 37(7) 21(1) 492(19)
PC-IMAC-Cu 15 Da. 24(6) 19(2) 391(31)

Table 5: We computed spectral-space discriminants for the Ovarian OC-WCX2b and Prostate PC-IMAC-
Cu datasets. For each dataset, the average discriminant ē•, is computed for one D-run over all spectra
(Eq. 11). The significance vector s is computed as described in Methods (Eq. 12). The 400 largest m/z
discriminant peaks (absolute value) – the most significant peaks for classification – were identified. A ±15
Dalton window around each peak was used to search the SwissProt and TrEMBL protein databases.38

The number of false positive proteins was found to increase with the size of the search window. The search
window was selected to account for small post-translational modifications while minimizing the number of
false positives. Using the database search, Q5 was able to find a number of protein and protein fragments
with masses consistent with the most significant discriminant peaks. The table lists the number of entries
in the database that matched our search query. In parentheses are the number of proteins with functional
annotations: ovary, ovarian, growth, cancer, carcinoma, tumor, serum, or plasma (for the prostate cancer
dataset, prostate was used in place of ovary and ovarian).
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Figure 5: The normalized discriminant for ovarian dataset OC-WCX2b (top) and prostate dataset PC-
IMAC-Cu (bottom) starting at an m/z value of 500. The location of the SwissProt and TrEMBL
proteins noted in the text are indicated by their identification numbers for each discriminant (see text). These
SwissProt and TrEMBL proteins are consistent with m/z peaks of the discriminant having significance
for classification. Due to mass-aliasing, the database lookup does not prove that these proteins are present
in the serum samples, but these proteins can serve as leads in the search for novel biomarkers.
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Mass spectrometry will soon play an important role in both the research lab and hospital clinic.
For all but the simplest cases, manual analysis of complete complex spectra is impractical. This
observation led to the development of a variety of MSCAs. Of the existing MSCAs, those that use
complete complex spectra,11, 12 do not use exact algorithms. At the same time, those MSCAs that
are exact,34, 35 do not operate on complete complex spectra.

In contrast to previous work, Q5 uses PCA and LDA followed by probabilistic classification
on complete complex SELDI-TOF mass spectra for the classification of healthy vs. disease serum
samples. The use of a probabilistic classification framework increases the predictive accuracy of
Q5. Our solution is computationally efficient; it is non-iterative and computes the optimal linear
discriminant using closed-form equations. Q5 thus represents a generally applicable technique.
Although Q5 was only tested against ovarian and prostate cancer it is reasonable to hypothesize
that Q5 may be effective in the screening of other cancers and medical conditions. Q5 was tested
against 2 cancer types and 4 datasets. Q5 performed at or above the level of previous techniques
while conferring all advantages of a closed-form exact solution.

Another advantage of Q5 is that the discriminant can be examined both to identify and to
support the validity of novel biomarkers. Whereas previous complete complex spectra MSCAs
discriminate using a small fraction of the total number of m/z peaks, Q5 returns all peaks that are
differentially-expressed in one class vs. the other. We showed how Q5’s novel discriminant back-
projection technique can compute clues as to the molecular identities of differentially-expressed
proteins and peptides.

Materials and Methods

The Q5 algorithm consists of the sequential application of Principal Component Analysis, Linear
Discriminant Analysis, and Probability-Based Classification to a set of training spectra. First, PCA
is performed on the training set to reduce spectral dimensionality. Second, a maximally separating
hyperplane is computed using LDA. Finally, the parameters of the Gaussian distribution used
in probabilistic classification are determined. The computed hyperplane is validated using test
spectra that were not used in training. Test spectra are first projected onto the PCA basis and
then onto the maximally separating hyperplane. Classification probabilities are computed for the
projection of each test sample based on the projection’s Euclidean distance to each class mean. If
the classification probability is above a threshold then the spectrum is assigned to the class with
the nearest class mean.

Mass Spectrometry Datasets

Four datasets (three ovarian cancer and one prostate cancer) were used. All datasets are com-
plete complex spectra from SELDI-TOF MS experiments. Datasets were provided by Dr. Emanuel
Petricoin III and Dr. George Wright Jr. The Petricoin group MS spectra were obtained from the
NIH and FDA Clinical Proteomics Program Databank.31 The Wright group MS spectra were ob-
tained from the Eastern Virginia Medical School - Virginia Prostate Cancer.37 We refer to each
dataset by the cancer type screened (Ovarian Cancer (OC) or Prostate Cancer (PC)) and the
SELDI affinity chip used in MS (H4, WCX2, or IMAC-Cu).
Ovarian Cancer. Healthy samples come from women at risk for ovarian cancer; this demographic
is most likely to use and benefit from serum screening. Ovarian cancer positive samples came from
women with tumors spanning all major epithelial subtypes and stages of disease. Further details
of the datasets are given in Table 6A. Two SELDI protein chips were used in the ovarian cancer
datasets. Dataset OC-H4 uses the Hydrophobic (H4) protein chip while datasets OC-WCX2a and
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A

Num Samples
Data Set SELDI Chip Processing Healthy All Stages OC Stage I OC

OC-H41 H4 Manual 100 100 24
OC-WCX2a WCX2 Manual 100 100
OC-WCX2b WCX2 Robotic 91 162 28

B
Num Samples

Data Set SELDI Chip Processing Healthy Benign Hypertrophy Prostate Cancer

PC-IMAC-Cu IMAC-3 (Cu) Manual 81 78 168

Table 6: Details of (A) the three ovarian cancer datasets11 and (B) the prostate cancer dataset12 used in
the testing of Q5.

OC-WCX2b use the negatively charged Weak Cation Exchange (WCX2) chip. The samples from
both OC-H4 and OC-WCX2a were manually prepared; the OC-WCX2b samples were prepared by a
robotic instrument. All SELDI chips are produced by Ciphergen Biosystems (Freemont, CA, USA).
The cancer diagnosis, sample preparation, mass resolution, and experimental MS spectrometry
settings have been described previously.11, 31 Biomolecules with mass/charge ratios up to 20,000
were detected.
Prostate Cancer. Prostate cancer dataset serum samples were collected and processed manually.12

Samples were collected from men with normal prostates, benign prostatic hypertrophy, and all four
stages of prostate cancer. The IMAC-3 affinity chip (Ciphergen Biosystems, Freemont, CA, USA)
was coated with CuSO4 and used in the SELDI MS experiment. Further details of the dataset are
given in Table 6B.

The baseline was subtracted by the labs preparing the datasets OC-H4, OC-WCX2a, and PC-
IMAC-Cu ; this results in some m/z peaks having negative relative intensities. The Petricoin group
normalized the relative intensities of each sample in dataset OC-WCX2b to lie between 0 and 100.
We performed no additional preprocessing on these datasets. All m/z points and relative intensities
in the collected spectra are used in Q5 spectral analysis; none are discarded.

Principal Components Analysis

Principal component analysis (PCA) is often used in the analysis of points that are embedded in
a high-dimensional space. PCA is a method for determining orthogonal axes of maximal variance
from a dataset.13 PCA is an unsupervised technique: the classification of each sample point is
not considered in analysis. Sample points are zero-meaned and an eigendecomposition of the
covariance matrix computed. The eigenvector associated with the ith largest eigenvalue lies along
the ith principal component. Typically most sample point variance is captured by the first few
principal components, (i.e., those with the largest eigenvalues). Projecting a dataset onto these
largest principal components reduces sample dimensionality while maximally preserving variance.
Two disjoint sets of points and the first PCA computed principal component (solid line) are shown
in Figure 6A. PCA is used by Q5 for dimensionality reduction: it is not, and should not, be used to
compute a linear separator directly. For example, the projection of the sample points from Figure
6A onto the first principal component are overlapping (Figure 6B) and are not classifiable. PCA
is only used in Q5 to reduce the dimensionality of the sample points, as is required by LDA (see
page 23 below and Figure 1, Step 1).

Each sample spectrum in the training set is represented as a column vector x (x ∈ X, |X| = nx)
(healthy) or y (y ∈ Y, |Y | = ny) (disease). Here | · | is the number of elements in the specified set.
Thus, nx (resp. ny) is the number of healthy (resp. disease) samples. Let n = nx + ny be the total
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A B C

Figure 6: (A) Two disjoint sets of zero-meaned points in two-dimensional space. The first PCA component
(solid line) and the LDA discriminant (dotted line) are shown. (B) Projection of both point sets onto the
first principal component (solid line). This projection does not separate the two sets. (C) Projection of both
point sets onto the LDA-computed discriminant (dotted line). The two sets of points are well separated. A
test sample (green square) is easily classified by projecting onto the LDA-computed discriminant.

number of training samples; we assume all x and y vectors have dimensionality r (i.e., each mass
spectrum is sampled at r points). The all-class mean,

µ′ =
1
n

∑
x∈X

x +
∑
y∈Y

y

 , (1)

is computed and subtracted from each sample, producing sets of zero-meaned samples X ′ and Y ′.
The columns of the r × n matrix P consist of all zero-meaned samples,

P =
[
X ′ Y ′] . (2)

The r × r covariance matrix C can then be computed:

C = PPT . (3)

The principal components are the eigenvectors, vi, of the covariance matrix C. An eigendecomposi-
tion of C produces at most w = min(n, r) non-zero eigenvalues λi (i = 1, ..., w) with corresponding
normalized eigenvectors vi such that Cvi = λivi. Each eigenvalue λi is proportional to the variance
of the original data in the direction of the ith principal component. Frequently, the number (r) of
points in each sample spectrum greatly exceeds the number (n) of samples. In this case, an alter-
nate formulation of the covariance matrix may be preferable. When r > n, increased computational
efficiency can be achieved by computing the eigenvectors of the n×n Gram matrix C′ = PTP. The
eigenvalues of C′ equal the eigenvalues of C, and the normalized eigenvectors of C′ (v′

i, i = 1, ..., w)
can be related to the normalized eigenvectors of C by

vi = Pv′
i. (4)

The largest principal components typically account for nearly all sample variance. Therefore,
dimensionality reduction with PCA can be accomplished by sorting components by eigenvalue and
then discarding the eigenvectors with the smallest corresponding eigenvalues. After discarding the

21



eigenvectors, the w′ eigenvectors that remain constitute the PCA basis. Once a set of principal
components is selected as a basis, sample points can be projected onto these axes,

xp = Vx′ (
x′ ∈ X ′) ,

yp = Vy′ (
y′ ∈ Y ′) , (5)

where the rows of matrix V are the retained eigenvectors vi (i = 1, ..., w′), and xp (resp. yp) are the
PCA-space projections of each healthy (resp. disease) sample onto the w′ principal components.

Linear Discriminant Analysis

In this section we describe Linear Discriminant Analysis (LDA) (also known as Fisher’s Linear
Discriminant).14, 13 Linear Discriminant Analysis of a system with k classes in d dimensions com-
putes, in closed-form, k− 1 orthogonal vectors, each of dimension d, which specify a hyperplane of
dimension k−1. Projection of the sample points onto this hyperplane maximizes the between-class
scatter and minimizes the within-class scatter (Figure 6C). For the purposes of sample classification,
such a projection is clearly desirable as it simultaneously reduces the dimensionality of the data
and preserves the ability to discriminate one class from another. Whereas other discriminant-based
approaches (i.e. Discriminant Factorial Analysis (DFA)) attempt to converge to the optimal separa-
tor through multiple iterations,32 LDA computes the optimal discriminant directly in closed-form.
LDA is a supervised technique: the class membership of each sample is utilized in computing the
discriminant.

For simplicity we present a two-class LDA. Two disjoint sets of points and the LDA-computed
discriminant (dotted line) are shown in Figure 6A. Projecting sample points onto the linear discrim-
inant allows for point classification (Figure 6C). Higher-order LDAs can be employed to differentiate
more than two classes: the generalization to k classes (k > 2) is straightforward.13

After PCA-based dimensionality reduction, let column vectors xp (xp ∈ Xp, |Xp| = nx) (healthy)
and yp (yp ∈ Yp, |Yp| = ny) (disease), of dimension w′×1, be the training sample spectra from each
of the two classes. The within-class means µx and µy are defined as:

µx =
1
nx

∑
xp∈Xp

xp, and µy =
1
ny

∑
yp∈Yp

yp. (6)

The all-class mean µ is computed from Xp and Yp similarly to Eq. (1). The within-class scatter
matrix Sw is defined as:

Sw = MxMT
x + MyMT

y , (7)

where the columns of matrix Mx contain the zero-meaned PCA-space representation of healthy
spectra xp − µx. Similarly, the columns of matrix My contain yp − µy. The between-class scatter
matrix is defined as:

Sb = nx(µx − µ)(µx − µ)T + ny(µy − µ)(µy − µ)T . (8)

A generalized eigenvector v, of Sb and Sw satisfies the equation Sbv = λSwv, (where λ is the
eigenvalue). Let e be the maximal generalized eigenvalue-eigenvector of Sb and Sw. The vector e
is the optimal linear discriminant. The matrices Sw and Sb have size w′ × w′ and rank of at most
n − k (k is the number of classes). Therefore w′ must be less than n − k to avoid a guaranteed
singularity in the eigendecomposition. This is the mathematical reason why sample points must be
dimensionality-reduced to dimension less than n− k before LDA is performed.
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Once the linear discriminant is determined from the training set, the PCA-space vectors (xp,
yp) are projected onto the linear discriminant to produce the discriminant-space representation of
each spectrum xd, yd. Note that for a two-class LDA, discriminant-space is one-dimensional, thus
xd is a scalar and is not typeset in boldface. Points in the discriminant-space of a k-class LDA
(k > 2) are vectors and are thus typeset in boldface. Hence,

xd = (xp)Te (xp ∈ Xp)
yd = (yp)Te (yp ∈ Yp) (9)

The points xd should form one cluster while the points yd should, ideally, form a separate non-
overlapping cluster. Healthy and disease class means can be then be computed and used for
classification. The spectral-space representation of a novel spectrum, z, from the testing set can
now be classified by computing zd, the projection of z into the subspace spanned by the linear
discriminant,

zd =
(
V

(
z− µ′))T e. (10)

Where V is the eigenvector matrix as defined for Eq. (5). In Eq. (10), the PCA projection of
the zero-meaned spectral-space representation z is projected onto the linear discriminant e. The
spectrum represented by z can then be classified based on proximity to the healthy and disease
class means.

Back-Projection

The LDA-computed linear discriminant can be back-projected from a PCA-space discriminant
into a spectral-space discriminant. A spectral-space discriminant allows one to determine the m/z
values of peaks used to differentiate between members of the two classes. This information is in
principle useful in determining the molecular identities of differently-expressed biomolecules. The
spectral-space linear discriminant, e•, can be computed from the PCA-space linear discriminant,
e, by left-multiplying by the transpose of the principle component matrix, V:

e• = VTe. (11)

To determine which m/z values of the discriminant contribute most to classification, the spectral-
space discriminant should be normalized by the average intensity of the zero-meaned spectra. Thus
a significance vector s can be computed,

si =
∣∣e•i (

ȳi − µ′
i

)∣∣ (i = 1, . . . , r) (12)

where ȳ is the average cancer spectra, µ′ is the all-class mean (Eq. 1), and r is the dimensionality
of spectral-space.

Probabilistic Classification

In the simplest case, a novel sample is classified into the class with the closest class mean.
However, if the sample spectrum’s projection onto the maximally separating hyperplane is nearly
equidistant to two or more class means then the confidence of classification should be reduced.
Thus, a classifier should report not only the classification of a given sample but also the confidence
in that classification. A novel probabilistic framework for reporting classification likelihoods was
therefore implemented in Q5.
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Two-Class Probability. After projection onto the linear discriminant, let p1 (resp. p2) be the
mean of class C1 (resp. class C2). Let zd be the discriminant-space projection (Eq. 10) of a novel
sample spectrum and let q be the midpoint between p1 and p2. Assume, without loss of generality,
that zd is closer to p1 than p2. That is, d(zd, p1) < d(zd, p2) where d(·, ·) is the Euclidean distance.
We define the probability that zd belongs to C1 as:

P (zd ∈ C1) = exp
[
− (d(zd, p1))

2 /σ2
]
, (13)

where σ (the standard deviation of the Gaussian probability function) is chosen such that P (q ∈
C1) = 0.5. Eq. (13) specifies a symmetric Gaussian probability density function centered at p1

where the midpoint between p1 and p2 has a 50% probability of being classified into either C1 or
C2.

The classification threshold t ∈ [0.5, 1.0] is chosen such that a classification is made if and only
if:

P (zd ∈ Ci) > t (i = 1, 2). (14)

If Eq. (14) is not satisfied then we consider zd to be ambiguous and a classification is not made. A
tradeoff is thus offered between the number of spectra classified and the accuracy of classification.
Smaller values of t allow more samples to be classified at the cost of lower confidence in each
classification. Similarly larger values of t classify fewer samples but with higher confidence.
k-Class Probability. In a k-class model (k > 2) we have classes Ci (i = 1, ..., k) and associated
class means pi, where pi is now a (k − 1)-dimensional vector. The variance computed for the
Gaussian probability density function of each class in the k-class model is not guaranteed to be
the same for each class. That is, a different σi (the standard deviation) is defined for each class.
Intuitively, the σi computed for class Ci in the k-class classifier is the smallest variance (σ) that
would be computed if one were to compute a 2-class classifier (as described above) between class
Ci and every other class Cj (j 6= i). To compute σi we first define a set of midpoints. Let qij be
the midpoint between pi and pj and let q′

i be the midpoint closest to pi,

q′
i = argmin

q∈Qi

d(pi,q), (15)

where Qi = {qij |j = 1, ..., k; j 6= i}. Using q′
i we can now compute the σi such that the midpoint

between two class means will have a probability of classification of 50%. σi satisfies the following
equation:

exp
[
−

(
d(pi,q′

i)
)2

/σ2
i

]
= 0.5. (16)

The probability that a discriminant-space point zd (where zd has dimension k− 1) belongs to class
Ci is:

P (zd ∈ Ci) = exp
[
− (d(zd,pi))

2 /σ2
i

]
. (17)

As in the 2-class probabilistic framework, a classification threshold t ∈ [0.5, 1.0] is specified such
that a classification is made if and only if there exists an i such that P (zd ∈ Ci) > t. If this criterion
is not satisfied we consider zd to be ambiguous, and a classification is not made. By construction, it
is not possible for a point to be classified into more than one class when the classification threshold
t is chosen in the range [0.5, 1.0]. Note that the variances and classification probabilities computed
for two classes using either the two-class model or the k-class model (with k = 2) are identical.
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Algorithmic Complexity

Precise combinatorial bounds on Q5’s complexity can be determined. In the following, n is
the number of training spectra, m is the number of testing spectra, r is the resolution of each
mass spectrum, and k is the number of classes. During training, the samples can be zero-meaned
in time O(nr + n). Generation of the n × n Gram matrix C′ can be done in time O(n2r) and
the eigenvectors computed in time O(n3). The calculation of the eigenvectors of C from the
eigenvectors of C′ requires O(n2r) time. Projection of the training spectra onto the retained
PCA basis vectors requires time O(n2r). Computing the LDA discriminant entails computing
the generalized eigenvectors of the (n − 3) × (n − 3) within- and between-class scatter matrices,
Sw and Sb. This can be done in time O(n3). Projection onto the LDA-computed discriminant
is accomplished in time O(kn). Finally, since each spectrum can appear in at most one cluster,
computing the class means requires O(n) amortized time. Therefore training can be accomplished
in time O(n3 + n2r). We note that the time complexity grows only linearly with the resolution of
the mass spectra. Thus Q5 will scale well as higher-resolution spectra are collected.

The testing of m sample spectra can be performed in O(mrn + mnk) time: Subtracting the
all-class training mean from one test spectrum can be done in time O(r). Projection of one sample
onto the retained PCA basis requires O(rn) time; subsequent projection onto the LDA discriminant
requires O(nk) time. The nearest cluster mean can be computed in time O(k2) and the classification
probability computed in time O(1). In our studies, k ≤ 3 and r ≥ 15154. Since we expect k � r, if
we assume k = O(1), the testing of one spectrum can be performed in time O(rn) and m spectra
can be classified in time O(mrn).

Implementation

Datasets were obtained from the NIH and FDA Clinical Proteomics Program Databank31 and
the Eastern Virginia Medical School.37 Each spectrum in these datasets is contained in either an
individual or a grouped file and is sorted into either a healthy or a disease subdirectory. These
datafiles are in either comma-delimited or Microsoft Excel format. Datafile reading, PCA, LDA,
and probabilistic classification are implemented in matlab (Mathworks Inc, Natick, MA).

Each D-run is processed separately by Q5. The first matlab function performs a D-run:
the specified dataset is loaded and 1000 D-experiments are performed each with a random train-
ing/testing split. For each D-experiment, the training sample mean and discriminant-space pro-
jections of both the training and testing spectra are computed and saved. Subsequently, a second
matlab function computes the PPV, sensitivity, specificity, percent correct, and percent classified
for each D-experiment. These statistics are a function of the threshold used in probabilistic classi-
fication. Statistics were therefore computed for probability classification thresholds evenly spaced
between 0.5 and 1.0.

A 1.5GHz Pentium 4 Linux workstation was used for algorithm development and performance
testing. The combined PCA and LDA runtime varies between 1.0 to 1.5 minutes on the Pentium
4. Probabilistic classification is performed in under a second.

Supporting Material

The matlab code for Q5 is available at http://www.cs.dartmouth.edu/~brd/Bio and by
contacting the authors. The software is distributed under the Gnu Public License.44
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