
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-2003

Enhancing Asynchronous Parallel Computing Enhancing Asynchronous Parallel Computing

Elizabeth Anne Hamon
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hamon, Elizabeth Anne, "Enhancing Asynchronous Parallel Computing" (2003). Dartmouth College
Undergraduate Theses. 206.
https://digitalcommons.dartmouth.edu/senior_theses/206

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/206?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Enhancing Asynchronous Parallel Computing

Elizabeth Anne Hamon

Department of Computer Science, Dartmouth College

Seniors Honors Thesis

Advisor: Thomas H. Cormen

Dartmouth Computer Science Technical Report TR2003-460

Abstract

In applications using large amounts of data, hiding the latency inherent in accessing data far from
the processor is often necessary in order to achieve high performance. Several researchers have
observed that one way to address the challenge of latency is by using a common structure: in
a series of passes, the program reads in the data, performs various operations on it, and writes
out the data. Passes often consist of a pipeline structure composed of different stages. In order
to achieve high performance, the stages are frequently overlapped, for example, by using asyn-
chronous threads. Out-of-core parallel programs provide one such example of this pattern. The
development and debugging time resulting from coordinating overlapping stages, however, can
be substantial. Moreover, modifying the structure of the overlap in an attempt to achieve higher
performance can require significant additional time on the part of the programmer. This thesis
presents FG, a Framework Generator designed to coordinate the stages of a pipeline and allow the
programmer to easily experiment with the pipeline’s structure, thus significantly reducing time to
solution. We also discuss preliminary results of using FG in an out-of-core sorting program.

Contents

1 Introduction to FG 2
1.1 Background . 2
1.2 Overview of FG components . 4

1.2.1 Stages, threads, and buffers in the pipeline 4
1.2.2 Multi-stage threads . 4
1.2.3 Running the stages . 5
1.2.4 Pipeline buffers and auxiliary buffers . 6
1.2.5 Shutting down the pipeline . 7

2 FG Design Specification 10
2.1 Pipeline setup . 10
2.2 Threads . 11
2.3 Stages . 14
2.4 FG thumbnail . 16
2.5 Buffers . 19
2.6 Caboose . 22
2.7 Shutting down the pipeline . 23
2.8 Source and sink . 23

3 Deadlock 25
3.1 Buffers . 25
3.2 Decider function and multi-stage repeat . 26

4 FG Experimental Results 30

5 Conclusion 34

6 Acknowledgements 35

1

Chapter 1

Introduction to FG

1.1 Background

Our goal is to create a framework generator for writing high-performance buffered asynchronous
programs. The motivation behind this framework generator is latency. Latency poses a challenge
to researchers developing numerous kinds of high-performance applications. While the computer
industry has seen great improvements in the speed of both networks and processors in recent years,
a corresponding advancement in the speed of accessing data further out in the memory hierarchy
has yet to come. The time required for reads and writes often sets the lower limit on the total
amount of time a program takes. In addition, accessing a large contiguous block of data is nearly
as efficient as accessing a single word. Therefore, to access a given amount of data, it is more
efficient to access it fewer times in larger chunks. As a result, an important goal on the part of
many researchers is to minimize the total number of accesses to high-latency memory locations.
One way of addressing this issue is to construct the program to perform a small number of passes
over the data, with each pass consisting of a number of stages. For example, a pass might consist
of the following stages: a read stage, a sort stage, a communicate stage, and a write stage.

Merely using a small number of passes is insufficient, as accessing the data from the memory
hierarchy is still great. Thus, developers try to keep the total time close to the physical limit
imposed by the data access, by doing other work during the time the program waits for the data
access to complete. One way of accomplishing other work during this time is to run the stages
asynchronously, doing, for example, CPU and/or communication work during the data access.
In order to maximize efficiency, the stages pass to each other large buffers of data, containing
the large blocks of data read from high-latency memory locations. These programs have a clear
pipeline structure formed by the stages that pass the buffers; they often recycle the buffers, each
using one buffer for a new set of data when it finishes processing a previous set of data.

Out-of-core programs provide one example where latency is an issue. These programs often
follow the model of a small number of passes over the data with each pass consisting of a pipeline
(see [CC02], [CCW01] and [BC99] for sample programs). Out-of-core programs often use a small
number of passes over the data. Because of memory limitations, the first stage thus typically
consists of a read of the data from disk and the last consists of a write of the data back to disk.
Since the total size of all allocated buffers in an out-of-core program is smaller than the size of all
the data to be sent through, out-of-core programs provides an example of recycling of buffers.

2

CHAPTER 1. INTRODUCTION TO FG 3

Asynchronous threads have greatly reduced the impact of latency on overall performance. The
reader may thus wonder why the framework generator is needed; threads have been available for
years, so why would there be a need for change? There is nothing wrong with threads, in the same
way that there is nothing wrong with assembly language. Assembly language can do anything
a higher-level language can do. Nonetheless, higher-level languages exist on top of assembly
language, because they make the programmer’s task easier by allowing the programmer to focus
on the more essential and problem-specific parts of his program.

Similarly, threads and the synchronization mechanisms that accompany them do meet the needs
of programmers. In programs addressing latency, however, these mechanisms are used again, re-
sulting in code that is similar across many of these programs. Furthermore, the code is tricky to
reason about and program, and thus it is prone to mistakes. Therefore, the development time and
debugging time for the asynchronous parts of the code can be substantial. Modifying the thread
structure can also require substantial revisions to the code, and it can introduce new errors. Similar
to the purpose of higher level languages, the framework generator will be useful in eliminating the
details of the asynchronous parts of the code, allowing the programmer to focus on what is essential
to his code and give him ways of finding new thread structures to improve overall performance. The
additional execution time resulting from the framework generator should be insignificant. In the
following chapters, we discuss our framework generator, called the Asynchronous Buffered Com-
putation Design and Engineering Framework Generator, or ABCDEFG. We refer to ABCDEFG as
FG, pronounced “effigy.”

A programmer writing asynchronous buffered programs must deal with many details. In terms
of pipeline structure, these details include setting up and shutting down the pipeline, spawning
and waiting for threads, and waiting for and posting to semaphores to control correct buffer access.
Calculating which buffer each stage should access, recycling buffers, and determining when a stage
should shut down are additional details. Lastly, the programmer must ensure that a stage knows
its predecessor and successor in the pipeline and that a thread with multiple stages knows when to
execute each stage.

FG takes care of all of these details. It eliminates the programmer’s need to worry about which
buffer to access and the need to know which stage follows which stage in order to post a signal,
because FG conveys the correct buffer directly to each stage. FG takes care of setting up the
pipeline, running the pipeline and recycling the buffers. It frees the programmer from the hassles
of dealing with synchronization mechanisms. It ensures that all threads know which buffer is the
last and exit at the correct time. It also gives the programmer a way to end the pipeline if one stage
deems that early termination is necessary.

We would like to evaluate FG on whether it reduces the programmer’s time to solution. Such
a study would however require two nearly identical programmers, one developing a program with
FG and one developing the same program without. As a result, this evaluation is beyond the scope
of this thesis. Instead, we will measure achievement based on the amount of additional execution
time and on whether we can find a higher performance thread structure without much additional
work.

In the following section we describe an overview of the workings of FG, discussing in more
detail the less obvious parts of FG. In Chapter 2, we give a detailed design specification of FG.
Chapter 3 discusses the issue of deadlock in FG. Finally, Chapter 4 describes experimental results,
comparing a program written both with and without FG.

CHAPTER 1. INTRODUCTION TO FG 4

1.2 Overview of FG components

1.2.1 Stages, threads, and buffers in the pipeline

At its most fundamental level, FG creates and runs a pipeline of stages that operate on a set of
buffers. Each stage maps to a thread, and thus the pipeline stages are asynchronous. The pro-
grammer specifies the stages and the threads as C functions, along with the mapping from stages
to threads. All buffers in FG are the same size, but the programmer specifies both the number and
size of the buffers. Each stage receives a buffer from the previous stage, processes it, and conveys
it to the next stage. A queue exists for each pair of successive stages. A stage thus accepts a buffer
by removing the first buffer in the queue and receiving it; it conveys the buffer by placing it in the
queue that will be read by the next stage. Each time a stage processes a buffer, the stage is on a
new round.

FG also includes a source and a sink stage, each belonging to their own thread. The source
stage marks each buffer with the number of its round and passes it into the pipeline. FG flags a
buffer as the last buffer and updates itself so that the threads will now exit. We refer to this flagged
buffer as the caboose and to the flag as the caboose flag. Unless the programmer chooses to set
the caboose flag, the source also is responsible for setting the caboose flag. FG’s sink takes the
buffers from the end of the pipeline and passes them back to the source; once the sink receives the
caboose, it stops conveying the buffers and shuts down the pipeline.

1.2.2 Multi-stage threads

In FG, the programmer divides up the program into stages of a pipeline, with each stage belonging
to a thread. Each thread, however, may consist of one or more stages. We consider a thread
consisting of more than one stage to be a multi-stage thread. Multi-stage threads exist in order to
give the programmer additional flexibility and efficiency. While thread overhead is generally small,
it may be non-negligible in programs with multiple threads sharing a common resource, such as a
disk. In these programs, the shared resource can cause the threads to serialize, making the gain in
performance from overlap small. It may somtimes be smaller than the loss of performance caused
by thread overhead. A similar loss of performance could occur in programs with a large number of
CPU-bound or communication-bound stages. Multistage-threads provide the user the opportunity
to experiment without paying thread overhead.

A second reason to allow the option of multi-stage threads is to give the programmer additional
flexibility. Before any experimentation, the programmer does not likely know the best thread
structure; even if the optimal structure is easy to implement, the programmer may still need to put
substantial time and effort into discovering this structure. With the option of multi-stage threads,
the programmer can experiment with the stages more easily to find the best thread structure, and he
may find surprising combinations to yield the most efficient program. The programmer might even
find that the cost/benefit ratio for using more threads depends on the specifics of the parameters to
the algorithm, rather than the algorithm itself. For instance, sorting smaller amounts of data may
have a different optimal structure than sorting larger amounts, or the benefits of having separate
read and write threads may depend on the speed of the disk or the amount of data accessed from
the disk each time. The programmer could develop the program to determine the specific thread

CHAPTER 1. INTRODUCTION TO FG 5

structure at runtime, based on parameters passed to it. Without multi-stage threads, determining
thread structures at runtime would be difficult, if not impossible.

1.2.3 Running the stages

In order for the pipeline to run, some part of the program must call the stages at the appropriate
times. Instead of forcing the programmer to write each stage to call some function to start the
next stage, FG takes care of calling all of the stages itself. FG does so by means of a function
that not only calls the stages but decides which stage a thread calls at a given moment. We refer
to this function as the decider function. An FG pipeline is static, as the stages that the decider
function calls are predetermined when the pipeline is established; no modification of which stages
run can occur afterwards. The decider function has two additional purposes: to provide additional
flexibility to multi-stage threads through multi-stage repeat, and to control the shutting down of
the pipeline. We discuss multi-stage repeat here and shutting down the pipeline in Section 1.2.5.

Multi-stage repeat

Multi-stage repeat is the number of times the decider function calls a stage before it executes the
next stage of a multi-stage thread. By further limiting the idle time of the threads, this option allows
FG to be a pipeline of stages rather than of just threads. In essence, it allows the programmer to
gain some of the benefits of using one thread for each stage without always paying the cost of
thread overhead; with multi-stage repeat, stages sharing a thread can overlap in a more efficient
way. In Figures 1.1 and 1.2, we consider an example in which we have two pairs of stages: CPU1
and CPU2, which use the CPU intensively and belong to a CPU thread, and Comm1 and Comm2,
which communicate with other processors and belong to a Comm thread. The order of the stages is
CPU1, Comm1, CPU2, and Comm2. Figure 1.1 shows the result if no multi-stage repeat is allowed.
While Comm1 is processing, Comm2 cannot process, as it has no buffer to process. CPU1, which
may have buffers ready from its predecessor stage, cannot process them because the CPU thread
is waiting in CPU2. Thus, CPU1 does not execute until Comm2 also executes. At event 0, CPU1
starts to process buffer 1, and at event 3, Comm2 starts to process buffer 1; at time 4, we have
finished processing buffer 1. As the figure shows, it takes (3n + 1) events to process n buffers.

In Figure 1.2, we consider an identical setup, except that we have a multi-stage repeat of 2.
Thus, CPU1 must execute twice before CPU2 does. We see from the figure that a multi-stage
repeat of 2 allows CPU1 to process a buffer at the same time as Comm1 is processing a buffer.
Thus, we find that the total number of events to process 2n buffers is (4n + 1); this improvement
is approximately 50%. Moreover, this example is not unrealistic. When we implemented an out-
of-core sorting algorithm called M-columnsort, it consisted of a set of internal stages composed
of 4 pairs of sort and communicate stages, with the sort stages belonging to one thread and the
communicate stages belonging to another. Multi-stage repeat can provide a benefit over using all
different threads, because there is no cost of swapping between the threads. We considered other
variations on a single multi-stage repeat, but we chose this one because it ensured that deadlock
would not arise (see Section 3.2 for other variations and their associated risk of deadlock).

The other task of the decider function is to ensure that the pipeline shuts down correctly. Recall
that the caboose indicates the last round in the pipeline. FG provides the capability for a stage in

CHAPTER 1. INTRODUCTION TO FG 6

Event Stage CPU1 Stage Comm1 Stage CPU2 Stage Comm2
0 Process buffer 1 Wait Wait Wait
1 Wait Process buffer 1 Wait Wait
2 Wait Wait Process buffer 1 Wait
3 Process buffer 2 Wait Wait Process buffer 1
4 Wait Process buffer 2 Wait Wait
5 Wait Wait Process buffer 2 Wait
6 Process buffer 3 Wait Wait Process buffer 2
7 Wait Process buffer 3 Wait Wait
8 Wait Wait Process buffer 3 Wait
9 Process buffer 4 Wait Wait Process buffer 3
10 Wait Process buffer 4 Wait Wait
11 Wait Wait Process buffer 4 Wait
12 Process buffer 5 Wait Wait Process buffer 4

Figure 1.1: The progression of buffers through an FG pipeline without multi-stage repeat. The buffers travel through the pipeline
one stage at a time. One thread runs both stages CPU1 and CPU2, while another thread runs both stages Comm1 and Comm2.
Despite having two threads, FG can process two buffers at most once every three events.

Event Stage CPU1 Stage Comm1 Stage CPU2 Stage Comm2
0 Process buffer 1 Wait Wait Wait
1 Process buffer 2 Process buffer 1 Wait Wait
2 Wait Process buffer 2 Process buffer 1 Wait
3 Wait Wait Process buffer 2 Process buffer 1
4 Process buffer 3 Wait Wait Process buffer 2
5 Process buffer 4 Process buffer 3 Wait Wait
6 Wait Process buffer 4 Process buffer 3 Wait
7 Wait Wait Process buffer 4 Process buffer 3
8 Process buffer 5 Wait Wait Process buffer 4

Figure 1.2: The progression of buffers through an FG pipeline with a multi-stage repeat of 2. One thread runs both stages CPU1
and CPU2, while another thread runs both stages Comm1 and Comm2. Because of multi-stage repeat, FG can process two buffers
every event. Multi-stage repeat allows for the overlap in events 4n + 1 and 4n + 2 that otherwise would not be possible.

the middle of the pipeline to set a buffer to be the caboose. No stage should run with a buffer that
follows the caboose, but all stages starting with the one that set the caboose flag need to see the
caboose. Thus the decider function also serves to check before running stages whether it would
run the stage with a buffer before or after the caboose.

1.2.4 Pipeline buffers and auxiliary buffers

FG transfers data between stages, and stages access the data through buffers. FG creates these
buffers at the time the pipeline is established according to parameters that the programmer passes
it. FG consists of two different types of buffers, which we refer to as pipeline buffers and auxiliary
buffers. The difference does not lie in the buffers themselves but in the way the programmer uses
them, and they are interchangeable. In this section we discuss the two types of buffers and how
they are used.

CHAPTER 1. INTRODUCTION TO FG 7

Pipeline buffers

Pipeline buffers circulate through the pipeline, carrying data from stage to stage. Both the number
and size of the pipeline buffers are fixed during the duration of the pipeline run. The size is
constant across all buffers, allowing for an easy exchange of any two buffers. In our experience
with parallel asynchronous programs, much of the work of each stage involves conveying and
accepting buffers. Consequently, the maximum number of stages that may be running at one time
is usually the number of pipeline buffers. To allow the programmer the opportunity to store and
pass buffer-specific information from stage to stage, FG wraps each buffer in a thumbnail that
contains not only a pointer to the buffer but also such information as the round number, the size
of the buffer, and a pointer to anything the programmer wishes to associate with it. Although FG
does not enforce it, every stage should accept and convey exactly one pipeline buffer each time it
executes. As a stage conveys a buffer, FG assigns the buffer to the next stage.

Auxiliary buffers

Auxiliary buffers provide a very different service to the programmer. They serve to store informa-
tion temporarily. For instance, many sorting routines are not in-place, and communication calls
require different source and destination buffers. A request for an auxiliary buffer returns any one
free auxiliary buffer, as the auxiliary buffers are not specific to a stage or thread. Thumbnails also
enclose auxiliary buffers, but aside from the size of the buffer, no other field of the thumbnail is
valid for an auxiliary buffer.

Recognizing that these buffers may often be large, FG allows the programmer to swap any two
buffers, including a pipeline buffer and an auxiliary buffer. Note that such action only swaps the
buffer addresses inside the thumbnails, and a pipeline thumbnail is always a pipeline thumbnail.
Since this implementation of FG requires all pipeline buffers to be of the same size, the ability
to swap two buffers requires that the auxiliary buffers must also be of the same size. If the pro-
grammer wishes to use other sizes of buffers, the stages must create their own buffers, and the
programmer cannot exchange these buffers with pipeline buffers.

In order to obtain an auxiliary buffer, the programmer makes a simple call to FG get aux.
Because the auxiliary buffers are in a pool and not specific to a stage or thread, requesting one
does require the use of synchronization mechanisms. Thus, the programmer has two options for
using auxiliary buffers. One option is to acquire an auxiliary buffer whenever needed, within a
stage. This option is useful if the auxiliary buffers are needed for only short periods of time and
the number of auxiliary buffers is small. Alternatively, the programmer can acquire an auxiliary
buffer for the stage or thread in the thread’s initial setup function or during the first time the stage
runs. The programmer will prefer this option if he knows the stage will need the buffer every time,
as he will pay the cost of the synchronization mechanisms only once.

1.2.5 Shutting down the pipeline

Shutting down the pipeline is a critical step in running any pipeline, whether the programmer uses
FG or not; previous experience has also shown that it is sometimes tricky. All stages must know
when to stop processing, lest they wait infinitely for a buffer that will never arrive or continue
to manipulate the data after the necessary steps have completed. Assuming that the stages finish

CHAPTER 1. INTRODUCTION TO FG 8

correctly, threads must be sure to terminate only after all stages have finished. If the programmer
allocated any resources that must be released, he must release them, but only after all stages sharing
them have finished for this pass. Thus, FG provides the programmer with a caboose flag with every
buffer to indicate whether this buffer is the last one through this stage. In this section, we discuss
the function of the caboose and how the programmer uses it, as well as the way the pipeline shuts
down after the caboose.

The caboose

FG uses the caboose to control the termination of the pipeline. A stage can also use the caboose
to know after what round the pipeline will shut down. In our experience, a stage may need to do a
different task the first and/or last time it runs. For instance, when we implemented an out-of-core
columnsort, the last round involved reading in the leftover data, not the normal amount. While the
same size of buffer is used, the amount of valid data in it is different. The stage can check if it is
the first time, because all buffers include a tag indicating the round, and the buffer with tag 0 is the
first buffer. The stage, however, does not know if it is the last buffer; in order to do so, it would
need to know the exact number of rounds that the pipeline will have.

Although the stage may know the number of rounds in some cases, at other times it will not
be able to find out this number. For instance, if a stage other than the FG-supplied source stage
sets the caboose, the other stages have no way of knowing in what round this stage will set the
caboose. Of course, the programmer could store the last round number in a global variable, but it
is easier for the programmer if FG keeps track of it. Thus, we introduce the caboose flag into the
thumbnail that goes with every buffer, allowing the stage to perform a simple check to see if this
round is the last one and if it needs to do anything special. It is the programmer’s responsibility to
check the caboose and act accordingly if he needs to do anything special in the last round of the
stage. If the steps he needs to do at the end of the pipeline are specific to the thread, such as freeing
memory shared by all stages in the thread, then the programmer can ask FG to call the thread’s
cleanup function at the appropriate time by passing it to FG at the time the programmer establishes
the pipeline.

FG itself uses the caboose to determine when the pipeline should terminate. Once a stage
receives the caboose, FG never calls the stage again. The termination of the pipeline as a whole
begins when the caboose reaches the sink. As a result, if the programmer chooses to set the caboose
partway through the pipeline, all stages prior to the stage that set the caboose will never receive the
caboose.

In the event that a stage other than the source sets the caboose and a stage prior to it is part
of a multi-stage thread, the prior stage may have already begun to execute and is waiting for a
buffer that will never come. In this case, once the caboose reaches the sink, the sink lets all stages
know that the end is here, and all stages currently waiting will exit without finishing the stage. The
reasoning behind exiting stages before they finish is that no stage should need to manipulate data
once the pipeline has completed. Manipulation of data for rounds after the caboose round can only
occur if a stage other than the source sets the caboose.

Once all stages in a thread finish, FG has the thread call its cleanup function, provided it is
non-null, and then FG has the thread exit. After FG has ensured that all threads have exited, it
frees up all resources, resets its parameters for the next call and exits. The memory freed consists

CHAPTER 1. INTRODUCTION TO FG 9

of all memory that FG allocated, including both pipeline buffers and auxiliary buffers. Thus if a
programmer fails to release an auxiliary buffer at the end of the pipeline, it is nota memory leak.
As a result, any data currently in the buffers is no longer valid after the pipeline run is completed.

Chapter 2

FG Design Specification

In this chapter, we present a functional design specification of FG, written in C. We discuss the
variables, functions, arrays, and structs that make up the workings of FG. We omit only a few
functions that serve as helper functions to provide clarity in the code. All variables and arrays
in FG are static, preventing the programmer from accessing any of them outside of FG-provided
functions. Many of the functions are also static, used only internally by FG. Of the remaining func-
tions, the programmer is required to use some of them, such as FG convey buff, in order for FG
to work properly. In addition to variables and functions, FG also consists of four kinds of structs:
a pipeline stage helper, a pipeline thread helper, a stage’s struct FG params, and of course, the
struct to which the FG thumbnails refer. Of these four, we expect the programmer to set the fields
of the first and second directly. In order for proper functioning of FG, however, the programmer
should never modify the latter two except by FG-provided methods; modifications of these fields
may cause FG to function incorrectly in a number of ways. Because the current implementation is
in C, we cannot prevent the programmer from modifying such fields, and thus we rely on the pro-
grammer to self-enforce. In the following sections, we describe FG’s variables, arrays, structs, and
functions grouped according to their component area, as discussed in Section 1.2: setup, threads,
stages, thumbnails, buffers, the caboose, and shutdown.

2.1 Pipeline setup

A correct setup of the pipeline is essential to FG. The setup consists of two parts: the programmer’s
part and FG’s part. The programmer’s job consists of specifying the desired stage and thread
structures in arrays of pipeline thread helpers and pipeline stage helpers, discussed in Sections 2.2
and 2.3, respectively, and then calling the function to establish the pipeline with the appropriate
parameters. Aside from writing the stages that the pipeline actually runs, the programmer’s work
finishes here. Upon return from the call to establish the pipeline, the pipeline has finished running.
FG verifies, to the extent that C permits, that the parameters make sense. It then sets up its variables
and arrays. Lastly it starts the pipeline by creating the pipeline’s threads.

10

CHAPTER 2. FG DESIGN SPECIFICATION 11

int FG establish pipeline(FG pipeline stage helper * psh,
int pipeline size,
FG pipeline thread helper * pth,
int num threads,
int num buffers,
int num aux buffers,
int buffer size,
int rounds,
int multi stage repeat,
int param size)

FG establish pipeline is the overarching function of FG. It sets up the pipeline and calls
FG run pipeline and FG cleanup pipeline. When FG establish pipeline returns, FG has run the
entire pipeline. We discuss how FG uses FG establish pipeline’s parameters in the follow-
ing sections: psh, 2.3; pipeline size (which is the number of stages in the pipeline), 2.3; pth,
2.2; num threads, 2.2; num buffers, 2.5; num aux buffers, 2.5; buffer size, 2.5; rounds, 2.6;
multi stage repeat, 2.3, and param size, 2.4. The return value indicates whether an error occurred.
A return value of FG SUCCESS indicates no error.

FG in establish pipeline

The variable FG in establish pipeline indicates whether FG is currently in FG establish pipeline.
The value is set to 1 if FG is in FG establish pipeline and 0 otherwise. A call to FG set caboose -
setters will succeed only if FG establish pipeline is 0.

int FG set caboose setters(FG stage rep * srs, int size, int source sets caboose)

FG set caboose setters sets the stages in srs to be stages that can set the caboose without warning
to the programmer. Source sets caboose indicates whether the source should set the caboose. If the
source does not set the caboose, FG ignores the number of rounds given to FG establish pipeline.
If size, indicating the size of the array of FG stage reps, is negative, ERR NEG VALUE is re-
turned; else if srs is null, ERR NULL PARAM is returned. The programmer can only call this
function before the pipeline is established; thus, if the pipeline has already been established,
this function returns ERR PIPELINE STARTED. If the program is out of memory, it returns
ERR OUT OF MEM. Otherwise, it returns FG SUCCESS.

2.2 Threads

FG assumes that the programmer wishes to run a pipeline, thus running the stages asynchronously.
FG uses the standard pthreads package to implement the asynchronous stages. Each thread is re-
sponsible for a few tasks. If the programmer specifies an init function, the thread runs the function.
Then it runs its stages. Lastly, if the programmer specifies a cleanup function, the thread runs this
function. The init and cleanup functions are particularly useful if the stages within a thread wish
to share resources.

CHAPTER 2. FG DESIGN SPECIFICATION 12

Private variables about threads

FG num threads

FG num threads is the number of threads in the pipeline. FG establish pipeline sets FG num -
threads to be its formal parameter, num threads, increased by 2, one for the source and one for the
sink. The value of FG num threads remains constant throughout a pipeline run. Every thread array
is of size FG num threads unless otherwise noted.

FG thread reps

In order to establish the pipeline, and in particular to map stages to threads, FG must have a
way of uniquely identifying each thread. FG chooses to use a string, which we typedef as an
FG thread rep. FG thread reps is an array of FG thread rep, with each entry storing the name of
a unique thread. FG establish pipeline forms the array from the FG pipeline thread helper array
that FG establish pipeline receives.

FG init funcs

FG init funcs is the array of pointers to initial functions for threads. FG forms this array from the
init thread function field in each struct in the FG pipeline thread helper array that FG establish -
pipeline receives. If the thread’s entry in FG init funcs is not null, FG decider func will run this
function before it runs any stage.

FG cleanup funcs

FG cleanup funcs is the array of pointers to the thread’s cleanup functions. FG forms this ar-
ray from the cleanup thread function field in each struct in the FG pipeline thread helper ar-
ray that FG establish pipeline receives. If the thread’s entry in FG cleanup funcs is not null,
FG decider func will run this function after it has finished running all stages and before it exits.

FG pipeline thread helper

An array of FG pipeline thread helper structs determines the thread structure of the pipeline. An
FG pipeline thread helper is a struct that exists for each thread containing all of the relevant pa-
rameters for that thread. The struct consists of an FG thread rep for the thread name, a pointer to
an initial thread function, a pointer to the parameters of an initial thread function, a pointer to a
cleanup thread function, and an integer representing the thread priority. The programmer passes
an FG pipeline thread helper array to FG establish pipeline to set up the threads. The order of the
threads in the array is the order in which FG will spawn the threads, but this order has nothing to
do with the order of the stages in the pipeline.

FG thread rep the thread Each FG pipeline thread helper includes an FG thread rep contain-
ing the name of the thread. The programmer should always refer to the thread by using this
name. Consequently, all FG thread reps in the array passed to FG establish pipeline must
be different from each other as well as from FG’s source and sink FG thread reps, which

CHAPTER 2. FG DESIGN SPECIFICATION 13

are respectively “FG source thread” and “FG sink thread.” If any duplicate name exists,
FG establish pipeline will return with ERR INVALID PARAM during setup and the pipeline
will not run.

void * init params Init params is a pointer to parameters that the thread’s init thread function
will use. For instance, if the init thread function opens files, the programmer may need to
send in the names of the files that this function will open. This field is only used if the thread
has an init thread function (i.e., the init thread function of the thread is non-null). If the
programmer does not wish to use parameters in the thread’s init thread function, he should
set this field to null.

FG ptr function init thread function FG pipeline thread helper is a pointer to an initial func-
tion for the thread. FG runs this function after it spawns the thread but before it runs for the
first time any of the stages belonging to the thread. For instance, the programmer may wish to
open files at the beginning of the run. In order to not use an initial function, the programmer
must set the field to null. If the programmer chooses to use the function, he has the option to
pass initial parameters to it, using the params field (a void *) of the FG pipeline thread helper.

FG ptr function cleanup thread function Similarly, FG pipeline thread helper is a pointer to a
cleanup function for the thread. FG runs this function at some point after the caboose buffer
reaches the sink. If all stages in the thread see the caboose, FG runs the function immediately
after the caboose reaches the sink. If some stages in the thread do not see the caboose (because
the caboose is set by a stage later on in the pipeline), then FG runs the function as soon as the
caboose flag has been set by some stage and the thread calls FG accept buff (or if the thread
is currently waiting in this function).

int thread priority The field thread priority is an int that gives the programmer’s relative thread
priority for this thread. In the current implementation of FG, however, this value is not used,
because Linux’s implementation of thread priorities does not currently work. Once this at-
tribute is fixed in Linux, FG will change to make use of this field. The programmer will
not need to specify a priority in the range of valid thread priorities, as FG will automatically
adjust the thread priorities to fit this range.

Public thread functions

int FG get pipeline stages(FG thread rep thrd, FG stage rep ** rep, int * num stages)

FG get pipeline stages is a function that allows a thread to find out which stages belong to it. At the
time the programmer establishes the pipeline, he identifies each stage by an FG stage rep, which
is simply typedef-ed to be a string. The programmer passes a FG thread rep corresponding to the
thread’s name, and FG stores an array of all the FG stage reps for that thread in *rep and stores the
number of such stages in *num stages. The programmer has no particular need to use this function,
but it exists if the programmer wishes to find out this information in the middle of a stage, for exam-
ple when he is debugging. The return value is FG SUCCESS; ERR NO SUCH THREAD, indicat-
ing that the programmer requested stages for a thread that does not exist; or ERR NULL PARAM,
indicating that one of the two pointers in the parameter list is null.

CHAPTER 2. FG DESIGN SPECIFICATION 14

int FG get mystage(FG params * fg params)

FG get mystage takes in an FG params struct and returns the index of the stage according to
fg params. The programmer will find this function useful if he wants the stage or thread to know
where in the pipeline the stage is located. The index of the source is 0.

Private thread functions

int FG run pipeline()

FG run pipeline runs the stages. FG establish pipeline calls this function when FG establish -
pipeline has finished the setup. FG run pipeline then proceeds to spawn each thread with the
method FG decider func, which actually calls each stage function. It returns either FG SUCCESS,
indicating success, or ERR PTHREAD CREATE, indicating that FG failed to create one of the
threads.

void FG thread killer(FG params * p)

Each thread calls FG thread killer when the thread should exit. FG thread killer calls the cleanup
function specific for that thread, if one exists. It then exits the thread.

2.3 Stages

Stages form the building blocks of the pipeline, specifying what work the FG pipeline actually
does. Each stage belongs to at least one thread, specified in its FG pipeline stage helper at the
time the programmer establishes the pipeline. The stage runs repeatedly until it has either seen
all buffers through the buffer marked as the caboose or until FG discovers that the programmer
has set the caboose on a buffer further in the pipeline. Each stage accepts a thumbnail from the
previous stage, does its work, and then conveys the thumbnail to the next stage. If a stage requires
any parameters, it can access them through its parameter, FG params * fg params.

FG params * fg params

When a stage starts up it receives a pointer to an FG params struct. This struct consists of two
fields: a void * prg params and int my pipelinestage. The former points to any parameters the
stage may need, set at the time the programmer establishes the pipeline. The second indicates
where in the pipeline this stage is located, and it should never be modified. The stage will pass
fg params to the calls to FG accept buff and FG convey buff to ensure that each stage receives the
correct thumbnails.

CHAPTER 2. FG DESIGN SPECIFICATION 15

Private stage variables

FG pipeline size

FG pipeline size is the number of stages in the pipeline. FG establish pipeline sets FG pipeline -
size to be its formal parameter, pipeline size, increased by 2 (one for the source and one for the
sink). This variable remains constant as the pipeline runs. Every stage variable consisting of an
array is of size FG pipeline size, unless otherwise noted.

FG stage reps

FG stage reps is an array of FG stage rep, each storing the name of a stage. FG defines an
FG stage rep as a char *. Each FG stage rep is unique. FG establish pipeline forms the array
from the FG pipeline stage helper array that FG establish pipeline receives.

FG stage n func

FG stage n func is an array containing the pointers to the functions that constitute each stage. Each
function has a return type of void and has a parameter of type FG params *. The functions taken
in FG establish pipeline forms this array using the stage function field of the FG pipeline stage -
helpers it receives. FG stage n func[i] is the function that FG decider func will run for the stage
whose name matches FG stage reps[i].

FG stage thread map

FG stage thread map is an array of integers that maps a stage index to a thread index. Thus
FG stage rep[i] belongs to FG thread rep[FG stage thread map[i]]. FG establish pipeline creates
this array from the FG pipeline thread helper and FG pipeline stage helper arrays it receives.

FG all params

FG all params is an array of FG params that constitutes the parameters for each stage. It consists
of the stage index and a pointer to a struct of the programmer’s choice. The programmer should
use this array to maintain state in a stage between successive rounds. FG establish pipeline creates
this array from its parameter, the FG pipeline stage helper array. Each stage receives a pointer to
its entry in this array as its sole parameter when the thread calls it.

FG multi stage repeat

FG multi stage repeat is an integer indicating how many times a multi-stage thread should run a
stage before switching to the next stage. If all stages map to unique threads, its value is irrelevant.
In order to prevent deadlock, all multi-stage threads must have the same repeat, as discussed in
Section 3.2. The minimum value for multi-stage repeat is 1, and the maximum is the number of
buffers. FG establish pipeline sets this value to that of its parameter multi stage repeat. However,
if the programmer calls for a multi-stage repeat greater than the number of pipeline buffers, FG
will print an error and reset it to the number of pipeline buffers.

CHAPTER 2. FG DESIGN SPECIFICATION 16

FG pipeline stage helper

FG pipeline stage helper is the stage version of FG pipeline thread helper, detailing the struc-
ture of each stage. The array of FG pipeline stage helpers determines the structure of the stages.
FG establish pipeline takes the array of FG pipeline stage helpers and uses it to set up the pipeline.
The order of the stages in the pipeline must match the order of the stages in the array of FG -
pipeline stage helpers passed to FG establish pipeline. Each FG pipeline stage helper consists of
an FG -thread rep, an FG stage rep, a pointer to the stage function, and a pointer to any initial
parameters the stage may need.

FG stage rep the stage Each FG pipeline stage helper contains an FG stage rep the stage, the
name of the stage. Every FG stage rep in the array of FG pipeline stage helpers must be
different from all others as well as different from FG’s source and sink FG stage reps, re-
spectively “FG source stage” and “FG sink stage.” If there are any duplicate stage names,
FG establish pipeline will fail in the middle of setup and return.

FG thread rep the thread Each FG pipeline stage helper contains an FG thread rep the thread,
the name of the thread to which the stage belongs. Every stage’s thread must be one entry
in the array of FG pipeline thread helper structs, and at least one stage must belong to each
thread listed in the array of FG pipeline thread helpers; if the arrays do not meet both of these
conditions, then FG establish pipeline will fail in the middle of the setup and return.

FG ptr function stage function This field indicates what function the stage actually executes ev-
ery round. Every function should take a pointer to an FG params struct as its sole parameter.
It should return void, as FG will ignore this value and nothing else sees it.

void * params The variable params serves to give the stage any parameters, probably encapsu-
lated in a struct, that the stage may need to execute the first time the stage runs. The stage’s
FG params struct’s field prg params stores this value before the stage runs the first time,
and unless the programmer changes that field, the stage will receive this same pointer in all
subsequent rounds.

Private stage functions

void FG decider func(int * thread index)

FG decider func is the function that runs the stages within a thread. When FG spawns each thread,
each thread starts in this function. This function knows which thread called it based on the thread
index given as the parameter. This function calls the FG init thread function (discussed in Section
2.2) and then cycles through the stages, calling the stages in order and repeating them according
to FG multi stage repeat. Once a stage sets the caboose, however, FG decider func will skip over
any stages prior to those through which the caboose has passed.

2.4 FG thumbnail

An FG thumbnail serves primarily to describe a buffer of data that the stages will manipulate.
For two reasons, a stage receives an FG thumbnail instead of a buffer. The first is that the stage

CHAPTER 2. FG DESIGN SPECIFICATION 17

may wish to change which buffer it passes to the next stage, for example when the data ready for
the next stage is in an auxiliary buffer. Since the stages pass FG thumbnails, instead of buffers,
between stages, a simple swap of the pointers in the FG thumbnails is enough to ensure that the
stage conveys the right data without unnecessary copying into the old buffer. The second reason,
in our experience, is that a buffer may wish to carry with it certain pieces of information. In
columnsort, for example, stages that sort in passes after the first do not need to do a complete sort,
but only a merge sort, as the buffer already contains sorted runs in it. Therefore, the thumbnail
could contain the information about the size of the sorted runs.

FG thumbnail and queue private variables

FG sems

FG sems is an array of semaphores that control the passing of FG thumbnails from stage to stage.
Each stage has its own semaphore, whose value is the number of FG thumbnails ready for this
stage. The programmer has no access to the semaphores through any function.

FG thumb q array

FG thumb q array is an array of thumbnail queues, each of size FG pipeline size. FG convey buff
uses this array to store the next thumbnail for the next stage, and FG accept buff uses it to access
the next thumbnail for the current stage.

FG thumbnail components

An FG thumbnail serves to contain either a pipeline or an auxiliary buffer, as well as any informa-
tion specific to the buffer. Each FG thumbnail consists of a pointer to a struct containing an integer
size, an FG tag (indicating the current round), a pointer to the address of the buffer, a pointer to
the parameters for the FG thumbnail, and a caboose flag. In an auxiliary FG thumbnail, neither
the tag nor the caboose field is relevant.

FG tag The FG tag field in an FG thumbnail indicates the round for the current stage. This
field relies on the assumption that no programmer will ask for more than one non-auxiliary
FG thumbnail within one stage; doing so would violate FG’s concept of a stage. As each
FG thumbnail passes through the source, the source sets its tag to indicate its round. The
programmer can see the round by calling the function FG get tag but should never access
this field directly.

size The size field in FG thumbnail gives the size of the FG thumbnail’s buffer in bytes. The
programmer can check its value through FG get size. FG deliberately does not provide an
FG set size, and the programmer should not set this field manually. Doing so would not
actually change the size of the buffer, as FG allocates all buffers of the same fixed size and
does not check or modify the size of the buffers at any point during the running of the pipeline.

params The params field allows the programmer to send information about a buffer between
stages. Typically, params will point to a struct of the programmer’s design. The programmer

CHAPTER 2. FG DESIGN SPECIFICATION 18

can either allocate and deallocate the memory to which each params points, or he can let FG
allocate and deallocate it. If FG is responsible, then each FG thumbnail’s params field points
to the same amount of memory, which is the amount specified by the parameter param size
passed to FG establish pipeline. The programmer should then only access the params field
using the function FG get params. If the programmer wishes to allocate structs of different
sizes or wishes to control this memory himself, he must allocate it and deallocate it himself.
In this case, he should pass 0 as the param size to FG establish pipeline. The programmer
then accesses the field using both FG get params and FG set params. We highly recommend
that the programmer think carefully before using static variables in stage functions and con-
sider whether this field would be more approrpriate. Either two stages using the same function
or two runs of a pipeline using the same functions may result in invalid states during various
parts of the pipeline, and we have found that our out-of-core applications typically rely on
several passes of which the saved states are relevant only to the particular pass.

caboose The caboose field indicates whether the current FG thumbnail is the caboose, with 0
indicating that it is not the caboose and 1 indicating that it is the caboose. Once a stage sets the
caboose field in a buffer, no stage, including the stage that set it, can unset it. In addition, FG
permits at most one FG thumbnail to contain the caboose at any moment. The programmer
must access this field only through FG get caboose and FG set caboose. FG set caboose
will return FG SUCCESS if the call successfully sets the caboose.

Public thumbnail functions

int FG get size(FG thumbnail th)

FG get size is a simple function that returns the size of the buffer in FG thumbnail th.

void * FG get address(FG thumbnail th)

FG get address is a function that returns the address of the buffer in FG thumbnail th.

FG tag FG get tag(FG thumbnail th)

FG get tag returns the round of the FG thumbnail th.

void * FG get params(FG thumbnail th)

FG get params simply returns the address of the programmer’s parameters for the FG thumbnail
th.

void FG set params(FG thumbnail th, void * params)

FG set params sets the params field of FG thumbnail th to be params.

CHAPTER 2. FG DESIGN SPECIFICATION 19

int FG get caboose(FG thumbnail th)

FG get caboose returns 0 if the caboose flag has not been set on any buffer and 1 if the caboose
flag has been set for some buffer.

void FG set caboose(FG thumbnail th, FG stage rep s)

FG set caboose tries to set the caboose for FG thumbnail th. If the caboose flag was already set on
another thumbnail, it returns ERR CABOOSE. Otherwise, it returns FG SUCCESS. If s is not a
stage with permission to set the caboose, FG sets the caboose anyway, but it also prints a warning.

Private thumbnail functions

int FG fill pool()

FG fill pool creates and sets up the pool of FG thumbnails, as well as the buffers that go within
them. Every FG thumbnail receives a size, a buffer, and a caboose value of 0. If the program is out
of memory, it returns ERR OUT OF MEM, and FG will immediately free all memory allocated
so far, and it will return without running the pipeline. Otherwise, it returns FG SUCCESS.

2.5 Buffers

FG assumes that the programmer wishes to convey buffers of data between successive stages in
the pipeline. It recognizes that a programmer may also wish to store data in other locations for
operations that are not in-place. Consequently, FG provides the programmer with both a set of
buffers that can travel the pipeline and a set of buffers for auxiliary use. A programmer accesses
all buffers through the addr field of its FG thumbnail. Every time a stage runs, one buffer should
enter the stage, and one buffer should exit the stage.

Private buffer variables

FG buffer size

FG buffer size is the size of each and every buffer in the auxiliary and pipeline buffer pools.
FG establish pipeline sets this size, according to its formal parameter buffer size. The size re-
mains fixed for the duration of the pipeline run. The FG get size method returns this variable, but
no method allows modification of the buffer size.

FG num buffers

FG num buffers is the number of buffers that circulate through the pipeline. The minimum number
is 1, and the logical maximum is the number of rounds. FG establish pipeline sets this value
according to its formal parameter num buffers, and nothing else can modify it.

CHAPTER 2. FG DESIGN SPECIFICATION 20

FG num aux buffers

FG num aux buffers is the number of auxiliary buffers. Stages can use the auxiliary buffers as
needed. FG num aux buffers can be 0 and has no maximum, as a stage may require several auxil-
iary buffers to do its work. FG establish pipeline sets this value according to its formal parameter
num aux buffers, and nothing else can modify it.

Pipeline buffers

We have designed FG as a framework for use in programs that transfer buffers between stages.
Buffers transferred between stages are referred to as pipeline buffers, in contrast to auxiliary
buffers, which are used locally within a stage. All buffers, both auxiliary and pipeline buffers,
have the same size, and the programmer can retrieve the size of the buffer by calling FG get size
on the FG thumbnail to which the buffer belongs. At the beginning of each stage, a stage must ask
for its next buffer by calling the function FG accept buff. At the end of each stage, a stage must
call the function FG convey buff to send the buffer to the next stage. If the desired result happens
to be in an auxiliary buffer, then the programmer should call FG swap buffs. This call makes the
auxiliary buffer now a pipeline buffer and the pipeline buffer an auxiliary buffer, allowing the next
stage to have access to the correct information without copying it over.

Auxiliary buffers

In developing out-of-core asynchronous applications, we have frequently used temporary buffers;
FG provides this functionality in the form of auxiliary buffers, which stages can obtain and release
on an as-needed basis. The programmer receives an auxiliary buffer by calling FG get aux and
returns it to the pool by calling FG release aux. FG does not permit the auxiliary buffers to have
different sizes. The programmer can manage buffers of different sizes but cannot swap these
buffers with the pipeline buffers. If a thread needs an auxiliary buffer and the programmer does
not wish to get and release it between successive rounds of each stage, the programmer should give
this thread an initial function to obtain it.

FG provides no mechanism for ensuring that deadlock does not arise in trying to obtain an
auxiliary buffer. We determined that the cost of checking for deadlock outweighs the benefits,
especially since deadlock is avoidable. To guarantee that no deadlock will arise, the programmer
must request at least as many auxiliary buffers as might be in use at one time and release them as
appropriate.

Public buffer functions

void FG convey buff(FG params * fg params, FG thumbnail th)

FG convey buff takes the FG thumbnail and puts it in the queue that will be read by the next stage,
where the current stage is determined by fg params. It then signals the semaphore for the next
stage, so the stage knows that there is now an FG thumbnail ready for it and where to get it.

CHAPTER 2. FG DESIGN SPECIFICATION 21

void FG accept buff(FG params * fg params)

FG accept buff determines the stage requesting the next FG thumbnail from fg params and calls
a wait on the semaphore for that stage. When sem wait returns, it checks whether it returned
because the caboose reached the sink. If so, it calls FG thread killer to finish up with that thread.
Otherwise, it updates accordingly and returns the appropriate FG thumbnail.

void FG swap buffs(FG thumbnail t1, FG thumbnail t2)

FG swap buffs takes in two thumbnails and swaps the pointers to t1 and t2’s buffers, thus exchang-
ing the buffers between the two thumbnails.

Every stage in the pipeline would therefore use both FG convey buff and FG accept buff. A
sample stage that uses no auxiliary buffers might look as follows:

void sample_stage(FG_params * fg_params)
{

FG_Thumbnail thumb = FG_accept_buff(fg_params);

/* do sample_stage work */

FG_convey_buff(fg_params, thumb);
}

A more complex stage might use an auxiliary buffer. It might get an auxiliary buffer and have the data end up in
this auxiliary buffer. In this case, a sample stage might look like:

void sample_stage_2(FG_params * fg_params)
{

FG_Thumbnail thumb = FG_accept_buff(fg_params);
FG_Thumbnail aux = FG_get_aux();

/* do sample_stage_2 work, with data ending in aux */

FG_swap_buffs(thumb, aux);
FG_release_aux(aux);
FG_convey_buff(fg_params, thumb);

}

FG thumbnail FG get aux()

FG get aux returns a free thumbnail, with its buffer, from the pool. Until a buffer is free, this function blocks. A lock
governs access to the pool of auxiliary buffers, and if an error occurs in using the lock, this function will return null.

int FG release aux(FG thumbnail t)

FG release aux find the FG thumbnail t in the auxiliary buffer pool and marks it as free. It signals that a thumbnail
is now free, in case another thread is waiting for an auxiliary buffer in FG get aux. If a lock error occurs, it returns
ERR LOCK UNLOCK; if a semaphore error occurs, it returns ERR SEM POST. Otherwise, it returns FG SUCCESS.

CHAPTER 2. FG DESIGN SPECIFICATION 22

2.6 Caboose

The caboose is FG’s indication that the stages of the pipeline are seeing their last buffer. Every FG thumbnail thus
contains a caboose flag. A stage need not determine that the caboose arrives if the stage does not need to execute
anything special at the end. If the stage needs to know whether the current round is the caboose round, it can find out
by calling FG get caboose on the FG thumbnail it is given. If FG get caboose returns 0, it is not the caboose buffer;
otherwise it is.

Caboose variables

FG num rounds

FG num rounds gives the expected number of rounds in a pipeline run. FG establish pipeline sets it to the value
of its formal parameter num rounds, and nothing modifies it later. FG num rounds is a variable private to FG.
FG num rounds determines on which buffer the source stage sets the caboose. FG uses this value only if the source
sets the caboose. If another stage sets it before the source does or if the programmer forbids the source to set the
caboose, this variable is irrelevant.

FG num caboose setters

FG num caboose setters is the number of threads that can set the caboose. This number is 1, for the source thread,
unless the programmer called FG set caboose setters.

FG caboose setter

FG caboose setter is the index for the stage that set the caboose. If no stage has yet set the caboose, the value is −1.
FG sets this value when either the source or the programmer calls FG set caboose for the first time; FG generates
errors for all subsequent requests to set the caboose. This variable is private to FG, but the programmer can modify its
value by calling FG set caboose.

FG caboose setters

FG caboose setters is an array of size FG num caboose setters of FG stage reps. A stage whose FG stage rep is not
in this array can set the caboose, but FG will display an error if one does so. The array consists only of the source
thread unless the programmer called FG set caboose setters.

FG source sets caboose

FG source sets caboose indicates whether the source thread should set the caboose. Its value is 1 if it should and 0
otherwise. The default value is 1; a call to FG set caboose setters can set it false.

FG seen caboose

FG seen caboose is an array of size FG num stages. FG seen caboose[i] is 0 if the stage has not seen the caboose and
1 if it has. FG decider func uses this array to determine whether it should cease to run a stage.

Public caboose functions

FG set caboose

See Section 2.4.

CHAPTER 2. FG DESIGN SPECIFICATION 23

FG get caboose

See Section 2.4.

FG set caboose setters

See Section 2.1.

int FG is caboose setter(FG stage rep s)

FG is caboose setter returns 1 if stage s has been given permission to set the caboose and 0 if it has not.

2.7 Shutting down the pipeline

FG begins the shutdown of the pipeline once a stage sets the caboose, and it completes it shortly after the caboose
reaches the sink. Either the source will set the caboose on the last round or another stage can set the caboose. When
giving permission for other stages to set the caboose, FG allows the programmer to prevent the source from setting the
caboose. However, doing so introduces the risk that no stage ever sets the caboose. If the source sets the caboose, FG
ensures that each stage is never run after it sees the caboose. It is important to recognize that if another stage sets the
caboose, a risk exists that stages prior to that stage may see extra buffers and change the state. If a thread recognizes
that all of its stages have seen the caboose, or the caboose is beyond all of its stages, the thread will call its cleanup
function, provided one exists, and exits. Otherwise, once the caboose reaches the sink, the sink will signal all the
remaining threads to cleanup and exit.

int FG cleanup pipeline()

FG cleanup pipeline is the function that cleans up after the pipeline. The main thread spends little time in
FG establish pipeline and in FG run pipeline, spending most of its time waiting in this function for the spawned
threads to run the pipeline and join. It calls FG free to get rid of all allocated memory, and then it resets all
counts (like FG num buffers) for the next time. FG establish pipeline calls this function after it calls and returns
from FG run pipeline. If any of the threads join with an error, it prints the error, and returns ERR PTHREAD JOIN.
Otherwise, if FG free returns with an error, it prints the error, and returns the error. If no error occurs, it returns
FG SUCCESS.

int FG free()

FG free deallocates all memory that FG establish pipeline had allocated and resets all its pointers to null.

2.8 Source and sink

void FG source(FG params * source params)

FG source circulates the thumbnails around, sending each FG thumbnail with a new tag, indicating the round that this
FG thumbnail represents. If the source has permission to set the caboose and no other stage has set the caboose by the
time the source is ready to send out the last FG thumbnail, then the source calls FG set caboose on this FG thumbnail
before it sends it out.

void FG source init(FG params * source init params)

FG source init tags each buffer with its round for its first time through the pipeline and places it in the source’s queue.

CHAPTER 2. FG DESIGN SPECIFICATION 24

void FG sink(FG params * sink params)

FG sink circulates each FG thumbnail it receives back to the source. Before it conveys each FG thumbnail to the
source, it checks if this FG thumbnail is the caboose. If the sink receives the caboose, it signals to all other threads
that they need to shut down, and then it exits itself.

Chapter 3

Deadlock

The presence of either multiple processors or threads in a program raises a risk of deadlock; the combination makes
the challenge of avoiding deadlock even greater. Because FG includes threads and supports parallel processors, we
must take into account the risk of deadlock. We have tried to build FG to minimize this risk whenever possible. In FG,
deadlock could conceivably occur from buffers (both pipeline and auxiliary), from the way we run stages, and from
not shutting down the pipeline correctly. In this section, we discuss ways in which the design of FG tries to avoid or
eliminates the risk of deadlock in these areas; we also consider how deadlock can still occur.

3.1 Buffers

Auxiliary buffers

The existence of buffers shared between the threads creates the possibility of deadlock, a possibility which can be
only partially avoided. While we do not guarantee that a program written with FG avoids buffer deadlock, the ways in
which deadlock can still occur are avoidable if the programmer is careful. If a stage requests an auxiliary buffer and
fails to get one while the other stages continue without releasing one, eventually all pipeline buffers will end up in this
stage’s queue, and the program will deadlock. This scenario may occur because the number of requests for auxiliary
buffers at one point is greater than the total available; the simple solution is obviously creating additional auxiliary
buffers. Another scenario that would achieve deadlock is if a stage accidentally fails to release an auxiliary buffer; this
leak in the auxiliary buffer pool may then yield deadlock when the stage requests another auxiliary buffer later on.

Pipeline buffers

In addition, pipeline buffers also have the potential to cause deadlock. Once again, this deadlock is avoidable. Every
time a stage executes, it should accept its next buffer; at the end of the round, it should convey the buffer, allowing the
next stage to use it. Failure to do either of these actions may eventually result in deadlock. In the latter scenario, the
stage’s refusal to pass the pipeline buffers to the next stage means that the next stage will hang, waiting for buffers it
never gets, and no stage will receive any of these buffers again. If a stage sometimes fails to convey the buffer, then the
leak will be slower but still will eventually cause deadlock. Deadlock will also occur if stages fail to accept buffers,
as these buffers will remain forever in this stage’s queue and never reach subsequent stages. Because FG has its own
ending stage, the programmer’s last stage must also be sure to convey the buffer. Thus, accepting buffers is necessary
for each stage even if the stage does not use the buffers.

We could have written FG to avoid the possibility of deadlock from pipeline buffers by calling each function and
passing to it the correct buffer; in essence we could let FG be the one in charge of accepting and conveying a stage’s
buffer. Since we would need the thumbnail to be ready for the function before we called the stage, no stage could do
steps independent of the buffer ahead of time. If the stage would do a substantial amount of work before it needed

25

CHAPTER 3. DEADLOCK 26

the buffer, the stage would likely take additional time; to avoid this loss of efficiency, we require that the programmer
manage the pipeline buffers, and the burden of avoiding deadlock lies on the programmer’s shoulders.

3.2 Decider function and multi-stage repeat

In order to prevent multi-stage repeat from resulting in deadlock, we place limits on it. Deadlock will occur with
multi-stage repeat if all buffers end up in a set of stages that will not execute until at least one stage in a different set
finishes executing; since the latter set of stages does not have any of the buffers, they never finish executing. Although
provable, we do not demonstrate in this thesis that having a multi-stage repeat that is the same for all multi-stage
threads does not result in deadlock. We discuss, instead, some of the ways we prevent deadlock from occuring.

A maximum on multi-stage repeat

One limit we impose is that the maximum multi-stage repeat is the number of buffers in the pipeline; if the programmer
chooses a number greater, FG sets it to this number. Without this limit, if one multi-stage thread exists, deadlock is
certain. The deadlock that occurs does so almost immediately. Since the pipeline is linear, a buffer must pass through
every stage for a given round before FG can reuse it for the next round.

• We consider a pipeline with n buffers and a multi-stage repeat of n + 1.

• The first stage of the multi-stage repeat will go through the first n buffers without trouble and wait for buffer
n + 1.

• Eventually, all of these n buffers make it into the second stage’s queue.

• The second stage waits for the thread to finish the first stage so the thread can execute the second stage.

• The first stage refuses to complete as it has not received buffer n + 1.

Since the second stage has all the buffers, the first stage waits for a buffer it will never get. Thus the thread remains
in the first stage and never switches to try to execute the second stage. To avoid this deadlock, we ensure that the
multi-stage repeat is at most the number of pipeline buffers.

No stage-specific repeat

Choosing to have a multi-stage thread execute one stage more than once before executing the next is necessary for FG
in terms of performance; we can permit this flexibility in a number of different ways, however. One thing we could
do is to allow a stage-specific repeat, in which each stage in a multi-stage thread specifies how many times it should
repeat before the next stage in the thread gets a turn. A stage-specific repeat may provide a lot of flexibility, but we
chose not to allow it, as deadlock can easily result. When it can result, it does so every time and very quickly. We
illustrate one example in which deadlock occurs. Consider a thread consisting of two stages X and Y , with repeats x
and y respectively, where x < y, as shown in Figure 3.1, and X appears in the pipeline before Y .

Let the number of buffers in the pipeline be n. In order to keep the example simple, we ignore the presence of any
other stages, including FG’s source and sink stage. Doing so will not change the outcome, as deadlock depends not on
the relative speed at which the different stages pass the buffers, but instead on the relative number of buffers that each
stage passes. Initially, X has all of the buffers.

• Since X appears in the pipeline first, the thread executes X first and will not execute Y until X has passed x
buffers. X first passes buffer 1 to Y , and it remains in Y ’s queue, as it is still X’s turn to execute. X has x − 1
buffers left to pass before it will be Y ’s turn.

• X likewise passes buffers 2 through x − 1 to Y .

• X has only one more buffer left to pass, buffer x , and it does so.

CHAPTER 3. DEADLOCK 27

Stage X Stage Y

Event Queue Turns Queue Turns
size left size left

Initial n x 0 N/A

X sends buffer 1 to Y n − 1 x − 1 1 N/A

X sends buffer 2 to Y n − 2 x − 2 2 N/A

X sends buffer 3 to Y n − 3 x − 3 3 N/A
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

X sends buffer x − 1 to Y n − x + 1 1 x − 1 N/A

X sends buffer x to Y n − x N/A x y

Y sends buffer 1 to X n − x + 1 N/A x − 1 y − 1

Y sends buffer 2 to X n − x + 2 N/A x − 2 y − 2

Y sends buffer 3 to X n − x + 3 N/A x − 3 y − 3
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Y sends buffer x − 1 to X n − 1 N/A 1 y − x + 1

Y sends buffer x to X n N/A 0 y − x

DEADLOCK!

Figure 3.1: The progression of buffers through two stages sharing one thread, illustrating how stage-specific repeat can result in
deadlock in an FG pipeline. As each stage finishes processing a buffer, the buffer goes in the queue of the next stage (where the
next stage wraps around), and the number of turns before the thread switches to the other stage is decremented. N/A in the column
“Turns left” indicates that the thread is executing a stage other than this one. In this example, stage X has a repeat of x , and stage Y
has a repeat of y, with x < y. After some time, all of the buffers end up in stage X’s queue, and the thread waits forever to execute
a buffer in stage Y , thus causing deadlock.

• It is Y ’s turn and X , with a queue of n − x buffers, currently does not execute. Y first processes buffer 1 and
passes it on, where it eventually makes it back to X .

• Y now has only y − 1 more turns before X gets to execute again. It executes with buffers 2 through x .

At this point, Y has y − x turns left before X goes again. However, Y has processed all of its buffers in its queue
and there are no more buffers for it to process. Eventually, all of these x buffers make it back to X , and X has a queue
of n − x + x , or all n buffers. So Y will not get any more buffers until X goes, but X will not go until Y processes and
conveys an additional y − x buffers. Since y > x , Y hangs in the middle of its stage, waiting for a buffer that will not
come. Thus, deadlock occurs.

No thread-specific multi-stage repeat

Another possibility would be to allow the multi-stage repeat to be thread-specific, but we rejected this possibility as
well because it also can result in deadlock. Again when deadlock can arise, it does so every time and soon into the
execution of the program. It can arise from a number of different combinations of multi-stage repeats. We illustrate
one such example in Figure 3.2, in a pipeline consisting of 4 stages: X1, Y1, Y2, and X2, which appear in that order in
the pipeline. Let thread X own stages X1 and X2 and have a multi-stage repeat of x . Let thread Y own stages Y1 and
Y2 and have a multi-stage repeat of y, where y > x . Let the number of buffers in the pipeline be n, where n ≥ y. We
assume that each stage requires the same amount of time to execute. In actuality, their relative speeds do not matter,
as they change only how quickly in time the deadlock occurs, not that it will occur.

• Initially X1 starts out with all of the buffers. Both X1 and Y1 are the active stages in their respective threads.

CHAPTER 3. DEADLOCK 28

• X1 passes buffer 1 to Y1.

• X1 passes buffer 2 to Y1 and Y1 passes buffer 1 to Y2.

• For the next x − 2 rounds, X1 passes a buffer to Y1 and Y1 passes a buffer to Y2.

At this point, there are n − x buffers in X1’s queue, 1 buffer in Y1’s queue, x − 1 buffers in Y2’s queue, and 0
buffers in X2’s queue. Since X1 has processed x buffers, thread X goes to execute X2. Since X2 has no buffers in its
queue, thread X hangs in this stage. Y1 has another buffer in its queue, so it processes it and sends it to Y2, leaving
0 buffers in Y1’s queue and x buffers in Y2’s queue. Likewise, Y1 still needs y − x buffers before its turn is over and
Y2 can execute, and there are no buffers in its queue. So thread Y also hangs in Y1. Now both threads X and Y are
hanging in X2 and Y1, respectively. Since all of the buffers are in X1 and Y2, however, and the threads are hanging, no
stage will ever pass another buffer again, and we encounter deadlock.

Stage X1 Stage Y1 Stage Y2 Stage X2

Event Queue Turns Queue Turns Queue Turns Queue Turns
size left size left size left size left

Initial n x 0 y 0 N/A 0 N/A

X1 sends buffer 1 to Y1 n − 1 x − 1 1 y 0 N/A 0 N/A

X1 sends buffer 2 to Y1
and Y1 sends buffer 1 to Y2

n − 2 x − 2 1 y − 1 1 N/A 0 N/A

X1 sends buffer 3 to Y1
and Y1 sends buffer 2 to Y2

n − 3 x − 3 1 y − 2 2 N/A 0 N/A

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

X1 sends buffer x − 1 to Y1
and Y1 sends buffer x − 2 to Y2

n − x + 1 1 1 y − x + 2 x − 2 N/A 0 N/A

X1 sends buffer x to Y1
and Y1 sends buffer x − 1 to Y2

n − x N/A 1 y − x + 1 x − 1 N/A 0 x

Y1 sends buffer x to Y2 n − x N/A 0 y − x x N/A 0 x

DEADLOCK!

Figure 3.2: The progression of buffers through four stages, illustrating how thread-specific repeat can result in deadlock in an
FG pipeline. One thread runs stages X1 and X2, and another thread runs stages Y1 and Y2. As each stage finishes processing a
buffer, the buffer goes in the queue of the next stage (where the next stage wraps around), and the number of turns before the thread
switches to the other stage is decremented. N/A in the column “Turns left” indicates that the thread that executes this stage is a
multi-stage thread executing a different stage at the moment. In this example, stages X1 and X2 have a repeat of x , and stages Y1
and Y2 have a repeat of y, with x < y. After some time, all of the buffers end up in the queues of stages X1 and Y2, but the threads
are waiting forever in stages Y1 and X2 for buffers. Thus deadlock results.

Static execution of stages in a multi-stage thread

In the initial design of FG, the programmer had substantially more flexibility in running the stages in a multi-stage
thread; however, such flexibility left a wide open hole for deadlock, and we discarded this feature. In particular, the
programmer could specify with what probability a multi-stage thread would run a particular stage. In the end, the
thread would run all stages the same number of times, but it might run some stages more often in the beginning. For
instance, when given a choice between a read and a write, where both stages have buffers ready, the programmer
might choose the read stage 80% of the time. In order to make this scheme efficient, FG would use the programmer’s
rules only to choose among those stages that had buffers ready. Depending on various environmental factors, this rule
meant that one day a thread might run the first stage three times and then the second stage three times, and another
day it might run the first stage once and then the second stage three times. At first glance, this feature seems to be a

CHAPTER 3. DEADLOCK 29

great idea, as it yields a new level of efficiency and flexibility to FG. In truth, it is a great idea if FG runs only on a
single-processor system.

The introduction of multiple processors enables this feature to get FG into deadlock. An essential part of programs
written for parallel processors is the communication steps that exist between the multiple processors. If exactly one
communication stage exists, then the program will still be free of deadlock. If multiple communication stages exist,
however, any two processors will not necessarily have the same threads in the CPU at the same time. Thus, at a given
point, a certain stage may have completed on one processor and not on another. As a result, when FG examines which
stages have buffers ready, some processors will show some buffers as being ready that others do not. Since only one
communication can be done at once, it is likely that a programmer will choose to group multiple communicate stages in
one multi-stage thread. Doing so however, means that one processor may call one communicate stage while the other
processor calls another, thus causing the two machines to deadlock, waiting for the corresponding communication that
will not come until the other’s communication has succeeded.

Chapter 4

FG Experimental Results

We obtained preliminary results of the performance of a program created by FG by porting a 4-pass threaded out-of-
core columnsort application [CC02] to use FG. We did not obtain results comparing the time to solution on the part of
the programmer. To get an accurate estimate, we would need two nearly identical programmers, one writing a program
with FG and one writing it without. Such a study is beyond the scope of this thesis.

We ran both the original application and the application rewritten with FG on a Beowulf cluster of 32 dual 2.8-GHz
Intel Xeon nodes. Each node has 4 GB RAM and an Ultra-320 36 GB hard drive. The nodes are joined by a high-speed
Myrinet network. Both versions use the C stdio interface for disk I/O, the pthreads package of Linux, and standard
synchronous MPI calls within threads. We used the package MPI/Pro, since it correctly supports simultaneous MPI
calls from different threads.

Due to the flexibility that FG allows, we created two versions of our FG port of columnsort and ran experiments
on both. The first is a close port of the original 4-pass threaded columnsort, in which the read and write stages are
shared by one thread, just as the original columnsort does. The second is a slight modification of the first, in which
the read and write I/O stages belong to different threads. For the purpose of this discussion, we refer to the original
4-pass threaded columnsort as Original, the first version with FG, containing a single I/O thread for both read and
write stages, as FG-combined, and the second version, with different read and write I/O threads, as FG-separate. The
preliminary results here compare Original to FG-combined and FG-separate.

For each version, we ran various combinations with 4, 8, and 16 processors. We ran both 4 GB per processor and
8 GB per processor runs. We did not run less than 4 GB per processor, as the original columnsort is designed for
out-of-core applications, and file-caching effects will mask the out-of-core aspect of the problem for data sizes of less
than 4 GB. Because we save the original input to verify each sort and we require a temporary file in addition to the
output file, we need three times as much disk space as the size of the file. This requirement prevents us from running
tests with more than 8 GB per processor. The results for 8 GB per processor show the same trends as those for 4
GB per processor, so we present only the 4 GB per processor results here. All three versions have runs with 3 and 4
buffers. For FG-combined and FG-separate, we use multi-stage repeats of 2, 3, and 4 (the original columnsort has no
notion of a multi-stage repeat).

Figure 4.1 summarizes results comparing the three versions of columnsort for 4 GB per processor with 3 buffers
and 4 buffers, respectively. For each point, we ran each program multiple times and varied the number of processors.
The points represent the ratios of mean execution times per (GB per processor), i.e., each processor’s execution time
per GB, normalized to that of Original. The ratios are computed using the execution times of the optimal multi-stage
repeat for the specified number of buffers for FG-combined. Varying the multi-stage repeat for FG-separate yielded
negligible differences in execution time, as expected; for the sake of consistency, we show here the FG-separate
execution times with the same multi-stage repeats as those of FG-combined. The multi-stage repeats for the figure are
3 for 3 buffers and 4 for 4 buffers.

As the figure shows, Original is always better than FG-combined, even with the best value for multi-stage repeat.
The increase, however, is 5-10% of the original for 4 buffers and 10-15% for 3 buffers. FG-combined shows a greater
increase in execution time compared to Original for 3 buffers than for 4 buffers. It also shows a greater increase in

30

CHAPTER 4. FG EXPERIMENTAL RESULTS 31

0.85

0.9

0.95

1

1.05

1.1

1.15

4 8 16

Processors

R
at

io
 o

f
ex

ec
u

ti
o

n
 t

im
e

p
er

 (
G

B
 p

er
 p

ro
ce

ss
o

r)

FG-combined

Original

FG-separate

0.85

0.9

0.95

1

1.05

1.1

1.15

4 8 16

Processors

R
at

io
 o

f
ex

ec
u

ti
o

n
 t

im
e

p
er

 (
G

B
 p

er
 p

ro
ce

ss
o

r)

FG-combined

Original

FG-separate

Figure 4.1: The ratio of execution times per (GB per processor), normalized to that of Original. The graph on the left is for 3
buffers, while the graph on the right is for 4 buffers. All runs are with records of size 64 bytes and buffers of 221 records.

execution time for 16 processors than for 4 processors. FG-combined has a different way of alternating between reads
and writes, as we discuss later, than Original. This difference may cause less filling of the pipeline for FG-combined
than for Original in the case of 3 buffers and 16 processors and thus explain the differing ratios.

The difference in performance between Original and FG-combined is likely due to three factors: FG overhead,
pass overlap, and the pattern of read versus write by the I/O thread. FG overhead adds some time to the execution
time, as there is additional setup and cleanup for each pass. In addition, FG does extra calculations, such as to which
semaphore a stage should post, that do not exist in a program like Original, where variables like semaphores are hard-
coded for each thread. A second increase in time comes from pass overlap. FG-combined consists of 4 passes like
Original, but only FG-combined requires the completion of a pass before the next pass begins. Thus, Original has a
bit of a head start for all passes after the initial one.

The third potential increase comes from the difference in the way that Original and
FG-combined alternate between reading and writing. Original, for a buffer size of n with r rounds, does n reads, r − n
pairs of a write followed by a read, and then n writes. FG-combined does not have this flexibility, but it instead has
only the option of either doing r pairs of a read followed by a write, or with multi-stage repeat of m, r /m groups of m
reads followed by m writes. In addition, Original has no synchronization between a write and a read as, in all pairs, we
use the same buffer in both write and read. Thus, the I/O thread never hangs waiting for a buffer to be ready for the read
it is about to perform; only writes require a wait. FG-combined, even with a multi-stage repeat, does not guarantee
that a buffer will be ready for either a read or a write when the stage is called, and it does require synchronization
between read and write; in particular, there are three sets of synchronization: between the write and the sink, between
the sink and the source, and between the source and the read. Although both the sink and the source stages take up
almost no execution time, these threads may be swapped out while another stage, such as the CPU-intensive sort stage
in the algorithm, processes. If the source or the sink stage fails to process some of the buffers before the last write in
the multi-stage repeat finishes, a delay will arise before the read stage can start processing. This delay can also account
for some of the extra execution time that FG-combined takes.

In contrast to FG-combined, FG-separate is always faster than Original. This change is most significant for 4
processors and least significant for 16 processors, both for 3 and 4 buffers. In both FG-separate and Original, more
processors or fewer buffers yield higher execution times, but the difference is more gradual for Original. The execution
time of both Original and FG-separate depends on the speed of the various stages of the pipeline. As the number of
processors increases, the amount of time taken by a communicate stage increases.

The increase in the communicate stage’s time may explain why FG-separate’s win over Original decreases for
a larger number of processors. In both programs, since the write stage occurs after the communicate stage, more

CHAPTER 4. FG EXPERIMENTAL RESULTS 32

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

4 8 16
Processors

R
at

io
 o

f
ex

ec
u

ti
o

n
 t

im
e

p
er

 (
G

B
 p

er
 p

ro
ce

ss
o

r)

Multi-stage repeat = 1

Multi-stage repeat = 2

Multi-stage repeat = 3

Multi-stage repeat = 4

Figure 4.2: The ratio of execution times per (GB per processor), normalized to that of Original for FG-combined. The times are
with 4 GB per processor and 4 buffers, with varying multi-stage repeats. All runs are with records of size 64 bytes and buffers of
221 records.

processors means more time for a buffer to reach the write stage. Thus, the order in which buffers are ready for reads
and writes may differ with the number of processors. In Original, the different ordering will not matter, as Original
will always follow the same pattern in choosing whether to do a read or write next. In contrast, FG-separate uses the
disk I/O scheduler to determine whether to read or write next. Because the order in which the reads and writes are
ready varies with the number of processors, the pattern of disk reads and writes by the disk I/O scheduler may vary
with the number of processors. If one pattern of reads and writes is more efficient than the other, the difference in the
number of processors will be greater on FG-separate than Original.

Since the read and write calls are synchronous, we did not expect that having separate threads for them would
provide a win in total execution time. Thus, no version of 4-pass threaded columnsort with separate I/O threads
currently exists, aside from FG-separate. Based on the results of FG, however, a new version with separate read and
write threads is in progress. We expect that this new version will give a clearer picture of how much performance loss
results from FG overhead, as it will allow us to have two programs, one with FG and one without, with a more identical
pattern of reads and writes. This lesson from FG is one of the primary reasons for FG. Even if a programmer chooses
not to use FG in production code, he can use it without much effort to experiment with different thread structures and
use the results to decide whether a change in his code that requires substantial time is likely to yield an overall gain.

Figure 4.2 summarizes the results of FG-combined for 4 buffers, 4 GB per processor, and varying multi-stage
repeats. We ran the program several times with each multi-stage repeat and calculated the mean execution time of
each. The figure shows the mean execution time per (GB per processor) for each multi-stage repeat, normalized to
that of a multi-stage repeat of 1 (no multi-stage repeat). FG-combined is the only version of columnsort in which the
value of multi-stage repeat is used to determine the order in which stages are executed.

The figure shows that the multi-stage repeat matters significantly in the execution time. As demonstrated previously
in figure 4.1, the number of buffers does influence the overall execution time. Figure 4.2 illustrates that the value of
multi-stage repeat matters more than the number of buffers in overall efficiency. An increase in the multi-stage repeat
shows a decrease in execution time, all the way up to the maximum multi-stage repeat of 4 (since the number of buffers
here is 4). In the case of 16 processors, where the communicate stage will take longer, we see that the multi-stage
repeat of 4 is particularly helpful in keeping the pipeline full, yielding an improvement of more than 30%. Thus we see
the importance of multi-stage repeat; without it, the buffers wait too much in queues instead of keeping the pipeline
full.

The code differences between Original and FG-combined indicate that FG programs will likely be smaller, if not
also less complicated. We could not easily compute an exact count of the difference in source code size because

CHAPTER 4. FG EXPERIMENTAL RESULTS 33

Original is part of a larger program with parts that the FG versions lack. We estimate, however, that the source code
size is 10–20% lower with FG, and experience suggests that this decrease in code size would likely apply for other
programs. In addition, the difference in FG-combined and FG-separate is 5 lines out of several hundred, illustrating
that modifications to the thread structure in FG prorams can be quite simple from the programmer’s point of view.
Making an equivalent change in Original will result in a more significant change to the source code.

Chapter 5

Conclusion

While using asynchronous threads have served to substantially improve the performance of these programs, it also
adds significantly to the development and debugging time. Moreover, experimenting with the structure in an attempt
to improve efficiency further can prove difficult and require several changes to the program. We designed FG to meet
this very need. FG creates a framework that would allow the programmer to not only use asynchronous threads but also
allow the programmer to create the program without much of the effort normally required when using asynchronous
threads. Furthermore, it enables the programmer to easily modify the thread structure of the program without much
effort or much change to the body of code. FG follows this common pipeline structure found often within the individual
passes over the data. Like these programs, FG also passes its data from stage to stage using buffers.

FG is designed to keep efficiency high while still preventing deadlock. It permits a global repeat of stages within
multi-stage threads in order to keep the pipeline full. It controls the order in which the stages are executed and prevents
stages from being repeated varying numbers of times, to ensure that deadlock does not occur. FG can yield deadlock,
but only if the programmer fails to use the buffers correctly. Moreover, whenever possible and especially at the time
the pipeline is established, FG checks the programmer’s parameters for validity and reports errors.

We have obtained preliminary results comparing an out-of-core sorting program with and without FG. Although
FG does add some time to the total execution time, it is not substantial. Moreover, using FG greatly simplifies the
program and should reduce debugging time. Furthermore, we used FG to modify the program’s thread structure
and found an improvement in performance. The changes to the program were small and much less than they would
be in the original version of the program. Thus, we have already seen an example in which FG allows for easy
experimentationin the program that can yield higher performance.

In preliminary tests, FG has already demonstrated itself to be useful and provide the programmer with several
benefits. We have plans now to improve FG by adding various new features to it. Already plans to convert FG to C++
to enable, among other things, better error checking and control of FG’s variables have begun. We also plan to expand
FG to allow for other pipeline structures, such as nested pipelines, thus increasing the scope of FG substantially. FG
will continue to grow and provide programmers with new opportunities.

34

Chapter 6

Acknowledgements

Without the help of many people, I would certainly never have finished this thesis. In particular I would like to thank
my parents for their love, support, and countless sacrifies throughout the years. Without their help, I would never have
come to Dartmouth and had the opportunity to write a thesis here. Sara Szkola and John Paul Reid were incredibly
supportive through it all, and John Paul also willingly read my thesis repeatedly at all hours of the night. I would also
like to thank the rest of my family and friends, for standing by me during the difficult weeks.

I am grateful for having had the opportunity to work with Geeta Chaudry and Elena Davidson during the course
of my thesis. It was a pleasure to work with them, and their help and support was immense. I would like to also
acknowledge my thesis committee who gave up their time to help me, both during and at the end of the thesis process.
I wish I had had the time to implement more of their suggestions.

My deepest gratitude goes to my advisor, Professor Cormen, who has been there from the first day. Without his
encouragement, I would probably have never been a computer science major and would definitely not have undertaken
a senior honors project. There is no way I can express my gratitude for the countless hours he gave up to help me with
this thesis, particularly during the last month.

35

Bibliography

[BC99] Lauren M. Baptist and Thomas H. Cormen. Multidimensional, multiprocessor, out-of-core FFTs with
distributed memory and parallel disks. In Proceedings ofthe Eleventh Annual Symposium on Parallel
Algorithms and Architectures, pages 242–250, June 1999.

[CC02] Geeta Chaudhry and Thomas H. Cormen. Getting more from out-of-core columnsort. In 4th Workshop
on Algorithm Engineering and Experiments (ALENEX 02), pages 143–154, January 2002.

[CCW01] Geeta Chaudhry, Thomas H. Cormen, and Leonard F. Wisniewski. Columnsort lives! An efficient
out-of-core sorting program. In Proceedings of the Thirteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 169–178, July 2001.

36

	Enhancing Asynchronous Parallel Computing
	Recommended Citation

	tmp.1600462640.pdf.Ekz7E

