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Abstract

High-throughput NMR structural biology and NMR structural genomics pose a fascinating set of
geometric challenges. A key bottleneck in NMR structural biology is the resonance assignment problem.
We seek to accelerate protein NMR resonance assignment and structure determination by exploiting a
priori structural information. In particular, a method known as Nuclear Vector Replacement (NVR)
has been proposed as a method for solving the assignment problem given a priori structural informa-
tion [24, 25]. Among several different kinds of input data, NVR uses a particular type of NMR data
known as residual dipolar couplings (RDCs). The basic physics of residual dipolar couplings tells us
that the data should be explainable by a structural model and set of parameters contained within the
Saupe alignment tensor.

In the NVR algorithm, one estimates the Saupe alignment tensors and then proceeds to refine
those estimates. We would like to quantify the accuracy of such estimates, where we compare the
estimated Saupe matrix to the correct Saupe matrix. In this work, we propose a way to quantify this
comparison. Given a correct Saupe matrix and an estimated Saupe matrix, we compute an upper
bound on the probability that a randomly rotated Saupe tensor would have an error smaller than the
estimated Saupe matrix. This has the advantage of being a quantified upper bound which also has a
clear interpretation in terms of geometry and probability. While the specific application of our rotation
probability results is given to NVR, our novel methods can be used for any RDC-based algorithm to
bound the accuracy of the estimated alignment tensors. Furthermore, they could also be used in X-ray
crystallography or molecular docking to quantitate the accuracy of calculated rotations of proteins,
protein domains, nucleic acids, or small molecules.
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1 Introduction

In the field of structural biology, nuclear magnetic resonance (NMR) is a powerful tool for studying
the structure of proteins, as well as elucidating the interaction of proteins with other molecules. Typically,
the results of protein solution-state NMR experiments yield geometric measurements such as inter-proton
distances, dihedral bond angles, and global orientations of bonds. While such information is extremely
useful, NMR data is initially unassigned. For example, we are typically given a protein with a known
sequence of amino acids, which we simply index sequentially. NMR data will give a set of constraints (e.g.,
inter-proton distances), but will reference the amino acids with a different and arbitrary indexing scheme
(based on nuclear resonance frequency). The process of determining the one-to-one mapping from one
indexing scheme to the other, is known as assignment. Assignment is the solution to an inverse problem,
namely, the mapping of k-tuples of resonance frequencies to the k-tuples of interacting NMR-active
nuclei [2, 5, 16, 45]. The assignment problem is perhaps the critical bottleneck for the interpretation and
exploitation of NMR data. It is desirable to discover faster methods for solving it, as well as to exploit
any formal insights about the combinatorial complexity and structure of the problem.

Recently, a number of researchers have sought to accelerate protein Nuclear Magnetic Resonance
(NMR) assignment and structure determination by exploiting a priori structural information. By anal-
ogy, rapid structure determination is facilitated in X-ray crystallography by the molecular replacement
(MR) technique [34] for solving the crystallographic phase problem. The corresponding bottleneck in
NMR structural biology is the resonance assignment problem. One would hope that knowing a structural
model ahead of time could expedite assignment. Moreover, even when the structure of a protein has
already been determined by X-ray crystallography or computational homology modeling, NMR assign-
ments are valuable because NMR can be used to probe protein-protein interactions [10] (via chemical
shift mapping [6]), protein-ligand binding (via SAR by NMR [40] or line-broadening analysis [11]), and
dynamics (via, e.g., nuclear spin relaxation analysis [32]).

To enable structure-based resonance assignment, the idea of correlating unassigned experimentally
measured residual dipolar couplings (RDCs) [41, 27] with bond vector orientations from a known struc-
ture was first proposed by [2] and subsequently demonstrated in [1] who considered permutations of
assignments for RNA, and [16] who assigned a protein from a known structure using bipartite matching.
Later, we proposed a method known as Nuclear Vector Replacement (NVR) [24, 25], which builds on
these works and offers some improvements in terms of isotopic labeling, spectrometer time, accuracy,
robustness and computational complexity. Within the NVR algorithm—as well as within almost any
RDC-based algorithm—it becomes necessary to interpret the NMR data known as residual dipolar cou-
plings (RDCs). According to basic physics, the RDC data should be explained by the the structure of the
protein, as well as several parameters represented by the Saupe alignment tensor. As is well-known [27]
the alignment tensor may be represented by specifying its eigenvalues, together with a 3D rotation (called
the principle order frame or POF). Our paper presents a novel and rigorous methods for bounding the
accuracy of rotation matrices. This general method is then applied to quantitate the accuracy of POFs.

Specifically, in the NVR algorithm, one estimates the Saupe alignment tensors and then proceeds
to refine those estimates. We would like to quantify the accuracy of such estimates, where we compare
the estimated Saupe matrix to the correct Saupe matrix. We propose a novel way to quantify this
comparison. Given a correct Saupe matrix and an estimated Saupe matrix, we compute an upper bound
on the probability that a randomly-rotated Saupe tensor would have a geometric error smaller than the
estimated Saupe matrix.

In Section 2, we first give a brief introduction to residual dipolar couplings. Then in Section 4.1,
we explain our method for comparing Saupe alignment tensors. Finally, we present some results which
quantify the accuracy of NVR’s Saupe matrix estimation. While the specific application of our rotation
probability results is given to NVR, these novel methods can be used for any RDC-based algorithm to
bound the accuracy of the estimated alignment tensors. Furthermore, they could also be used in X-
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ray crystallography or molecular docking to quantitate the accuracy of calculated rotations of proteins,
protein domains, nucleic acids, or small molecules.

2 Background (Brief Introduction to Residual Dipolar Couplings)

Residual dipolar couplings (RDCs) are a quantum mechanical effect arising from the dipole-dipole
interaction of nuclear spins. While the detailed physics are not important for our problem, we briefly
explain the formalism of RDCs.

RDC’s are experimentally measured real values that may be interpreted as constraints on the orien-
tation of a chemical bond. We explain this formally (we follow [44, 27]).

Let n = number of residues in the protein.
Let vi = a unit column vector in R3 which represents the orientation of a chemical bond. (1 ≤ i ≤ n).

(We’ll consider only one chemical bond per residue.)
Let the Saupe Matrix, S = a 3× 3 matrix which is symmetric and traceless.

We define the residual dipolar coupling (RDC) to be a quadratic form over the unit sphere:

Di = D(vi) ≡ k vT
i Svi (1)

where k is a constant based on physical constants and the dynamics of the protein in solution [38, 44,
27].

Suppose we are given S and Di, then equation (1) is a constraint on the possible orientations of vi.
In a typical RDC experiment, the Di are measured, however, both the vi and the Saupe matrix S are
unknown. When computing S, it is useful to note that S has only five degrees of freedom because it is
real, symmetric, and traceless.

3 Description of Problem and Previous Work

In the case that we are given Di and the corresponding (i.e., assigned) vi, we can compute the
correct1 Saupe matrix S via the Singular Value Decomposition method (SVD) [27]. Our problem, then,
is to quantify the comparison between the correct Saupe matrix, and an estimated one. We observe that
the Saupe matrix is real and symmetric; therefore it has real eigenvalues and orthogonal eigenvectors. In
fact, the Saupe matrices are completely specified by their eigenvalues and eigenvectors. Accordingly, our
similarity measure is broken up into two parts: a comparison of eigenvalues, and then a comparison of
eigenvectors.

Following standard notation [44], we sort the eigenvectors by eigenvalue2. We then compare eigen-
values and eigenvectors of the same rank. For the eigenvalues, one can simply compute the relative error
between the estimated and correct eigenvalues. For the eigenvectors, one can compute the angle between
each correct eigenvectors and its corresponding estimated eigenvector.

Both of these measures are simple and useful. The eigenvalues can be considered to have units of
Hertz, which are directly comparable to the resolution of the NMR spectrum. That is to say, the resolution
of the NMR spectrum gives us a length scale for judging the accuracy of the estimated eigenvalues. For
example, if the error in the eigenvalues is much larger than the resolution of the NMR spectrum, we
would judge the eigenvalues to be inaccurate.

1For the purposes of comparison and to quantitate the accuracy of NVR, “true” values of the alignment tensors are
determined by computing the optimal Saupe matrix using the correct assignments. For this paper, it is not important how
the “correct” Saupe matrix is computed.

2Following the convention of Scheraga and co-workers [44], we label the largest eigenvalue as z, the smallest as y, and the
middle as x.
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For the eigenvectors, the angular errors are simple to understand geometrically. However, it is not
clear how to judge when the angular errors may be considered “small”. There are several ways to do
this, such as comparing the angular errors to an angular threshold set by, say, the required accuracy for
drug design, or perhaps the angular changes from protein dynamics. While many of these methods are
useful, we propose a new measure of eigenvector accuracy which is purely geometrical, and contains an
intuitive notion of “how difficult” it is to achieve a given angular accuracy. We see our method as a new
measure which provides some additional insight, and not as a replacement of other measures.

4 Methods

4.1 Percentile Measure of Saupe Eigenvector Accuracy

We motivate our method with a simple idea: We will use probability as the judge of accuracy. Given
an estimated answer, and a correct answer, we can ask the question: Suppose we randomly guessed
a solution. What is the probability that the random guess is closer to the correct solution than the
estimated answer? Alternatively we can ask, what fraction of all possible solutions are worse than our
estimated solution?

To apply this idea, we need to specify two things: first, a base measure of accuracy, second, the space
of all solutions. For our base measure of accuracy, we will choose the angular error between corresponding
eigenvectors. Formally, we define this as follows:

Let S1 = correct Saupe matrix (2)
Let S2 = estimated Saupe matrix (3)

Let λi = eigenvalues of S1 where λ3 > λ1 > λ2 (4)
Let vi = eigenvectors of S1 where S1vi = λivi (5)
Let ρj = eigenvalues of S2 where ρ3 > ρ1 > ρ2 (6)

Let wj = eigenvectors of S2 where S2wj = ρjwj (7)
Let ](vi,wj) = the angle between the vectors vi and wj (8)

Let ]min(vi,wj) = min(](vi,wj),](−vi,wj)) (9)

Definition 4.1 Given: a Saupe matrix Q with eigenvalues γ3 > γ1 > γ2 and corresponding eigenvec-
tors uk where Quk = γkuk. We say the eigenvectors of Q are geometrically more accurate than the
eigenvectors of S2 when ]min(ui,vi) ≤ ]min(wi,vi) for all i ∈ {1, 2, 3}.

We define ]min as stated above, because we need to account for the inversion symmetry of eigenvec-
tors. That is, if v is an eigenvector of S1 with eigenvalue λ, then so is −v. Also, it is worth noting that
we require all the corresponding eigenvectors of Q to have angular deviations which are smaller than the
deviations of S1 eigenvectors.

Next, we need to specify the space of all possible solutions. We consider all possible rotations of
a Saupe matrix Q and its corresponding eigenvectors. Here, we encounter two issues: First, we want
to consider all rotations in an isotropic manner, so that all orientations of Q are equally likely in an
geometric sense. Second, we need to account for the inversion symmetry of eigenvectors: if uj is an
eigenvector of Q with eigenvalue γj , then so is −uj . This inversion symmetry will be accounted for as
a multiplicative factor within our final solution. In the following two sections, we formally explain the
details of how we address both issues.
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4.1.1 Isotropic Representations of Rotations

There are many representations of rotations. Some examples include Euler angles, axis-angle, and quater-
nions. We wish to choose a representation which is isotropically uniform. Euler angles are known to have
singularities in their parameterization (so-called “gimbal lock” in computer graphics). As a result, Euler
angles are clearly not an isotropically uniform representation. In our work here, we choose a modified
version of axis-angle, and show that it is isotropic. The motivation for our choice is simply convenience.

Definition 4.2 Let P be a probability distribution over all possible rotations.
Let L be an arbitrary set of rotations.
Let P (L) be the probability that we pick a rotation in L, if we randomly choose according to P .
Let R be an arbitrary rotation.
Let RL be the set of all rotations generated by rotating each element of L by R.
Let P (RL) be the probability that we pick an rotation in RL, if we randomly choose according to P .
We say that the probability distribution P is rotationally symmetric if and only if for all rotations R,
and for all possible sets of rotations L, that P (L) = P (RL).

For those familiar with group theory, it is worth noting that a rotationally symmetric probability
distribution is a special case of the Haar measure on rotations [8]. A Haar measure is a measure over
subsets of the group, and is invariant under group operations. In our case, our group is the space of
rotations, and our group operations are composition of rotations.

Definition 4.3 Let G(α, β, γ) be a parameterization of rotations, SO(3), with parameters α, β, and γ.
Let D(α, β, γ) be a uniform probability distribution over the range of (α, β, γ).
Let v be a unit vector.
Let Fv be the distribution of unit vectors, Gv, induced by D.
We say G is isotropically uniform if and only if both of the following are true:
1. For all v ∈ S2, Fv is the uniform distribution over the unit sphere S2

2. D induces a distribution over rotations that is rotationally symmetric.

Intuitively, we want a way to choose a random rotation whereby we mean that the rotation of a vector,
v, creates a new vector, v′, that is completely randomized. In otherwords, the distribution of v′ should
be uniform over the sphere.

There are several ways to choose a parameterization G which is isotropically uniform. For example,
there is likely to be a parameterization based on quaternions. Another example is the orthogonal image
representation of rotations [28, 29], which is closely related to our method (we discuss the connection
below). For our purposes, we start with coordinate frames because they are easier to visualize. Frames
are isomorphic to rotations, so this is simply a choice of representation (see Appendix C). We start with
a modified axis-angle representation of frames and then, conceptually, we convert frames into rotations.
We then show that the modified axis-angle representation of rotations is isotropically uniform. Finally,
we use the geometry of the modified axis-angle representation to simplify some of the algebra when we
compute our similarity measure for Saupe matrices.

Because our axis-angle representation differs from the canonical (classical) axis-angle representation
of rotations, we will define both, so that they can be compared. We will call the new representation the
frame-axis-angle representation, or FAA because it is more closely related to coordinate frames. We will
use the term axis-angle to mean the canonical (classical) representation.

Definition 4.4 By frame, we mean a choice of coordinate frame. Formally, a coordinate frame is an
ordered triple of unit vectors (x,y, z) such that the the vectors are orthogonal to each other and oriented
according to the right-hand rule, x× y = z.
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Definition 4.5 Let v be a unit vector in R3, and let θ ∈ [0, 2π).
We define the (canonical) axis-angle representation of rotations to be a mapping which takes (v, θ) to the
rotation by θ radians around the axis v .

Definition 4.6 Let u be a unit vector in R3, and let θ ∈ [0, 2π).
We define the frame-axis-angle representation of frames (or FAA) to be a mapping which takes (u, θ) to
the coordinate frame specified as follows:
1. Choose the z-axis to be along u.
2. Choose the x-axis to be perpendicular to u and rotated around u by an angle specified by θ. The exact
position of θ = 0 is arbitrary3, but is considered to be a constant for each choice of u.
3. Now the y-axis is uniquely determined by the requirements that the y-axis is orthogonal to the other
two axes, and that the coordinate system is right-handed.

While both axis-angle and FAA use the same parameters as input (a unit vector, and an angle), it
should be clear that axis-angle and FAA are different. In the axis-angle representation, the both the axis
and angle of the rotation are explicitly specified. However, in FAA, neither the axis nor the angle of
rotation is immediately obvious; the vector in axis-angle represents the axis of rotation, while in FAA it
represents the new position of the z-axis.

We note that the FAA representation is a one-to-one and onto mapping between S2×S1 and frames.
For a proof, see Appendix B. We also note that FAA is a discontinuous parameterization of frames. While
this might appear to be problematic, it does not affect our proof that FAA is an isotropic representation
of frames (the proof is in Appendix A). However, we do address the discontinuities explicitly when we
integrate over the parameters of the FAA representation (see Section 4.1.2 and equation (19)). For a
proof that FAA is discontinuous, see Appendix B.

Definition 4.7 Let H be a frame (coordinate frame) specified by (x,y, z).
Let v = [x, y, z] be a unit vector.
We define applying frame H to v to be the vector v′ = Hv = xx + yy + zz.

We define isotropically uniform parameterizations of frames in a manner analogous to rotations.

Definition 4.8 Let P be a probability distribution over all possible frames.
Let L be an arbitrary set of frames.
Let P (L) be the probability that we pick a frame in L, if we randomly choose according to P .
Let R be an arbitrary rotation.
Let RL be the set of all frames generated by rotating each element of L by R.
Let P (RL) be the probability that we pick a frame in RL, if we randomly choose according to P .
We say that the probability distribution P is rotationally symmetric if and only if for all rotations R,
and for all possible sets of frames L, that P (L) = P (RL).

Definition 4.9 Let H(α, β, γ) be a parameterization of frames, with parameters α, β, and γ.
Let D(α, β, γ) be a uniform probability distribution over the range of (α, β, γ).
Let v be a unit vector.
Let Fv be the distribution of unit vectors, Hv, induced by D.
We say H is isotropically uniform if and only if both of the following are true:
1. For all v ∈ S2, Fv is the uniform distribution over S2.
2. D induces a distribution over frames that is rotationally symmetric.

3As a result, the FAA representation is not unique, but is many parameterizations which differ only in their specification
of where θ = 0 for each choice of u.
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We now claim that the FAA representation is isotropically uniform. The problem of how to isotrop-
ically sample rotations has been studied extensively. Our particular choice of representation is based
on convenience and usefulness when applied to our particular problem (comparison of Saupe matrices).
We prove that our FAA representation is isotropically uniform, by relating it to known representations
of rotations that are rotationally symmetric. In particular, there is a closely related representation of
rotations known as the orthogonal image representation [28, 29]. Our FAA representation is a direct pa-
rameterization of the orthogonal image representation. The orthogonal image representation can be seen
as a special case of the subgroup algorithm [8]. Therefore the FAA representation is a parameterization
of the subgroup algorithm. The subgroup algorithm provides a general way for computing uniformly
distributed variables of compact groups.

For some intuition, and a sketch of the proof that the FAA representation is isotropically uniform,
see Appendix A. For a discussion of some technical points about the FAA representation, see Appendix
B. Appendix C discusses the relationship between a few different representations of rotations, including
FAA, orthogonal image, and quaternions.

Theorem 4.10 The FAA parameterization is isotropically uniform.

Proof. See Appendix A.
2

FAA is an isotropic representation of frames. We now connect frames to rotations, to show that
FAA is an isotropic representation of rotations. Each rotation determines a unique frame relative to
the standard Euclidean frame ([1, 0, 0], [0, 1, 0], [0, 0, 1]). Similarly, each frame determines a unique ro-
tation representing the transformation that changes the Euclidean frame into the given frame. Note
that the columns of a rotation matrix are the unit vectors of its corresponding frame, and vice-versa.
So, this association is one-to-one and onto. In fact, frames and rotations are isomorphic (see Appendix C).

Now that we have an isotropically uniform representation of frames and rotations, we can proceed to
consider orientations of Saupe matrices and their eigenvectors.

4.1.2 Orientations of Saupe Matrices and Eigenvectors

We now return to our problem of how to compare eigenvectors and orientations of Saupe matrices.
We solve our problem in three stages. First, we simplify the problem by first ignoring the inversion
symmetry of the eigenvectors. Second, we approximate the solution to make the algebra more tractable.
Our approximation will yield a strict upper bound on the probability. Third, we account for the inversion
symmetry of the eigenvectors.

Because Saupe matrices are real and symmetric, their eigenvectors are orthogonal. The orthogonal
eigenvectors can be used to form a coordinate system (frame). For choosing the coordinate system, one
may recall that we have sorted the eigenvectors by eigenvalues and then labeled them by their sorted
rank. Using the standard labeling, we take the eigenvector with the largest eigenvalue, and label it as
the z-axis, and we take the eigenvector with the smallest eigenvalue is labeled as the y-axis, and finally
the remaining eigenvector is labeled as the x-axis. For now we ignore the inversion symmetry of the
eigenvectors, and assume them to be uniquely determined and to be a right-handed coordinate system.
(Due to the inversion symmetry, it is always possible to choose the eigenvectors to form a right handed
coordinate system. Later, we will allow for the inversion symmetry in our calculations.)

Our now simplified problem can be stated as follows:
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Let F1 = (x1,y1, z1) coordinate frame of correct Saupe Matrix (10)
Let F2 = (x2,y2, z2) coordinate frame of estimated Saupe Matrix (11)

Let ](v,w) = the angle between the vectors v and w (12)

Suppose we randomly choose a new coordinate system F3 = (x3,y3, z3). We want to know the prob-
ability that F3 is geometrically closer to F1 than is F2. The three constraints are:

Let C1 be the constraint: ](x1,x3) ≤ ](x1,x2) (13)
Let C2 be the constraint: ](y1,y3) ≤ ](y1,y2) (14)
Let C3 be the constraint: ](z1, z3) ≤ ](z1, z2) (15)

We choose F3 in a manner is is isotropically uniform over all frames (coordinate frames). Another way
to state our problem is to ask what fraction, Pc, of all frames, F3, satisfy C1, C2, and C3 simultaneously.
By integrating characteristic functions over all frames, we can compute the fraction, PC of frames that
satisfy our constraints. We use the FAA representation to perform the integration in an isotropically
uniform manner.

Let Ω(v, θ) = The frame specified by FAA (unit vector v, angle θ).(16)
Let PC = The probability that F3 satisfies C1, C2, and C3.(17)

Let Ki(v, θ) = (Characteristic function:) Ki = 1 if Ci is satisfied for F3 = Ω(v, θ), otherwise, Ki = 0.(18)

Let PC = Prob(C1 ∧ C2 ∧ C3) =
1
4π

∫
S2

1
2π

∫
[0,2π]

K1(v, θ)K2(v, θ)K3(v, θ) dθ dA(19)

The integral (19) is over the unit sphere v ∈ S2 with area element dA, and the unit circle θ ∈ S1 with
line element dθ. We parameterize the unit circle by the angle θ ∈ [0, 2π].

At this point, we need to address a technical point, namely the fact that FAA is not a continuous
representation of frames (see Appendix B). Although the FAA parameterization of frames is not contin-
uous, the set of all frames is continuous. Conceptually, we are integrating over all frames, but we are
forced to parameterize the set to simplify the computation. The discontinuities will not affect our inte-
gral, equation (19), so long as the integrand is bounded in the neighborhood of the discontinuities, and
the discontinuities occur on a set of measure zero. The integrand is bounded because the characteristic
functions Ki(v, θ) are bounded.

To insure that the discontinuities are a set of measure zero, we consider a special case of FAA. As
mentioned in the footnote for Definition 4.6, the FAA representation is not unique. To completely specify
an FAA representation, (u, θ), one needs to define the new location of the x-axis when θ = 0 for each
u. We choose a unique FAA representation which has discontinuities on a set of measure zero. Let R(u)
be the rotation that maps the z-axis to u by moving the z-axis along the geodesic between them. Next,
let Ru(θ) be a rotation by θ degrees around the axis u. We can now uniquely choose our representation
as FAA(u, θ) = Ru(θ)R(u). This mapping from (u, θ) to rotations (frames), is continuous everywhere
except when the geodesic between u and the z-axis is not uniquely defined. On the 2-sphere, geodesics are
unique except between antipodal points. As a result, our mapping is continuous everywhere except when
u points in the negative z direction. For our FAA parameterization, the discontinuity at u = [0, 0,−1]
occurs only on a set of measure zero, therefore our integral (19) is unaffected by the discontinuity.
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Now, computing PC exactly is likely to be very complicated algebraically. Instead, we simplify the
algebra by computing an upper-bound on PC . We get an upper bound by replacing K1 and K2 with
upper bound on their individual values. First, we replace the factor K2 with unity. This is equivalent to
relaxing away our constraint C2.

Second, we’ll find an upper-bound on K1. However, before we get an upper bound on K1, we wish
to simplify the integral slightly. Notice that K3 corresponds to constraint C3 which constrains only the
z-axis of F3. We see that K3 has no dependence on θ. (The choice of θ only rotates about the axis
v = z3, and does not change the direction of v.) As a result, we can pull K3 outside of the inner-most
integral. We’re left with

K3(v, θ) = K3(v) (20)

PC ≤
1

8π2

∫
S2

K3(v)
∫

[0,2π]
K1(v, θ) dθ dA (21)

To get an upper bound on K1, we consider the geometry of the problem. The inner integral of K1 can
be thought of as a function of v. We can simply ask, then, what is the maximum value of that function,
over all possible v?

Let J1 = max
v∈S2

∫
[0,2π]

K1(v, θ) dθ (22)

To visualize the geometry of our problem, let us work in the coordinate frame F1 of the correct Saupe
matrix. (See Figure 1.) Our constraint C1 can be visualized as a small circle sitting on the equator (in
the figure, this circle is labeled O and has an angular radius of ](x1,x2)). The C1 requirement that
](x1,x3) ≤ ](x1,x2) means that we require x3 to fall within this circle. For a fixed v, we have z3 = v is
also fixed. Then as θ rotates around, the location of x3 will sweep out a great circle. If this great circle
intersects the circle O, then we can satisfy our condition C1. If the great circle does not intersect the
circle O, then for this choice of v, there is no angle θ which can satisfy C1.

Let’s return to equation (22). For a fixed choice of v, the value of the integral is equal to the angle
for which the indicator function K1(v, θ) is equal to unity (non-zero). This angle is simply the range of
θ for which x3 falls inside the circle. This is simply the length of the arc, of the great circle of x3, which
is inside the circle O. Over all possible choices of v, the maximal length of this arc cannot be more than
the angular diameter of the circle O. Therefore, an upper bound on equation (22) is simply

2](x1,x2) ≥ J1 = max
v∈S2

∫
[0,2π]

K1(v, θ) dθ (23)

Our equation for satisfying our constraints, now looks like

PC ≤
1

8π2

∫
S2

2K3(v)](x1,x2) dA (24)

=
](x1,x2)

4π2

∫
S2

K3(v) dA (25)

The final integral involving K3 is simply the area of the disc where v satisfies ](z1,v) ≤ ](z1, z2).
We can perform this integral in polar coordinates to obtain:
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Figure 1: Diagram for Upper Bound on the Integral of K1. We start with the unit sphere. We
consider two coordinate frames (x1,y1, z1) and (x3,y3, z3). The two circles are labeled by their angular
radii ](x1,x2) and ](z1, z2). These two circles represent our constraints C1 and C3 respectively (see
equations (13)-(15).) The circle around x1 we call O, and we call the other circle W . The constraint
C1 requires that x3 fall inside of the circle O, and the constraint C3 requires that z3 fall inside of the
circle W . Notice that once z3 is fixed, x3 can travel along a great circle, as θ rotates x3 around v (by
construction v = z3). The maximal range of θ which satisfies our constraint C1 cannot be larger than the
diameter of the circle O which is 2](x1,x2).
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∫
S2

K3(v) dA =
∫ ](z1,z2)

0

∫ 2π

0
sin(θ) dφ dθ = 2π(− cos(](z1, z2)) + cos(0)) (26)

Combining our results, we get:

PC ≤
](x1,x2)

4π2

∫
S2

K3(v) dA (27)

PC ≤
](x1,x2)

2π
(1− cos(](z1, z2))) (28)

PC ≤
](x1,x2)

2π
(1− z1 · z2) (29)

4.2 Inversion Symmetries and Eigenvectors

We now account for the effects of inversion symmetry on PC . Originally, we assumed that the eigenvectors
were uniquely determined, and were oriented as a right handed coordinate system. While orthogonal, the
eigenvectors are not uniquely determined due to an inversion symmetry. An eigenvector v has the same
eigenvalue as −v. Thus both v and −v are possible eigenvectors for a given eigenvalue.

To account for this, we shall use the idea of measuring the angle between lines which pass through the
origin. These lines are similar to vectors, however, they are “bi-directional” in the sense that they don’t
have a definite direction like a vector. Our characterization then, is to replace our eigenvectors with lines
parallel to the eigenvectors, and which pass through the origin.

Definition 4.11 Let v1 and v2 be vectors.
Let l1 and l2 be the corresponding lines of v1 and v2

We define the angle between l1 and l2 to be equal to ]min(v1,v2) = min(](v1,v2),](v1,−v2)).

Note that this definition measures the smaller angle between two intersecting lines. We choose the
smaller angle, so that identical lines will have an angular difference of zero. In addition, this approach
will over-estimate the probability PC because it may believe that vectors that are nearly π radians off
are very close. Thus it will tend to include extra frames in the over-estimate. This is consistent with our
approach of computing an upper bound on PC .

Notice that in definition 4.11 we need only to consider two cases: (v1,v2) and (v1,−v2). This
is significant, because it means that for each angle we constrain, we have only two possibilities. Our
angular constraints (13)-(15) now become

Let C′1 be the constraint: ]min(x1,x3) ≤ ]min(x1,x2) (30)
Let C′2 be the constraint: ]min(y1,y3) ≤ ]min(y1,y2) (31)
Let C′3 be the constraint: ]min(z1, z3) ≤ ]min(z1, z2) (32)

If we were to perform the same analysis as above, we discover that we gain a factor of two, for two
out of the three constraints. Why only two out of three? Because a rotation is completely specified by
the mapping of two vectors. Once z3 and x3 are specified, the line representing the y-axis is fixed. The
only possibilities are that y3 satisfies C′2 or not, and there are not multiple ways to satisfy or violate the
condition.

Conceptually, we first satisfy C′3. For each choice of z3, ]min forces us to look at the choice −z3.
These two possibilities represent two rotations that satisfy the constraint C′3. Next, we attempt to satisfy
C′1. For each choice of −z3, and for each choice of x3 that satisfies C′1, we know that a choice of −x3
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which also satisfy C′1. Combining these possibilities, we get a total of four possible solutions which satisfy
C′1 and C′3.

At this point, one might wonder if the inversion symmetry can also be applied to C′2 to generate a
total of eight solutions. However, this is impossible. If we invert y3 to become −y3, then our frame
may no longer be valid (generated by a pure rotation). Instead, we may generate what is known as a
perversion which is a pure rotation composed with a planar reflection. (Perversions change the handedness
of our coordinate system.) Our stated problem only considers all possible rotations and does not include
perversions.

Stated a different way, the choices of inverting (or not inverting) z3 and x3 can be accounted for by
modifying the parameters v and θ in the FAA representation. However, once z3 and x3 are specified,
one is not free to choose y3 because it is fully determined. Independently specifying the inversion (or
non-inversion) of y3 cannot be accounted for by v and θ, because the resulting transformation may not
be a rotation (frame). Similarly, one is free to specify any two out of the three axes as possibilities for
inversion. However, one cannot choose all three.

As a result, we need to modify our equation (29) for PC by a factor of four.

PC ≤
2](x1,x2)

π
(1− z1 · z2) (33)

Finally, we convert this probability into a lower bound of the percentile:

Percentile = 1− PC (34)

Percentile ≥ 1− 2](x1,x2)
π

(1− z1 · z2) (35)

This percentile represents the fraction of all frames which have a greater geometric difference from F1

than the geometric difference between F1 and F2.

5 Applications to NMR Residual Dipolar Couplings

We use our percentile measure (35) to characterize and quantify the accuracy of estimates of Saupe
matrices. In particular, we have investigated the accuracy of Saupe matrices in the NVR algorithm
[24, 25]. Briefly, the NVR algorithm is designed to solve the NMR assignment problem when the structure
of the target protein is known, or if a homologous structure is known. To achieve this, NMR uses a
variety of data, including a model structure, residual dipolar couplings (RDC’s), a HSQC spectrum,
amide exchange data, and unassigned NOEs. To correlate the RDC data against a model structure,
NVR needs an estimate of the Saupe matrices. Given the Saupe matrix and a NH bond vector, one can
use equation (1) to convert the vector into a simulated RDC value. The simulated RDC value can then
be compared to experimentally observed RDC values during the assignment process. We refer the reader
to [24, 25] for the details of the NVR algorithm.

The NVR algorithm was demonstrated on NMR data from a 76-residue protein, human ubiquitin,
matched to four structures, including one mutant (homolog), determined either by X-ray crystallography
or by different NMR experiments (without RDCs) [24, 25]. The feasibility of NVR was further demon-
strated for different and larger proteins, using different combinations of real and simulated NMR data
for hen lysozyme (129 residues) and streptococcal protein G (56 residues), matched to a variety of 3D
structural models [24, 25]. (See table 7.)

NVR’s first stage is to make an estimate of the Saupe matrices. Sufficient accuracy in this first stage is
important, as subsequent stages of the algorithm depend on a reasonable initial estimate. We characterize
the accuracy of the Saupe matrix estimates in three ways. First, we compare the eigenvalues by looking
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Bicelle 292◦K Bicelle 298◦K
Percent Difference Angular Difference Percent Difference Angular Difference

Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile
1G6J 2.3 0.2 20.8 25.1 21.8 98 12.0 5.0 28.1 30.3 16.1 96
1UBI 1.1 3.7 27.3 28.2 7.1 96 15.2 8.3 28.4 17.8 27.7 96
1UBQ 0.8 2.6 17.5 11.7 20.8 99 15.3 7.9 16.4 27.3 32.0 95
1UD7 0.2 2.2 21.2 16.5 25.8 98 14.7 6.9 16.9 16.3 7.4 99

Table 1: Ubiquitin Tensor Estimates. This table demonstrates the accuracy of the first step of the NVR
algorithm — tensors estimation. (Columns 2 and 3) Percentage difference for the axial and rhombic terms, Da

and Dr, for the four models, 1G6J, 1UBI, 1UBQ and 1UD7, vs. the actual axial and rhombic terms in the bicelle
medium recorded at 292◦ Kelvin. The Da and Dr differences are normalized by the range of the experimentally-
measured dipolar coupling values. (Columns 4-6) Angular differences (in degrees) between the eigenvectors of the
estimated tensors and the eigenvectors of the actual tensors in the bicelle medium at 292◦ K. Szz is the director of
the tensor (i.e., the eigenvector associated with the largest eigenvalue of the tensor), Sxx and Syy are eigenvectors
associated with the second largest and smallest eigenvalue of the tensor, respectively. (Columns 8 and 9, Columns
10-12) Accuracy of the tensor estimates in the bicelle medium recorded at 298◦ K. Columns 7 and 13 report the
accuracy of the tensor estimate as a percentile (equation (34)).

Phage Bicelle
Percent Difference Angular Difference Percent Difference Angular Difference

Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile
1GB1 0.6 6.0 26.8 23.3 21.4 97 2.4 6.6 17.9 20.5 22.3 98
2GB1 0.2 0.5 26.8 23.3 21.4 97 1.7 10.3 17.9 20.5 22.3 98
1PGB 0.6 6.0 23.8 24.5 28.8 97 2.4 6.6 15.2 29.3 25.8 96

Table 2: SPG Tensor Estimates. Tensor estimates for the B1 domain of streptococcal protein G (SPG).

at percentage differences of the axial and rhombic components of the tensor [44].

Let S = a Saupe matrix (36)
Let λi = eigenvalues of S where λ3 > λ1 > λ2 (37)

Definition 5.1 The axial component of S is defined to be Da = 1
2λ3.

Definition 5.2 The rhombic component of S is defined to be Dr = 1
3(λ1 − λ2).

Next, we consider the angular error between corresponding eigenvectors. Finally, we use our percentile
measure to characterize the fraction of all orientations which have larger angular errors. See tables 1-3. As
one can see, the percentiles are above eighty percent, with typical values above ninety-four percent. This
level of accuracy is sufficient for subsequent stages in NVR to achieve good accuracy for assignment. (See
table 7.) After assignment is complete, the Saupe matrices have been refined with very good accuracies
(see tables 4-6).

Before assignment, a few of the angular deviations appear to be significantly large (approaching thirty
degrees; see tables 1-3), however the percentile measure shows the difference in overall rotation to be small
(percentiles over ninety-four percent). Despite apparently significant angular deviations, NVR converges
to assignments with high accuracy. This may suggest that for our specific case here (NVR), the percentile
measure could be more useful than angular deviations for characterizing the accuracy of Saupe matrices,
in the sense that it might be a more accurate indicator of when NVR will converge with high accuracy.
We believe these results indicate that the percentile measure has potential to provide some insight for
many applications of residual dipolar couplings.

12



5% Bicelle 7.5% Bicelle
Percent Difference Angular Difference Percent Difference Angular Difference

Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile
193L 1.5 0.1 16.7 6.7 16.7 99 8.8 8.7 38.6 49.0 33.2 85
1AKI 2.3 0.5 13.2 10.6 8.5 99 10.0 9.3 23.2 51.0 45.2 81
1AZF 1.7 0.5 7.6 7.3 5.6 99 9.5 8.5 31.2 29.6 11.0 95
1BGI 1.2 0.7 30.0 8.5 29.8 96 8.9 9.4 24.6 43.8 35.7 89
1H87 2.1 0.2 26.2 29.9 34.2 94 9.9 8.6 23.8 15.3 25.8 97
1LSC 1.7 0.4 16.1 20.8 22.8 98 8.9 8.5 12.2 12.0 11.6 99
1LSE 1.7 0.4 12.6 49.2 44.5 83 9.5 8.3 29.2 48.2 42.1 84
1LYZ 9.8 5.0 10.7 21.4 18.5 99 18.9 8.5 21.3 21.0 24.1 98
2LYZ 3.5 1.8 20.8 16.2 16.2 99 11.56 8.3 23.8 25.0 7.5 98
3LYZ 4.3 2.4 20.0 31.4 25.2 96 12.7 8.0 27.8 38.1 4.4 96
4LYZ 3.1 2.3 24.0 9.3 24.0 98 12.6 8.6 12.7 14.5 17.7 99
5LYZ 3.1 2.3 23.9 9.3 24.0 98 12.6 8.6 12.7 14.5 17.7 99
6LYZ 3.0 0.7 15.7 16.8 16.8 99 11.0 8.6 26.6 37.3 46.0 87

Table 3: Lysozyme Tensor Estimates.

Bicelle 292◦K Bicelle 298◦K
Percent Difference Angular Difference Percent Difference Angular Difference

Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile
1G6J 0 0.6 0.2 0.3 0.2 100 0 0 0.2 0.2 0.1 100
1UBI 0.1 0.2 2.3 2.4 0.6 100 0 0 0.2 0.2 0.1 100
1UBQ 0 0 0 0 0 100 0 0 0 0 0 100
1UD7 0 0.1 0.5 0.2 0.5 100 0 0 0.7 0.9 0.6 100

Table 4: Ubiquitin Tensor Improvements. The accuracies of the final tensor estimates, after NVR has
completed the resonance assignment phase. The accuracy is improved from the initial tensor estimates (see Table
1).

6 Conclusions

We have presented a novel similarity measure for quantifying the error of eigenvectors of Saupe
matrices. This was done by developing a probability-based similarity measure for 3D rotations. The
similarity measure yields a lower bound of a percentile, which represents the probability that a randomly-
rotated Saupe matrix would contain eigenvectors that have a larger angular deviation. We then used this
percentile measure to study the performance of the automated NMR assignment method NVR [24, 25].
We believe that the percentile measure will be useful in quantifying the performance of many NMR
algorithms which utilize residual dipolar couplings. In addition, our ideas may also help elucidate the
performance of other rotation-based algorithms in structural biology, computational chemistry, and drug
design, by quantifying the error of orientations and rotations of chemical bonds, domains, proteins, and
ligands.

In closing, we make an observation about our final result, and consider future possibilities for investi-
gation. Suppose that the errors in angles between two Saupe matrices are roughly equal. That is, suppose
α = ](x1,x2) = ](z1, z2). In this case, we note that a Taylor expansion of equation (34) is O(α3) for
small angles alpha. As a result, our percentile (35) converges very rapidly to unity, when the angular
errors become small.

Finally, we note there are other approaches to comparing Saupe matrices that are likely to be useful.
One approach is to assume a uniform distribution of chemical bond orientations, and then to compare
the distribution of RDC values generated by each Saupe matrix. For example, one could imagine doing
a simple RMSD comparison, or a more sophisticated Hausdorff based comparison [12, 17]. Even beyond
that, there may be comparison methods that are based on the geometry of the protein in question, and
may include physical effects such as flexibility and dynamics. It may then be possible for a probabil-
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Phage Bicelle
Percent Difference Angular Difference Percent Difference Angular Difference

Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile
1GB1 0 0 0 0 0 100 0 0 0 0 0 100
2GB1 0 0 0 0 0 100 0 0 0 0 0 100
1PGB 0 0 0 0 0 100 0 0 0 0 0 100

Table 5: SPG Tensor Improvements. The accuracies of the final tensor estimates, after NVR has
completed the resonance assignment phase. The accuracy is improved from the initial tensor estimates
(see Table 2).

5% Bicelle 7.5% Bicelle
Percent Difference Angular Difference Percent Difference Angular Difference

Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile
193L 0 0 0 0 0 100 0 0 0 0 0 100
1AKI 0 0 0 0 0 100 0 0 0 0 0 100
1AZF 0 0 0 0 0 100 0 0 0 0 0 100
1BGI 0 0 0 0 0 100 0 0 0 0 0 100
1H87 0 0 0 0 0 100 0 0 0 0 0 100
1LSC 0.1 0.1 0 0.1 0.1 100 0 0.1 0 0 0 100
1LSE 0 0 0 0 0 100 0 0 0 0 0 100
1LYZ 0 0 0 0 0 100 0 0 0 0 0 100
2LYZ 0 0 0 0 0 100 0 0 0 0 0 100
3LYZ 0 0 0 0 0 100 0 0 0 0 0 100
4LYZ 0 0 0 0 0 100 0 0 0 0 0 100
5LYZ 0 0 0 0 0 100 0 0 0 0 0 100
6LYZ 1.5 3.3 0.7 1.2 1.0 100 1.9 5.8 0.8 5.3 5.2 100

Table 6: Lysozyme Tensor Improvements. The accuracies of the final tensor estimates, after NVR
has completed the resonance assignment phase. The accuracy is improved from the initial tensor estimates
(see Table 3).

ity measure to be defined for comparing eigenvalues in addition to our method for comparing eigenvectors.
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(C: Lysozyme)

PDB ID Exp. Method Accuracy
1GB1 [15] NMR 100%
2GB1 [15] NMR 100%
1PGB [13] X-ray (1.92 Å) 100%

(B: SPG)

PDB ID Exp. Method Accuracy
1LYZ [9] X-ray (2.0 Å) 100%
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6LYZ [9] X-ray (2.0 Å) 97%
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A Proof that the FAA Representation is Isotropically Uniform

In this appendix, we discuss and prove that the FAA representation is isotropically uniform. Before
we begin, it is worthwhile to describe some incorrect intuition. As noted by [8, 29] a common error
in choosing an isotropically uniform parameterization of rotations is to use the conventional (canonical)
axis-angle representation of rotations (Definition 4.5). For axis-angle, a uniform distribution over the
parameters v over the sphere S2, and the unit circle θ ∈ [0, 2π), will not induce a rotationally symmetric
distribution over rotations. Superficially, this geometric construction appears to be rotationally sym-
metric, however it does not respect the detailed group structure of rotations. As noted by [20, 8], the
distribution over θ should not be uniform, but in fact, proportional to sin2(θ).

We begin with a brief discussion about the intuition behind the FAA representation. The intuitive
motivation is that a rotationally isotropic parameterization must, by definition, place the z-axis uniformly
over the unit sphere. Then, for a given placement of the z-axis, the x-axis must be uniformly distributed
in a unit circle perpendicular to the new position of the z-axis. The idea for this intuition is a symmetry
argument. If the distribution of x is not uniform over the circle, it seems unlikely that the parameterization
is isotropically uniform, because it seems not to be rotationally symmetric about the new position of the
z-axis. While this intuition is helpful, it is obviously not a proof.

In the proof, we will proceed in two steps. First, we show that a uniform probability distribution over
the FAA parameters induces a distribution over frames which is rotationally symmetric. To prove this,
we note that the FAA representation is a uniform parameterization of the subgroup method [8]. Second,
we show that a rotationally symmetric distribution of frames will randomize any unit vector so that it
(the vector) becomes uniformly distributed over the unit sphere. Together, these two steps show that the
FAA representation of rotations is isotropically uniform.

Lemma A.1 Consider the FAA parameterization of orientations. Let (v, θ) be the variables of the
parameterization, where v is a unit vector, and θ is an angle in the range [0, 2π). Let P1(v) be a uniform
distribution over the unit sphere S2. Let P2(θ) be a uniform distribution over the unit circle S1 such that
θ ∈ [0, 2π).

Let P (v, θ) = P1(v)P2(θ) be the probability distribution which is uniform over the parameters of FAA.
We claim that P (v, θ) induces a distribution over orientations (v, θ) which is rotationally symmetric.

Proof. According to the subgroup method [8], a rotationally symmetric probability distribution over
rotations may be chosen as follows. First perform a random rotation about the z-axis which is uniform
over all possible angles in [0, 2π). Second, rotate the z-axis to a random point on the unit sphere, in such
a way that the z-axis is uniformly distributed over the sphere. For details and the proof, we refer the
reader to [8]. The subgroup method generates a probability distribution over rotations, which in turn
induces a probability distribution over the parameters of the FAA representation. We argue that the
induced distribution is uniform over the FAA parameters.

Let Rz(θ) = the rotation around the z-axis by θ degrees.
Let R(n) = the rotation, as specified by the subgroup method, which rotates the z-axis into the unit
vector n. For our proof here, the exact details of R(n) are unimportant, except for the fact that R(n) is
a fixed function of n.
Let R(θ,n) = R(n)Rz(θ) be the rotation represented by the subgroup method.

According to the subgroup method, a choice of n which is uniform over the unit sphere, and a choice
of θ which is uniform over [0, 2π) induces a rotationally symmetric distribution over rotations (in the
language of group theory, it it induces a probability distribution which respects the Haar measure).
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Notice that in the subgroup method, the rotation of angle θ is performed first, and then the placement
of the z-axis along n is performed afterwards. This is the reverse order from our FAA representation,
where we first place the z-axis along v first, and then rotate by θ degrees around v afterwards. In
general, rotations do not commute. What we would like to do, then, is to rewrite the subgroup rotation
R(θ,n) = R(n)Rz(θ) in a form where R(n) occurs first, and then is followed by a new rotation which
takes the place of Rz(θ).

Consider a rotation about n by θ degrees. Given that R(n) rotates the z-axis to n, we can think of
R(n) as a change of basis. Using the change of basis, we know the following.

Let Rn(θ) = A rotation around the axis n by θ degrees. (38)
Rn(θ) = R(n)Rz(θ)R−1(n) (39)

Rn(θ)R(n) = R(n)Rz(θ) (40)
Rn(θ)R(n) = R(θ,n) (41)

We now see that the subgroup method can also be thought of as placing the z-axis along n first, and
then performing a rotation about n by θ degrees. This is very close to the definition of the of the FAA
representation (definition 4.6), however it differs in that θ in FAA refers to an absolute orientation, while
θ in Rn(θ) refers to a rotation.

Given an arbitrary pair (θ1,n), consider the images of the x and z axes after the rotation R(θ1,n).
By construction, the z-axis will end up pointing along n. As for the x-axis, it must remain perpendicular
to the z-axis. If θ1 varies uniformly over [0, 2π), then the image of the x-axis will be a point that varies
uniformly over a unit circle that is in the plane containing the origin, and perpendicular to the image of
the z-axis. This is easy to see from equation (41).

Let Q(v, θ2) be the frame corresponding to the FAA parameters v and θ2. We want to consider the
mapping from R(θ1,n) to Q(v, θ2), where they both represent the same frame (rotation). By construction,
we can see that both mappings move the z-axis to the corresponding input vector. Identical rotations
move the z-axis to the same location, we must have v = n. And from equation (38), we can conclude
that θ2 = θ1 + θ0(n), where θ0(n) is a constant dependent on n. One can see that θ0(n) depends on
both the specific details of R(n), and also the arbitrary choices of θ = 0 for the FAA representation (see
definition 4.6 and its footnote).

As a result, if n is uniformly distributed over the unit sphere, v will also be uniformly distributed over
the unit sphere. Furthermore, equation (41) tells us that for every n, a uniform distribution over θ1 will
induce a uniform distribution over θ2. Therefore the rotationally symmetric distribution generated by
the subgroup method will induce a uniform distribution over the parameters of the FAA representation,
namely P (v, θ) as defined above. The FAA representation is an onto and one-to-one mapping from
parameters to rotations (see Appendix B). Therefore, the converse is also true: a uniform distribution of
FAA parameters, P (v, θ), induces a distribution over rotations that is rotationally symmetric.

2

Lemma A.2 Given:
1. A rotationally symmetric distribution P over all possible frames.
2. An arbitrary unit vector v.

Let U be an arbitrary set of unit vectors (conceptually, this is a patch of the unit sphere).
Let Q(U) = probability that Hv will fall inside U if we pick a frame H according to the distribution P .

We claim that Q(U) is rotationally symmetric, in the sense that Q(U) = Q(RU) for all R where R
is an arbitrary rotation, and RU is the set of unit vectors generated by rotating each element of U by R.
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Proof. We prove this lemma by directly showing that for all sets of unit vectors, U , and for all rotations
R, that Q(U) = Q(RU).

Let H1 be the set of frames which transform v into U . That is H1v = U .
Let H2 be the set of frames which transform v into RU . That is H2v = RU .

We now show that RH1 is equal to H2.
We know that H1v = U . So, we have RH1v = RU . Therefore we know that RH1 ⊆ H2 becauseH2

is defined as the set of all frames which transform v into RU .
Similarly, H2v = RU tells us that R−1H2v = U . So we know that R−1H2 ⊆ H1 because H1 is

defined as the set of all frames which transform v into U . Rotations are a one-to-one and onto function
from frames to frames, so we can conclude that H2 ⊆ RH1.

Since RH1 ⊆ H2 and H2 ⊆ RH1, we know that RH1 = H2.

By rotational symmetry, P (H1) = P (RH1) which in turn means that P (H1) = P (H2). Since H1

maps v into U , we have P (H1) = Q(U). Similarly, P (H2) = Q(RU). Together, these imply that
Q(U) = Q(RU). Therefore Q is rotationally symmetric. The only rotationally symmetric distribution
over unit vectors, is the uniform distribution over the unit sphere. 2

Theorem A.3 The FAA parameterization of frames is isotropically uniform.

Proof. From lemma A.1, we know that a uniform distribution over the parameters of the FAA repre-
sentation induces a probability distribution over frames which is rotationally symmetric. Thus we satisfy
the second condition of definition 4.9.

From lemma A.2, we know that all rotationally symmetric distributions of rotations, will randomize
any unit vector over the unit sphere in a uniform manner.

Together, we can conclude that a uniform distribution over the parameters of the FAA representation
will randomize any unit vector so that it is uniformly distributed over the sphere. Thus we satisfy the
first condition of definition 4.9.

2

B Technical Notes on the FAA Representation

Here we prove two theorems. The first is that the FAA representation is a bijection between S2 × S1

and frames. Because S2 × S1 and SO(3) have different homology types, they cannot be homeomor-
phic [30]. As a result, any mapping between them cannot simultaneously satisfy all of the following
conditions (definition of homeomorphic):

1. The mapping is continuous.
2. The mapping’s inverse is continuous.
3. The mapping is one-to-one.
4. The mapping is onto.

In our case, we prove 3 and 4. So it must be that we cannot satisfy 1 and/or 2. In the second the-
orem, we give a direct proof that the FAA representation is not continuous.

Theorem B.1 The FAA representation is a one-to-one and onto mapping between S2 × S1 and frames.
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Proof. To prove that the FAA representation is onto, we show that given any frame H = (x,y, z), there
is a unique pair (v, θ) which represents that frame. First observe that v is always along the z-axis, so
v = z is uniquely determined. Next note that x is a unit vector which is perpendicular to z. Therefore,
x lies on a unit circle perpendicular to z. That in turn, uniquely specifies the angle θ which represents
the direction of the x-axis.

Similarly, given an axis and an angle (v, θ), the corresponding frame is uniquely determined. Therefore
the mapping is one-to-one.

2

Next, we show that the FAA representation is not continuous.

Theorem B.2 The FAA representation is not continuous.

Proof. Our proof will be by contradiction. We will show that if the axis-angle representation were
continuous, then it is possible to “continuously comb a sphere with tangent hairs.” Since there is a
theorem from differential topology [21, 35] showing that this is impossible,4 it follows that FAA is not a
continuous representation of orientations.

Suppose we are given an FAA representation H(v, θ) = (x(v, θ),y(v, θ), z(v, θ)). As noted in a
footnote earlier, there are an infinite number of FAA representations of orientations, which differ only in
their choice of θ = 0 for each v. From H, we construct a set of tangent vectors on the unit sphere S2.
Consider the function h(v) = x(v, 0). Our function h is a restricted version of our full function H. So if
h is not continuous, then H is not continuous.

Our function h(v) is a mapping from S2 to unit vectors. We know that v = z(v, θ) by definition of
the FAA representation. We also know that x(v, θ) is perpendicular to z(v, θ) because H is a mapping
to valid frames. Therefore, h(v) is perpendicular to v, which in turn means h(v) is tangent to the sphere
at v.

So our function h specifies a complete set of “tangent hairs” on the unit sphere. Therefore, by the
above mentioned theorem from topology, we conclude that h cannot be continuous. Therefore H cannot
be continuous. So any FAA representation of orientations must be discontinuous.

2

One might wonder if the discontinuities of the FAA representation are a matter of concern. For
example, the discontinuities may be localized to some parts of S2 × S1, thus making the discontinuities
themselves non-isotropic. While this may be true, it is not relevant to our discussion. All we care about
is that a uniform distribution over the parameters of FAA induces a distribution of orientations that is
isotropically uniform.

A simple analogy would be a parameterization of the unit circle by the interval [0, 1] which is uni-
form, but not continuous. For example, t ∈ [0, 1/2] gets mapped to 2πt and t ∈ [1/2, 1] gets mapped to
2π((3/2) − t). Although this mapping is not continuous, a uniform distribution over t ∈ [0, 1] induces a
uniform distribution over the unit circle.

C Relationships Between Representations of Rotations

We consider the relationship between several different representations of rotations, SO(3). Specifically,
we shall look at the representations orthogonal image, frames, quaternions, axis-angle, and the FAA
representation. The relationships are summarized by equation (52).

We begin by showing that SO(3), orthogonal image, and frames are isomorphic to each other. First,
consider SO(3) and frames. According to definition 4.4, a frame is specified by an ordered triple of

4This result from topology is colloquially known as the Hairy Ball Theorem and is a direct consequence of the famous
Brouwer Fixed Point Theorem. See references [21, 35].
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unit vectors (x,y, z) such that x × y = z. We note that one can convert between SO(3) and frames
trivially; given a rotation matrix R in SO(3), the columns of R are the unit vectors of the frame that
corresponds to R. Similarly, given a frame, F , the unit vectors of F are the columns of the corresponding
rotation matrix in SO(3). For frames to be isomorphic to SO(3), we need to define the group operator.
Naturally, we define multiplication of frames to be the equivalent operation of matrix multiplication on
the corresponding matrices. In this way, we have a one-to-one and onto mapping between frames and
SO(3) which preserves the group operations on both sides.

Next we consider the orthogonal image representation of rotations [28, 29]. Let R be a rotation. Let
y and z be the y and z axes respectively. The orthogonal image representation is based on the fact
that R is fully specified by the image of the y and z axes, namely Ry and Rz. The orthogonal image
representation is an ordered pair of vectors, which represent the image of the y and z axes under the
rotation.

If we work in the coordinate frame of y and z, then y = [0 1 0]t and z = [0 0 1]t. Let M be the matrix
in SO(3) which represents our rotation R. We now see that Ry and Rz are the second and third columns
of M . In fact, the orthogonal image is simply a more compact representation of frames. Frames have a
redundant amount of information; given any two vectors of a frame, the third can be uniquely determined
by the right hand rule x× y = z. The orthogonal image representation is similar to frames, except with
one vector removed. So if we define the group operator on orthogonal images in the analogous fashion,
we see that the orthogonal image representation is isomorphic to frames and thus SO(3).

Now that we’ve shown SO(3), frames, and the orthogonal image representation to be isomorphic to
each other, we consider quaternions. We begin with the mapping from quaternions to SO(3) [36].

Let q = (q0, q1, q2, q3) be a quaternion with scalar part q0 and vector part q1, q2, q3 (42)
Let R(q) = the matrix in SO(3) corresponding to quaternion q. (43)

R(q) =

q2
0 + q2

1 − q2
2 − q2

3 2(−q0q3 + q1q2) 2(q0q2 + q1q3)
2(q0q3 + q2q1) q2

0 − q2
1 + q2

2 − q2
3 2(−q0q1 + q2q3)

2(−q0q2 + q3q1) 2(q0q1 + q3q2) q2
0 − q2

1 − q2
2 + q2

3

 (44)

As one can see, the mapping from quaterions to SO(3) is continuous in the sense that each component
of R is a continuous function of q. One can also observe that q and −q map to the same matrix in SO(3).
It is well known that quaternions are a two-to-one homomorphism of SO(3) [36].

Another common representation of rotations is the conventional (classical/canonical) axis-angle, where
one specifies axis of the rotation by a unit vector, and the angle is the amount of rotation around the
axis (see Definition 4.5). The mapping from axis angle to quaternions is

Let T (n, θ) = axis-angle representation of a rotation with axis n and angle θ. (45)
Let q(θ,n) = quaternion corresponding to T (n, θ). (46)

q(θ,n) = cos(θ/2) + sin(θ/2)n (47)

Notice that the mapping from axis-angle to quaternions is continuous. Furthermore, if we restrict
θ to be in the range [0, 2π), then the mapping is almost one-to-one. The mapping is one-to-one except
when θ = 0.

Theorem C.1 q(θ,n) is a one-to-one mapping for θ ∈ (0, 2π), and it is many-to-one when θ = 0.

Proof.

Case 1: θ = 0.
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When θ = 0, the mapping is many-to-one because for any unit vector n, we will map (n, 0) to the
quaternion [1, 0, 0, 0].

Case 2: θ ∈ (0, 2π).
Let (θ1,n1) and (θ2,n2) be two axis-angle representations of two rotations. To show one-to-one, we need

q(θ1,n1) = q(θ2,n2) ⇐⇒ θ1 = θ2 and n1 = n2. (48)

The ⇐ direction is trivial.
We’ll show the ⇒ direction. Assume that q(θ1,n1) = q(θ2,n2).

cos(θ1/2) + sin(θ/2)n1 = cos(θ2/2) + sin(θ/2)n2 (49)
cos(θ1/2) = cos(θ2/2) (50)

sin(θ1/2)n1 = sin(θ2/2)n2 (51)

From (50) and the fact that θ1, θ2 ∈ (0, 2π), we know θ1 = θ2 because cos(θ1/2) is invertible in this
range. From (51) and the fact that θ1 = θ2 6= 0, we know that sin(θ1/2) = sin(θ2/2) 6= 0. So we must
have n1 = n2.

2

Definition C.2 We say a mapping is nearly one-to-one if and only if it is one-to-one everywhere, except
for a set of measure zero in its range and also for a set of measure zero in its domain.

Definition C.3 We say a mapping is nearly two-to-one if and only if it is two-to-one everywhere, except
for a set of measure zero in its range and also for a set of measure zero in its domain.

So, the angle-axis representation is nearly one-to-one with quaternions, and nearly two-to-one with
SO(3). It is well known that for the axis-angle representation of rotations, (θ,n) and (2π− θ,−n) repre-
sent the same rotation.

Finally, we consider the FAA representation. We refer the reader to Appendix B to show that the
mapping from the FAA representation to SO(3) is one-to-one, but discontinuous. We summarize the
relationships in (52).

We close by noting a few of the representations which are isotropically uniform. For quaternions, a
uniform parameterization of the three sphere S3 will sample rotations in a manner which is isotropically
uniform [37]. As shown in this paper, the FAA representation is isotropically uniform. However, the
conventional (canonical) axis-angle representation of rotations is not isotropically uniform (see the end
of Appendix A). The orthogonal image method is also known to be isotropically uniform [28, 29].

Quaternions
2−1,homomorphism−−−−−−−−−−−−−→

continuous
SO(3)

nearly 1−1

xcontinous

∥∥∥ isomorphic

Axis-Angle Rotations
nearly 2−1−−−−−−−→
continuous

Orthogonal Image∥∥∥ isomorphic

Axis-Angle Frames
1−1,bijection−−−−−−−−−→
discontinuous

Frames

(52)
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