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Abstract

This paper reports on our ongoing project to use TCPA to transform a desktop Linux machine into a virtual
secure coprocessor: more powerful but less secure than higher-end devices. We use TCPA hardware and modified
boot loaders to protect fairly static components, such as a trusted kernel; we use anenforcermodule—configured as
Linux Security Module—to protected more dynamic system components; weuse an encrypted loopback filesystem
to protect highly dynamic components.

All our code is open source and available under GPL fromhttp://enforcer.sourceforge.net/ .

1 Introduction

In our lab, we have been trying to produce practical solutions to the trust problems endemic to the current computa-
tional infrastructure.

In the big picture, many of these problems center on how to trust what is happening on a given computer. A party
Alice may care about whether certain correctness properties hold for computation. However, computation occurs
on machines. Consequently, whether Alice can believe whether a given computation has some critical correctness
property depends, in general, on whether Alice can trust that machine. Is the machine really executing the right code?
Has critical data been altered or stolen? Is the machine connected to the appropriate real-world entity?

In the modern computing environment, these machines have become increasingly complex and distributed. Both
factors complicate this trust decision:

• Distributed.How can Alice know for sure what is happening at a remote machine, under Bob’s control?

• Complexity.Given the inevitable permeabilities of common desktop machines, how can Alice even know what’s
happening at her own machine?

∗This research has been supported in part by the Mellon Foundation, NSF (CCR-0209144), AT&T/Internet2 and the Office for Domestic
Preparedness, Department of Homeland Security (2000-DT-CX-K001). This paper does not necessarily reflect the views of the sponsors. The last
three authors can be reached via addresses of the formfirstname.lastname@dartmouth.edu
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The notion ofsecure coprocessinghas long been touted (e.g., [26, 27, 18]) as a solution to thisproblem: a careful
interweaving of physical armor and software protections can create a device that, with high assurance, possesses a
different security domain from its host machine, and even from a party with direct physical access. Such devices have
been shown to be feasible as commercial products [20, 4] and can even run Linux and modern build tools [9]. In our
lab, we have explored using secure coprocessors for trustedcomputing—both as general designs (e.g., [13]) as well
as real prototypes (e.g., [11])—but repeatedly were hampered by their relatively weak computational power. (Their
relatively high cost also inhibits widespread adoption.)

In some sense, secure coprocessors offer high-assurance security at the price of low performance (and high cost).
However, in industry, two newtrusted computinginitiatives—TCPA [21, 22, 23, 14] and the former Palladium [7, 5, 6]
have emerged that target a different tradeoff: lower-assurance security that protects an entire desktop platform (thus
greatly increasing the power of the trusted platform) and ischeap enough to be commercially feasible. Indeed, the
TCPA technology has been available on various IBM platform,and other vendors have discussed availability.

Many in the field ([1] is a notable example) have criticized the technology for its potential negative social effects;
others (e.g, [8, 16, 15]) have seen positive potential.

This Project. When we started this project, commercial applications of TCPA had been confined to Windows operat-
ing systems and closed software; so we decided to start with Linux, the TCPA specifications [23, 22], and IBM’s open
source driver for the TPM—and prototype a complete, fully-functional open-source solution. (Initially, this began as
the first author’s senior thesis.) Our goals were two-fold: both to provide a foundation for further trusted computing
projects in our lab, as well as to address a gap—open source useof TCPA—that we did not see addressed in the field.

However, in July 2003, while we were completing final testingof our TCPA library, IBM published some open-source
tutorial code [10]; in August, a companion article providedfurther discussion [17]. Hence, we decided to not delay
any further, and offer:

• our TCPA code

• our modified boot loader and Linux Security Module (LSM)

• and our associated design ideas.

Our code is available for download, under GPL.

This Paper. Section 2 discusses our overall security goals. Section 3 reviews TCPA. Section 4 presents the design
we developed, using TCPA, to achieve these goals. Section 5 discusses how we implemented this design. Section 6
discusses some avenues for future work.

2 Security Goals

2.1 Motivation: Remote Servers

When designing security systems, it’s useful to start by considering what it is one actually wants to achieve.

We’ll start by considering the remote case. Our lab has a focus on PKI; perhaps the most tangible instance of PKI-
based trust judgment is SSL-protected Web servers. Let’s consider the steps by which the current infrastructure permits
Alice to make this trust judgment.

• Alice desires some serviceX.
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• Alice knows, by magic, the binding between that desired service and the identity of the serverSX that provides
it.

• One1 of the CAs whose public key is built into her browser as a trustroot has signed a certificate binding the
identitySX to a public key.

• Alice’s browser correctly informs her when it has carried out an SSL handshake with a server that knows the
private keyd matching that public key, and that the rest of the session occurs within that channel. (This is trickier
than one might suspect [25].)

From this reasoning, Alice might conclude that her Web session is with serviceSX , and that she receives serviceX.
However, this conclusion also rests on two other facts with which the infrastructure does not help:

• ServerSX is the only party that knows the private keyd.

• ServerSX will in fact provide serviceX, with all its implicit properties.

These facts might fail to hold, via accident or malice. By accident (such as server misconfiguration),SX might permit
another party to learn the private keyd, to change the data provided in serviceX, or to download the credit card
numbers and order information thatSX accumulates as part of providingX—but which were supposed to be confined
to X. By malice, an unscrupulousSX might itself break such privacy or correctness rules forX. Alice has no way of
knowing.

Prior Work. In prior work [12, 19], we tried to address this problem by moving the private keyd and the serviceX
into a secure coprocessor co-located at the serverSX . This technology then permits an additional step:

• In addition to binding the identity to a public key, the CA certifies that the private keyd lives safely inside the
armored card, which uses it forX and nothing else, even ifSX would like to cheat.

(Alice’s browser’s trusted path would also have to communicate this special certification to Alice somehow.)

Even though we prototyped it, this approach never found in-the-field use. For our team, the primary obstacle was the
awkwardness of the programming environment. The limited internal code space meant considerable rewriting of the
standard SSL suite; our rewrites then needed to be upgraded with each upgrade of Apache, etc. Had we progressed to
actual deployment, we would have confronted a different obstacle: exactly how a CA would verify the nuances of a
serviceX.

With TCPA. A TCPA solution would let us extend this armor to the entire server. This would overcome the
codespace problem, but leave us with the other obstacles. Alice needs to conclude that she’ll receive serviceX

from serverSX , because the party on the other end of the wire knew the private keyd, and a CA said something about
that public key,X, andSX . We can design somehardware and software magic (HSM)on top of TCPA to bindd to
something.

However, this leaves us with a question: to what can we bindd, that lets a CA make some statement, that enables Alice
to make a reasonable trust conclusion?

A natural but naive approach is to extend the identity-keypair binding.

• The CA chooses some software suite—particular versions of the OS, Apache, modssl, CGI scripts, Web pages,
etc—that it regards as meeting service typeX.

1Actually, it could be more than one; but she implicitly trusts that all the CAs who perform this binding do it correctly, to a public key that really
belongs to serverSX .
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• The CA certifies the keypair when the CA believes that the hardware and software magic will restrict the private
key exactly to one instance of that suite.

We note that, if the CA neglects to certify anything about theWeb content, then the point of the remaining HSM is not
clear—we have the proverbial armored car to a cardboard box (except the cardboard box is no longer the entire server,
but just the content the server is serving).

The naivete of this approach is obvious to anyone who has evertried to deploy a system or a Web site in the real world.

• The software will not be static. For bug fixes and security patches alone, various elements of the suite will
have to be upgraded (and perhaps sometimes downgraded) overtime. The promise of responsibly maintaining a
secure site requires that the executable suite, considerd as a whole, be dynamic.

• The Web content will not be static. Some of us have direct experience with industrial sites where much content
would change daily.

In some sense, everything is dynamic, even server keypairs.However, in current PKI paradigms, a certificate binds an
entity to a keypair for some relatively long-lived period. But if this entity is to be something a like a Web server with
particularly identity offering some type of service, the entity will have to change in ways that cannot be predicted at
the time of certification.

2.2 Requirements

From the above discussion, what can we conclude about what our Hardware and Software Magic should provide?

• Secure Storage.We need to provide a way to store data that’s accessible only to a specific software entity.

Besides confidentiality, we also need to provide freshness and integrity: the data the entity stores should be the
data it retrieves.

• Authentication. This entity should be able to prove who (and what) it is, basedon a certificate issued for a
long-lived keypair.

• Maintenance. We need to allow the configuration of this entity—its software(including all security-relevant
software on the platform) and operational data—to be able to undergo authorized modifications, while still
retaining access to its secrets.

• Usability. Our platform should look and act like as much like a standard open-source platform. The HSM
should be easy to use!

Obviously, the security of our platform will be depend on thesecurity of the commodity software and hardware tools
we start with. These tools—particular TCPA—will thus dictatethe attack model.

3 TCPA Background

3.1 Overview

A multi-vendor consortium, theTrusted Computing Platform Allianceproduced a series of specifications for a hard-
ware addition to the standard computing platforms that addssome additional security functionality. The termTCPA
has come to be identified with the design that this alliance produced.
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The Microsoft initiative formerly known as Palladium also seeks to use a hardware addition for additional security
functionality. The exact relation between TCPA and the former Palladium is not clear; one suspects that at some point
in the TCPA design process, Microsoft decided to withdraw and build their own variant.

In TCPA, the basic idea is to add aTrusted Platform Module (TPM)to the machine; this TPM then assists in authen-
ticating the software configuration and providing a credential store. In the TCPA-enabled IBM machines currently
available, the TPM is a smart-card like chip mounted on the motherboard; rumor has it that vendors are incorporating
the TPM into the CPU itself.

Unfortunately, TCPA was designed by committee, and it shows. The specification documents [23, 22] are large,
complex—and buggy and incomplete, as we discovered. (We found it interesting that the specification text often
trumpets “end of informative comment” but then keeps going.) A subsequent book from HP engineers [14] helps
somewhat. (As noted earlier, we did not have the benefit of therecent IBM tutorial material [10, 17].)

In this section, we try to present the basic building blocks that TCPA gives us.

3.2 The Trusted Platform Module

The heart of the TCPA design is the TPM. The TPM provides services to its hosting machine. The TPM also provides
services to two special entities:

• theowner(not necessarily the machine owner or user), who authorizescommands via an HMAC derived from
a secret 20-byte key.

• an operatorwho authorizes commands viaphysical presence, which the specs suggest might be via jumper
cables.

The initial set of challenges facing a TCPA experimenter is how to wade through the relevant commands in order to
enable the TPM and take ownership.

3.3 PCRs and Hashes

The TPM has a series ofplatform configuration registers (PCRs). Each is 20 bytes long, the length of a SHA-1 hash.

These PCRs are initially zeroized at boot time; the machine can thenextenda given PCR by writing a valuev; the
TPM will concatenate thisv to that PCR’s current value, hash the concatenation, and store the result in the PCR. This
extension feature permits a single PCR to record (essentially) an arbitrary length sequence of values. This feature also
provides a convenient “ratcheting” feature: adversarial software cannot roll back a PCR to a value it held earlier during
the execution.

The TPM can perform SHA-1 hashing. During boot time, the BIOSmeasures itself and reports that to the TPM.
(Hence, the BIOS must be trusted; the specifications refer tothis asRoot of Trust Management (RTM).) The BIOS
feeds theMaster Boot Record (MBR)to the TPM to hash before passing control to it. Subsequent software components
are expected to hash their successors before loading them. These hashes are stored in PCRs.

The TPM we use has 16 PCRs; the TCPA PC specification reserves eight of them for specific purposes, leaving eight
for us.
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3.4 Credential Storage

The TPM provides aprotected storageservice to its machine.

From the programming perspective:

• One can ask the TPM tosealdata, and specify a subset of PCRs and target values; the caller also specifies a 20-
byte authorization code for this object. The TPM returns an encrypted blob (with an internal hash, for integrity
checking).

• One can give an encrypted blob to the TPM, and ask it tounsealit. The caller must prove knowledge of the
20-byte authorization code for this object. The TPM will release the data only if the PCRs specified at sealing
now have the same values they had when the object was sealed (and if the blob passes its integrity check).

TPM protected storage can thus bind secrets to a particular software configuration, if the PCRs reflect hashes of the
elements of this configuration. The TPM also has the ability to save and report the PCR values that existed when an
object was sealed.

This protected storage design suffers from an apparent oversight: if the caller would like to change the value of one
the PCRs in the release policy for an object (for example, because the OS kernel has been upgraded), the caller must
export the object in plaintext to the host (before upgrade, while the old PCR policy is satisfied), then re-save it.

Internally, the TPM provides protected storage by buildingup a tree of private keys, starting with an internalstorage
root key (SRK). Nodes themselves are protected blobs; the arbitrary data items themselves are leaves in this tree. As a
side-effect, protected data items are limited to the lengthof the RSA modulus: 2048 bits.

Many of the TPM storage commands thus deal with manipulationof these keys.

The TPM has the ability to perform RSA operations internally. Besides enabling management of the key tree, this
feature permits the TPM to do private-key operations with stored objects that are private keys (if the PCRs and autho-
rization permit this) without exposing the private keys to the host platform.

3.5 Data Integrity Registers

Research into booting a system securely has a long history (e.g., [2, 3, 24]). TCPA builds on this history, but gives
special definitions to terms that might otherwise sound synonymous:

• In TCPA, authenticated bootis when the system can prove what software actually booted onthe system (e.g.,
by proving knowledge of a secret bound to PCRs that reflect theboot sequence). (Some researchers also use
trusted bootfor this concept.)

• In TCPA, secure bootis when the TPM actually prevents the platform from booting if the software sequence
does not match some specified hashes.

The TCPA literature is emphatic about this special meaning of “secure boot” but does not give any details on how the
TPM actually causes the platform to stop booting, how much ofthe software sequence is checked, or how to tell if the
TPM in our IBM machine actually does this.

However, to support this vague functionality, the TPM includesdata integrity registers (DIRs), 20 bytes long, to hold
the critical hashes. Writing to a DIR requires owner authorization; reading can be done by anyone.

The TPM in our IBM Netvista 8310 has one DIR; as far as we can determine, it does not actually do anything.
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3.6 Other Functionality

TCPA provides additional functionality, for tasks like proving a TPM is authentic,attestingto the software configura-
tion of a machine, and for manufacturer-assisted maintenance. Proving authenticity is a multi-step process, in order to
dissociate use of a TCPA machine from purchase of a TCPA machine.

3.7 Adversary Model

So, what does the TPM protect against?

TCPA cannot protect against fundamental physical attacks.If an adversary can extract the core secrets from the TPM,
then they can build a fake one that ignores the PCRs. If an adversary can manage to trick a genuine TPM, during boot,
to storing hash values that do not match the code that actually runs (e.g., perhaps with dual-ported RAM), then secrets
can be exposed to the wrong software. If the adversary can manage to read machine memory during runtime, then
they may be able to extract protected objects that the TPM hasunsealed and returned to the host.

However, the TPM can protect against attacks on software integrity. If the adversary changes the BIOS or critical
software on the hard disk, the TPM will refuse to reveal secrets; the software so verified can then verify (via hashes)
data and other software. Potentially, the TPM can protect against runtime attacks on software and data, if onboard
software can hash the attacked areas and inform the TPM of changes.

Note that, unless we take additional countermeasures, the TPM design appears to permit a class ofreplay attacks.
Suppose a protected object has valuev0 at timet0 and valuev1 6= v0 at timet1 > t0. If the adversary makes a copy of
the hard disk at timet0, the adversary can restore the valuev0 by powering down the system and loading the old copy.
For some applications, this attack can have serious ramifications (e.g., it might permit the adversary to restore revoked
privileges or spent e-cash, or roll back a security-critical software upgrade).

4 Architecture

How can we use the elements of Section 3 to satisfy the requirements of Section 2?

4.1 Secure Storage

We can use the TPM’s protected storage services to bind stored secrets to a given software entity in a specific config-
uration.

Since keeping an RSA private key inside the TPM provides an extra level of protection that some programmers might
want to exploit, we should expose that option.

Although the TPM provides confidentiality and integrity forstored data, it does not provide freshness (as Section 3.7
above discussed). In order for the trusted software entity to verify that its stored secrets are fresh, it needs a place to
store something that the adversary cannot rewrite. In the general case (e.g., without adding a 4758 or multiple TCPA
platforms), the only place we have is the one DIR in our platform.

Using the DIR for this purpose requires that a trusted piece of software on the platform itself know the owner autho-
rization code. Of course, this code itself could be saved as aTPM protected object; any commands that a genuine
remote owner would need to authorize could be done via proxy:the owner authorizes to the software, which in turn
constructs the command.
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Many protection schemes are possible. A scheme in the spiritof the the DIR’s alleged use is to maintain afreshness
tableof hashes (or otherwise concise expressions) of the most recent versions of appropriate objects. When an entry
in the freshness table is updated, we save the hash of the updated table in the DIR.

However, this creates a problem: an adversary who can get root access can learn the owner authorization code, and
then completely subvert the freshness defense. An interim solution here is to provide this freshness checks only for
data modified at boot-time:

• The authorization code is bound, via PCRs, to a trusted boot-time entity.

• If this entity needs to update the DIR, it unseals the code, uses it, and securely erases it from RAM.

• The entity then extends a key PCR hash with a known value—so thePCR value now reflects “this entity, but
after it has put away its secrets.”

It is interesting to note the similarity of this approach to the “ratchet locks” in the IBM 4758 [20].

An effective, simple, elegant solution to freshness of run-time user storage is an area of future work. (Some combina-
tion of hashing, DIRs, and the PCR values at sealing might work.)

4.2 Authentication and Maintenance

We consider the next issues together:

• How do we permit the software that constitutes this entity tobe maintained, while retaining the entity’s TPM
secrets?

• How do we permit a CA to express something in a certificate thatsays something meaningful about the trust-
worthiness of this entity over future changes—both to software as well as to more dynamic state (e.g., Web
pages)?

Everything is dynamic. To address this problem, we decided to organize system elements by how often they change:

• the relatively long-lived core kernel

• more medium-lived software

• short-lived operational data

We then add two additional items to the mix:

• a remotesecurity admin, who controls the medium-lived software configuration, viapublic-key signatures.

• anenforcersoftware module that is part of the long-lived core

The security admin provides a signed description of the medium-lived software. For simplicity, the public key can be
part of the long-lived core (although we could have it elsewhere). A security admin’s signed descriptions could apply
to large sets of machines. In theory, the security admin may in fact be part of a different organization; e.g., Verisign
or CERT might set up a security admin who signs descriptions of what are believed to be secure configurations of
Apache and SSL on Linux.
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The TCPA boot process ensures that the long-lived core bootscorrectly and has access to its secrets. The enforcer
(within the long-lived core) checks that the security admin’s description is correctly signed, and that the medium-lived
software matches this description. The enforcer then uses the secure storage API to retrieve and update short-lived
operational data, when requested by the other software.

Since these protected secrets are bound to the enforcer and long-lived core, we avoid the TPM update problem.

To prevent replay of old signed descriptions, the security admin could include a serial number within each description,
as well a “high water mark” specifying the least serial number that should still be regarded as valid. The enforcer saves
a high-water mark as a field in the freshness table; the enforcer accepts a signed description only if the serial number
equals or exceeds the saved high-water mark; if the new high-water mark exceeds the old, the enforcer updates the
saved one. (Alternatively, the enforcer could use some typeof forward-secure key evolution.)

A CA who wants to certify the “correctness” of such a platformessentially certifies that:

• The long-lived core operates correctly.

• The named security admin will have good judgment about future maintenance.

4.3 Usability

How should we flesh out the above elements? In order to make oursystem usable, we should try to choose designs
that coincide with familiar programmer constructs. (If possible, these choices may also make our system easier to
build—since we can re-use existing code!)

Short-Lived Data. For short-lived data, we want to give the programmer a way to save and retrieve non-volatile
data whose structure can be fairly arbitrarily.

In systems, the standard way that programmers expect to do this is via a filesystem. Aloopback filesystemprovides
a way for a single file to be mounted and used as a filesystem; anencrypted loopback filesystemallows this file to be
encrypted (and presumably integrity-protected) when stored.

So, a natural choice for short-lived data is to have the enforcer save and retrieve keys for an encrypted loopback filesys-
tem, and retain its hash in the freshness table. (A remainingquestion is how often an update should be committed.)

Since the TPM provides a way to use RSA private keys without exposing them, we should also provide an interface to
do that.

Medium-lived Software. For the medium-lived software, we need a way for a (remote) human to specify the
security-relevant configuration of a system, and a tool thatcan check whether the system matches that configuration.

We chose an approach in the spirit of Tripwire. The security admin (again, perhaps on a different machine) prepares a
signed description of the configuration of this medium-lived component; the long-lived component of our system will
use this signed description to verify the integrity of the medium-lived component.

(We considered also performing this function with an encrypted loopback filesystem, but then decided that the relevant
aspects of the security configuration would be too hard to handle that way.)

Long-lived Core. Another question is how to structure the enforcer itself. The natural place was as an LSM—
besides an being the standard framework for security modules in Linux, this choice also gives us the chance to mediate
(if the LSM implementation is correct) all security-relevant calls—including every inode lookup.
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We envisioned this enforcer module running in two step: an initialization component, checking for the signed configu-
ration file and performing other appropriate tasks at start-up, a run-time component, checking the integrity of the files
in the medium-lived configuration.

5 Implementation

5.1 Library

The first step in making this real was wading through the specifications to understand what the functionality of the
TPM, and then—with the open source driver—writing code to actually exploit that functionality.

This component took the longest amount of calendar time. Using the TPM is not a simple matter of a function call:
sessions and HMAC’d data must be formatted in the proper way;the formats are the wrong Endian value for an X86
platform; and mistakes often generated a non-informative error code.

The library we generated is similar to the one IBM concurrently developed: we translate high-level, human-understandable
calls into properly formatted TPM commands, which we then send to the TPM. As noted, our code—with extensive
comments—is available via GPL.

We use this code to initially take ownership of the TPM; we also use it when the system—once we’ve reached run-time
and have an OS—needs to communicate to the TPM.

5.2 Boot Loader

Once our TPM was functional, the next step is to integrate it into the boot process.

Recall that the TPM is (from one view) essentially a credential store that guards secrets based on PCR values. If we
want to ensure that secrets are available only to a specific trusted software configuration at run-time, we need to make
sure that the TPM can witness—via hashes in the PCRs—each element in the sequence of executables that leads to
that configuration.

The first step in this chain is BIOS. Per the PC-specific TCPA specification [22], BIOS in a TCPA-enabled PC will
report itself to the TPM. BIOS will also hash themaster boot record (MBR), and report this to the TPM, before passing
control to it. (Be sure to have the latest BIOS update before starting experiments here; we lost some time due to the
older version that shipped with our machine.)

The next step in the chain is to modify the first-stage bootloader in the MBR to SHA-1 hash the next component and
report this to the TPM, before passing control. Currently, we store this hash in PCR 8; we used the memory-present
TPM driver from IBM.

We started with the LILO loader; so we modifiedfirst.b (the MBR in LILO) to hashsecond.b . Doing this in
assembly, to fit within the tight confines of the MBR and handlethe TPM endianness requirements, was tricky.

In our current prototype, we run our TCPA-enabled LILO from afloppy. This decision stemmed from two reasons.

• The first was codespace—and TPM bugs. An MBR is 512 bytes; but a hard disk MBR also contains other data,
and does not give us the full 512 for code. This would not have been a problem, except the TPM in our machine
did not appear to actually support theTCPAHashLogExtendEvent() call—we kept getting a “call not
implemented” error. The workaround—replacing this call with a sequence of calls—pushed us over the limit
for the hard disk MBR. (The floppy gives us the full 512 bytes.)
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• The second is more pragmatic. This is alpha-quality software, and bugs in LILO can destroy the MBR, making
the system unbootable without a rescue disk. With LILO on thefloppy, hard disk MBRs (and the entire/boot
directory) do not require any changes, and disasters are avoided by removing the floppy and booting as usual.

We modified the second stage bootloader to hash the compressed kernel footprint and place that hash in a PCR. (Our
implementation currently places this value in PCR 9.) The rest of the boot process can continue as normal.

At this point, PCRs 0-9 now witness that this particular kernel was booted in a trusted fashion. (The vendor uses 0-7;
and PCR 8 and PCR 9 have our new hashes, noted above.) If the boot process is modified, these PCRs will contain
different values.

5.3 Admin Tools

We wrote some Perl scripts to produce the configuration files,and used an open-source bigint package to produce a
rudimentary keygen (2048-bits) and signing tool. For each file, the security admin can specify what should happen if
its integrity check fails: log, deny, or panic.

We also used this produce a stripped-down verification tool,for inclusion in the enforce kernel module (discussed
below).

5.4 Enforcer LSM

As mentioned, we built our enforcer as a LSM, for the 2.4 kernel with the LSM 2.4.20-1 kernel patch. The initial
prototype is about 1000 lines of code. Our code is set up either to be compiled into the kernel or to be loaded as a
separate module; the former makes sense for real deployment; however, the latter makes experimentation easier.

The enforcer uses the/etc/enforcer/ directory to store its signed configuration file, public key,etc. (Having
the kernel store data in the filesystem is a bit uncouth, but seemed the best solution here, and is not completely
unprecedented.)

When the kernel initializes the enforcer, it registers its hooks with the LSM framework. If built as a loadable module,
the enforcer verifies the configuration file’s signature now;if compiled into the kernel, the enforcer verifies it when the
root filesystem is mounted.

At run-time, the enforcer hooks all inode lookups. (These happen as a file is opened.) We check the file’s integrity via
the configuration file; if the integrity fails, we react according the option: log the event to the syslog, fail the call, or
panic the system.

We developed the enforcer underuser-mode Linux (UML), which worked very nicely—each bug that appeared under
UML also showed up with the real system, and vice-versa, We ran basic functional tests—showing that modifying the
configuration file, public key, signature, or any protected file actually causes the appropriate reaction. We also ran 36
hours of continuous stress-tests; the code showed no signs of crashing or leaking memory.

Performance testing (against 1G of data and about 60,000 files) shows a 25% slowdown on boot, and a 11% slowdown
at subsequent runtime.

5.5 Storage Services

As of this writing, we plan to install the following in the second alpha release.
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First, we’ll implement a simple freshness table as discussed above, for items updatable only at boot-time by the
enforcer. This means that the owner authentication code will be a sealed object, for the enforcer to access; this also
means that when the enforcer finishes its initialization, itextends PCR 9 in a known way to indicate that the system is
still founded on the trusted enforcer, but its core secrets are put away.

This freshness table will store two items: a hash of the security admin public key, and the current high-water mark of
the security admin’s configuration files. The signed configuration files include entries for serial number, high-water
mark, and optional new public key. At start-up, the enforcerwill verify data:

• It checks that its freshness table hashes to the DIR.

• It checks that the stored public key hashes to the entry in thefreshness table.

• It checks that the serial number in the configuration file is not below the high-water mark in the freshness table.

• (It also verifies the signature, naturally.)

The enforcer may also modify data:

• If the high-water mark in the configuration file exceeds the stored one, the enforcer needs to update the stored
one.

• If configuration file included a new public key, the enforcer needs to store that—and update the hash in the
freshness table.

These changes need to be flushed back to the DIR.

This way, we permit old public keys and old signed configurations to be revoked.

The enforcer also needs a suicide option, to make sure all secrets are unaccessible in the case of panic. Extending core
PCRs should do the trick.

We then plan to expose the rest of the TPM calls in our library,for use by user-level code, such as encrypted loopback
filesystem, as it sees fit.

5.6 Long-term Vision

In the long-term, we would like this platform to balance security and practical issues. For example, one motivation
was to enable in practice what WebALPS only enabled in theory: a way to secure the other end of an SSL tunnel.

The TPM testifies to the long-lived component: the hardware and BIOS, the kernel and current enforcer, and the
security admin’s current public key.

The security admin then testifies to the medium-level software (e.g., the particular versions of Apache, modssl, etc)
necessary for the system to run securely. The enforcer (already checked) ensures that this configuration matches the
system.

The Web content is controlled by various users. These users are authenticated via the kernel and medium-level con-
figuration that has already been testified to. Their content is saved in a protected loopback filesystem, ensuring that it
was valid content at some point. (We still need an adequate solution to freshness.)

The SSL CA verifies that it trusts the enforcer and kernel, andthe judgment of the security admin. The relying party
then has reason to trust the other end of the transaction.
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6 Future Work

As we noted, this is a preliminary report about a work-in-progress. Many areas remain for future work. We quickly
discuss some:

• Freshness. As noted earlier, it would be nice to have an elegant, effective solution for freshness of secrets
stored at run-time, and by user-level code. This would also raise the issue of how often changes should be
committed—for example, shouldeachchange to a loopback filesystem update a DIR somehow?

• Personalization. We have not yet thought deeply about a how a virgin system becomes configured and under
the control of a security admin.

So far, we have waved our hands and assumed that what Peter Gutmann terms the “Baby Duck Model” (the
system imprints on the first public key it sees) would suffice.

• Attestation. We have also not addressed the task of enabling a remote partyto verify that a blessed kernel and
enforcer are running on a particular system. For now, we assume that the TPCA attestation framework should
work.

• Sufficiency of Configuration Checking.Right now, the enforcer only protects against modificationsof content
of the files that the security admin deemed critical. The intention is that the integrity of the kernel/enforcer plus
the integrity of this code is enough to ensure the system is working as advertised, to the best of the security
admin’s knowledge. We plan further thought as to whether this is sufficient.

• Run-time Defenses.Again, the enforcer only looks at modifications to file contents. Adversaries may mount
many other types of attacks; since the long-term goal is a virtual secure coprocessor, it would be interesting to
extend the enforcer to detect additional types of tampering.

(An adversary that succeeds at run-time in modifying the enforcer code itself or its configuration file might also
have some success.)

• Credential Use, in Practice.As real applications get written and run, it would be interesting to see how many
make use of an encrypted loopback filesystem for secure storage, and how many instead make use of the TPM
sealed storage calls directly.

• Performance.We have not yet even begun to consider issues of tuning performance, such as marking files that
have passed the integrity check—but clearing this flag if we catch an operation that might modify the file.

As noted, one of the first things we want to do is port our Apache/SSL-based Dartmouth CA to this platform, to see
whether these hooks are sufficient for a real application, whether the performance hit under real loads is significant,
and what additional security the resulting the system achieves.
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