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Abstract

This paper reports on our ongoing project to use TCPA to transfornsktafe Linux machine into a virtual
secure coprocessor: more powerful but less secure than rhegledevices. We use TCPA hardware and modified
boot loaders to protect fairly static components, such as a trusted;ke@mese arenforcermodule—configured as
Linux Security Module—to protected more dynamic system componentsisean encrypted loopback filesystem
to protect highly dynamic components.

All our code is open source and available under GPL fhttp://enforcer.sourceforge.net/

1 Introduction

In our lab, we have been trying to produce practical solgtitanthe trust problems endemic to the current computa-
tional infrastructure.

In the big picture, many of these problems center on how tst that is happening on a given computer. A party
Alice may care about whether certain correctness progehiiéd for computation. However, computation occurs
on machines. Consequently, whether Alice can believe venethgiven computation has some critical correctness
property depends, in general, on whether Alice can trusttiaehine. Is the machine really executing the right code?
Has critical data been altered or stolen? Is the machinesmed to the appropriate real-world entity?

In the modern computing environment, these machines havente increasingly complex and distributed. Both
factors complicate this trust decision:
e Distributed.How can Alice know for sure what is happening at a remote nmeghinder Bob'’s control?

e Complexity.Given the inevitable permeabilities of common desktop rireed) how can Alice even know what's
happening at her own machine?

*This research has been supported in part by the Mellon FeiondadNSF (CCR-0209144), AT&T/Internet2 and the Office forrBestic
Preparedness, Department of Homeland Security (2000-D&QAXE). This paper does not necessarily reflect the viewsesfionsors. The last
three authors can be reached via addresses of thefimtmame.lasthame@dartmouth.edu
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The notion ofsecure coprocessinigas long been touted (e.g., [26, 27, 18]) as a solution topttublem: a careful
interweaving of physical armor and software protections c@ate a device that, with high assurance, possesses a
different security domain from its host machine, and evemfa party with direct physical access. Such devices have
been shown to be feasible as commercial products [20, 4] améen run Linux and modern build tools [9]. In our
lab, we have explored using secure coprocessors for trasteguting—both as general designs (e.g., [13]) as well
as real prototypes (e.g., [11])—but repeatedly were handpeyetheir relatively weak computational power. (Their
relatively high cost also inhibits widespread adoption.)

In some sense, secure coprocessors offer high-assuranaitysat the price of low performance (and high cost).
However, in industry, two newusted computingnitiatives—TCPA [21, 22, 23, 14] and the former Palladium476]
have emerged that target a different tradeoff: lower-asge security that protects an entire desktop platfornms(thu
greatly increasing the power of the trusted platform) anchisap enough to be commercially feasible. Indeed, the
TCPA technology has been available on various IBM platfand other vendors have discussed availability.

Many in the field ([1] is a notable example) have criticized technology for its potential negative social effects;
others (e.g, [8, 16, 15]) have seen positive potential.

This Project. When we started this project, commercial applications of XG&d been confined to Windows operat-
ing systems and closed software; so we decided to start withxl.the TCPA specifications [23, 22], and IBM’s open
source driver for the TPM—and prototype a complete, fullgefional open-source solution. (Initially, this began as
the first author’s senior thesis.) Our goals were two-foldthito provide a foundation for further trusted computing
projects in our lab, as well as to address a gap—open sourcd T&PA—that we did not see addressed in the field.

However, in July 2003, while we were completing final testiigur TCPA library, IBM published some open-source
tutorial code [10]; in August, a companion article providadher discussion [17]. Hence, we decided to not delay
any further, and offer:

e our TCPA code
e our modified boot loader and Linux Security Module (LSM)

e and our associated design ideas.

Our code is available for download, under GPL.

This Paper. Section 2 discusses our overall security goals. Sectioni8ws TCPA. Section 4 presents the design
we developed, using TCPA, to achieve these goals. Sectigschsbes how we implemented this design. Section 6
discusses some avenues for future work.

2 Security Goals

2.1 Motivation: Remote Servers

When designing security systems, it's useful to start by iclemsg what it is one actually wants to achieve.

We'll start by considering the remote case. Our lab has asfacuPKI; perhaps the most tangible instance of PKI-
based trust judgment is SSL-protected Web servers. Latsider the steps by which the current infrastructure permit
Alice to make this trust judgment.

e Alice desires some servickg.
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e Alice knows, by magic, the binding between that desirediserand the identity of the servéry that provides
it.

e Oné of the CAs whose public key is built into her browser as a trast has signed a certificate binding the
identity Sx to a public key.

e Alice’s browser correctly informs her when it has carried an SSL handshake with a server that knows the
private keyd matching that public key, and that the rest of the sessioarsatithin that channel. (This is trickier
than one might suspect [25].)

From this reasoning, Alice might conclude that her Web sesisi with serviceSx, and that she receives servige
However, this conclusion also rests on two other facts witictvthe infrastructure does not help:

e ServerSx is the only party that knows the private kdy

e ServerSx will in fact provide serviceX, with all its implicit properties.

These facts might fail to hold, via accident or malice. Byident (such as server misconfiguratiofi)y might permit
another party to learn the private kdyto change the data provided in servi&e or to download the credit card
numbers and order information th&t accumulates as part of provididg—but which were supposed to be confined
to X. By malice, an unscrupulousy might itself break such privacy or correctness rulesXorAlice has no way of
knowing.

Prior Work.  In prior work [12, 19], we tried to address this problem by nmgpthe private keyl and the servic&X
into a secure coprocessor co-located at the sefyerThis technology then permits an additional step:

¢ In addition to binding the identity to a public key, the CA tifies that the private key lives safely inside the
armored card, which uses it fof and nothing else, even ffx would like to cheat.

(Alice’s browser's trusted path would also have to commatgchis special certification to Alice somehow.)

Even though we prototyped it, this approach never foundh@fteld use. For our team, the primary obstacle was the
awkwardness of the programming environment. The limitéerival code space meant considerable rewriting of the
standard SSL suite; our rewrites then needed to be upgraideg@ach upgrade of Apache, etc. Had we progressed to
actual deployment, we would have confronted a differentasibs: exactly how a CA would verify the nuances of a
serviceX.

With TCPA. A TCPA solution would let us extend this armor to the entirevee This would overcome the
codespace problem, but leave us with the other obstaclese Akeds to conclude that she’ll receive service
from serverSx, because the party on the other end of the wire knew the prik@td, and a CA said something about
that public key, X, andSx. We can design someardware and software magic (HSMh top of TCPA to bind! to
something.

However, this leaves us with a question: to what can we Bjrdat lets a CA make some statement, that enables Alice
to make a reasonable trust conclusion?

A natural but naive approach is to extend the identity-keypiading.

e The CA chooses some software suite—particular versionsedd®, Apache, madsl, CGl scripts, Web pages,
etc—that it regards as meeting service type

1Actually, it could be more than one; but she implicitly trustattall the CAs who perform this binding do it correctly, toubfic key that really
belongs to serves'x .
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e The CA certifies the keypair when the CA believes that theward and software magic will restrict the private
key exactly to one instance of that suite.

We note that, if the CA neglects to certify anything about\eb content, then the point of the remaining HSM is not
clear—we have the proverbial armored car to a cardboard baeftthe cardboard box is no longer the entire server,
but just the content the server is serving).

The naivete of this approach is obvious to anyone who hageedito deploy a system or a Web site in the real world.

e The software will not be static. For bug fixes and securitycpes alone, various elements of the suite will
have to be upgraded (and perhaps sometimes downgradedinegethe promise of responsibly maintaining a
secure site requires that the executable suite, consideedvahole, be dynamic.

e The Web content will not be static. Some of us have direct egpee with industrial sites where much content
would change daily.

In some sense, everything is dynamic, even server keypéirsever, in current PKI paradigms, a certificate binds an
entity to a keypair for some relatively long-lived periodutBf this entity is to be something a like a Web server with

particularly identity offering some type of service, thdignwill have to change in ways that cannot be predicted at
the time of certification.

2.2 Requirements
From the above discussion, what can we conclude about whatandware and Software Magic should provide?

e Secure StorageWe need to provide a way to store data that’s accessible orlyspecific software entity.
Besides confidentiality, we also need to provide freshnedsraegrity: the data the entity stores should be the
data it retrieves.

e Authentication. This entity should be able to prove who (and what) it is, baseé certificate issued for a
long-lived keypair.

e Maintenance. We need to allow the configuration of this entity—its softwéreluding all security-relevant
software on the platform) and operational data—to be ablenttergo authorized modifications, while still
retaining access to its secrets.

e Usability. Our platform should look and act like as much like a standarenesource platform. The HSM
should be easy to use!

Obviously, the security of our platform will be depend on feeurity of the commodity software and hardware tools
we start with. These tools—particular TCPA—uwill thus dicttite attack model.

3 TCPA Background

3.1 Overview

A multi-vendor consortium, th&rusted Computing Platform Alliangaroduced a series of specifications for a hard-
ware addition to the standard computing platforms that addse additional security functionality. The tefitPA
has come to be identified with the design that this alliancelpced.
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The Microsoft initiative formerly known as Palladium alseeks to use a hardware addition for additional security
functionality. The exact relation between TCPA and the farPalladium is not clear; one suspects that at some point
in the TCPA design process, Microsoft decided to withdrad lamild their own variant.

In TCPA, the basic idea is to addTausted Platform Module (TPMp the machine; this TPM then assists in authen-
ticating the software configuration and providing a cred¢rstore. In the TCPA-enabled IBM machines currently
available, the TPM is a smart-card like chip mounted on théheroard; rumor has it that vendors are incorporating
the TPM into the CPU itself.

Unfortunately, TCPA was designed by committee, and it shoise specification documents [23, 22] are large,
complex—and buggy and incomplete, as we discovered. (Wedfduinteresting that the specification text often
trumpets “end of informative comment” but then keeps gging.subsequent book from HP engineers [14] helps
somewhat. (As noted earlier, we did not have the benefit ofabent IBM tutorial material [10, 17].)

In this section, we try to present the basic building blotlet TCPA gives us.

3.2 The Trusted Platform Module

The heart of the TCPA design is the TPM. The TPM provides seb/o its hosting machine. The TPM also provides
services to two special entities:

e theowner(not necessarily the machine owner or user), who authocdaesnands via an HMAC derived from
a secret 20-byte key.

e anoperatorwho authorizes commands vignysical presencewhich the specs suggest might be via jumper
cables.

The initial set of challenges facing a TCPA experimenteras o wade through the relevant commands in order to
enable the TPM and take ownership.

3.3 PCRs and Hashes

The TPM has a series pfatform configuration registers (PCRdach is 20 bytes long, the length of a SHA-1 hash.

These PCRs are initially zeroized at boot time; the macharethenextenda given PCR by writing a value; the
TPM will concatenate this to that PCR’s current value, hash the concatenation, ame #te result in the PCR. This
extension feature permits a single PCR to record (essgi@al arbitrary length sequence of values. This feature als
provides a convenient “ratcheting” feature: adversanétigre cannot roll back a PCR to a value it held earlier dyrin
the execution.

The TPM can perform SHA-1 hashing. During boot time, the Bl@&asures itself and reports that to the TPM.
(Hence, the BIOS must be trusted; the specifications reférisoasRoot of Trust Management (RTM)he BIOS
feeds theMaster Boot Record (MBR) the TPM to hash before passing control to it. Subsequédiwaie components
are expected to hash their successors before loading tHeese hashes are stored in PCRs.

The TPM we use has 16 PCRs; the TCPA PC specification resdgrenéthem for specific purposes, leaving eight
for us.
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3.4 Credential Storage

The TPM provides @rotected storagservice to its machine.

From the programming perspective:

e One can ask the TPM tealdata, and specify a subset of PCRs and target values; tiee abb specifies a 20-
byte authorization code for this object. The TPM returns@erygpted blob (with an internal hash, for integrity
checking).

e One can give an encrypted blob to the TPM, and ask iirtsealit. The caller must prove knowledge of the
20-byte authorization code for this object. The TPM willea$e the data only if the PCRs specified at sealing
now have the same values they had when the object was seatkd {fae blob passes its integrity check).

TPM protected storage can thus bind secrets to a particotware configuration, if the PCRs reflect hashes of the
elements of this configuration. The TPM also has the abititgave and report the PCR values that existed when an
object was sealed.

This protected storage design suffers from an apparensig¥er if the caller would like to change the value of one
the PCRs in the release policy for an object (for exampleabse the OS kernel has been upgraded), the caller must
export the object in plaintext to the host (before upgradelenthe old PCR policy is satisfied), then re-save it.

Internally, the TPM provides protected storage by buildipga tree of private keys, starting with an interstdrage
root key (SRK)Nodes themselves are protected blobs; the arbitrary tates themselves are leaves in this tree. As a
side-effect, protected data items are limited to the lenfthe RSA modulus: 2048 bits.

Many of the TPM storage commands thus deal with manipulaifdhese keys.

The TPM has the ability to perform RSA operations internaBgsides enabling management of the key tree, this
feature permits the TPM to do private-key operations witinesi objects that are private keys (if the PCRs and autho-
rization permit this) without exposing the private keyshe host platform.

3.5 Data Integrity Registers

Research into booting a system securely has a long histayy [2, 3, 24]). TCPA builds on this history, but gives
special definitions to terms that might otherwise sound synmus:

e In TCPA, authenticated boa when the system can prove what software actually booteatiesystem (e.g.,
by proving knowledge of a secret bound to PCRs that reflecbtind sequence). (Some researchers also use
trusted boofor this concept.)

e In TCPA, secure boots when the TPM actually prevents the platform from bootihthé software sequence
does not match some specified hashes.

The TCPA literature is emphatic about this special meanfrigezure boot” but does not give any details on how the
TPM actually causes the platform to stop booting, how mudhef&oftware sequence is checked, or how to tell if the
TPM in our IBM machine actually does this.

However, to support this vague functionality, the TPM imtdadata integrity registers (DIRsRO0 bytes long, to hold
the critical hashes. Writing to a DIR requires owner authaiian; reading can be done by anyone.

The TPM in our IBM Netvista 8310 has one DIR; as far as we caardghe, it does not actually do anything.
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3.6 Other Functionality

TCPA provides additional functionality, for tasks like piag a TPM is authenticattestingto the software configura-
tion of a machine, and for manufacturer-assisted maintsnaproving authenticity is a multi-step process, in order t
dissociate use of a TCPA machine from purchase of a TCPA mechi

3.7 Adversary Model

So, what does the TPM protect against?

TCPA cannot protect against fundamental physical attd€ls adversary can extract the core secrets from the TPM,
then they can build a fake one that ignores the PCRs. If arrsaiecan manage to trick a genuine TPM, during boot,
to storing hash values that do not match the code that agtwai$ (e.g., perhaps with dual-ported RAM), then secrets
can be exposed to the wrong software. If the adversary camgeato read machine memory during runtime, then
they may be able to extract protected objects that the TPMihssaled and returned to the host.

However, the TPM can protect against attacks on softwaeggiity. If the adversary changes the BIOS or critical

software on the hard disk, the TPM will refuse to reveal ss¢tbe software so verified can then verify (via hashes)
data and other software. Potentially, the TPM can proteainagj runtime attacks on software and data, if onboard
software can hash the attacked areas and inform the TPM ofjeksa

Note that, unless we take additional countermeasures, Pihd design appears to permit a classrgplay attacks.
Suppose a protected object has valyat timet, and valuev,; # vg attimet; > tq. If the adversary makes a copy of
the hard disk at timéy, the adversary can restore the valyey powering down the system and loading the old copy.
For some applications, this attack can have serious ramidfitsa(e.g., it might permit the adversary to restore redoke
privileges or spent e-cash, or roll back a security-criticdtware upgrade).

4 Architecture

How can we use the elements of Section 3 to satisfy the regeinés of Section 27?

4.1 Secure Storage

We can use the TPM’s protected storage services to binddsseerets to a given software entity in a specific config-
uration.

Since keeping an RSA private key inside the TPM provides énadavel of protection that some programmers might
want to exploit, we should expose that option.

Although the TPM provides confidentiality and integrity &iored data, it does not provide freshness (as Section 3.7
above discussed). In order for the trusted software ertityetify that its stored secrets are fresh, it needs a place to
store something that the adversary cannot rewrite. In thergécase (e.g., without adding a 4758 or multiple TCPA
platforms), the only place we have is the one DIR in our platfo

Using the DIR for this purpose requires that a trusted piés®ftware on the platform itself know the owner autho-
rization code. Of course, this code itself could be saved 8BM protected object; any commands that a genuine
remote owner would need to authorize could be done via prthe/owner authorizes to the software, which in turn
constructs the command.
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Many protection schemes are possible. A scheme in the spitiie the DIR’s alleged use is to maintairirashness
table of hashes (or otherwise concise expressions) of the mosttegersions of appropriate objects. When an entry
in the freshness table is updated, we save the hash of théedpdhle in the DIR.

However, this creates a problem: an adversary who can getogess can learn the owner authorization code, and
then completely subvert the freshness defense. An inteslatign here is to provide this freshness checks only for
data modified at boot-time:
e The authorization code is bound, via PCRs, to a trusted timat-entity.
o If this entity needs to update the DIR, it unseals the codes itsand securely erases it from RAM.
e The entity then extends a key PCR hash with a known value—sB @i value now reflects “this entity, but
after it has put away its secrets.”

It is interesting to note the similarity of this approachlte tratchet locks” in the IBM 4758 [20].

An effective, simple, elegant solution to freshness oftiore user storage is an area of future work. (Some combina-
tion of hashing, DIRs, and the PCR values at sealing mighkyor

4.2 Authentication and Maintenance
We consider the next issues together:
e How do we permit the software that constitutes this entithéamaintained, while retaining the entity’s TPM

secrets?

e How do we permit a CA to express something in a certificate shgs something meaningful about the trust-
worthiness of this entity over future changes—both to saftwas well as to more dynamic state (e.g., Web
pages)?

Everything is dynamic. To address this problem, we decidaddanize system elements by how often they change:

e the relatively long-lived core kernel
e more medium-lived software

¢ short-lived operational data
We then add two additional items to the mix:

e aremotesecurity adminwho controls the medium-lived software configuration, miblic-key signatures.

e anenforcersoftware module that is part of the long-lived core

The security admin provides a signed description of the omadived software. For simplicity, the public key can be

part of the long-lived core (although we could have it elsesel. A security admin’s signed descriptions could apply
to large sets of machines. In theory, the security admin mdsat be part of a different organization; e.g., Verisign

or CERT might set up a security admin who signs descriptidnshat are believed to be secure configurations of
Apache and SSL on Linux.
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The TCPA boot process ensures that the long-lived core lmmotectly and has access to its secrets. The enforcer
(within the long-lived core) checks that the security admitescription is correctly signed, and that the mediuradiv
software matches this description. The enforcer then usesdcure storage API to retrieve and update short-lived
operational data, when requested by the other software.

Since these protected secrets are bound to the enforceorapdived core, we avoid the TPM update problem.

To prevent replay of old signed descriptions, the secudtyia could include a serial number within each description,
as well a “high water mark” specifying the least serial nunthat should still be regarded as valid. The enforcer saves
a high-water mark as a field in the freshness table; the emfaiccepts a signed description only if the serial number
equals or exceeds the saved high-water mark; if the newwaghr mark exceeds the old, the enforcer updates the
saved one. (Alternatively, the enforcer could use some ¢ffperward-secure key evolution.)

A CA who wants to certify the “correctness” of such a platfaeasentially certifies that:

e The long-lived core operates correctly.

e The named security admin will have good judgment about éutoaintenance.

4.3 Usability

How should we flesh out the above elements? In order to makeystem usable, we should try to choose designs
that coincide with familiar programmer constructs. (If pide, these choices may also make our system easier to
build—since we can re-use existing code!)

Short-Lived Data. For short-lived data, we want to give the programmer a wayate @nd retrieve non-volatile
data whose structure can be fairly arbitrarily.

In systems, the standard way that programmers expect toglsthia a filesystem. Aoopback filesysterrovides
a way for a single file to be mounted and used as a filesystemnenypted loopback filesystaatiows this file to be
encrypted (and presumably integrity-protected) wherestor

So, a natural choice for short-lived data is to have the erfave and retrieve keys for an encrypted loopback filesys-
tem, and retain its hash in the freshness table. (A remabpiegtion is how often an update should be committed.)

Since the TPM provides a way to use RSA private keys withopbsxg them, we should also provide an interface to
do that.

Medium-lived Software. For the medium-lived software, we need a way for a (remotehdnuto specify the
security-relevant configuration of a system, and a tool¢hatcheck whether the system matches that configuration.

We chose an approach in the spirit of Tripwire. The secudtyia (again, perhaps on a different machine) prepares a
signed description of the configuration of this mediumdia®mponent; the long-lived component of our system will
use this signed description to verify the integrity of thedien-lived component.

(We considered also performing this function with an entagigoopback filesystem, but then decided that the relevant
aspects of the security configuration would be too hard talleathat way.)

Long-lived Core. Another question is how to structure the enforcer itself.e Hatural place was as an LSM—
besides an being the standard framework for security meduleinux, this choice also gives us the chance to mediate
(if the LSM implementation is correct) all security-reletaalls—including every inode lookup.
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We envisioned this enforcer module running in two step: #failization component, checking for the signed configu-
ration file and performing other appropriate tasks at stprta run-time component, checking the integrity of the files
in the medium-lived configuration.

5 Implementation

5.1 Library

The first step in making this real was wading through the dipations to understand what the functionality of the
TPM, and then—uwith the open source driver—writing code to abtiexploit that functionality.

This component took the longest amount of calendar timendJdie TPM is not a simple matter of a function call:
sessions and HMAC'd data must be formatted in the proper ayformats are the wrong Endian value for an X86
platform; and mistakes often generated a non-informatika eode.

The library we generated is similar to the one IBM concullseti¢veloped: we translate high-level, human-understaleda
calls into properly formatted TPM commands, which we thamds® the TPM. As noted, our code—with extensive
comments—is available via GPL.

We use this code to initially take ownership of the TPM; wealse it when the system—once we've reached run-time
and have an OS—needs to communicate to the TPM.

5.2 Boot Loader

Once our TPM was functional, the next step is to integratetdt the boot process.

Recall that the TPM is (from one view) essentially a creddrgiore that guards secrets based on PCR values. If we
want to ensure that secrets are available only to a specifitett software configuration at run-time, we need to make

sure that the TPM can witness—via hashes in the PCRs—eachrélentbe sequence of executables that leads to

that configuration.

The first step in this chain is BIOS. Per the PC-specific TCR&cHjzation [22], BIOS in a TCPA-enabled PC will
report itself to the TPM. BIOS will also hash theaster boot record (MBR#&nd report this to the TPM, before passing
control to it. (Be sure to have the latest BIOS update beftagisg experiments here; we lost some time due to the
older version that shipped with our machine.)

The next step in the chain is to modify the first-stage bod#odn the MBR to SHA-1 hash the next component and
report this to the TPM, before passing control. Currentlg,store this hash in PCR 8; we used the memory-present
TPM driver from IBM.

We started with the LILO loader; so we modifiéicst.b (the MBR in LILO) to hashsecond.b . Doing this in
assembly, to fit within the tight confines of the MBR and hartdeeTPM endianness requirements, was tricky.

In our current prototype, we run our TCPA-enabled LILO frotftogpy. This decision stemmed from two reasons.

e The first was codespace—and TPM bugs. An MBR is 512 bytes; batchdisk MBR also contains other data,
and does not give us the full 512 for code. This would not haenta problem, except the TPM in our machine
did not appear to actually support ti€PAHashLogExtendEvent() call—we kept getting a “call not
implemented” error. The workaround—replacing this callhadt sequence of calls—pushed us over the limit
for the hard disk MBR. (The floppy gives us the full 512 bytes.)
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e The second is more pragmatic. This is alpha-quality softwand bugs in LILO can destroy the MBR, making
the system unbootable without a rescue disk. With LILO orfliygpy, hard disk MBRs (and the entifigoot
directory) do not require any changes, and disasters aideal/by removing the floppy and booting as usual.

We modified the second stage bootloader to hash the comgressel footprint and place that hash in a PCR. (Our
implementation currently places this value in PCR 9.) Ttst ofthe boot process can continue as normal.

At this point, PCRs 0-9 now witness that this particular leétmas booted in a trusted fashion. (The vendor uses 0-7;
and PCR 8 and PCR 9 have our new hashes, noted above.) If therocess is modified, these PCRs will contain
different values.

5.3 Admin Tools

We wrote some Perl scripts to produce the configuration filed,used an open-source bigint package to produce a
rudimentary keygen (2048-bits) and signing tool. For edehtlie security admin can specify what should happen if
its integrity check fails: log, deny, or panic.

We also used this produce a stripped-down verification tmoljnclusion in the enforce kernel module (discussed
below).

5.4 Enforcer LSM

As mentioned, we built our enforcer as a LSM, for the 2.4 kewith the LSM 2.4.20-1 kernel patch. The initial
prototype is about 1000 lines of code. Our code is set upreithbe compiled into the kernel or to be loaded as a
separate module; the former makes sense for real deployhwmmever, the latter makes experimentation easier.

The enforcer uses thietc/enforcer/ directory to store its signed configuration file, public ketc. (Having
the kernel store data in the filesystem is a bit uncouth, bemse the best solution here, and is not completely
unprecedented.)

When the kernel initializes the enforcer, it registers itekswith the LSM framework. If built as a loadable module,
the enforcer verifies the configuration file’s signature nibepmpiled into the kernel, the enforcer verifies it when the
root filesystem is mounted.

At run-time, the enforcer hooks all inode lookups. (Thegeplea as a file is opened.) We check the file’s integrity via
the configuration file; if the integrity fails, we react acdimg the option: log the event to the syslog, fail the call, or
panic the system.

We developed the enforcer undeser-mode Linux (UML which worked very nicely—each bug that appeared under
UML also showed up with the real system, and vice-versa, \Wdaaic functional tests—showing that modifying the
configuration file, public key, signature, or any protectésldctually causes the appropriate reaction. We also ran 36
hours of continuous stress-tests; the code showed no signashing or leaking memory.

Performance testing (against 1G of data and about 60,08) sit®ws a 25% slowdown on boot, and a 11% slowdown
at subsequent runtime.

5.5 Storage Services

As of this writing, we plan to install the following in the smud alpha release.
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First, we'll implement a simple freshness table as disalisg®ve, for items updatable only at boot-time by the
enforcer. This means that the owner authentication codebwih sealed object, for the enforcer to access; this also
means that when the enforcer finishes its initializatioextends PCR 9 in a known way to indicate that the system is
still founded on the trusted enforcer, but its core secnetpat away.

This freshness table will store two items: a hash of the $gcadmin public key, and the current high-water mark of
the security admin’s configuration files. The signed conégjan files include entries for serial number, high-water
mark, and optional new public key. At start-up, the enforgirverify data:

e It checks that its freshness table hashes to the DIR.

e It checks that the stored public key hashes to the entry ifrédshiness table.

e |t checks that the serial number in the configuration file ishedow the high-water mark in the freshness table.

¢ (It also verifies the signature, naturally.)
The enforcer may also modify data:

e If the high-water mark in the configuration file exceeds tlweed one, the enforcer needs to update the stored
one.

¢ If configuration file included a new public key, the enforceeds to store that—and update the hash in the
freshness table.
These changes need to be flushed back to the DIR.
This way, we permit old public keys and old signed configaragito be revoked.

The enforcer also needs a suicide option, to make sure a#itseare unaccessible in the case of panic. Extending core
PCRs should do the trick.

We then plan to expose the rest of the TPM calls in our libfamise by user-level code, such as encrypted loopback
filesystem, as it sees fit.

5.6 Long-term Vision

In the long-term, we would like this platform to balance s#guand practical issues. For example, one motivation
was to enable in practice what WebALPS only enabled in themwyay to secure the other end of an SSL tunnel.

The TPM testifies to the long-lived component: the hardwar@ BIOS, the kernel and current enforcer, and the
security admin’s current public key.

The security admin then testifies to the medium-level saftwa.g., the particular versions of Apache, mssd, etc)
necessary for the system to run securely. The enforcea¢Blrehecked) ensures that this configuration matches the
system.

The Web content is controlled by various users. These userauthenticated via the kernel and medium-level con-
figuration that has already been testified to. Their contesaved in a protected loopback filesystem, ensuring that it
was valid content at some point. (We still need an adequattti@o to freshness.)

The SSL CA verifies that it trusts the enforcer and kernel,taedudgment of the security admin. The relying party
then has reason to trust the other end of the transaction.
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6 Future Work

As we noted, this is a preliminary report about a work-inggess. Many areas remain for future work. We quickly
discuss some:

e Freshness. As noted earlier, it would be nice to have an elegant, effecsolution for freshness of secrets
stored at run-time, and by user-level code. This would adéserthe issue of how often changes should be
committed—for example, shoukhchchange to a loopback filesystem update a DIR somehow?

e Personalization. We have not yet thought deeply about a how a virgin systemrhesaonfigured and under
the control of a security admin.

So far, we have waved our hands and assumed that what Petea@uterms the “Baby Duck Model” (the
system imprints on the first public key it sees) would sulffice.

e Attestation. We have also not addressed the task of enabling a remotetpastyify that a blessed kernel and
enforcer are running on a particular system. For now, werasghat the TPCA attestation framework should
work.

o Sufficiency of Configuration Checking.Right now, the enforcer only protects against modificatiminsontent
of the files that the security admin deemed critical. Thertita is that the integrity of the kernel/enforcer plus
the integrity of this code is enough to ensure the system i&king as advertised, to the best of the security
admin’s knowledge. We plan further thought as to whetherighsufficient.

e Run-time Defenses.Again, the enforcer only looks at modifications to file cotserAdversaries may mount
many other types of attacks; since the long-term goal istaalisecure coprocessor, it would be interesting to
extend the enforcer to detect additional types of tampering

(An adversary that succeeds at run-time in modifying theweir code itself or its configuration file might also
have some success.)

e Credential Use, in Practice.As real applications get written and run, it would be intéresto see how many
make use of an encrypted loopback filesystem for securegatpaad how many instead make use of the TPM
sealed storage calls directly.

¢ Performance. We have not yet even begun to consider issues of tuning pesface, such as marking files that
have passed the integrity check—»but clearing this flag if wettan operation that might modify the file.

As noted, one of the first things we want to do is port our Ap#eBe-based Dartmouth CA to this platform, to see
whether these hooks are sufficient for a real applicatioretivdr the performance hit under real loads is significant,
and what additional security the resulting the system aekie
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