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TR2003-466, June 2003, Department of Computer Science, Dartmouth College

Digital Art Forensics

Siwei Lyu1, Daniel Rockmore1,2, and Hany Farid1,†

Department of Computer Science1 and Department of Mathematics2

Dartmouth College
Hanover NH 03755

We describe a computational technique for digitally authenticating works of art. This ap-
proach builds statistical models of an artist from a set of authenticated works. Additional
works are then authenticated against this model. The statistical model consists of first- and
higher-order wavelet statistics. We show preliminary results from our analysis of thirteen
drawings by Pieter Bruegel the Elder. We also present preliminary results showing how
these techniques may be applicable to determining how many hands contributed to a single
painting.

† Correspondence should be addressed to H. Farid. 6211 Sudikoff Lab, Department of Computer Science, Dartmouth College,
Hanover NH 03755. tel/fax: 603.646.2761/1672; email: farid@cs.dartmouth.edu.
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1 Introduction

It probably wasn’t long after the creation of paint-
ings, sculptures, and other art forms that a lucra-
tive business in art forgeries was found. And it
probably wasn’t long after this that techniques
for detecting art forgeries emerged. Much of this
work has been based on physical analyses (e.g.,
chemical dating, x-ray, etc.) [?]. With the advent
of powerful digital technology it seems that com-
putational tools can begin to provide new insights
and tools into the art and science of art forgery
detection (e.g., [5, 12, 11]).
We present a computational tool for analyz-

ing prints, drawings and paintings for the pur-
pose of characterizing their authenticity. More
specifically we begin with high-resolution dig-
ital scans of a drawing or painting, perform a
multi-scale, multi-orientation image decomposi-
tion (e.g., wavelets), construct a compact model
of the statistics within this decomposition, and
look for consistencies or inconsistencies across (or
within) different drawings or paintings.
We first describe the underlying statistical model

and then showpreliminary results from our anal-
ysis of thirteen drawings by Pieter Bruegel the
Elder and a painting by Perugino.

2 Wavelet Statistics

The decomposition of images using basis func-
tions that are localized in spatial position, orien-
tation, and scale (e.g., wavelets) has proven ex-
tremely useful in a range of applications (e.g.,
image compression, image coding, noise removal,
and texture synthesis). One reason for this is that
such decompositions exhibit statistical regular-
ities that can be exploited (e.g., [9, 8, 2]). De-
scribed below is one such decomposition, and
a set of statistics collected from this decomposi-
tion.
The decomposition is based on separable quadra-

ture mirror filters (QMFs) [13, 14, 10]. As illus-
trated in Figure 1, this decomposition splits the

frequency space into multiple scales and orien-
tations. This is accomplished by applying sepa-
rable lowpass and highpass filters along the im-
age axes generating a vertical, horizontal, diago-
nal and lowpass subband. For example, the hor-
izontal subband is generated by convolving with
the highpass filter in the horizontal direction and
lowpass in the vertical direction, the diagonal band
is generated by convolving with the highpass fil-
ter in both directions, etc. Subsequent scales are
created by subsampling the lowpass by a factor
of two and recursively filtering. The vertical, hor-
izontal, and diagonal subbands at scale i = 1, ..., n
are denoted as Vi(x, y), Hi(x, y), and Di(x, y), re-
spectively. Shown in Figure 3 is a three-level de-
composition of the image of DartmouthHall shown
in Figure 2.
Given this image decomposition, the statistical

model is composed of the mean, variance, skew-
ness and kurtosis of the subband coefficients at
each orientation and at scales i = 1, ..., n − 2.
These statistics characterize the basic coefficient
distributions. In order to capture the higher-order
correlations that exist within this image decom-
position, these coefficient statistics are augmented
with a set of statistics based on the errors in an
optimal linear predictor of coefficient magnitude.
As described in [2], the subband coefficients

are correlated to their spatial, orientation and scale
neighbors. For purposes of illustration, consider
first a vertical band, Vi(x, y), at scale i. A linear
predictor for the magnitude of these coefficients
in a subset of all possible neighborsmay be given
by:

|Vi(x, y)| = w1|Vi(x − 1, y)| + w2|Vi(x + 1, y)|

+ w3|Vi(x, y − 1)| + w4|Vi(x, y + 1)|

+ w5|Vi+1(
x
2
, y

2
)| + w6|Di(x, y)|

+ w7|Di+1(
x
2
, y

2
)|, (1)

where wk denotes scalar weighting values, and
| · | denotes magnitude. This particular choice of
spatial, orientation, and scale neighbors was em-
ployed in our earlier work on detecting traces of
digital tampering in images [4]. Here we employ
an iterative brute-force search (on a per subband
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Figure 1: An idealized multi-scale and ori-

entation decomposition of frequency space.

Shown, from top to bottom, are levels 0,1, and
2, and from left to right, are the lowpass, ver-

tical, horizontal, and diagonal subbands.

Figure 2: An image of Dartmouth Hall.

Figure 3: Shown are the absolute values of

the subband coefficients at three scales and
three orientations for an image of Dartmouth

Hall, Figure 2. The residual lowpass subband
is shown in the upper-left corner.

and per image basis) for the set of neighbors that
minimizes the prediction error within each sub-
band.
Consider again the vertical band, Vi(x, y), at

scale i. We constrain the search of neighbors to a
3 × 3 spatial region at each orientation subband
and at three scales, namely, the neighbors:

Vi(x − cx, y − cy),Hi(x − cx, y − cy),

Di(x − cx, y − cy),

Vi+1(
x
2
− cx, y

2
− cy),Hi+1(

x
2
− cx, y

2
− cy),

Di+1(
x
2
− cx, y

2
− cy),

Vi+2(
x
4
− cx, y

4
− cy),Hi+2(

x
4
− cx, y

4
− cy),

Di+2(
x
4
− cx, y

4
− cy),

with cx = {−1, 0, 1} and cy = {−1, 0, 1}, where
cx, cy 6= 0. From these 80 possible neighbors, the
iterative search begins by finding the single most
predictive neighbor (e.g., Vi+1(x/2 − 1, y/2)) 1.
This neighbor is held fixed and the next most
predictive neighbor is found. This process is re-
peated five more times to find the optimally pre-
dictive neighborhood. On the kth iteration, the
predictor coefficients (w1, ..., wk) are determined

as follows. Let the vector ~V contain the coef-
ficient magnitudes of Vi(x, y) strung out into a
column vector, and the columns of the matrix Q
contain the chosen neighboring coefficient mag-
nitudes also strung out into column vectors. The
linear predictor then takes the form:

~V = Q~w, (2)

where the column vector ~w = (w1 . . . wk )T ,
The predictor coefficients are determined bymin-
imizing the quadratic error function:

E(~w) = [~V − Q~w]2. (3)

This error function is minimized by differentiat-
ing with respect to ~w:

dE(~w)/d~w = 2QT [~V − Q~w], (4)

1Integer rounding is used when computing the spatial
positions of a parent, e.g., x/2 or x/4.
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setting the result equal to zero, and solving for ~w
to yield:

~w = (QT Q)−1QT ~V . (5)

The log error in the linear predictor is then given
by:

~Ev = log2(~V ) − log2(|Q~w|). (6)

Once the full set of neighbors is determined
additional statistics are collected from the errors
of the final predictor - namely the mean, vari-
ance, skewness, and kurtosis. This entire pro-
cess is repeated for each oriented subband, and
at each scale i = 1, ..., n − 2, where at each sub-
band a new set of neighbors is chosen and a new
linear predictor estimated.
For a n-level pyramid decomposition, the co-

efficient statistics consist of 12(n− 2) values, and
the error statistics consist of another 12(n−2) val-
ues, for a total of 24(n−2) statistics. These values
represent the measured statistics of an artist and,
as described below, are used to classify or cluster
drawings or paintings.

3 Bruegel

Pieter Bruegel the Elder (1525/30-1569) was per-
haps one of the greatest Dutch artists. Of par-
ticular beauty are Bruegel’s landscape drawings.
We choose to begin our analysis with Bruegel’s
work not only because of their exquisite charm
and beauty, but also because Bruegel’s work has
recently been the subject of renewed study and
interest [7]. As a result many drawings formerly
attributed to Bruegel are now considered to be-
long to others. As such, we believe that this is a
wonderful opportunity to test and push the lim-
its of our computational techniques.
We digitally scanned (at 2400 dpi) eight au-

thenticated drawings by Bruegel and five forg-
eries from 35mm color slides, Figure 4 (slideswere
provided courtesy of the Metropolitan Museum
of Art [7]). These color (RGB) images, originally
of size 3894 × 2592, were cropped to a central

Num. Title Artist

3 Pastoral Landscape Bruegel
4 Mountain Landscape with Bruegel
Ridge and Valley

5 Path through a Village Bruegel
6 Mule Caravan on Hillside Bruegel
9 Mountain Landscape with Bruegel
Ridge and Travelers

11 Landscape with Saint Jermove Bruegel
13 Italian Landscape Bruegel
20 Rest on the Flight into Egypt Bruegel

7 Mule Caravan on Hillside -
120 Mountain Landscape with -

a River, Village, and Castle
121 Alpine Landscape -
125 Solicitudo Rustica -
127 Rocky Landscape with Castle -

and a River

Figure 4: Authentic (top) and forgeries (bot-
tom). The first column corresponds to the cat-

alog number in [7].

2048×2048 pixel region, converted to grayscale 2

(gray = 0.299R + 0.587G+ 0.114B), and autoscaled
to fill the full intensity range [0, 255]. Shown in
Figure 5 are examples of an authentic drawing
and a forgery.
For each of 64 (8 × 8) non-overlapping 256 ×

256 pixel region in each image, a five-level, three-
orientation QMF pyramid is constructed, from
which a 72-length feature vector of coefficient and
error statistics is collected, Section 2.
In order to determine if there is a statistical

difference between the eight authentic drawings
and the five forgeries, we first computed theHaus-
dorff distance [6] between all 13 pairs of images.
The resulting 13 × 13 distance matrix was then
subjected to a multidimensional scaling (MDS)

2While converting from color to grayscale results in a
significant loss of information, we did so in order to make
it more likely that the measured statistical features and sub-
sequent classification was more likely to be based on the
artist’s strokes, and not on simple color differences.
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Figure 5: Authentic #6 (top) and forgery #7

(bottom), see Table 4.

Figure 6: Results of analyzing 8 authentic
Bruegel drawings (blue circles) and 5 forgeries

(red squares). Note how the forgeries lie sig-
nificantly outside of the bounding sphere of

authentic drawings.

with a Euclidean distance metric [3]. Shown in
Figure 6 is the result of visualizing the projec-
tion of the original 13 images onto the top-three
MDS eigenvalue eigenvectors. The blue circles
correspond to the authentic drawings, and the
red squares to the forgeries. For purely visualiza-
tion purposes, the wire-frame sphere is rendered
at the center of mass of the eight authentic draw-
ings and with a radius set to fully encompass all
eight data points. Note that all five forgeries fall
well outside of the sphere. The distances of the
authentic drawings to the center of the sphere are
0.34, 0.35, 0.55, 0.90, 0.56, 0.17, 0.54, and 0.85.
The distances of the forgeries are considerably
larger at 1.58, 2.20, 1.90, 1.48, and 1.33 (the means
of these two distance populations are statistically
significant: p < 1−5 (one-way anova)). Even in
this reduced dimensional space, there is a clear
difference between the authentic drawings and
the forgeries.

4 Perugino

Pietro di Cristoforo Vannucci (Perugino) (1446-
1523) is well known as a portraitist and a fresco
painter, but perhaps he is best known for his al-
tarpieces. By the 1490s Perugino maintained a
workshop in Florence as well as in Perugia and
was quite prolific. Shown in Figure 7 is the paint-
ing Madonna With Child by Perugino. As with
many of the great Renaissance paintings, how-
ever, it is likely that Perugino only painted a por-
tion this work - apprentices did the rest. To this
end, wewondered if we could uncover statistical
differences amongst the faces of the individual
characters.
The painting (at theHoodMuseum, Dartmouth

College) was photographed using a large-format
camera (8× 10 inch negative) and drum-scanned
to yield a color 16, 852 × 18, 204 pixel image. As
in the previous section this image was converted
to grayscale. The facial region of each of the six
characters wasmanually localized. Each face was
then partitioned into non-overlapping 256 × 256
regions and auto-scaled into the full intensity range

5



Figure 7: Madonna With Child by Perugino.
How many hands contributed to this paint-

ing?

5

2

4

1
3

6

Figure 8: Results of analyzing the Perugino
painting. The numbered data points corre-

spond to the six faces (from left to right) in

Figure 7. Note how the three left-most faces
(1-3) cluster, while the remaining faces are

distinct. This clustering pattern suggests the
presence of four distinct hands.

[0, 255]. This partitioning yielded (from left to
right) 189, 171, 189, 54, 81, and 144 regions. The
same set of statistics as described in the previous
section was collected from each of these regions.
Also as in the previous section, we computed the
Hausdorff distance between all six faces. The re-
sulting 6 × 6 distance matrix was then subjected
to MDS. Shown in Figure 8 is the result of visual-
izing the projection of the original six faces onto
the top-three MDS eigenvalue eigenvectors.
The numbered data points correspond to the

six faces (from left to right) in Figure 7. Note
how the three left-most faces cluster, while the re-
maining faces are distinct. The average distance
between faces 1−3 is 0.61, while the average dis-
tance between the other faces is 1.79. This clus-
tering pattern suggests the presence of four dis-
tinct hands, and is consistent with the views of
some art historians [1].

5 Discussion

We have presented a computational tool for dig-
itally authenticating or classifying works of art.
This technique looks for consistencies or incon-
sistencies in the first- and higher-order wavelet
statistics collected from drawings or paintings (or
portions thereof). We showedpreliminary results
from our analysis of thirteen drawings by Pieter
Bruegel the Elder and a painting by Perugino.
There is no doubt that much work remains to
refine and further test these results, but we are
very hopeful that these techniques will eventu-
ally play an important role in the ever-growing
field of art forensics.
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