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Efficient and Practical Constructions of LL/SC Variables∗†

Prasad Jayanti and Srdjan Petrovic
Department of Computer Science

Dartmouth College
Hanover, NH 03755

prasad,spetrovic@cs.dartmouth.edu

Abstract

Over the past decade, LL/SC have emerged as the most suitable synchronization instructions for the design of lock-free al-
gorithms. However, current architectures do not support these instructions; instead, they support either CAS or RLL/RSC (e.g.
POWER4, MIPS, SPARC, IA-64). To bridge this gap, this paper presents two efficient wait-free algorithms for implementing
64-bit LL/SC objects from 64-bit CAS or RLL/RSC objects.

Our first algorithm is practical: it has a small, constant time complexity (of 4 for LL and 5 for SC) and a space overhead of only
4 words per process. This algorithm uses unbounded sequence numbers. For theoretical interest, we also present a more complex
bounded algorithm that still guarantees constant time complexity and O(1) space overhead per process.

The LL/SC primitive is free of the well-known ABA problem that afflicts CAS. By efficiently implementing LL/SC words from
CAS words, this work presents an efficient general solution to the ABA problem.

∗This work is partially supported by the NSF Grant CCR-9803678 and by the Alfred P. Sloan Foundation Fellowship awarded to the first author.
†A preliminary version of this paper appeared in the Proceedings of the 22nd Annual ACM Symposium on Principles of Distributed Computing, Boston,

Massachusetts, USA, July 13–16, 2003.
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1 Introduction
Over the past decade, LL/SC have emerged as the most suit-
able synchronization instructions for the design of lock-free
algorithms. In fact, most lock-free algorithms designed in re-
cent years are based on LL/SC [1, 4, 6, 9, 13, 14, 18, 19, 21].
These algorithms assume that LL/SC instructions satisfy the
semantics described in Figure 1. However, current architec-
tures do not support LL/SC instructions with these semantics;
instead, they support either compare&swap, also known as
CAS (e.g., UltraSPARC [10], and Itanium [7]) or restricted
versions of LL/SC (e.g., POWER4 [8], MIPS [23], and Al-
pha [22] processors). Although the restrictions on LL/SC
vary from one architecture to another, Moir [17] noted that
the LL/SC instructions supported by real machines, hence-
forth referred to as RLL/RSC, satisfy the restricted semantics
stated in Figure 2.

Since CAS suffers from the well-known ABA problem [5]
and RLL/RSC impose severe restrictions on their use [17], it
is difficult to design algorithms based on these instructions.
Thus, there is a gap between what algorithm designers want
(namely, LL/SC) and what multiprocessors actually support
(namely, CAS or RLL/RSC). This gap must be bridged effi-
ciently, which gives rise to the following problem:

Design a wait-free algorithm that implements LL/SC mem-
ory words (i.e., 64-bit LL/SC objects) from memory words sup-
porting either CAS or RLL/RSC operations. To be useful in
practice, the time and space complexities must be kept small.

Of the existing algorithms for the above problem, the most
efficient one is due to Moir [17]. His algorithm runs in con-
stant time and has no space overhead. However, it can only
implement small (e.g., 16 to 24 bit) LL/SC objects, which are
inadequate for storing pointers, large integers and doubles.
This size limitation is due to the fact that Moir’s algorithm
stores a version number along with the object’s value in the
same memory word. Since version number takes up about 40
to 48 bits, only 16 to 24 bits are left for the value field. Our
approach is to store the value and the version number in sep-
arate memory words, thus enabling values to be as big as 64
bits. This separation of value and version number, of course,
makes it hard to ensure atomicity of concurrent operations,
but our algorithms meet this challenge. In the following, we
state our results and their significance, and compare them with
existing work.

1.1 An unbounded algorithm
Our first result is a wait-free algorithm that implements a 64-
bit LL/SC object from a 64-bit CAS object and registers. The
algorithm is efficient in both time and space. The time com-
plexity of LL and SC operations are small constants (4 and 5,
respectively). In terms of space, the algorithm uses a single
CAS object and, additionally, four registers per process.

This result shows, for the first time, a practical way of
simulating a 64-bit LL/SC object using CAS, incurring only
a small constant space overhead per process and a small con-
stant factor slowdown.

Using the technique introduced by Moir [17], we can re-
place CAS with RLL/RSC, thereby obtaining an implementa-

• LL(O) returns O’s value.

• SC(O, v) by process p “succeeds” if and only if no pro-
cess performed a successful SC on O since p’s latest
L L on O. If SC succeeds, it changes O’s value to v and
returns true. Otherwise, O’s value remains unchanged
and SC returns false.

• VL(O) returns true if and only if no process performed
a successful SC on O since p’s latest L L on O.

• CAS(X, u, v) behaves as follows: if X’s current value
is u, X is assigned v and true is returned; otherwise, X
is unchanged and false is returned.

Figure 1: Definitions of operations LL/SC/VL and CAS

• RLL/RSC are similar to LL and SC, with two differ-
ences [17]: (i) there is a chance of RSC failing spuri-
ously: RSC might fail even when SC would succeed,
and (ii) a process must not access any shared variable
between its RLL and the subsequent RSC.

Figure 2: Definition of operations RLL/RSC

tion of a 64-bit LL/SC object from RLL/RSC.
This result is significant for the ABA-problem [5], which

arises in algorithms that use CAS. The ABA-problem has
been known for 20 years, and is briefly described as fol-
lows. Suppose that the steps of processes p and q are in-
terleaved in the following manner: p reads value u in variable
X , q changes X to v and then back to u, and then p per-
forms CAS(X, u, ∗). In this scenario, p’s CAS succeeds even
though X was modified after p’s read. This problem would
not occur if p’s read and CAS operations were replaced by LL
and SC, respectively. Thus, by efficiently implementing a 64-
bit LL/SC object from 64-bit CAS, our algorithm presents a
general and permanent solution to the ABA-problem. In con-
trast, past solutions to the ABA-problem either were specific
to the particular context [24, 25, 26] or solved the problem by
storing a sequence number along with the value, which limits
the range of values that can be stored [16, 17, 20].

1.2 A bounded algorithm
The previous algorithm maintains a sequence number that
grows without bound. Although the use of unbounded se-
quence numbers is not a concern in practice, from a theoretical
standpoint it is desirable to design an algorithm whose vari-
ables take on only bounded values that fit into real memory
words. Our second algorithm achieves this property while still
guaranteeing constant time complexity and constant space
overhead per process. We obtain this algorithm by compos-
ing three reductions, two of which are novel. One reduction,
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which we believe is significant in its own right, is stated next.

1.3 Reducing LL/SC to Weak LL/SC
Anderson and Moir [2] introduced a weak version of LL, de-
noted WLL, which is described as follows. A WLL operation
by a process p is not obligated to return the object’s value if
p’s subsequent SC operation is sure to fail; in this case, the
WLL may simply return the identity of a process whose suc-
cessful SC took effect during the execution of that WLL. This
weaker LL operation is good enough for some applications
[2], but not for all. For example, the closed objects construc-
tion [6], the construction of f -arrays and snapshots [13], the
abortable mutual exclusion algorithm [14], and some univer-
sal constructions [1, 9, 18, 19, 21] require the standard LL
operation.

We discovered a surprisingly close connection between
LL/SC and WLL/SC: a WLL/SC object can be transformed
into an LL/SC object, incurring only a small overhead in time
and space. Specifically, we present a wait-free algorithm that,
for any m > 0, transforms an m-bit WLL/SC object into an
m-bit LL/SC object; the algorithm has a constant time com-
plexity (of 5 for LL and 1 for SC), and a space overhead of
only one m-bit register per process.

1.4 Previous work
The earliest wait-free algorithm for implementing an LL/SC
object from CAS objects is due to Israeli and Rappoport [11].
Their algorithm makes an unrealistic assumption that N bits
can be stored in a single memory word, where N is the max-
imum number of processes for which the algorithm is de-
signed. Furthermore, both LL and SC have a worst case time
complexity of O(N). The more efficient known algorithms
are due to Anderson and Moir, and were presented in Figure 1
of [3], Figure 2 of [2], and Figures 4 and 7 of [17]. In the fol-
lowing, we refer to these four algorithms by the names AM1,
AM2, M1 and M2, respectively. As we now explain, these
algorithms either implement smaller (than 64-bit) LL/SC ob-
jects or incur excessive space overhead.

Algorithms AM1 and M2 use only bounded registers, but
have two drawbacks: (1) the space overhead is O(N) per pro-
cess, and (2) they store a tag along with the value in the same
64-bit memory word, thereby limiting the range of values that
can be stored in the LL/SC object. Specifically, AM1 and M2
use tags of 1 + 3 log N bits and 1 + 2 log N bits, respectively.
Therefore, assuming N = 1000, they can only implement a
33-bit and a 43-bit LL/SC object, respectively.

Algorithm M1 is extremely efficient: it has constant time
complexity and incurs no space overhead. However, this al-
gorithm stores an unbounded tag along with the value in the
same memory word. Assuming 48 bits are used up for the tag,
only 16 bits are left for the value.

By composing any of these small LL/SC object implemen-
tations with the multi-word LL/SC construction of AM2, one
can implement a 64-bit LL/SC variable. The resulting imple-
mentations, however, have a space overhead of O(N) per pro-
cess (more precisely, at least 16N shared variables are needed

per process, in contrast to 4 variables per process that our al-
gorithm requires).

Finally, a recent algorithm by Luchangco, Moir and Shavit
[15] implements a 63-bit LL/SC object, but it is only non-
blocking and not wait-free.

2 A practical 64-bit LL/SC implemen-
tation

Figure 3 presents our first algorithm for implementing a 64-bit
LL/SC object. We begin by providing an intuitive description
of how this algorithm works.

2.1 How the algorithm works
The algorithm implements a 64-bit LL/SC object O. Cen-
tral to the implementation is the variable X that supports CAS
and read operations. In addition there are four atomic reg-
isters at each process p—valp[0], valp[1], oldvalp and
oldseqp—that are written to only by p but may be read by
any process. The meanings of these variables are described as
follows.

The algorithm associates a tag with every successful SC
operation on O. A tag consists of a process id and a sequence
number. Specifically, the tag associated with a successful SC
operation is [p, k] if it is the kth successful SC operation by
process p. The variable X always contains the tag correspond-
ing to the latest successful SC.

Suppose that the current value of X is [p, k] (the last suc-
cessful SC was performed by p and p performed k successful
SC operations so far). Our algorithm ensures that the value
written by the kth successful SC by p is in valp[0] if k is
even, or in valp[1] if k is odd; i.e., the value is made available
in valp[k mod 2]. The registers oldvalp and oldseqp
hold an older value and its sequence number, respectively.
Specifically, if p has so far performed k successful SC op-
erations, oldseqp and oldvalp contain, respectively, the
number k −1 and the value written by the (k −1)th successful
SC by p.

In addition to the shared variables just described, each pro-
cess p has two local variables, seqp and tagp, described as fol-
lows. The value of seqp is the sequence number of p’s next
SC operation: If p has performed k successful SC operations
so far, seqp has the value k + 1. (Thus, sequence numbers in
our algorithm are local: p’s sequence number is based on the
number of successful SCs performed by p, not by the system
as a whole.) The value of tagp is the value of X read by p in
its latest LL operation.

Given this representation, the variables are initialized as
follows. Let vinit denote the desired initial value of the im-
plemented object O. We pretend that process 0 performed an
“initializing SC” to write the value vinit . Accordingly, X is
initialized to [0, 1], val0[1] to vinit , oldseq0 to 0, and seq0
to 2. For each process p 6= 0, seqp is initialized to 1. All
other variables are arbitrarily initialized.

We now explain the procedure SC(p,O, v) that describes
how process p performs an SC operation on O to attempt to
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Types
valuetype = 64-bit number
seqnumtype = (64 − log N)-bit number
tagtype = record pid: 0 .. N − 1; seqnum: seqnumtype end

Shared variables
X: tagtype (X supports read and CAS operations)
For each p ∈ {0, . . . , N − 1}, we have four single-writer, multi-reader registers:

valp[0], valp[1], oldvalp: valuetype
oldseqp: seqnumtype

Local persistent variables at each p ∈ {0, . . . , N − 1}

tagp: tagtype
seqp: seqnumtype

Initialization
X = [0, 1]

val0[1] = vinit , the desired initial value of O
oldseq0 = 0
seq0 = 2
For each p ∈ {1, . . . , N − 1} seqp = 1

procedure LL(p,O) returns valuetype procedure SC(p,O, v) returns boolean
1: tagp = X 7: valp[seqp mod 2] = v

Let [q, k] = [tagp.pid, tagp.seqnum] 8: if CAS(X, tagp, [p, seqp])

2: v = valq[k mod 2] 9: oldvalp = valp[(seqp − 1) mod 2]

3: k ′ = oldseqq 10: oldseqp = seqp − 1
4: if (k ′ = k − 2) ∨ (k ′ = k − 1) return v 11: seqp = seqp + 1
5: v′ = oldvalq 12: return true
6: return v′ 13: else return false

procedure VL(p,O) returns boolean
14: return X = tagp

Figure 3: An unbounded implementation of the 64-bit LL/SC variable O using a 64-bit CAS variable and 64-bit registers

change O’s value to v. First, p makes available the value v

in valp[0] if the sequence number is even, or in valp[1] if
the sequence number is odd (Line 7). Next, p tries to make
its SC operation take effect by swinging the value in X from
the tag that p had witnessed in its latest LL operation to the
tag corresponding to its current SC operation (Line 8). If the
CAS operation fails, it follows that some other process per-
formed a successful SC after p’s latest LL. In this case, p’s SC
must fail. Therefore, p terminates its SC procedure, returning
false (Line 13). On the other hand, if CAS succeeds, then p’s
current SC operation has taken effect. To remain faithful to
the previously described meanings of the variables oldvalp
and oldseqp, p writes in oldvalp the value written by
p’s earlier successful SC (Line 9) and writes in oldseqp the
sequence number of that SC (Line 10). (Since the sequence
number for p’s current successful SC is seqp, it follows that
the sequence number for p’s earlier successful SC is seqp − 1
and the value written by that SC is in valp[(seqp−1) mod 2];
this justifies the code on Lines 9 and 10.) Next, p increments
its sequence number (Line 11) and signals successful comple-
tion of the SC by returning true (Line 12).

We now turn to the procedure LL(p,O) that describes
how process p performs an LL operation on O. In the follow-

ing, let SCq,i denote the i th successful SC by process q and
vq,i denote the value written in O by SCq,i . First, p reads X to
obtain the tag [q, k] corresponding to the latest successful SC
operation, SCq,k (Line 1). Notice that, at the instant when p
performs Line 1, the variable valq[k mod 2] holds the value
vq,k . Notice further that valq[k mod 2] is not modified until
q initiates an SC operation with seqq = k + 2. In particular,
the value of valq[k mod 2] is guaranteed to be vq,k until q
completes SCq,k+1.

In an attempt to learn vq,k , p reads valq[k mod 2] (Line
2). By the observation in the previous paragraph, if p is not
too slow and executes Line 2 before q completes SCq,k+1, the
value v read on Line 2 will indeed be vq,k . Otherwise the value
v cannot be trusted. To resolve this ambiguity, p must deter-
mine if q has completed SCq,k+1 yet. To make this determi-
nation, p reads the sequence number k ′ in oldseqq (Line 3).
If k ′ < k, it follows that SCq,k+1 has not yet completed even
if it had been already initiated (because, by Line 10, SCq,k+1
writes k into oldseqq). It follows that the value v obtained
on Line 2 is vq,k . So, p terminates the LL operation, returning
v (Line 4).

If k ′ ≥ k, q must have completed SCq,k+1, its (k + 1)th
successful SC. It follows that the value in oldvalq is vq,k
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or a later value (more precisely, the value in oldvalq is vq,i
for some i ≥ k). Therefore, the value in oldvalq is not too
stale for p’s LL to return. Accordingly, p reads the value v ′

of oldvalq (Line 5) and returns it (Line 6). Although v′ is
a recent enough value of O for p’s LL to legitimately return,
it is important to note that v′ is not the current value of O.
This is because the algorithm moves a value into oldvalq
only after it is no longer the current value. Since the value
v′ that p’s LL returns on Line 6 is not the current value, p’s
subsequent SC must fail (by the specification of LL/SC). Our
algorithm satisfies this requirement because, when p’s subse-
quent SC performs Line 8, the CAS operation fails since tagp
is [q, k] and the value of X is not [q, k] anymore (the value of
X is not [q, k] because, by the first sentence of this paragraph,
q has completed its (k + 1)th successful SC). This completes
the description of how LL is implemented.

The VL operation by p is simple to implement: p returns
true if and only if the tag in X has not changed since p’s latest
LL operation (Line 14).

Based on the above discussion, we have the following the-
orem. Its proof is given in the Appendix A.

Theorem 1 The wait-free algorithm in Figure 3 implements
a linearizable 64-bit LL/SC object from a single 64-bit CAS
object and an additional four registers per process. The time
complexity of LL, SC and VL operations are 4, 5 and 1, re-
spectively.

2.2 Remarks
2.2.1 Sequence number wrap-around

The 64-bit variable X stores in it a process number and a se-
quence number. Even if there are as many as 16000 processes
sharing the implementation, only 14 bits are needed for stor-
ing the process number, leaving 50 bits for the sequence num-
ber. In our algorithm, for seqp to wrap around, p must per-
form 250 successful SC operations. If p performs a million
successful SC operations each second, it takes 32 years for
seqp to wrap around! Wraparound is therefore not a practical
concern.

2.2.2 Using RLL/RSC instead of CAS

Using Moir’s idea [17], it is straightforward to replace the
CAS instruction (on Line 8) in our algorithm with RLL/RSC
instructions. Specifically, use the following code fragment in
the place of Line 8. The repeat-until loop handles spurious
RSC failures and terminates in a single iteration if there are
no such failures.

flag = false
repeat

if RLL(X) 6= tagp go to L
flag = RSC(X, [p, seqp])

until flag
L: if (flag)

2.2.3 Implementing read, write

It is straightforward to extend our algorithm in Figure 3
to implement read and write operations in addition to LL,
SC and VL operations. Specifically, the implementation
of Write(p,O, v) is the same as the implementation of
SC(p,O, v) with the following changes: replace the CAS on
Line 8 with write(X, [p, seqp]) and remove Lines 12 and 13.
The implementation of Read(p,O) is the same as the code
for LL, except that on Line 1 the value of X is read into a
local variable, different from tagp (so that the read operation
doesn’t affect the success of the subsequent SC). The code for
LL, SC and VL operations remains the same as in Figure 3.

Elsewhere we showed that incorporating the write opera-
tion into other known constructions of LL/SC variables is not
algorithmically easy; it affects the code and the running time
of LL and SC operations [12]. Thus, it is an interesting feature
of our algorithm that it can be extended effortlessly to support
the write operation.

3 Designing a bounded 64-bit LL/SC
implementation

For the rest of this paper, the goal is to design a bounded al-
gorithm that implements a 64-bit LL/SC object using 64-bit
CAS objects and 64-bit registers. We achieve this goal in four
steps:

1. Implement a 64-bit LL/SC object from a 64-bit
WLL/SC object and 64-bit registers.

2. Implement a 64-bit WLL/SC object from a (1-bit, pid)-
LL/SC object (which will be described later).

3. Implement a (1-bit, pid)-LL/SC object from a 64-bit
CAS object and registers.

4. This step is trivial: simply compose the implementa-
tions from the above steps. This composition results in
an implementation of a 64-bit LL/SC object from 64-bit
CAS objects and 64-bit registers.

Interestingly, as we will show in the next three sections,
the implementations in the first three steps have O(1) time
complexity and O(1) space overhead per process. As a result,
the 64-bit LL/SC implementation obtained in the fourth step
also has O(1) time complexity and O(1) space overhead per
process, as desired.

4 Implementing 64-bit LL/SC from
64-bit WLL/SC

Recall that a WLL operation, unlike LL, is not always re-
quired to return the value of the object: if the subsequent SC
operation is sure to fail, the WLL may simply return the iden-
tity of a process whose successful SC took effect during the
execution of that WLL. Thus, the return value of WLL is of
the form [flag, v], where either (i) flag = success and v is the
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Types
valuetype = 64-bit number

Shared variables
X: valuetype (X supports WLL, SC and VL operations)
For each p ∈ {0, . . . , N − 1}, we have one single-writer, multi-reader register:

lastValp : valuetype
Initialization

X = vinit , the desired initial value of O

procedure LL(p,O) returns valuetype procedure SC(p,O, v) returns boolean
1: [flag, v] = WLL(p,X) 11: return SC(p,X, v)

2: if (flag = success)
3: lastValp = v procedure VL(p,O) returns boolean
4: return v 12: return VL(p,X)

5: val = lastValv

6: [flag, v] = WLL(p,X)

7: if (flag = success)
8: lastValp = v

9: return v

10: return val

Figure 4: Implementation of the 64-bit LL/SC variable O using a 64-bit WLL/SC variable and 64-bit registers

value of the object O, or (ii) flag = failure and v is the id of a
process whose SC took effect during the WLL.

Figure 4 describes the algorithm that implements a 64-bit
LL/SC object O. The algorithm uses a single 64-bit WLL/SC
variable X and, for each process p, a single 64-bit atomic reg-
ister lastValp. In the following, we make an important
observation and then describe the intuition underlying the al-
gorithm.

4.1 Two obligations of LL
In any implementation, there are two conditions that an LL
operation must satisfy to ensure correctness. Our algorithm
will be easy to follow if these conditions are first understood,
so we explain them below.

Consider an execution of the LL procedure by a process p.
Suppose that v is the value ofO when p invokes the LL proce-
dure and suppose that k successful SCs take effect during the
execution of this procedure, changing O’s value from v to v1,
v1 to v2, . . ., vk−1 to vk . Then, any of v, v1, .., vk would be a
valid value for p’s LL procedure to return. However, there is a
significant difference between returning vk (the current value)
versus returning an older (but valid) value from v, v1, .., vk−1:
assuming that other processes do not perform successful SCs
between p’s LL and p’s subsequent SC, the specification of
LL/SC operations requires p’s subsequent SC to succeed in
the former case and fail in the latter case. Thus, p’s LL proce-
dure, besides returning a valid value, has the additional obli-
gation of ensuring the success or failure of p’s subsequent SC
(or VL) based on whether or not its return value is current.

In our algorithm, the SC procedure includes exactly one
SC operation on the variable X (Line 11) and the former suc-
ceeds if and only if the latter succeeds. Therefore, we can

restate the two obligations on p’s LL procedure as follows:
(O1) It must return a valid value u, and (O2) If other pro-
cesses do not perform successful SCs after p’s LL, p’s subse-
quent SC (or VL) on X must succeed if and only if the return
value u is current.

4.2 How the algorithm works
The algorithm in Figure 4 is based on two key ideas: (A1) the
current value of O is held in X, and (A2) whenever a process
p performs LL on O and obtains a value v, it writes v imme-
diately in lastValp unless p is certain that its subsequent
SC on O will fail. With this in mind, consider the procedure
LL(p,O) that p executes to perform an LL operation on O.
First, p tries to obtain O’s current value by performing a WLL
on X (Line 1). There are two possibilities: either WLL returns
the current value v in X, or it fails, returning the id v of a pro-
cess that performed a successful SC during the WLL. In the
first case, p writes v in lastValp (to ensure A2) and then re-
turns v (Lines 3 and 4). In the second case, let t be the instant
during p’s WLL when process v performs a successful SC,
and v′ be O’s value immediately prior to t (that is, just before
v’s successful SC). Then, v′ is a valid value for p’s LL proce-
dure to return. Furthermore, by A2, lastValv contains v′ at
time t . So, when p reads lastValv and obtains val (Line 5),
it knows that val must be either v′ or some later value of O.
This means that val is a valid value for p’s LL procedure to
return. However, p cannot return val yet because its subse-
quent SC is sure to fail (due to the failure of WLL in Line 1)
and, therefore, p must ensure that val is not the latest value of
O. So, p performs another WLL (Line 6). If this WLL suc-
ceeds and returns v, then as before p writes v in lastValp
and returns v (Lines 8 and 9). Otherwise, p knows that some
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successful SC occurred during its execution of WLL in Line
6. At this point, p is certain that val is no longer the latest
value of O. Furthermore, p knows that its subsequent SC will
fail (due to the failure of WLL in Line 6). Thus, returning val
fulfills both Obligations O1 and O2, justifying Line 10.

The VL operation by p is simple to implement: p returns
true if and only if the VL on X returns true (Line 12).

Based on the above discussion, we have the following the-
orem. Its proof is given in the Appendix B.

Theorem 2 The wait-free algorithm in Figure 4 implements a
linearizable 64-bit LL/SC object from a single 64-bit WLL/SC
object and one additional 64-bit register per process. The
time complexity of LL, SC and VL operations are 4, 1 and 1,
respectively.

5 Implementing 64-bit WLL/SC from
(1-bit, pid)-LL/SC

A (1-bit, pid)-LL/SC object is the same as a 1-bit LL/SC object
except that its LL operation, which we call BitPid LL, returns
not only the 1-bit value written by the latest successful SC,
but also the name of the process that performed that SC. Fig-
ure 5 presents a wait-free algorithm for implementing a 64-bit
WLL/SC object from a (1-bit, pid)-LL/SC object and 64-bit
registers. This algorithm is nearly identical to Anderson and
Moir’s algorithm [2] that implements a multi-word WLL/SC
object from a single word CAS object and atomic registers. In
the following, we describe the intuition underlying the algo-
rithm.

5.1 How the algorithm works
Let O denote the 64-bit WLL/SC object implemented by the
algorithm. Our implementation uses two registers per process
p—valp[0] and valp[1]—which only p may write into, but
any process may read. One of the two registers holds the value
written into O by p’s latest successful SC; the other register is
available for use in p’s next SC operation (p’s local variable
indexp stores the index of the available register). Thus, over
the N processes, there are a total of 2N val registers. Exactly
which one of these contains the current value of O (i.e., the
value written by the latest successful SC) is revealed by the
(1-bit, pid)-LL/SC object X. Specifically, if [b, q] is the value
of X, then our algorithm ensures that valq[b] contains the
current value of O.

We now explain how process p performs an SC(v) opera-
tion on O. First, p writes the value v into its available register
(Line 6). Next, p tries to make its SC operation take effect
by “pointing” X to this location (Line 7). If this effort fails,
it means that some process performed a successful SC since
p’s latest WLL. In this case, p terminates its SC operation
returning false (Line 7). Otherwise, p’s SC operation has suc-
ceeded. So, valp[indexp] now holds the value written by p’s
latest successful SC. Therefore, to remain faithful to the rep-
resentation described above, the index of the register available
for p’s next SC operation is updated to be 1− indexp (Line 8).

Finally, p returns true to reflect the success of its SC operation
(Line 9).

We now turn to the procedure WLL(p,O) that describes
how process p performs a WLL operation on O. First, p per-
forms an BitPid LL operation on X to obtain a value [b, q]

(Line 1). By our representation, at the instant when p per-
forms Line 1, valq[b] holds the current value v of O. So,
in an attempt to learn the value v, p reads valq[b] (Line 2).
Then, it validates X. If the validate succeeds, p is certain that
the value read in Line 2 is indeed v and so, it returns v and
signals success (Line 3). Otherwise, some process must have
performed a successful SC after p had executed Line 1. Then,
by the definition of WLL, p is not obligated to return a value;
instead, it can signal failure and return the id of a process that
performed a successful SC during p’s WLL. Such an id can
be obtained simply by reading X. So, p reads X and returns
the id obtained, also signaling failure (Lines 4 and 5).

Based on the above discussion, we have the following the-
orem. Its proof is given in the Appendix C.

Theorem 3 The wait-free algorithm in Figure 5 implements
a 64-bit WLL/SC object from a single (1-bit, pid)-LL/SC ob-
ject and an additional two 64-bit registers per process. The
time complexity of LL, SC and VL operations are 4, 2 and 1,
respectively.

6 Implementing (1-bit, pid)-LL/SC
from 64-bit CAS

Figure 6 presents a wait-free algorithm for implementing a (1-
bit, pid)-LL/SC object. This algorithm uses a procedure called
select. As we will explain, the algorithm works correctly
provided that select satisfies a certain property. This algo-
rithm is inspired by, and is nearly identical to, Anderson and
Moir’s algorithm in Figure 1 of [3]. The implementation of
select, however, is novel and is crucial to obtaining con-
stant space overhead per process.

Below we provide an intuitive description of how the algo-
rithm works. Later we present two different implementations
of the select procedure that offer different tradeoffs.

6.1 How the algorithm works
Let O denote the (1-bit, pid)-LL/SC object implemented by
the algorithm. The variables used in the implementation are
described as follows.

• The variable X supports read and CAS operations, and
contains a value of the form [seq, pid, val], where seq
is a sequence number, pid is a process id, and val is
a 1-bit value. The first two entries (namely, the se-
quence number and the process id) constitute the tag,
and the last two entries (namely, the process id and a
1-bit value) constitute the value of O.

• The variable A is an array, with one entry per process. A
process p announces in A[p] the tag that it reads from
X in its latest BitPid LL operation.
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Types
valuetype = 64-bit number
returntype = record flag: boolean; (val: valuetype or val: 0 . . N − 1) end

Shared variables
X: {0, 1} (X supports BitPid read, BitPid LL, SC and VL operations)
For each p ∈ {0, . . . , N − 1}, we have two single-writer, multi-reader registers:

valp[0], valp[1] : valuetype
Local persistent variables at each p ∈ {0, . . . , N − 1}

index p: {0, 1}

Initialization
X = 1 (written by process 0)
val0[1] = vinit , the desired initial value of O
index0 = 0
For each p ∈ {1, . . . , N − 1}: index p = 1

procedure WLL(p,O) returns returntype procedure SC(p,O, v) returns boolean
1: [b, q] = BitPid LL(p,X) 6: valp[index p] = v

2: v = valq[b] 7: if ¬SC(p,X, index p) return false
3: if VL(p,X) return [success, v] 8: index p = 1 − index p
4: [b, q] = BitPid read(p,X) 9: return true
5: return [failure, q]

procedure VL(p,O) returns boolean
10: return VL(p,X)

Figure 5: Implementation of the 64-bit WLL/SC variable O using a (1-bit, pid)-LL/SC variable and 64-bit registers, based on
Anderson and Moir’s algorithm [2]

• The variable seqp is process p’s local variable. It holds
the value of the next sequence number that p can use in
a tag.

We now explain the procedure BitPid LL(p,O) that
describes how process p performs a BitPid LL operation on
O. First, p reads X to obtain the current tag and value (Line 1).
Next, p announces this tag in the array A (Line 2). Then, p
reads X again (Line 3). There are two cases, based on whether
the return values of the two reads are the same or not. If they
are not the same, we linearize BitPid LL at the instant when
p performs the first read, and let p return that value at Line 4.
In this case, since the value of O has changed after p’s LL
operation, we must ensure that p’s subsequent SC operation
will fail. This condition is indeed ensured by Line 5 of the
algorithm. In the other case where the reads on Lines 1 and
3 return the same value, we linearize BitPid LL at the instant
when p performs the second read and let the LL operation
return that value (at Line 4).

The implementation of the SC operation assumes that the
select procedure satisfies the following property:

Property 1 Let OP and OP′ be any two consecutive BitPid LL
operations by process p. If p reads [s, q, v] from X in both
Lines 1 and 3 of OP, then process q does not write [s, q, ∗]

into X after p executes Line 3 of OP and before it invokes OP’.

We now describe how process p performs SC(v) on O. In
the following, let OP denote p’s latest execution of the Bit-
Pid LL operation on O. First, p compares the two values that

it read from X during OP (Line 5). If these values are dif-
ferent then, as already explained, p’s SC operation must fail,
and Line 5 ensures this outcome. To understand Line 6, we
make an observation that follows from Property 1: the value
of X is still oldp if and only if no process wrote into X after
the point where p’s latest BitPid LL operation took effect (at
Line 3 of OP). It follows that p’s current SC operation should
succeed if and only if the CAS on Line 6 succeeds. Accord-
ingly, if the CAS fails, p terminates the SC operation return-
ing false (Line 6). On the other hand, if the CAS succeeds,
p obtains a new sequence number to be used in p’s next SC
operation (Line 7), and completes the SC operation returning
true (Line 8).

The implementation of the VL operation (Line 9) has the
same justification as the SC operation. Finally, the implemen-
tation of the BitPid read operation (Lines 10 and 11) is imme-
diate from our representation.

Based on the above discussion, we have the following the-
orem. Its proof is given in the Appendix D.

Theorem 4 If the select procedure is implemented to sat-
isfy Property 1, then the wait-free algorithm in Figure 6 im-
plements a linearizable (1-bit, pid)-LL/SC object from 64-bit
CAS objects and 64-bit registers. If t is the time complexity
of select, then the time complexity of BitPid LL, SC, VL
and BitPid read operations are 3, 1 + t , 1 and 1, respectively.
If s is the per-process space overhead of select, then the
per-process space overhead of the algorithm is 1 + s.

8



Types
seqnumtype = (63 − log N)-bit number
returntype = record val: {0, 1}; pid: 0 . . N − 1 end
entrytype = record seq: seqnumtype; pid: 0 . . N − 1; val: {0, 1} end

Shared variables
X: entrytype (X supports read and CAS operations)
A: array [0 . . N − 1] of entrytype

Local persistent variables at each p ∈ {0, . . . , N − 1}

oldp, chk p: entrytype
seqp: seqnumtype

Initialization
X = [−1, pinit , vinit ], where [pinit , vinit ] is the desired initial value of O
For each p ∈ {0, . . . , N − 1}:

A[p] = [0, −1, 0]

seqp = 0

procedure BitPid LL(p,O) returns returntype procedure SC(p,O, v) returns boolean
1: oldp = X 5: if (oldp 6= chk p) return false
2: A[p] = [oldp.seq, oldp.pid, 0] 6: if ¬CAS(X,oldp,[seqp,p,v]) return false
3: chk p = X 7: seqp = select(p)

4: return [oldp.val, oldp.pid] 8: return true

procedure VL(p,O) returns boolean procedure BitPid read(p,O) returns returntype
9: return (oldp = chk p = X) 10: tmp = X

11: return [tmp.val, tmp.pid]

Figure 6: A bounded implementation of the 1-bit “pid” LL/SC variable using a 64-bit CAS object and 64-bit registers, based on
Anderson and Moir’s algorithm [3]

6.2 Why X is read twice
To execute a BitPid LL operation, notice that a process p
reads X, announces the tag obtained in A[p], and reads X again
(Lines 1–3). As we will see in the next section, this double
reading of X, with the tag announced between the reads, is
crucial to our ability to implement the select procedure.
Intuitively, the usefulness of the code sequence on Lines 1–3
is explained as follows. Suppose that p reads the same tag t
at Lines 1 and 3. When subsequently executing an SC oper-
ation, p determines the success or failure of its SC based on
whether the tag in X is still t or not. Clearly, such a strategy
goes wrong if X has been modified several times (between p’s
LL and SC) and the tag t has simply reappeared in X because
of reuse of that tag. Fortunately, this undesirable scenario is
preventable because p publishes the tag t in A[p] (at Line 2)
even before it reads that tag at Line 3, where p’s LL operation
takes effect. So, we can prevent the undesirable scenario by
requiring processes not to reuse the tags published in the array
A (this requirement will be enforced by the implementation of
select).

6.3 An implementation of select
In this section, we design an algorithm that implements the
select procedure. This design is challenging because it
must guarantee several properties: the select procedure must

satisfy Property 1, be wait-free, and have constant time com-
plexity and constant per-process space overhead. The algo-
rithm of this section, presented in Figure 7, guarantees all of
these properties, but only works for at most 215 = 32, 768
processes. A more complex algorithm, presented in the next
section, can handle a maximum of 219 = 524, 288 processes.
To explain our algorithms, we introduce the notion of a se-
quence number being unsafe for a process.

Let s be any sequence number, q be any process, and t be
any point in time. We say s is unsafe for q at time t if the
following scenario is possible:
Scenario: At some t ′ > t , q’s call to select returns s for
the first time after t . The subsequent writing of [s, q, ∗] in X
by q (at Line 6 of the algorithm in Figure 6) causes Property 1
to be violated.

A sequence number s is safe for q at time t if s is not
unsafe for q at t . Notice that if s is safe for q at time t , it
remains safe until q writes [s, q, ∗] in X for the first time after
t (which happens only after q’s call to select returns s for
the first time after t). An interval is safe for q at time t if every
sequence number in the interval is safe for q at time t .

In both of our algorithms, the main idea is as follows. At
all times, each process p maintains a current safe interval of
a certain size 1; initially, this interval is [0, 1). Each call
to select by p returns a sequence number from p’s current
safe interval. By the time all numbers in p’s current safe inter-
val are returned (which won’t happen until p calls select1
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times), p determines a new safe interval of size 1 and makes
that interval its current safe interval. Since p’s current safe
interval is not exhausted until p calls select 1 times, our
algorithms use a lazy approach to finding the next safe inter-
val: the work involved in identifying the next safe interval is
distributed evenly over the 1 calls to select. Together with
an appropriate choice of 1, this strategy helps achieve con-
stant time complexity for select.

The manner in which the next safe interval is determined
is different in our two algorithms. The main idea in the first
algorithm is as follows. Let [k, k + 1) be p’s current safe in-
terval. Then, [k+1, k+21) is the first interval that p tests for
safety. If there is evidence that this interval is not safe, then
the next 1-sized interval, namely, [k + 21, k + 31) is tested
for safety. The above steps are repeated until a safe interval
is found. It remains to be explained how p tests whether a
particular interval I is safe. To perform this test, p reads each
element a of array A (recall that an element of A contains both
a process id and a sequence number). If a = [s, p, ∗], then
it is possible that some process read [s, p, ∗] at Lines 1 and 3
of its latest BitPid LL operation, thereby making s potentially
unsafe for p. Therefore, in our algorithm, p deems the inter-
val I to be safe if and only if it reads no element a such that
a.pid = p and a.seq ∈ I . To ensure O(1) time complexity for
the select procedure, p reads A in a lazy manner: it reads
only one element of A in each invocation of select.

In the following, we explain how the above high level
ideas are implemented in our algorithm and why these ideas
work.

6.3.1 How the algorithm works

Our selection algorithm is presented in Figure 7. Let TestInt p
denote the interval that p is currently testing for safety. The
algorithm uses three persistent local variables, described as
follows:

• valp is a sequence number from p’s current safe interval
which was returned by p’s most recent invocation of
select.

• nextStartp is the start of the interval TestIntp. Thus,
TestIntp is the interval [nextStartp, nextStartp + 1).

• procNump indicates how far the test of safety of
TestIntp has progressed. Specifically, if procNump = k,
it means that the array entries belonging to processes
0, 1, . . . , k − 1 (namely, A[0],A[1], . . . ,A[k − 1]) have
not presented any evidence that TestInt p is unsafe.

The algorithm works as follows. First, p reads the next
element a of the array A (Line 10). If the process id in a is p
and the sequence number in a belongs to the interval TestInt p,
then the interval is potentially unsafe. Therefore, if the condi-
tion on Line 11 holds, p abandons the interval TestInt p as un-
safe. At this point, the 1-sized interval immediately following
TestIntp becomes the new interval to be tested for safety. To
this end, p updates nextStart p to the beginning of this interval
(Line 12) and resets procNump to 0 (Lines 13). On the other
hand, if the condition on Line 11 does not hold, it means that

Types
seqnumtype = (63 − log N)-bit number

Local persistent variables at
each p ∈ {0, . . . , N − 1}

val p, nextStartp: seqnumtype
procNump: 0 . . N

Constants
1 = (2N + 1)N
M = (2N + 2)1

Initialization
val p = 0
nextStartp = 1

procNump = 0

procedure select(p,O) returns seqnumtype
10: a = A[procNump]

11: if ((a.pid = p) ∧

(a.seq ∈ [nextStartp, nextStartp ⊕M 1)))

12: nextStartp = nextStartp ⊕M 1

13: procNump = 0
14: else procNump = procNump + 1
15: if (procNump < N)

16: val p = val p ⊕M 1
17: else val p = nextStartp
18: nextStartp = nextStartp ⊕M 1

19: procNump = 0
20: return val p

Figure 7: A simple selection algorithm

the element at the position procNump of array A (namely, a)
presents no evidence that TestInt p is unsafe. To reflect this
fact, p increments procNump (Line 14).

At Line 15, if procNump is N , it follows from the mean-
ing of procNump that p read the entire array A and has not
found any evidence that the interval TestInt p is unsafe. In this
case, p performs the following actions. It switches to TestInt p
as its current safe interval and let select return the first se-
quence number in this interval (Lines 17 and 20). The 1-sized
interval immediately following this new current safe interval
becomes the new interval to be tested for safety. To this end, p
updates nextStartp to the beginning of this interval (Line 18)
and resets procNump to 0 (Lines 19).

At Line 15, if procNump is not yet N , p is not sure yet
that TestIntp is a safe interval. Therefore, it keeps the current
safe interval as it is and simply returns the next value from
that interval (Lines 16 and 20).

Notice that after p adopts an interval I to be its current
safe interval at some time t , p’s calls to select return suc-
cessive sequence numbers starting from the first number in I .
Therefore, if p makes at most k ≤ 1 calls to select before
adopting a new interval I ′ as its current safe interval, then all
numbers returned (by the k calls to select) are from I and
no number is returned more than once. Since I was safe for
p at time t , it follows that the numbers returned by the k calls
to select do not lead to a violation of Property 1. By the
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above discussion, the correctness of the algorithm rests on the
following two claims:

• After a process p adopts an interval I to be its current
safe interval, p makes at most 1 calls to select be-
fore adopting a new interval I ′ as its current safe inter-
val.

• At the time that p adopts I ′ to be its current safe inter-
val, I ′ is indeed safe for p.

The above claims are justified in the next two subsections.

6.3.2 A new interval is identified quickly

Suppose that at time t a process p adopts an interval I to be
its current safe interval. Let t ′ > t be the earliest time when p
adopts a new interval I ′ as its current safe interval. Then, we
claim:

Claim A: During the time interval [t, t ′), process p makes
at most 1 calls to select (which return distinct sequence
numbers from the interval I ). Furthermore, I and I ′ are dis-
joint.

To prove the claim, we make a crucial subclaim which
states that, when a process p searches for a next safe interval,
no process q can cause p to abandon more than two intervals
as unsafe.

Subclaim: If I1, I2, . . . , Im are the successive intervals
that p tests for safety during [t, t ′), then at most two of
I1, I2, . . . , Im are abandoned by p as unsafe on the basis of
the values read in A[q], for any q.

First we argue that the subclaim implies the claim. By
the subclaim, during [t, t ′), p abandons at most 2N intervals
as unsafe. Notice that, in the worst case, p invokes select
N times before abandoning any interval as unsafe (the worst
case arises if none of A[0],A[1], . . . ,A[N − 2] provides any
evidence of unsafety, and A[N − 1] does). It follows from the
above two facts that, during [t, t ′), p invokes select at most
2N · N times before it begins testing an interval that is sure to
pass the test. Since the testing of this final interval occurs over
N calls to select, it follows that, during [t, t ′), p invokes
select at most 2N2 + N = (2N + 1)N = 1 times before
it identifies the next safe interval I ′. Hence, we have the first
part of the claim.

For the second part, notice that (1) by the subclaim, p
abandons at most 2N intervals as unsafe, and so m ≤ 2N , and
(2) I ′ is the interval that p tests for safety after abandoning
Im as unsafe. Furthermore, by the algorithm, each interval in
I, I1, I2, . . . Im, I ′ is of size 1 and begins immediately after
the previous one ends. Since M = (2N + 2)1 and since
we perform the arithmetic modulo M , it follows that all of
I, I1, I2, . . . Im, I ′ are disjoint intervals. Hence, we have the
second part of the claim.

Next we prove the above subclaim. By the algorithm, the
testing of I1 for safety begins only after p writes the first se-
quence number from I in the variable X. Let τ ∈ [t, t ′) be the
time when this writing happens. For a contradiction, suppose
that the subclaim is false and τ ′ is the earliest time when the
subclaim is violated. More precisely, let τ ′ be the earliest time

in [t, t ′) such that, for some q ∈ {0, 1, . . . , N − 1}, p aban-
dons three intervals as unsafe on the basis of the values that
it read in A[q]. Let I j , Ik , and Il denote these three intervals,
and let s j ∈ I j , sk ∈ Ik , and sl ∈ Il be the sequence num-
bers that p read in A[q] which caused p to abandon the three
intervals. We make a number of observations:

(O1). In the time interval [t, τ ′], p abandons at most 2N + 1
intervals as unsafe.

Proof : This observation is immediate from the definition
of τ ′.

(O2). In the time interval [t, τ ′], p calls select at most
(2N + 1)N times.

Proof : This observation follows from Observation O1 and
an earlier observation that, in the worst case, p invokes
select N times before abandoning any interval as un-
safe.

(O3). In the time interval [t, τ ′], all of p’s calls to select
return distinct sequence numbers from I .

Proof : Notice that after p adopts I as its current safe in-
terval at time t , p’s calls to select return successive se-
quence numbers starting from the first number in I . Since,
by Observation O2, p makes at most 1 = (2N + 1)N
calls to select during [t, τ ′), all numbers returned by
these calls are distinct numbers from I .

(O4). In the time interval [τ, τ ′], if X contains a value of the
form [s, p, ∗], then s ∈ I .

Proof : By definition of τ , p writes in X at time τ a value
of the form [s, p, ∗], where s ∈ I . By Observation O3, all
values that p subsequently writes in X during [τ, τ ′] are
from I . Hence, we have the observation.

(O5). The intervals I , I j , Ik and Il are all disjoint (and, there-
fore, s j , sk and sl are distinct and are not in I ).

Proof : Recall that I1, I2, . . . Il are the intervals that p
abandons during [t, τ ′) as unsafe. By Observation O1,
l ≤ 2N + 1. Furthermore, by the algorithm, each interval
in I, I1, I2, . . . Il is of size 1 and begins immediately after
the previous one ends. Since M = (2N + 2)1 and since
we perform the arithmetic modulo M , it follows that all of
I, I1, I2, . . . Il are disjoint intervals. Then, the observation
follows from the fact that I , I j , Ik , and Il are members of
{I, I1, I2, . . . Il}.

(O6). Recall that p abandons the interval Il at time τ ′ because
it reads at τ ′ the value [sl, p, ∗] in A[q], where sl ∈ Il . Let
σ ′ be the latest time before τ ′ when q writes [sl, p, ∗] in
A[q] (at Line 2). By the algorithm, this writing must be
preceded by q’s reading of the value [sl, p, ∗] from the
variable X (Line 1). Let σ be the latest time before σ ′

when q reads [sl, p, ∗] from X. Then, we claim that τ <

σ < τ ′.

Proof : By definition of s j , sk and sl , we know that p reads
from A[q] the values [s j , p, ∗], [sk, p, ∗] and [sl, p, ∗] (in
that order) in the time interval [τ, τ ′]. It follows that q’s
writing of [sk, p, ∗] and [sl, p, ∗] in A[q] occur (in that
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Figure 8: Timeline of events used in the proof of Claim B in
Section 6.3.3.

order) in the time interval [τ, τ ′]. Since q’s reading of
[sl, p, ∗] in X must occur between the above two writes, it
follows that the time σ at which this reading occurs lies in
the time interval [τ, τ ′].

By Observation O6, q reads [sl, p, ∗] from X during
[τ, τ ′]. Therefore, by Observation O4, we have sl ∈ I .
This conclusion contradicts Observation O5, which states that
sl 6∈ I . Hence, we have the subclaim.

6.3.3 The new interval is safe

In this section, we argue that the rule by which the algorithm
determines the safety of an interval works correctly. More
precisely, let t be the time when process p adopts an interval
I to be its current safe interval, and t ′ be the earliest time after
t when p switches its current safe interval from I to a new
interval I ′. Then, we claim: Claim B: The interval I ′ is safe
for process p at time t ′.

Suppose that the claim is false and I ′ is not safe for p
at time t ′. Then, by the definition of safety, there exists a
sequence number s ′ ∈ I ′, a process q, and times η and η′

such that the following scenario, which violates Property 1,
is possible: (to help visualize the many events defined in the
scenario and the rest of the proof, we have included Figure 8
where these events are marked on the time line)

• η is the first time after t ′ when p’s call to select re-
turns s ′.

• η′ is the first time after η when p writes [s ′, p, ∗] in the
variable X (at Line 6 of the algorithm in Figure 6).

• q’s BitPid LL operation, which is the latest with re-
spect to time η′, completes Line 3 before η′, and at both
Lines 1 and 3 this operation reads from X a value of
the form [s ′, p, ∗]. In the following, let OP denote this
BitPid LL operation by q.

By the algorithm, the testing of I ′ for safety begins only
after p writes the first sequence number s from I in the vari-
able X. Let τ ∈ [t, t ′) be the time when this writing happens.
We make a few simple observations: (1) at time τ , the se-
quence number in X is not s ′ (because X has the sequence
number s ∈ I at τ , s ′ ∈ I ′ and, by Claim A of the previous
subsection, the intervals I and I ′ are disjoint), (2) during the

time interval [τ, t ′), any sequence number that p writes in X
is from I (by Claim A) and, hence, is different from s ′, and
(3) during the time interval [t ′, η′), any sequence number that
p writes in X is different from s ′ (by the definitions of η and
η′). From the above observations, the value of X is not of the
form [s ′, p, ∗] at any point during [τ, η′). Therefore, q must
have executed Line 3 of OP before τ . So, q’s execution of
Line 2 of OP is also before τ . Since q read the same value
[s′, p, ∗] at both Lines 1 and 3 of OP, it follows that q writes
[s′, p, ∗] in A[q] at Line 2 of OP. This value remains in A[q]

at least until η′ because OP is q’s latest BitPid LL operation
with respect to η′. Therefore, A[q] holds the value [s ′, p, ∗]

all through the time [τ, t ′) when p tests different intervals for
safety. In particular, when p tests I ′ for safety, it would find
[s′, p, ∗] in A[q] and, since s ′ ∈ I ′, it would abandon I ′ as
unsafe. This contradicts the fact that p switches its current
safe interval from I to I ′.

Based on the above discussion, we have the following
lemma. Its proof is given in the Appendix E.

Lemma 1 The implementation of select in Figure 7, satis-
fies Property 1. The time complexity of the implementation is
1, and the per-process space overhead is zero.

6.3.4 A remark about sequence numbers

In our algorithm, the operation ⊕M is performed modulo
M = (2N + 2)1. Hence, the space of all sequence num-
bers must be at least M . Since we store a sequence number,
a process id, and a 1-bit value in the same memory word X,
the number of bits we have available for a sequence number
is 63 − lg N . Hence, M can be at most 263−lg N = 263/N .
Since M = (2N + 2)1 and 1 = (2N + 1)N , the above con-
straint translates into (2N + 2)(2N + 1)N 2 ≤ 263. It is easy
to verify that for N = 215 = 32, 768 this inequality holds.
Our algorithm is therefore correct if the number of processes
that execute it is less than 32,768. We believe that this re-
striction is not of practical concern. Furthermore, our second
selection algorithm in Section 6.4 reduces this restriction to
N = 219 = 524, 288, at the expense of performing one addi-
tional CAS per select operation.

6.4 An alternative selection algorithm
In this section, we present an algorithm that supports a larger
number of processes than our previous selection algorithm.
More specifically, the new algorithm can handle a maximum
of 219 = 524, 288 processes, whereas the previous algorithm
works for a maximum of 215 = 32, 768 processes.

The main idea of the algorithm is the same as in the first
algorithm: at all times, each process p maintains a current
safe interval of size 1. Each call to select by p returns a
sequence number from p’s current safe interval. By the time
all numbers in p’s current safe interval are returned (which
won’t happen until p calls select1 times), p determines a
new safe interval of size 1 and makes that interval its current
safe interval.

The way the next safe interval is located is different from
the first algorithm. In the first algorithm, process p searched
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Types
seqnumtype = (63 − log N)-bit number
intervaltype = record star t , end: seqnumtype end

Local persistent variables at
each p ∈ {0, . . . , N − 1}

Ip: intervaltype;
val p: seqnumtype
passNump: 0 . . lg (N + 1);
procNump: 0 . . N − 1

Constants
1 = N(lg (N + 1) + 1)

M = (N + 2)1

Initialization
passNump = 0;
val p = 0
procNump = 0;
Ip = [1, (N + 2)1)

procedure select(p) returns seqnumtype
10: if (passNump = 0)

11: a = A[procNump]

12: if (a.pid = p) CAS(A[procNump], a, [a.seq, a.pid, 1])

13: if (procNump < N − 1)

14: procNump++
15: else procNump = 0
16: passNump++
17: val p = val p ⊕M 1
18: else a = A[procNump]

19: if ((a.pid = p) ∧ (a.val = 1) ∧ (a.seq ∈ Ip))
20: Increase the counter of the half

of Ip that contains a.seq;
21: if (procNump < N − 1)

22: procNump++
23: val p = val p ⊕M 1
24: else Set Ip to be the half of Ip with

a smaller counter; Reset counters;
25: procNump = 0
26: if (passNump < lg (N + 1))

27: val p = val p ⊕M 1
28: passNump++
29: else passNump = 0
30: val p = Ip.star t
31: Ip = [Ip.end, Ip.end ⊕M (N + 1)1)

32: return val p

Figure 9: Another selection algorithm

for the next safe interval in a linear fashion: first, p tested
whether the interval right next to the current safe interval was
safe; if there was evidence that this interval was not safe, p se-
lected the next 1-sized interval to test for safety, and repeated
this process until a safe interval was found. In the new algo-
rithm, process p employs a more efficient strategy for locating
the next safe interval, based on binary search.

Our algorithm consists of two stages—the marking stage,
and the search stage. During the marking stage, process p
reads each entry a in the array A. If a = [s, p, ∗], then it
is possible that some process read [s, p, ∗] at Lines 1 and 3
of its latest BitPid LL operation, thereby making s potentially
unsafe for p. In that case, p puts a mark on a to indicate that it
contains a sequence number that is potentially unsafe for it. If,
on the other hand, a 6= [s, p, ∗], then p leaves a unchanged.

After the marking stage completes, p initializes Ip to
some large interval of size (N + 1)1, and begins the search
stage. The search stage consists of many iterations or passes,
each of which takes place over many invocations of select.
In each pass, the interval Ip is halved. Ultimately, after all
the passes, Ip is reduced to a size of 1. At that point, p re-
gards the interval Ip safe, and starts using it as its current safe
interval. Below we explain this stage in more detail.

Let C = [k, k + 1) be p’s current safe interval, and let
Ip = [k + 1, k + (N + 2)1) be the interval immediately
after C . The search stage consists of lg (N + 1) passes, each
of which takes place over p’s N consecutive invocations of
select. Within each pass, p performs the following two
steps:

• Counting phase: p goes through all the marked entries
in the array A, and counts how many sequence numbers
fall within the first half, and how many fall within the
second half of Ip.

• Halving step: p discards the half of Ip with a higher
count, and sets Ip to be the remaining half.

Without loss of generality, we assume that (N+1) is a
power of two. Then, since after each pass the size of Ip halves,
at the end of all lg (N + 1) passes the size of Ip becomes 1.
Further, p regards this interval safe, and starts using it as its
current safe interval.

We now intuitively explain why the above method yields
a safe interval. First, observe that the number of marked en-
tries in A that contain a sequence number from Ip halves after
each pass (since we discard the half of Ip with a higher count).
Next, observe that initially there are at most N marked entries
(since the size of A is N). By the above two observations, it
follows that after lg(N + 1) passes, no marked entry in A con-
tains a sequence number in Ip. Hence, at the end of lg(N + 1)

passes, Ip is indeed safe for p.
In the following, we explain how the above high level

ideas are implemented in our algorithm and why these ideas
work.

6.4.1 How the algorithm works

We present our selection algorithm in Figure 9. The algorithm
uses four persistent local variables, described as follows:
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• Ip is the interval which p halves in the search stage of
the algorithm.

• valp is a sequence number from p’s current safe interval
which was returned by p’s most recent invocation of
select.

• passNump represents the current pass of process p’s al-
gorithm. If we consider the marking stage to be a pass
zero, then the passNump variable takes values from the
range [0 . . lg (N + 1)].

• procNump indicates how far process p’s reading
of the entries in A has progressed. Specifically,
if procNump = k, it means that the array en-
tries belonging to processes 0, 1, . . . , k − 1 (namely,
A[0],A[1], . . . ,A[k − 1]) have so far been read.

The algorithm works as follows. First, p reads the variable
passNump to determine which pass of the algorithm it is cur-
rently executing (Line 10). If the value of passNump is zero, it
means that p is still in the marking stage. So, p reads the next
element a of the array A (Line 11). If the process id in a is p, p
puts a mark on the entry in A it just read (Line 12). Otherwise,
it leaves the entry unchanged. Next, p checks whether it has
gone through all the entries in A (i.e., whether it has reached
the end of the marking stage), by reading procNump (Line 13).
If not, p simply increments procNump (Line 14), and returns
the next value from the current safe interval (Lines 17 and
32). Otherwise, p has reached the end of the marking stage,
and so it resets procNump to zero (Line 15), and increments
the passNump variable (Line 16). Finally, p returns the next
value from the current safe interval (Lines 17 and 32).

On the other hand, if the value of passNump is not zero,
it means that p is in the search stage. So, p reads the next
element a of the array A (Line 18). If the process id in a is
p and a has the mark, then the sequence number in a is po-
tentially unsafe for p and hence should be counted (Line 19).
So, p tests whether the sequence number in a belongs to the
first or the second half of Ip, and increments the appropriate
counter (Line 20). Next, p checks whether it has counted all
the entries in A (i.e., whether it has reached the end of the
counting phase), by reading procNump (Line 21). If not, p
simply increments procNump (Line 22), and returns the next
value from the current safe interval (Lines 23 and 32). On
the other hand, if p has counted all the entries in A, it has all
the information it needs to halve the interval Ip appropriately
(i.e., to perform the halving step). To this effect, p discards
the half of Ip with a higher count, and resets the counters
(Line 24). Since it has reached the end of a pass, p also resets
procNump to zero (Line 25). Next, p reads passNump to de-
termine whether it has performed all of the lg (N + 1) passes
(Line 26). If it hasn’t, p simply increments passNump and
returns the next value from the current safe interval (Lines 27,
28, and 32). On the other hand, if p has reached the end of all
the passes, it means that the interval Ip contains p’s next safe
interval. So, p selects Ip as its current safe interval (Line 30)
and resets variables passNump and Ip to begin searching for
the next safe interval (Lines 29 and 31). Finally, p returns

the next (i.e., the first) value from its new current safe interval
(Line 32).

Notice that, similar to our first selection algorithm, the
correctness of the above algorithm depends on the following
two claims:

• After a process p adopts an interval I to be its current
safe interval, p makes at most 1 calls to select be-
fore adopting a new interval I ′ as its current safe inter-
val.

• At the time that p adopts I ′ to be its current safe inter-
val, I ′ is of size 1 and is indeed safe for p.

We justify the above two claims in the next two subsec-
tions.

6.4.2 A new interval is identified quickly

Suppose that at time t a process p adopts an interval I to be
its current safe interval. Let t ′ > t be the earliest time when p
adopts a new interval I ′ as its current safe interval. Then, we
claim:

Claim C : During the time interval [t, t ′), process p
makes at most 1 calls to select (which return distinct se-
quence numbers from the interval I ). Furthermore, I and I ′

are disjoint.
The first part of the claim trivially holds since (1) dur-

ing [t, t ′), p executes exactly lg (N + 1) + 1 passes, and (2)
in each pass p makes exactly N calls to select. Hence,
during the time interval [t, t ′), process p makes exactly
N(lg (N + 1) + 1) = 1 calls to select.

For the second part, notice that soon after t , p initializes
Ip to be the interval I ′′, where I ′′ is the interval of size (N +

1)1 immediately after I . Furthermore, notice that I ′ is the
subinterval of I ′′. Since M = (N +2)1 and since we perform
the arithmetic modulo M , it follows that the intervals I and I ′′

are disjoint, and so the intervals I and I ′ are disjoint as well.
Hence, we have the second part of the claim.

6.4.3 The new interval is safe

In this section, we argue that (1) the interval I ′ is of size 1,
and (2) the rule by which the algorithm determines the safety
of an interval works correctly. More precisely, let t be the
time when process p adopts an interval I to be its current safe
interval, and t ′ be the earliest time after t when p switches
its current safe interval from I to a new interval I ′. Then, we
claim:

Claim D: The interval I ′ is of size 1, and is safe for pro-
cess p at time t ′.

To prove this claim, we make a crucial subclaim which
states that, at time t ′, there are no marked entries in A holding
a sequence number from the interval I ′.

Subclaim The interval I ′ is of size 1, and at time t ′, no
entry in A is of the form [s, p, 1], where s ∈ I ′.

We first argue that the above subclaim implies the claim.
Suppose that the claim is false and I ′ is not safe for p at
time t ′. Let s ′, q, τ , η and η′ be as defined in the proof of
Claim B in Section 6.3.3. Then, if we use the same argument
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we used in the proof of Claim B, we conclude that (1) q does
not write into A[q] during the time interval [τ, t ′], and (2) the
latest value that q writes into A[q] prior to time τ is [s ′, p, ∗].
Furthermore, as long as the value in A[q] stays of the form
[∗, p, ∗], no other process will attempt to put their mark on
A[q]. By the above observations, we conclude that at some
time τ ′ ∈ [τ, t ′] during its 0th pass, p succeeds in putting its
mark on A[q]. Hence, at all times during [τ ′, t ′], A[q] holds
the value [s ′, p, 1]. In particular, at time t ′, A[q] holds the
value [s ′, p, 1], which contradicts the subclaim. Hence, the
claim holds.

Next we prove the above subclaim. Let t ′′ ∈ [t, t ′]
be the time when p completes its 0th pass. For all
k ∈ {0, 1, . . . , lg (N + 1)}, let

• Ik denote the value of the interval Ip at the end of p’s
kth pass, and

• sk denote the number of marked entries in A that, at the
end of the kth pass, hold a sequence number from Ik .
(More specifically, sk is the number of entries in A that,
at the end of the kth pass, hold the value of the form
[s, p, 1], for some s ∈ Ik .)

We make a number of observations:

(O1). The size of the interval Ik is ((N + 1)/2k)1.

Proof (by induction): For the base case (i.e., k = 0), the
observation trivially holds, since at the beginning of the
0th pass Ip is initialized to be of size (N + 1)1. Hence,
the size of I0 is (N +1)1. The inductive hypothesis states
that the size of I j is ((N + 1)/2 j )1, for all j ≤ k. We
now show that the size of Ik+1 is ((N + 1)/2k+1)1. By
the algorithm, Ik+1 is a half of Ik . Moreover, we made an
assumption earlier that N + 1 is a power of two. Hence,
the size of Ik+1 is exactly (((N + 1)/2k)/2)1 = ((N +

1)/2k+1)1.

(O2). If an entry A[q] holds the value [s, p, 1] at time
τ ∈ [t ′′, t ′], then A[q] holds the value [s, p, 1] at all times
during [t ′′, τ ].

Proof: Suppose not. Then, at some time τ ′ ∈ [t ′′, τ ],
A[q] does not hold the value [s, p, 1]. Therefore, at some
point during [τ ′, τ ], the value [s, p, 1] is written into A[q].
Since by the time τ ′, process p is already done marking
all the entries in A, some process other than p must have
written [s, p, 1] into A[q], which is impossible. Hence,
the observation holds.

(O3). The value of sk is at most (N + 1)/2k − 1.

Proof (by induction): For the base case (i.e., k = 0),
the observation trivially holds, since A can hold at most
N = (N + 1) − 1 entries. Hence, the value of s0 is at
most N . The inductive hypothesis states that the value of
s j is at most (N + 1)/2 j − 1, for all j ≤ k. We now
show that the value of sk+1 is at most (N + 1)/2k+1 − 1.
Since sk is the number of entries in A that, at the end
of the kth pass, hold a sequence number from Ik , it fol-
lows by Observation O2 that p can count at most sk se-
quence numbers during the (k + 1)st pass. Moreover,

since Ik+1 is a half of Ik with a smaller count, it fol-
lows that at most bsk/2c of the counted sequence numbers
fall within Ik+1. Hence, by Observation O2, at the end
of the (k + 1)st pass, at most bsk/2c marked entries in A
hold a sequence number from Ik+1. Therefore, we have
sk+1 = bsk/2c = b((N + 1)/2k − 1)/2c. Since N + 1 is
a power of two, it means that sk+1 = (N + 1)/2k+1 − 1.
Hence, the observation holds.

By the above observations, at the end of the lg (N + 1)st
pass, we know that (1) the size of Ip is 1 (by Observation O1),
and (2) the number of marked entries in A that hold a sequence
number from I ′ is zero (by Observation O3). Hence, we have
the subclaim.

Based on the above discussion, we have the following
lemma. Its proof is given in the Appendix F.

Lemma 2 The implementation of select in Figure 9, satis-
fies Property 1. The time complexity of the implementation is
2, and the per-process space overhead is zero.

6.4.4 A remark about sequence numbers

In our algorithm, the operation ⊕M is performed modulo M =

(N + 2)1. Hence, the space of all sequence numbers must be
at least M . Since we store a sequence number, a process id,
and a 1-bit value in the same memory word X, the number of
bits we have available for a sequence number is 63 − lg N .
Hence, M can be at most 263−lg N = 263/N . Since M =

(N + 2)1 and 1 = N(lg (N + 1) + 1), the above constraint
translates into (N + 2)N2(lg (N + 1) + 1) ≤ 263. It is easy
to verify that for N ≤ 219 = 524, 288, this inequality holds.
Our algorithm is therefore correct if the number of processes
that execute it is less than 524,288. This limit is large enough
that it is not of any practical concern.

7 Conclusions and Future Work
We have shown two implementations of a 64-bit LL/SC object
from 64-bit CAS/read or RLL/RSC objects. Both implemen-
tations have constant time complexity, and use only a constant
amount of space per process. The first algorithm is efficient
and practical, but uses unbounded sequence numbers. The
second algorithm is more complex, but overcomes this limita-
tion.

Although the space requirements of our implementations
are negligible when a single LL/SC variable is implemented,
our present algorithms do not extend well when the number of
LL/SC variables to be supported is large. In particular, in or-
der to implement M LL/SC variables using CAS or RLL/RSC
instructions, our algorithms require O(M) space per process
(which amounts to O(N M) space among all N processes).
Future research will explore the possibility of implementing
M LL/SC variables using O(N + M) space among all N pro-
cesses.
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A Proof of the algorithm in Figure 3
In the following, let SCp,i denote the i th successful SC by pro-
cess p and vp,i denote the value written in O by SCp,i . The
operations are linearized according to the following rules. We
linearize each SC operation at Line 8 and each VL at Line 14.
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Let OP be any execution of the LL operation by p. Let [q, k]

be the value that p reads in Line 1 of OP. The linearization
point of OP is determined by two cases. If OP returns vq,k ,
then we linearize OP at Line 1. Otherwise, we show that, for
some i > k, SCq,i takes effect during OP and OP returns vq,i .
In this case, we linearize OP just after SCq,i takes effect.

We begin by making the following observation.

Observation 1 The value of seqp is increased by 1 in every
successful SC operation by p (Line 11). Unsuccessful SC’s by
p do not change the value of seqp.

Claim 1 At the beginning of SCp,i , seqp holds the value i .

Proof. Prior to SCp,i , exactly i − 1 successful SC operations
are performed by p. According to Observation 1, variable
seqp was therefore incremented exactly i − 1 times prior to
SCp,i . Since seqp is initialized to 1, it follows that at the
beginning of SCp,i , seqp holds the value i .1 ut

Claim 2 From the moment p performs Line 7 of SCp,i , until
the time p completes the SCp,i+1 operation, valp[i mod 2]

holds the value vp,i .

Proof. According to Claim 1, at the beginning of SCp,i ,
seqp holds the value i . Therefore, p writes vp,i into
valp[i mod 2] in Line 7 of SCp,i . Since p increments
seqp in Line 11 of SCp,i , vp,i will not be overwritten in
valp[i mod 2] until seqp reaches the value i + 2. By Obser-
vation 1, seqp will not reach i + 2 until p executes Line 11 of
SCp,i+1. Therefore, variable valp[i mod 2] holds the value
vp,i from the moment p preforms Line 7 of SCp,i until the
time p completes SCp,i+1. ut

Claim 3 The values that process p writes into oldvalp and
oldseqp in Lines 9 and 10 of SCp,i are vp,i−1 and i − 1,
respectively.

Proof. According to Claim 1, at the beginning of SCp,i , seqp
holds the value i . Therefore, p writes i − 1 into oldseqp in
Line 10 of SCp,i . By Claim 2, valp[(i − 1) mod 2] holds the
value vp,i−1 at all times during SCp,i . As a result, p writes
vp,i−1 into oldvalp in Line 9 of SCp,i . ut

Claim 4 Let OP be an LL operation by process p, and [q, k]

the value that p reads in Line 1 of OP. If OP terminates in
Line 4, then it returns the value vq,k .

Proof. Let I be the time interval starting from the moment q
performs Line 7 of SCq,k until q completes SCq,k+1. Accord-
ing to Claim 2, variable valq[k mod 2] holds the value vq,k at
all times during I. Our goal is to show that p executes Line 2
of OP during I, and therefore reads vq,k from valq[k mod 2]

in Line 2.
At the moment p reads [q, k] from X in Line 1 of OP,

q must have already executed Line 7 of SCq,k , and not yet

1This statement holds for process 0 as well, if we pretend that it performed
an “initializing SC”.

executed Line 8 of SCq,k+1. Hence, p executes Line 1 during
I. From the fact that OP terminates in Line 4, it follows that
p satisfied the condition in Line 4. Therefore, the value that
p reads in Line 3 of OP is either k − 2 or k − 1. Hence, by
Claim 3, it follows that when p performs Line 3, q did not
yet complete SCq,k+1. So, p executes Line 3 during I. Since
p performed both Lines 1 and 3 during I, it follows that p
performs Line 2 during I as well. Therefore, p reads vq,k
from valq[k mod 2] in Line 2, and the value that OP returns
is vq,k . ut

Lemma 3 (Correctness of LL) Let OP be any LL operation
and OP′ be the latest successful SC operation that precedes OP
by the linearization order defined earlier. Then, OP returns the
value written by OP′.

Proof. Let p be the process executing OP. Let [q, k] be the
value that p reads in Line 1 of OP. We examine the following
two cases: (i) OP returned vq,k , and (ii) OP returned v′ 6= vq,k .
In the first case, by our linearization, OP is linearized at Line 1.
From the fact that p reads [q, k] in Line 1 of OP, it is clear that
SCq,k is the latest SC operation to perform Line 8 prior to LP
OP. Since we linearize all SC operations at Line 8, it follows
that OP′ = SCq,k , and therefore the lemma is trivially true. In
the second case, by Claim 4, it follows that OP didn’t termi-
nate in Line 4. Hence, OP must have terminated in Line 6,
returning v′. Our goal is to show that there exists i > k, such
that (1) SCq,i executes Line 8 during OP, and (2) v′ = vq,i .
Then, by our linearization, OP’ = SCq,i , which implies the
lemma.

If OP terminated in Line 6, then the condition in Line 4
of OP didn’t hold. Then, p reads a value i ≥ k in Line 3
of OP. Hence, by Claim 3, q completes Line 10 of SCq,k+1
before p performs Line 3 of OP. Consequently, q completes
Line 9 of SCq,k+1 before p performed Line 5 of OP. As a
result, the value v′ that p reads in Line 5 was written by q in
either SCq,k+1 or a later SC operation by q. Since v′ 6= vq,k ,
v′ was written by SCq,i+1, for some i > k. Then, by Claim 3,
v′ = vq,i .

We now show that q executes Line 8 of SCq,i during OP.
At the moment that p reads [q, k] in Line 1 of OP, q did not
yet execute Line 8 of SCq,i (since i > k). Also, by the argu-
ment above, at the moment when p reads v′ = vq,i in Line 5
of OP, q already executed Line 9 of SCq,i+1, and therefore al-
ready executed Line 8 of SCq,i . Hence, q must have executed
Line 8 of SCq,i while p was between Lines 1 and 5 of OP,
which means that q executed Line 8 of SCq,i during OP. As
discussed above, this observation implies that OP returns the
correct value. ut

Claim 5 Let OP be an LL operation by process p, and [q, k]

the value that p reads from X in Line 1 of OP. If X does not
change for the remainder of OP, then OP terminates in Line 4.

Proof. Let k ′ be the value that p reads in Line 3 of OP. At
the moment when p reads [q, k] from X in Line 1 of OP, q
must have already executed Line 8 of SCq,k . Hence, q must
have already executed Line 10 of SCq,k−1. Then, by Claim 3,
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it follows that k ′ ≥ k − 2. Furthermore, since X does not
change for the remainder of OP, q does not execute Line 8 of
SCq,k+1 during OP. Consequently, q does not execute Line 10
of SCq,k+1, or any later SC operation, during OP. Therefore,
by Claim 3, k ′ ≤ k − 1. Then, by this and the previous obser-
vation, we have k − 2 ≤ k ′ ≤ k − 1. Therefore, p terminates
in Line 4. ut

Lemma 4 (Correctness of SC) Let OP be any SC operation
by process p, and OP′ be the latest LL operation by p that pre-
cedes OP. Then, OP succeeds if and only if, in the linearization
order, no successful SC occurs between OP′ and OP.

Proof. Let [q, k] be the value that p reads in Line 1 of OP′. If
OP returned false, then clearly the CAS in Line 8 of OP failed.
Hence, the value in X was different than [q, k]. We examine
the following two cases: (i) OP′ returned vq,k , and (ii) OP′ re-
turned a value different than vq,k . In the first case, by our lin-
earization, OP′ is linearized at Line 1. From the fact that Xwas
different than [q, k] in Line 8 of OP, it follows that some suc-
cessful SC operation OP′′ executed Line 8 between the time
p executed Line 1 of OP′ and the time p executed Line 8 of
OP. Since all SC operations are linearized at Line 8, it follows
that OP′′ is linearized between OP′ and OP, and OP is therefore
correct to return false. In the second case, by Claim 4, and the
proof of Lemma 3, we have the following:

• OP′ terminates in Line 6,

• the value v′ that p reads in Line 5 of OP′ was written by
q in Line 9 of SCq,i+1, for some i > k,

• v′ = vq,i ,

• SCq,i executes Line 8 during OP′.

Furthermore, by our linearization, OP′ is linearized just after
the LP of SCq,i . Since q executes Line 9 of SCq,i+1 before
p executes Line 5 of OP′, it follows that q executes Line 8
of SCq,i+1 before p executes Line 5 of OP′. Moreover, since
SCq,i executed Line 8 during OP′, and SCq,i+1 happened after
SCq,i , SCq,i+1 must have also executed Line 8 during OP.
Then, by our linearization, OP′ is linearized before SCq,i+1,
which is in turn linearized before OP. Hence, OP was correct
to return false.

If OP returned true, then clearly the CAS in Line 8 of OP
succeeded. Hence, the value in X was equal to [q, k]. Then,
from the moment p reads [q, k] in Line 1 of OP′, until p ex-
ecutes Line 8 of OP, X does not change. Hence, by Claims 5
and 4, OP′ returned vq,k . Then, by our linearization, OP’ is lin-
earized at Line 1, and no successful SC is linearized between
OP′ and OP. Hence, OP was correct to return true. ut

Lemma 5 (Correctness of VL) Let OP be any VL operation
by a process p, and OP′ be the latest LL operation by p that
precedes OP. Then, OP returns true if and only if, in the lin-
earization order, no successful SC occurs between OP′ and
OP.

Proof. Similar to the proof of Lemma 4. ut

Theorem 1 follows from the above three lemmas.

B Proof of the algorithm in Figure 4
The operations are linearized according to the following rules.
We linearize each SC operation at Line 11, and each VL at
Line 12. Let OP be any execution of the LL operation by p.
The linearization point of OP is determined by two cases. If
either one of WLL calls in Lines 1 or 6 of OP succeeds, we
linearize OP to the point at which that WLL happened. Other-
wise, we linearize OP as follows. Let [failure, q] be the value
returned by WLL call in Line 1 of OP. Let OP′ be the suc-
cessful SC operation performed by process q that took effect
during the execution of that WLL. Let OP′′ be the latest LL op-
eration performed by process q to update the value of variable
lastValq before process p reads it in Line 5 of OP. Then, if
OP′′ happened before OP′, we linearize OP to the point just be-
fore OP′ takes effect. Otherwise, we linearize OP to the point
just before OP′′ is linearized, making sure that no successful
SC operation is linearized between OP and OP′.

We now give a formal specification of the WLL/SC object:

Definition 1 Let O be a WLL/SC object. In every execution
history H on object O, the following is true:

• each operation op takes effect at some instant LP(op)

during its execution interval.

• if an WLL operation op performed by process p returns
[failure, q], then there exists a successful SC operation
op′ performed by process q such that:

1. LP(op′) lies in the execution interval of op,

2. LP(op) < LP(op′).

• the responses of all successful WLL operations and all
VL and SC operations, when ordered according to their
LP times, are consistent with the sequential specifica-
tions of LL, SC and VL.

Lemma 6 (Correctness of LL) Let OP be any LL operation
and OP′ be the latest successful SC operation that precedes OP
by the linearization order defined earlier. Then, OP returns the
value written by OP′.

Proof. We examine the following three cases: (i) OP returns
in Line 4, (ii) OP returns in Line 9, and (iii) OP returns in
Line 10. In the first case, the WLL call in Line 1 of OP suc-
ceeds and, by Definition 1, returns the value v written by the
latest successful SC on X before Line 1 of OP. Since, by our
linearization, OP is linearized at Line 1 and all SC operations
are linearized at Line 11, OP returns the value written by OP′.
The same argument holds in the second case as well.

In the third case, let p be the process executing OP. Since
OP returns in Line 10, both WLL calls in OP must have failed.
Let [failure, q] be the value returned by the WLL call in Line 1
of OP. Then, by Definition 1, there exists a successful SC on
X by process q that takes effect at some point during WLL.
Let SCq be the SC operation which made that SC call. Let
LLq be the latest LL by q to update lastValq before p ex-
ecutes Line 5 of OP. We examine the following two cases:
(1) LLq was executed before SCq , and (2) LLq was executed
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after SCq . In the first case, let OP′′ be the latest LL by q to
precede SCq . Then, we argue that OP′′ = LLq . Since the SC
call in Line 11 of SCq returned true, one of the WLL calls
in OP′′ must have been successful. As a result, OP′′ updated
lastValq . Furthermore, since OP′′ is the latest LL by q
that precedes SCq , OP′′ is also the latest LL by q to update
lastValq prior to SCq . On the other hand, since q executes
Line 11 of SCq while p is executing Line 1 of OP, q executes
Line 11 of SCq before p executed Line 5 of OP. Since, by
supposition, LLq is executed before SCq , LLq is therefore the
latest LL by q to update lastValq prior to SCq . Hence, we
have OP′′ = LLq . It remains to be shown that if OP′ is the latest
successful SC operation that precedes OP by the linearization
order, and v is the value that OP′ writes, then OP returns v. We
make this argument by showing that the value that q reads in
the successful WLL call of LLq is v. Then, since LLq writes v

into lastValq , and LLq is the latest LL operation to update
lastValq prior to Line 5 of OP, it is clear that OP returns v.

According to our linearization, the operations are lin-
earized as follows: SCq is linearized at Line 11, LLq is lin-
earized at either Line 1 or Line 6, depending on which of the
two WLL operations succeeded, OP′ is linearized at Line 11,
and OP is linearized just before the LP of SCq . (Notice that
the LP of OP falls within the execution interval of OP because
LP of SCq lies within the execution interval of Line 1 of OP.)
Then, by Definition 1, it is clear that the LP of OP′ is not
between the LPs of LLq and SCq (otherwise, the SC call in
Line 11 of SCq would not have succeeded). Furthermore,
since OP′ is the latest successful SC whose LP is before the
LP of OP, and since the LP of OP is just before the LP of SCq ,
OP′ is the latest successful SC whose LP is before the LP of
SCq (and based on the previous argument, before the LP of
LLq). As a result, q reads v in the successful WLL call of
LLq . Based on an earlier argument, OP returns v.

Finally, we examine the case where both of the WLL oper-
ations of OP fail, and LLq happens after SCq . We show that if
OP′ is the latest successful SC operation that precedes OP by
the linearization order, and v the value that OP′ writes, then
the value that q reads in the successful WLL call of LLq is v.
Then, since LLq writes v into lastValq, and LLq is the lat-
est LL operation to update lastValq prior to Line 5 of OP,
it follows that OP returns v.

According to our linearization, the operations are lin-
earized as follows: SCq is linearized at Line 11, LLq is lin-
earized at either Line 1 or Line 6 ,depending on which of these
two WLL operations succeeded, OP′ is linearized at Line 11,
and OP is linearized just before the LP of LLq , with no suc-
cessful SC operations linearized between the LP of OP and
the LP of LLq . Notice that the LP of OP indeed falls within
its execution interval since (a) The LP of LLq happens before
Line 5 of OP, and (b) The LP of LLq happens after SCq , and
therefore after Line 1 of OP. Hence, the LP of LLq is within
OP, which goes for the LP of OP as well. Since OP′ is the latest
successful SC whose LP is before the LP of OP, and since no
successful SCs are linearized between the LP of OP and the
LP of LLq , OP′ is the latest successful SC whose LP is before
the LP of LLq . As a result, q reads v in the successful WLL
call of LLq . Based on an earlier argument, OP returns v. ut

Lemma 7 (Correctness of SC) Let OP be any SC operation
by process p, and OP′ be the latest LL operation by p that pre-
cedes OP. Then, OP succeeds if and only if, in the linearization
order, no successful SC occurs between OP′ and OP.

Proof. If OP returned false, then clearly the SC call in Line 11
of OP failed. We examine the following two cases: (i) At least
one WLL call during OP′ succeeded, and (ii) both WLL calls
during OP′ failed. In the first case, without loss of generality,
we assume that the call in Line 1 of OP′ succeeded. Then,
by our linearization, OP′ is linearized at Line 1, and OP is lin-
earized at Line 11. Furthermore, by Definition 1, there exists
a successful SC on X by some process q that takes effect be-
tween the LP of OP′ and the LP of OP (otherwise, the SC call
in Line 11 of OP would have succeeded). Hence, a successful
SC operation is linearized between the LP of OP′ and the LP
of OP.

In the second case, let [failure, q] be the value returned by
the WLL call in Line 1 of OP′. Then, by Definition 1, there
exists a successful SC on X by process q that takes effect at
some point during Line 1 of OP’. Let SCq be the SC operation
which made that SC call. Let LLq be the latest LL by q to up-
date lastValq before p executes Line 5 of OP. We examine
the following two cases: (1) LLq was executed before SCq ,
and (2) LLq was executed after SCq . In both of these cases,
OP′ is linearized at some point before Line 5. In the first case,
it is linearized at some point during the execution of Line 1,
and in the second case just prior to a successful WLL call of
LLq , which in turn happened before Line 5 of OP′. Since
the WLL call in Line 6 of OP′ failed, there exists a successful
SC on X that takes effect during that WLL. The SC operation
which made that call is therefore linearized between the LP of
OP′ and the LP of OP.

If OP returned true, then clearly the SC call in Line 11
of OP succeeded. That means that at least one of the WLL
calls in OP′ succeeded. By our linearization, OP′ is linearized
at the point at which that successful WLL happened, and OP
in Line 11. Furthermore, by Definition 1, no successful SC
calls on X happened between the LP of OP′ and the LP of OP.
Hence, no successful SC operation is linearized between the
LP of OP′ and the LP of OP. ut

Lemma 8 (Correctness of VL) Let OP be any VL operation
by a process p, and OP′ be the latest LL operation by p that
precedes OP. Then, OP returns true if and only if, in the lin-
earization order, no successful SC occurs between OP′ and
OP.

Proof. Similar to the proof of Lemma 7. ut

Theorem 2 follows from the above three lemmas.

C Proof of the algorithm in Figure 5
In the following, let SCp,i denote the i th successful SC by
process p and vp,i denote the value written in O by SCp,i .
The operations are linearized according to the following rules.
We linearize each SC operation at Line 7, each VL at Line 10,
and each WLL at Line 1.
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Claim 6 Let SCp,i be a successful SC operation by process
p. If i is odd, then p changes the value of index p from 1 to
0 in Line 8 of SCp,i . If i is even, then p changes the value of
index p from 0 to 1 in Line 8 of SCp,i . Unsuccessful SC’s by
p do not change the value of index p.

Proof. From the algorithm design, it is clear that unsuccessful
SC’s by p do not change the value of index p. We now prove
the first part of the claim, by induction. For the base case,
we verify that the claim holds for SCp,1. Since the index p
variable is initialized to 1, and since p changes index p to 1 −

1 = 0 in Line 1 of SCp,1, the claim trivially holds for the
base case. The induction hypothesis is that the claim holds
for some SCp,n. The induction step is to show that the claim
holds for SCp,n+1 as well. Suppose that n + 1 is odd (which
means that n is even). Then, by IH, p changes the value of
index p from 0 to 1 in Line 8 of SCp,n. Therefore, at the
beginning of SCp,n+1, the value of index p is 1. Furthermore,
p changes index p to 1 − 1 = 0 in Line 8 of SCp,n+1. Hence,
the claim holds if n + 1 is odd. Suppose that n + 1 is even
(which means that n is odd). Then, by IH, p changes the value
of index p from 1 to 0 in Line 8 of SCp,n. Therefore, at the
beginning of SCp,n+1, the value of index p is 0. Furthermore,
p changes index p to 1 − 0 = 1 in Line 8 of SCp,n+1. ut

Corollary 1 At the beginning of SCp,i , index p holds the
value i mod 2.

Claim 7 From the moment p performs Line 6 of SCp,i , un-
til the time p completes the SCp,i+1 operation, variable
valp[i mod 2] holds the value vp,i .

Proof. According to Corollary 1, at the beginning of
SCp,i , index p holds the value i mod 2. Therefore, p
writes vp,i into valp[i mod 2] in Line 6 of SCp,i . Since,
by Claim 6, p changes index p in Line 11 of SCp,i to
1 − (i mod 2) 6= i mod 2, vp,i will not be overwritten in
valp[i mod 2] until index p reaches the value i mod 2 again.
By Claim 6, index p will not reach the value i mod 2 until p
changes index p to 1 − (1 − (i mod 2)) = i mod 2 in Line 11
of SCp,i+1. Therefore, valp[i mod 2] holds the value vp,i
from the moment p preforms Line 6 of SCp,i until the time p
completes SCp,i+1. ut

Lemma 9 (Correctness of WLL) Let OP be any WLL oper-
ation and OP′ the latest successful SC operation that precedes
OP by the linearization order defined earlier. If OP returns
[success, v], then v is the value written by OP′. If OP returns
[failure, q], then there exists a successful SC operation OP′′ by
process q such that: (i) LP(OP′′) lies in the execution interval
of OP, and (ii) LP(OP) < LP(OP′′).

Proof. If OP returned [success, v], let q be the process that
executes OP′. Since OP′ is successful, OP′ = SCq,i , for some
i . Thus, we need to show that v = vq,i .

By our linearization, OP is linearized at Line 1, and OP′

in Line 7. Then, since OP′ is the latest successful SC that pre-
cedes OP by the linearization order, the SC call in Line 7 of OP′

is the latest successful SC on X before the BitPid LL call in

Line 1 of OP. Furthermore, by Corollary 1, q writes i mod 2
into X in Line 7 of OP′. Therefore, p reads [i mod 2, q] in
Line 1 of OP. Since the VL call in Line 3 of OP succeeded,
no process made a successful SC call between the time p ex-
ecutes Line 1 of OP, and the time p executes Line 3 of OP.
More specifically, q did not execute the SC call in Line 7
of SCp,i+1 between the times p executes Lines 1 and 3 of
SCp,i+1. Therefore, by Claim 7, valq[i mod 2] holds the
value vq,i at all times while p is between Lines 1 and 3 of OP.
Consequently, p reads vq,i in Line 2 of OP, and returns the
correct value in Line 3 of OP.

If OP returned [failure, q], then clearly the VL call in
Line 3 of OP failed. This failure must have happened because
some other process performed a successful SC on X between
the time p executed Line 1 of OP, and the time p executed
Line 3 of OP. Consequently, the value [b, q] that p reads in
Line 4 of OP was written to X by some process q while p was
between Lines 1 and 4 of OP. Therefore, there exists a suc-
cessful SC operation OP′′ by q, such that q made the SC call
in Line 7 of OP′′ while p was between Lines 1 and 4 of OP.
Since, by our linearization, OP is linearized at Line 1 and OP′′

is linearized at Line 7, if follows that (1) LP(OP) lies in the
execution interval of OP, and (2) LP(OP) < LP(OP′′). ut

Lemma 10 (Correctness of SC) Let OP be any SC operation
by process p, and OP′ be the latest LL operation by p that pre-
cedes OP. Then, OP succeeds if and only if, in the linearization
order, no successful SC occurs between OP′ and OP.

Proof. If OP returned false, then clearly the SC call in Line 7
of OP failed. We examine the following two cases: (i) OP′

is successful, and (ii) OP′ has failed. Observe that in both of
the cases there exists a successful SC on X which happened
between the time p executed Line 1 of OP′, and the time p
executed Line 7 of OP. Since, by our linearization, OP′ is
linearized at Line 1 and OP is linearized at Line 7, there exists
a successful SC operation that is linearized between the LP of
OP′ and the LP of OP.

If OP returned true, then clearly the SC call in Line 7 of
OP succeeded. Therefore, no successful SC operation on X
happened between the time p executed Line 1 of OP′, and the
time p executed Line 7 of OP. Since, by our linearization,
OP′ is linearized at Line 1 and OP is linearized at Line 7, no
successful SC operations happened between the LP of OP′ and
the LP of OP. ut

Lemma 11 (Correctness of VL) Let OP be any VL operation
by a process p, and OP′ be the latest LL operation by p that
precedes OP. Then, OP returns true if and only if, in the lin-
earization order, no successful SC occurs between OP′ and
OP.

Proof. Similar to the proof of Lemma 10. ut

Theorem 3 follows from the above three lemmas.
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D Proof of the algorithm in Figure 6
The operations are linearized according to the following rules.
Let OP be any execution of the SC operation by p. The lin-
earization point of OP is determined by two cases. If the con-
dition in Line 5 of OP is true, we linearize OP at any point
during Line 5. Otherwise, we linearize OP at Line 6. Let OP′

be any execution of the VL operation by p. The lineariza-
tion point of OP′ is determined by two cases. If the the first
part of the condition in Line 9 (oldp = chk p) of OP′ is true,
we linearize OP′ at any point during Line 9. Otherwise, we
linearize OP′ at the point in Line 9 when X is read. Let OP′′

be any execution of the LL operation by p. The linearization
point of OP′′ is determined by two cases. If the values read in
Lines 1 and 3 of OP′′ are different, we linearize OP′′ at Line 1.
Otherwise, we linearize OP′′ at Line 3.

In the following, we assume that select satisfies Prop-
erty 1.

Lemma 12 (Correctness of BitPid LL) Let OP be any Bit-
Pid LL operation and OP′ be the latest successful SC opera-
tion that precedes OP by the linearization order defined ear-
lier. Then, OP returns the value written by OP′, and the process
id of the process that executes OP′.

Proof. Let p be the process executing OP, and q the process
executing OP′. We examine the following two cases: (i) the
values that p reads in Lines 1 and 3 of OP are different, and
(ii) the values that p reads in Lines 1 and 3 of OP are the
same. In the first case, OP is linearized at Line 1, and OP′

is linearized at Line 6 (since OP′ is successful). Since OP′ is
the latest successful SC whose LP is before the LP of OP, we
have the following: OP′ is the latest SC to write to X before p
executes Line 1 of OP. Therefore, OP returns the value written
by OP′, and the process id q.

In the second case, OP is linearized at Line 3, and OP′ is
linearized at Line 6 (since OP′ is successful). Since OP′ is
the latest successful SC whose LP is before the LP of OP, we
have the following: OP′ is the latest SC to write to X before
p executes Line 3 of OP. Therefore, p reads the value written
by OP′ and the process id q in Line 3 of OP. Since the values
that p reads in Lines 1 and 3 of OP are the same, OP returns
the correct value–pid pair in Line 4 of OP. ut

Lemma 13 (Correctness of SC) Let OP be any SC operation
by process p, and OP′ be the latest BitPid LL operation by p
that precedes OP. Then, OP succeeds if and only if, in the
linearization order, no successful SC occurs between OP′ and
OP.

Proof. We examine the following three cases: (i) OP returns
false in Line 5, (ii) OP returns false in Line 6, and (iii) OP re-
turns true in Line 8. In the first case, the values that p reads in
Lines 1 and 3 of OP′ are different. Then, by our linearization,
OP′ is linearized at Line 1 and OP is linearized at Line 5. Since
X changes between the LP of OP′ and the LP of OP, there ex-
ists an SC operation OP′′ that performed a successful CAS in
Line 6 between the LP of OP′ and the LP of OP. Furthermore,

since OP′′ is linearized at Line 6, it follows that the LP of OP′′

is between the LP of OP′ and the LP of OP.
In the second case, the values that p reads in Lines 1 and

3 of OP′ are the same, but the CAS call in Line 6 of OP failed.
Then, by our linearization, OP′ is linearized at Line 3 and OP
is linearized at Line 6. Since X changes between the LP of
OP′ and the LP of OP, there exists an SC operation OP′′ that
performed a successful CAS in Line 6 between the LP of OP′

and the LP of OP. Furthermore, since OP′′ is linearized at
Line 6, it follows that the LP of OP′′ is between the LP of OP′

and the LP of OP.
In the third case, the values that p reads in Lines 1 and 3 of

OP′ are the same, and the CAS call in Line 6 of OP succeeds.
Then, by our linearization, OP′ is linearized at Line 3, and OP
is linearized at Line 6. Let [s, q, v] be the value that p reads
in Lines 1 and 3 of OP′. Then, q is the latest process to write
to X before the LP of OP′. According to Property 1, q did not
write [s, q, ∗] to X between the LP of OP′ and the LP of OP.
Therefore, since X contains the same value at the LP of OP′

as it did at the LP of OP, it follows that no process wrote to
X between the LP of OP′ and the LP of OP. Consequently, no
successful SC operation occurs between the LP of OP′ and the
LP of OP. ut

Lemma 14 (Correctness of VL) Let OP be any VL operation
by a process p, and OP′ be the latest LL operation by p that
precedes OP. Then, OP returns true if and only if, in the lin-
earization order, no successful SC occurs between OP′ and
OP.

Proof. Similar to the proof of Lemma 13. ut

Theorem 4 follows from the above three lemmas.

E Proof of the algorithm in Figure 7
We show that the implementation of select in Figure 7, sat-
isfies Property 1.

Definition 2 An ‘epoch of p’ is the period of time between
the two consecutive executions of Line 17 in select(p), or
a period of time between the end of the initialization phase
of the algorithm and the first time Line 17 is executed in
select(p).

Definition 3 Interval [x, x ⊕M 1) is the ‘current interval’ of
an epoch if x is the value of the variable nextStartp at the
beginning of that epoch.

Claim 8 Let E be the current epoch of p and t an arbitrary
point in time during E. Let Et be the time interval that spans
from the moment E starts until time t. If a condition in Line 11
of select(p) holds true at most 2N times during Et , then
all the sequence numbers that select(p) returns during Et
are unique and belong to the current interval of E.

Proof. We prove this claim in two steps. First, we use the
supposition to prove that the total number of sequence num-
bers returned by select(p) during Et is at most (2N +1)N .
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Then, we use this fact to prove that all the sequence numbers
that select(p) returns during Et are unique and belong to
the current interval of E .

Let te be the latest time during Et that a sequence number
is returned by select(p). (If there is no such time, then the
claim trivially holds.) Then, since te ≤ t , it follows by sup-
position that the condition in Line 11 of select(p) was true
at most 2N times prior to te. Thus, the value of procNump
was reset in Line 13 at most 2N times prior to te. Further-
more, since te belongs to E , the value of procNump hasn’t yet
reached N at time te (otherwise, the new epoch would have
started in Line 17). Since procNump has been reset at most
2N times prior to te, the number of times procNump was in-
cremented in Line 14 prior to te is at most (2N + 1)(N − 1)

(otherwise, 2N resets wouldn’t be able to prevent procNump
from reaching the value N). Therefore, the condition in
Line 11 was false at most (2N + 1)(N − 1) times prior to
te. Hence, the total number of times the condition in Line 11
was tested prior to te is at most (2N + 1)(N − 1) + 2N =

2N2 + N −1. Then, the total number of sequence numbers re-
turned by select(p) during Et is at most 2N2+N −1+1 =

(2N + 1)N .
Let t1 and t2 in E be the times of two successive execu-

tions of Line 20 by p. Since t1 and t2 belong to E , p did not
execute Line 17 during (t1, t2). Hence, p executed Line 16
during (t1, t2), incrementing val p by one. Thus, the value of
val p at time t2 is by one greater than the value of val p at time
t1. To show that val p always stays within the current interval
of E , observe the following. At the beginning of an epoch,
val p is set to the first value in the current interval. Further-
more, by the argument above, Line 20 gets executed at most
(2N + 1)N times during Et . Consequently, val p stays within
the current interval at all times during Et , and all the sequence
numbers that select(p) returns during Et are unique and
belong to the current interval of E . ut

Claim 9 During an epoch by process p, the condition in
Line 11 can be true at most 2N times.

Proof. Suppose not. Let E be an epoch by p during which
the condition in Line 11 holds true more than 2N times. Then,
there exists an entry in A for which the condition in Line 11
is true three or more times. Let A[q] be the first such entry
during E . Let t1, t2 and t3 in E be the times the entry A[q]

is read in Line 10 of select(p). Let a1, a2, and a3 be the
values that A[q] holds at times t1, t2, and t3, respectively. Let
x1, x2, and x3 be the values that nextStartp holds at times
t1, t2, and t3, respectively. Then, since a1, a2, and a3 satisfy
the condition in Line 11 of select(p), they must be of the
form [s1, p, ∗], [s2, p, ∗], and [s3, p, ∗], respectively, where
s1, s2, and s3 belong to intervals [x1, x1 ⊕M 1), [x2, x2 ⊕M
1), and [x3, x3 ⊕M 1), respectively. Let C be the current
interval of E . Let Et3 be the time interval that spans from the
moment E starts until time t3. Then, at the beginning of E ,
C is set to [x, x ⊕M 1), and nextStartp to x ⊕M 1, for some
x . Furthermore, each time the condition in Line 11 is true,
nextStartp is incremented by 1 in Line 12. Since A[q] is the
first entry for which the condition in Line 11 is true three or
more times, it means that during Et3 , the condition in Line 11

could have been true at most 2N times. Hence, during Et3 ,
nextStartp could have been incremented at most 2N − 1 time,
and is therefore at most x ⊕M (2N + 1)1 at time t3. Then,
since ⊕M is done modulo M = (2N +2)1, at no point during
Et3 does the interval [nextStartp, nextStartp ⊕M 1) intersect
with C . Therefore, the intervals [x1, x1⊕M 1), [x2, x2⊕M 1),
and [x3, x3 ⊕M 1) are disjoint, and do not intersect with C .
Consequently, the sequence numbers s1, s2 and s3 are distinct,
and do not belong to C .

Since, by an earlier argument, the condition in Line 11
could have been true at most 2N times during Et3 , then, by
Claim 8, all the sequence numbers returned by select(p)

during Et3 must belong to C . Furthermore, it follows by con-
struction that at all times during (t1, t3), the latest sequence
number written into X by p was returned by select(p) dur-
ing Et3 . Consequently, at all times during (t1, t3), if X holds a
value of the form [s, p, ∗], then s belongs to C .

Since A[q] holds the value a1 (respectively, a2, a3) at time
t1 (respectively, t2, t3), process q must have written values a2
and a3 into A[q] (in Line 2 of BitPid LL) at some time during
(t1, t3). Hence, q must have read a3 from X at some time
during (t1, t3). Since, at all times during (t1, t3), if X holds
a value of the form [s, p, ∗], then s belongs to C , we have
s3 ∈ C . This is a contradiction to the fact that the intervals
[x3, x3 ⊕M 1) and C are disjoint. Hence, we have the claim.
ut.

Claim 10 All sequence numbers returned by select during
an epoch are unique and belong to that epoch’s current inter-
val.

Proof. Let t be the time at the very end of the current epoch.
Then, by Claims 9 and 8, this claim trivially holds. ut

Claim 11 Current intervals of two consecutive epochs are
disjoint.

Proof. Let E be some epoch, and C the current interval of
E . Then, at the beginning of E , C is set to [x, x ⊕M 1) and
nextStartp to x ⊕M 1, for some x . Furthermore, each time
the condition in Line 11 is true, nextStartp is incremented by
1 in Line 12. Since, by Claim 9, the condition in Line 11
can hold true at most 2N times during an epoch, nextStart p
can be at most x ⊕M (2N + 1)1 at the end of E . Therefore,
the current interval of the next epoch can be at most [x ⊕M
(2N + 1)1, x ⊕M (2N + 2)1). Since ⊕M is done modulo
M = (2N+2)1, intervals [x⊕M(2N+1)1, x⊕M(2N+2)1)

and [x, x ⊕M 1) are disjoint. Thus, the current intervals of
two consecutive epoch are disjoint. ut

Lemma 1 The implementation of select in Figure 7, satis-
fies Property 1. The time complexity of the implementation is
1, and the per-process space overhead is zero.

Proof. Suppose not. Then, there exist two consecutive Bit-
Pid LL operations OP and OP′ by p, and a successful SC op-
eration OP′′ by q, such that the following is true: p reads
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[s, q, v] in both Lines 1 and 3 of OP, yet process q writes
[s, q, ∗] in Line 6 of OP′′ before p invokes OP′. Let t be the
time when q executes Line 6 of OP′′. Let E be process q’s
epoch at time t , and C the current interval of E . Since, by
Claim 10, all the sequence numbers returned by select(q)

during E are unique and belong to C , it follows that all the
sequence numbers q writes into X during E are unique and
belong to C . Consequently, s ∈ C .

Let E ′ be the epoch that precedes E . (If there is no such
epoch then the claim trivially holds, since, by the argument
above, all the sequence number that q writes to X during E
are unique, and there can not be a process p that has read
[s, q, v] in Lines 1 and 3 of OP before q writes it in Line 6 of
OP′′.) Let C ′ be the current interval of E ′. Let t ′ be the first
time that q reads A[p] in Line 10 during E ′. By Claim 10, all
the sequence numbers returned by select(q) during E ′ ∪ E
belong to C ′ ∪ C . Moreover, it follows by construction that
at all times during (t ′, t), the latest sequence number written
into X by q was returned by select(q) during E ′ ∪ E . Con-
sequently, at all times during (t ′, t), if X holds a value of the
form [s, q, ∗], then s belongs to C ′ ∪ C . Since, by Claim 11,
C ′ and C are disjoint, X does not contain the value of the form
[s, q, ∗] during (t ′, t). Then, p must have read [s, q, v] in
Line 3 of OP before t ′. Consequently, p wrote [s, q, 0] into
A[p] in Line 2 of OP before t ′. Since OP is p’s latest Bit-
Pid LL at time t , no other BitPid LL by p wrote into A[p]

after Line 2 of OP and before t . Therefore, and at all times
during (t ′, t), A[p] holds the value [s, q, 0].

Observe that, at the end of E ′, procNump has the value
N . Hence, in the last N executions of select(q) during E ′,
procNump has been incremented by 1 in Line 14. Thus, in
the last N executions of select(q) during E ′, every entry in
A was read once, and none satisfied the condition in Line 11.
Consequently, we have the following: (1) in the execution of
select(q) where the entry A[p] was read, the condition in
Line 11 was not satisfied, and (2) in the last N executions
of select(q) during E ′, variable nextStartp didn’t change.
Since C = [x, x ⊕M 1), where x is the value of nextStart p
at the end of E ′, during the execution of select(q) where
the entry A[p] was read, A[p] was not of the form [s ′, q, 0],
for some s ′ ∈ C . This is a contradiction to the fact that at all
times during (t ′, t), the entry A[p] contains the value [s, q, 0],
where s ∈ C . ut

F Proof of the algorithm in Figure 9
We show that the implementation of select in Figure 9, sat-
isfies Property 1.

Definition 4 An ‘epoch of p’ is the period of time between
the two consecutive executions of Line 29 in select(p), or
a period of time between the end of the initialization phase
of the algorithm and the first time Line 29 is executed in
select(p).

Definition 5 A ‘pass k of an epoch E’ is a period of time in
E during which the variable passNump holds the value k.

Definition 6 Interval C is the ‘current interval’ of an epoch,
if C is the value of the variable Ip at the beginning of that
epoch.

We introduce the following notation. Let E be some
epoch. Then, for all k ∈ {0, 1, . . . , lg (N + 1)}, let

• I E
k denote the value of the interval Ip at the end of the

kth pass of an epoch E , and

• sE
k denote the number of entries in A that, at the end of

the kth pass of an epoch E , hold the value of the form
[s, p, 1], for some s ∈ I E

k .

In the rest of the proof, we assume that (N+1) is a power
of two.

Claim 12 There are lg (N + 1) + 1 passes in an epoch.

Proof. At the beginning of an epoch, the value of the variable
passNump is zero (by the definition of an epoch). Further-
more, an epoch ends when the Line 29 is executed the first
time during that epoch, which will happens only when the
condition in Line 26 is false, i.e. when passNump reaches the
value lg (N + 1). Hence, at the end of an epoch, the value
of passNump is lg (N + 1). Since the variable passNump is
incremented only in Lines 16 and 28, and it is incremented
only by one, it follows that during an epoch, passNum p goes
through all the values in the range [0 . . lg (N + 1)]. Hence,
there are exactly lg (N + 1) + 1 passes in an epoch. ut

Claim 13 In any given pass, process p invokes select ex-
actly N times.

Proof. At the beginning of any pass, the value of procNump
is zero (since the pass begins at Lines 16, 28, and 29,
and procNump is set to zero at Lines 15 and 25; likewise,
procNump is set to zero at initialization time). Furthermore, a
pass ends only after the variable procNump reaches the value
N − 1 (since the variable passNump is modified only after
the conditions in Lines 13 and 21 are false). Hence, during
a pass, procNump goes through all the values in the range
[0 . . N − 1]. Notice that in every invocation of select in
which a pass doesn’t end, process p executes Lines 14 and
22 (since it doesn’t execute Lines 16, 28, and 29). Hence, p
increments procNump by one in the first N − 1 invocations of
select during the pass, and then ends the pass during the
N th invocation. Hence, in any given pass, process p invokes
select exactly N times. ut

Claim 14 Let E be some epoch by process p, and t ∈ E
the time when p completes the 0th pass of E. Let s be any
sequence number. Then, if some entry A[q] holds the value
[s, p, 1] at time t ′ ∈ E, t ′ ≥ t , then A[q] holds the value
[s, p, 1] at all times during [t, t ′].

Proof. Suppose not. Then, at some time t ′′ ∈ [t, t ′], A[q]

does not hold the value [s, p, 1]. Therefore, at some point
during [t ′′, t ′], the value [s, p, 1] is written into A[q]. Since
by the time t ′′, process p has already performed the 0th pass
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of E , some process other than p must have written [s, p, 1]

into A[q], which is impossible. Hence, we have the claim. ut

Claim 15 If E is an epoch by process p, then the size
of the interval I E

k is ((N + 1)/2k)1, for all k ∈

{0, 1, . . . , lg (N + 1)}.

Proof. We prove this claim by induction. For the base case
(i.e., k = 0), the observation trivially holds, since at the be-
ginning of the 0th pass Ip is initialized to be of size (N +1)1.
Hence, I E

0 is of size (N+1)1. The inductive hypothesis states
that the size of I E

j is ((N + 1)/2 j)1, for all j ≤ k. We now
show that the size of I E

k+1 is ((N + 1)/2k+1)1. By the algo-
rithm, I E

k+1 is a half of Ik . Moreover, we made an assumption
earlier that N + 1 is a power of two. Hence, the size of I E

k+1
is exactly (((N + 1)/2k)/2)1 = ((N + 1)/2k+1)1. ut

Claim 16 If E is an epoch by process p, then the value of s E
k

is at most (N + 1)/2k − 1, for all k ∈ {0, 1, . . . , lg (N + 1)}.

Proof. For the base case (i.e., k = 0), the observation trivially
holds, since A can hold at most N entries. Hence, the value of
sE

0 is at most N . The inductive hypothesis states that the value
of sE

j is at most (N + 1)/2 j − 1, for all j ≤ k. We now show
that the value of s E

k+1 is at most (N + 1)/2k+1 − 1. Since sk
is the number of entries in A that, at the end of the kth pass,
hold a sequence number from I E

k , it follows by Claim 14 that
p can count at most s E

k sequence numbers during the (k +1)st
pass. Moreover, since I E

k+1 is a half of I E
k with a smaller

count, it follows that at most bs E
k /2c of the counted sequence

numbers fall within I E
k+1. Hence, by Claim 14, at the end of

the (k + 1)st pass, at most bs E
k /2c entries in A are of the form

[s, p, 1], s ∈ I E
k+1. Therefore, we have s E

k+1 = bs E
k /2c =

b((N + 1)/2k − 1)/2c. Since N + 1 is a power of two, it
means that s E

k+1 = (N + 1)/2k+1 − 1. Hence, the observation
holds. ut

Claim 17 Let E be an epoch by process p. Let I ′ be the value
of the interval Ip at the end of E. Then, I ′ contains exactly 1

sequence numbers.

Proof. Observe that, at the end of E , we have Ip = I E
lg (N+1)

.
Hence, by Claim 15, I ′ is of the size ((N + 1)/2lg (N+1))1 =

((N + 1)/(N + 1))1 = 1. Hence, we have the claim. ut

Claim 18 Let E be an epoch by process p. Let I ′ be the value
of the interval Ip at the end of E. Then, at the end of E, no
entry in A is of the form [s, p, 1], where s ∈ I ′.

Proof. Observe that, at the end of E , the number of entries of
the form [s, p, 1], where s ∈ I ′, is s E

lg (N+1)
. By Claim 16, we

have s E
lg (N+1)

= (N + 1)/2lg (N+1) − 1 = (N + 1)/(N + 1)−

1 = 0. Hence, we have the claim. ut

Claim 19 Let E be an epoch by process p. Then, all the
sequence numbers that select(p) returns during E are
unique and belong to the current interval of E.

Proof. Let C be the current interval of E . We prove the
claim in two steps. First, we prove that the total number of se-
quence numbers returned by select(p) during E is at most
N(lg (N + 1) + 1). Then, we use this fact to prove that all
the sequence numbers that select(p) returns during E are
unique and belong to C .

During each pass of E , select(p) returns exactly N se-
quence numbers (by Claim 13). Since an epoch consists of
lg (N + 1) + 1 passes (by Claim 12), the total number of se-
quence numbers returned by select(p) during E is there-
fore N(lg (N + 1) + 1). Let t1 and t2 in E be the times of
two successive executions of Line 32 by p. Since t1 and t2
belong to E , p did not execute Line 29 during (t1, t2). Hence,
p executed either Line 17, Line 23, or Line 27 during (t1, t2),
incrementing val p by one. Thus, the value of val p at time t2
is by one greater than the value of val p at time t1. To show
that val p always stays within C , observe the following. At
the beginning of an epoch, val p is set to the first value in C .
Furthermore, by the argument above, Line 32 gets executed at
most N(lg (N + 1) + 1) times during E . Consequently, val p
stays within C at all times during E . Therefore, all the se-
quence numbers that select(p) returns during E are unique
and belong to C . ut

Claim 20 Current intervals of two consecutive epochs are
disjoint.

Proof. Let E and E ′ be any two consecutive epochs. Let
C (C ′) be the current interval of E (E ′). Let I be the value
of the interval Ip at the start of E . Let I ′ be the value of the
interval Ip after Line 31 of select(p) is executed during
E . By Claim 17, I is of the form [x, x ⊕M 1), for some
x . Therefore, C = [x, x ⊕M 1), and I ′ = [x ⊕M 1, x ⊕M
(N + 2)1). Since the operation ⊕M is performed modulo
M = (N + 2)1, intervals C and I ′ are disjoint. Furthermore,
since C ′ is a subinterval of I ′, C and C ′ are disjoint as well.
ut

Lemma 2 The implementation of select in Figure 9, satis-
fies Property 1. The time complexity of the implementation is
2, and the per-process space overhead is zero.

Proof. Suppose not. Then, there exist two consecutive Bit-
Pid LL operations OP and OP′ by p, and a successful SC op-
eration OP′′ by q, such that the following is true: p reads
[s, q, v] in both Lines 1 and 3 of OP, yet process q writes
[s, q, ∗] in Line 6 of OP′′ before p invokes OP′. Let t be the
time when q executes Line 6 of OP′′. Let E be the q’s epoch at
time t . Let C be the current interval of E . Since, by Claim 19,
all the sequence numbers returned by select(q) during E
are unique and belong to C , it follows that all the sequence
numbers q writes into X during E are unique and belong to C .
Consequently, s ∈ C .
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Let E ′ be the epoch that precedes E . (If there is no such
epoch then the claim trivially holds, since, by the argument
above, all the sequence number that q writes to X during E
are unique, and there can not be a process p that has read
[s, q, v] in Lines 1 and 3 of OP before q writes it in Line 6 of
OP′′.) Let C ′ be the current interval of E ′. Let t ′ be the time
that q reads A[p] in Line 11 during E ′. By Claim 19, all the
sequence numbers returned by select(q) during E ′ ∪ E be-
long to C ′ ∪ C . Furthermore, it follows by construction that
at all times during (t ′, t), the latest sequence number written
into X by q was returned by select(q) during E ′ ∪ E . Con-
sequently, at all times during (t ′, t), if X holds a value of the
form [s ′, q, ∗], then s ′ belongs to C ′ ∪ C . Since, by Claim 20,
C ′ and C are disjoint, X does not hold the value [s, q, v] dur-
ing (t ′, t). Then, p must have read [s, q, v] in Line 3 of OP
before t ′. Consequently, p wrote [s, q, 0] into A[p] in Line 2
of OP before t ′. Since OP is p’s latest BitPid LL at time t ,
no other BitPid LL by p wrote into A[p] after Line 2 of OP
and before t . Furthermore, no other process r writes [∗, r, 1]

into A[p] after Line 2 of OP and before t . Hence, at all times
during (t ′, t), no process other than q writes into A[p]. Fur-
thermore, at time t ′, A[p] holds the value [s, q, 0]. Let t ′′ ∈ E ′

be the time p performs a CAS call in Line 12. Then, since no
other process changes A[p] during (t ′, t), p’s CAS at time t ′′

succeeds, and at all times during (t ′′, t), A[p] holds the value
[s, q, 1]. Let I be the value of the interval Ip at the end of E ′.
Then, we have I = C . Since s ∈ C , it follows that s ∈ I ,
which is a contradiction to Claim 18. ut
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