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Abstract

Previous implementations of out-of-core columnsort limit the problem size to N ≤
√

(M/P)3/2,
where N is the number of records to sort, P is the number of processors, and M is the total number
of records that the entire system can hold in its memory (so that M/P is the number of records that a
single processor can hold in its memory). We implemented two variations to out-of-core columnsort that
relax this restriction. Subblock columnsort is based on an algorithmic modification of the underlying
columnsort algorithm, and it improves the problem-size bound to N ≤ (M/P)5/3/42/3 but at the cost of
additional disk I/O. M-columnsort changes the notion of the column size in columnsort, improving the
maximum problem size to N ≤

√

M3/2 but at the cost of additional computation and communication.
Experimental results on a Beowulf cluster show that both subblock columnsort and M-columnsort run
well but that M-columnsort is faster. A further advantage of M-columnsort is that it handles a wider
range of problem sizes than subblock columnsort.

This research was supported in part by NSF Grant EIA-98-02068.



1 Introduction

Sorting very large data sets is a key subroutine in many applications. For some applications, the amount
of data exceeds the capacity of main memory (we call these “out-of-core” problems), and the data then
typically reside on one or more disks. For example, geographical information systems, seismic modeling
programs, and web-search engines store and search through enormous amounts of data. In earlier papers
[CCW01, CC02], the authors have reported on various programs that sort out-of-core data on distributed-
memory clusters. All of these programs are based on Leighton’s 8-step columnsort algorithm [Lei85]. In
our adaptation of the columnsort algorithm to an out-of-core setting, we end up with a restriction on the
maximum problem size that we can sort. We shall refer to this restriction as the problem-size restriction.
The maximum number N of records1 that we can sort on a cluster with P processors and M records of
memory overall is

N ≤
√

(M/P)3/2 . (1)

Here, M/P is the number of records that a single processor can hold in its memory.2 There are two sources
of this restriction:

1. The height restriction. Columnsort sorts N values in an r × s matrix, subject to some restrictions.
One of the restrictions is r ≥ 2s2, so that the matrix is tall and thin.3

2. The height interpretation. In our prior implementations of columnsort, we require each column of the
r × s matrix to fit in the internal memory of a processor. Setting r to be M/P , setting s to be N/r and
substituting these values of r and s into the height restriction gives us the problem-size restriction (1).

In the present paper, we explore two approaches to relax the problem-size restriction. These two ap-
proaches stem from attacking separately the height restriction and the height interpretation.

Subblock columnsort: We relax the height restriction by adding two new steps to columnsort. The result-
ing algorithm, which we call subblock columnsort, relaxes the height restriction by a factor of

√
s/2,

to r ≥ 4s3/2. With the same height interpretation of r = M/P , we get a problem-size restriction of

N ≤ (M/P)5/3/42/3 . (2)

This improvement in problem size can be quite substantial in an out-of-core setting. For most current
systems (M/P ≥ 212 records), this change will enable us to more than double the largest problem
size.

Our best previous adaptation of columnsort to an out-of-core setting, which we call threaded column-
sort, is structured into three passes, where a pass consists of reading each record once from disk,
doing some computation, and writing it back to disk. The two additional steps of subblock column-
sort add an extra pass, leading to additional disk I/O, communication, and computation. In certain
special cases, this pass involves no communication.

1Each record contains a key according to which the records are to be sorted.
2In reality, M/P is smaller than the actual size of the physical memory of a processor since we need some auxiliary buffers for

in-core computation and interprocessor communication.
3Leighton’s original paper [Lei85] has the restriction r ≥ 2(s − 1)2. We choose to ignore the low-order terms and use the

simpler and more stringent r ≥ 2s2.
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M-columnsort: As expressed in restrictions (1) and (2), the maximum problem size depends on the amount
of memory per processor, or M/P , even with the relaxed height restriction achieved by subblock
columnsort. Therefore, if the number of processors in the cluster increases, but the amount of memory
per processor stays fixed, the maximum problem size remains unchanged. This lack of scalability is
due to the height interpretation. M-columnsort changes the height interpretation from r = M/P to
r = M , thus leading to the improved problem-size restriction

N ≤
√

M3/2 . (3)

On a cluster with 16 processors, with M/P = 219 records, this change will allow us to sort up to one
terabyte of data, assuming a record size of 64 bytes. M-columnsort does not add any extra passes
compared to the original columnsort. As we shall see in Section 4, however, it does incur substantial
amounts of communication and additional computation.

Experimental results on a Beowulf cluster with fast processors and a Myrinet interconnect show that
the primary determinants of out-of-core execution time for a given algorithm are the amount of data per
processor to be sorted and the amount of memory used on each processor. The dependence on data per
processor is a consequence of the system being I/O-bound. Since subblock columnsort has four passes to
threaded columnsort’s three, subblock columnsort takes approximately one-third longer. M-columnsort,
though it has exactly three passes, takes longer than threaded columnsort due to its increased computation
and communication. Although M-columnsort takes longer than threaded columnsort, it runs faster than
subblock columnsort in all cases.

The remainder of this paper is organized as follows. Section 2 describes the original columnsort algo-
rithm and summarizes earlier implementations. Sections 3 and 4 present the design of subblock columnsort
and M-columnsort, respectively, along with notes on their implementations. Section 5 analyses experimen-
tal results of the various columnsort programs. Finally, Section 6 offers some final comments and discusses
future work.

2 Columnsort

In this section, we review the columnsort algorithm and earlier adaptations of it to an out-of-core setting.
We conclude this section by recalling the implications of the problem-size restriction.

The basic columnsort algorithm

Columnsort sorts N records arranged as an r × s matrix, where N = rs, s divides r , and r ≥ 2s 2. When
columnsort completes, the matrix is sorted in column-major order. Columnsort proceeds in eight steps.
Steps 1, 3, 5, and 7 are all the same: sort each column individually. Each of steps 2, 4, 6, and 8 permutes the
matrix entries as follows:

• Step 2: Transpose and reshape: We first transpose the r × s matrix into an s × r matrix. Then we
“reshape” it back into an r × s matrix. For example, in a 6 × 3 matrix, the column with r = 6 entries
a b c d e f is transposed into a 6-entry row with entries a b c d e f and then reshaped into the 2 × 3

submatrix
[

a b c
d e f

]

.

• Step 4: Reshape and transpose: This permutation is the inverse of that of step 2.
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• Step 6: Shift down by r/2: We shift each column down by r/2 positions, wrapping the bottom half of
each column into the top half of the next column. The top half of the leftmost column is filled with
−∞ keys and a new rightmost column is created, with its bottom half filled with ∞ keys.

• Step 8: Shift up by r/2: This permutation is the inverse of that of step 6.

Out-of-core columnsort

In our earlier adaptations of columnsort to an out-of-core setting on a distributed-memory cluster, we assume
that the cluster has P processors P 0,P1, . . . ,PP−1 and D disks D0,D1, . . . ,DD−1, where D ≥ P . A
processor owns the D/P disks that it accesses.4 Buffers hold exactly r records. The data are placed so
that each column is stored in contiguous locations on the disks owned by a single processor. Specifically,
processor j owns columns j, j + P, j + 2P , and so on.

We further assume that all configuration parameters as well as the matrix dimensions r and s are powers
of 2. (Thus, P must divide D.)

Here, we outline the basic structure of each pass; for key implementation features and performance
results, see [CCW01, CC02]. Each pass in our first implementation performs two consecutive steps of
columnsort. That is, pass 1 performs steps 1 and 2, pass 2 performs steps 3 and 4, pass 3 performs steps 5
and 6, and pass 4 performs steps 7 and 8. Each pass is decomposed into s/P rounds. Each round processes
the next set of P consecutive columns, one column per processor. A round progresses through a pipeline
with the following five stages:

Read stage: Each processor reads a column of r records from the disks that it owns.

Sort stage: Each processor locally sorts, in memory, the r records it has just read. Implementation of this
stage differs from pass to pass.5

Communicate stage: Each record is destined for a specific column, depending on which even-numbered
columnsort step this pass is performing. In order to get each record to the processor that owns this
destination column, processors exchange records.

Permute stage: Having received records from other processors, each processor rearranges them into the
correct order for writing.

Write stage: Each processor writes a set of r records onto the disks that it owns.

Because we implemented the stages asynchronously, at any one time each stage could be working on a
different round.

The key features of our previous work are as follows:

• The first implementation [CCW01] used asynchronous I/O and asynchronous communication to over-
lap I/O, computation, and communication. This implementation had performance results that, by
certain measures, made it competitive with the NOW-Sort program [ADADC+97].

4When D ≥ P , each processor accesses exactly D/P disks over the entire course of the algorithm. When D < P , we require
that there be P/D processors per node and that they share the node’s disk; in this case, each processor accesses a distinct portion
of the disk. We treat this distinct portion as a separate “virtual disk,” allowing us to assume that D ≥ P .

5In a given pass p, the data might start with some sorted runs, depending on the write pattern of pass p −1. The implementation
takes advantage of the sorted runs to sort by merging.

3



• The second implementation [CC02] used threads in order to provide greater flexibility in overlapping
I/O, computation, and communication. Experimental results showed that this improvement reduced
the running time to about half of that of the first implementation. In this implementation, there were
four threads per processor. The sort, communicate, and permute stages each had their own threads,
and the read and write stages shared an I/O thread.

• The third implementation reduced the number of passes from four down to three by combining the
last two passes into a single pass. The pipeline for the first two passes is unchanged. For the last pass,
the pipeline had seven stages, two of which were sort stages and two of which were communicate
stages; for details see [CC02]. Subblock columnsort and M-columnsort use this implementation as
the starting point. We refer to this 3-pass implementation as the threaded columnsort program.

• All the implementations use only standard, off-the-shelf software, such as MPI [SOHL+98] and
MPI-2 [GHLL+98] for communication and I/O.

• There are no assumptions required about the keys. In fact, our algorithm’s I/O and communication
patterns are oblivious to the keys.

• The output appears in the standard striped ordering used by the Parallel Disk Model (PDM).6

Recalling the problem-size restriction

We conclude this section by recalling restriction (1) from Section 1. All of the previous implementations
are subject to this problem-size restriction, since they use the original columnsort algorithm, inheriting its
height restriction, and they set r to be M/P . In other words, substituting r = M/P and s = N/r = N P/M
in the height restriction r ≥ 2s2 gives restriction (1). There are two main implications of this restriction. The
first implication is the obvious one: the maximum problem size has an upper bound. The second implication
is one of scalability. As we can see in restriction (1), the problem size N depends on M/P , the memory per
processor, rather than on the total memory M of the system.

3 Subblock columnsort

In this section, we present subblock columnsort and discuss some aspects of its implementation.

The algorithm

To describe subblock columnsort, we need to define what a subblock is. We will be working with
√

s ×
√

s
subblocks of the matrix, where each subblock is a contiguous set of

√
s rows and

√
s columns. Subblocks are

aligned to the matrix, meaning that the indices of the top row and leftmost column of each subblock must be
multiples of

√
s. We need

√
s to be an integer, which, combined with the power-of-2 assumption, constrains

s to be a power of 4. The main idea behind subblock columnsort, inspired by the Revsort algorithm [SS86],
is to add two extra steps after step 3.

Subblock columnsort consists of the following ten steps:

6PDM ordering balances the load for any consecutive set of records across processors and disks as evenly as possible. A further
advantage to producing sorted output in PDM ordering is that our algorithm can be used as a subroutine in other PDM algorithms.
To the best of our knowledge, the implementations in [CCW01, CC02] are the first multiprocessor sorting algorithms whose output
is in PDM order.
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Figure 1: The subblock permutation as a bit permutation. Each entry in the r × s matrix has a row number, expressed
in lg r bits, and a column number, expressed in lg s bits. The subblock permutation permutes the element in row i
and column j to row i ′ and column j ′. We number the bits starting from 0 as the least significant bit, and we use
the notation “. .” to denote ranges of consecutive bits. The permutation maps bits w = i lg

√
s.. lg r−1 to i ′

0.. lg r/
√

s−1
,

x = i0.. lg
√

s−1 to j ′
lg

√
s.. lg s−1

, y = jlg
√

s.. lg s−1 to i ′
lg r/

√
s.. lg r−1

, and z = j0.. lg
√

s−1 to j ′
0.. lg

√
s−1

. Because x
determines the source row number within an element’s subblock and z determines the source column number within
the subblock, this mapping ensures that the bits forming an element’s target column number come from the bits that
determine where in a source subblock the element started.

• Do steps 1–3 of columnsort.

• Step 3.1 performs any permutation that moves all the values in each
√

s ×
√

s subblock into all s
columns. We shall refer to this property as the subblock property.

• Step 3.2 sorts each column.

• Do steps 4–8 of columnsort.

In [CC03], it is shown that as long as s divides r , s is a power of 4, and r ≥ 4s 3/2, subblock columnsort
sorts any input correctly. This modified height restriction implies the problem-size restriction (2).

As discussed in [CC03], there are several permutations that have the subblock property. The one we use
here, which we call the subblock permutation, is based on permuting sets of bits within the row and column
numbers. Because we assume that r and s are powers of 2, each row number is a sequence of lg r bits
and each column number is a sequence of lg s bits. We shall express the subblock permutation in terms of
the source row and column numbers and the corresponding target row and column numbers of each matrix
element.

To ensure that the subblock property holds, we only need to show that two distinct elements in the same
source subblock will map to two different column numbers. We do so by ensuring that the lg s bits that
determine the target column number come from source bits that determine where in a

√
s ×

√
s subblock a

matrix element resides. Figure 1 shows the idea. If we look at the source row and column numbers of a given
element, the least significant lg

√
s bits of each—denoted by x and z, respectively, in the figure—determine

the row and column numbers of that element within its subblock. (The most significant bits—w and y—
determine which subblock the element is in, but not where in the subblock it resides.) The subsequences x
and z form the bits of the target column number, with z forming the least significant half and x forming the
most significant half. Thus, the subblock permutation has the subblock property. As an arithmetic formula,
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the subblock permutation maps the (i, j) entry to position (i ′, j ′), where

i ′ =
⌊

j
√

s

⌋

r
√

s
+

⌊

i
√

s

⌋

,

j ′ = j mod
√

s + (i mod
√

s)
√

s .

It may seem strange that the target row number is formed by using w as the least significant bits, when
w started out as the most significant bits of the source row number. The advantage of permuting in this way
is that it creates sorted runs of r/

√
s elements in each column. To see why, first observe that entering the

subblock permutation, each column is sorted. Now consider two elements e1 and e2 that start in the same
column (so that their y and z bits are the same) and are permuted into the same target column (so that their
x bits are also the same). There are r/

√
s elements in a source column that have fixed values of the x , y,

and z bits, and they vary in their w bits. Let the w bits of e1 and e2 be w1 and w2, respectively, and assume
that w2 = w1 +1 (so that e2 is

√
s rows below e1 in the source column and e1 ≤ e2). Because e1 and e2 have

the same y bits, which become the most significant bits of the target row, and because the w bits become the
least significant bits of the target row, e2’s target row is 1 greater than e1’s target row. Since e1 and e2 are any
two elements that start out

√
s rows apart in their source column, we see that all r/

√
s elements that start in

the same source column and are permuted to the same target column appear as one sorted run of size r/
√

s
in the target column.

Implementation notes

Since subblock columnsort differs from columnsort only in the two additional steps, our implementation of
subblock columnsort started with the 3-pass threaded columnsort program and integrated these two steps
as one extra pass, which we call the subblock pass. The subblock pass performs steps 3 and 3.1 of sub-
block columnsort. The overall thread structure of subblock columnsort is the same as that of the threaded
columnsort program.

Like the first two passes in threaded columnsort, the subblock pass is decomposed into s/P rounds,
where each round processes the next set of P consecutive columns, one column per processor, in a five-
stage pipeline. The only stage of the subblock pass that differs substantially from the corresponding stage
of passes 1 and 2 of threaded columnsort is the communicate stage. In each round’s communicate stage
within passes 1 and 2 of threaded columnsort, each processor sends P messages. Each message consists of
r/P records. One of these messages goes back to the sending processor, in which case the message does not
need to go over the network. For the subblock pass, however, we shall show three properties:

1. In the communicate stage of each round, each processor sends only dP/
√

se messages, each of size
r/dP/

√
se.

2. When
√

s ≥ P so that dP/
√

se = 1, the one message is always destined for the sending processor,
and therefore no communication over the network occurs.

3. Any permutation that achieves the subblock property must send at least dP/
√

se messages per round,
and so the communication pattern of our subblock pass is optimal.

To see that the first two properties hold, we again refer to Figure 1. Let us examine the processors to
which column j ’s elements are mapped by the subblock permutation. Column j is owned by processor p,
where p = j mod P . This processor number is the lg P least significant bits of the column number j .
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If P ≤
√

s, then the bits that determine the processor number are entirely within the z field in Figure 1.
Since these bits are the same in the target column as they are in the source column, the target processor
number must be the same as the source processor number. Thus, since dP/

√
se = 1, we have proven

property 2.
If P >

√
s, then the lg

√
s least significant bits of the source and target column numbers for a given

element are the same. Therefore, only lg P − lg
√

s of the bits determining the processor number can
differ. These bits come from the x field, which is part of the row number. All combinations of these
bits will occur in a given source column, and so all combinations will occur in the target processor num-
ber. There are 2lg P−lg

√
s = P/

√
s such combinations. By the power-of-2 assumption, therefore, we have

dP/
√

se = P/
√

s, and so we have proven property 1.
To show property 3, we shall show that if the subblock property holds and any source column maps

to fewer than P/
√

s target processors, then a contradiction arises. We start by noting that every processor
must own exactly s/P columns. Now let us suppose that some source column, say column j , maps to k
target processors, where k < P/

√
s. Therefore, column j maps to fewer than k(s/P) target columns. Since

k < P/
√

s, we have that k(s/P) <
√

s, so that column j maps to fewer than
√

s target columns. Because
the subblock property holds, any

√
s entries within a given subblock must map to

√
s different columns.

If we consider the intersection of any subblock with column j , we have
√

s entries of the subblock, and
hence this portion of column j (not even considering the rest of the column) must map to

√
s different target

columns. This fact contradicts our earlier conclusion that column j maps to fewer than
√

s target columns.
Thus, we have proven property 3.

4 M-columnsort

In order to achieve the problem-size restriction (3), N ≤
√

M3/2, we consider each column to be M
elements, so that r = M . Recall that with this more relaxed restriction, the maximum problem size now
scales with the memory in the entire system, so that adding more processors with the same amount of
memory per processor increases the maximum problem size. In fact, this increase is superlinear in the total
memory size.

Implementation notes

As with subblock columnsort, our implementation of M-columnsort is a modification of 3-pass threaded
columnsort. Instead of adding a pass, however, we increase the complexity of the sort stage of each pass.
When r = M/P , the sort stage is just a local sort on each processor. In M-columnsort, since r = M , the sort
stage becomes a multiprocessor sort with distributed memory. One benefit of performing a multiprocessor
sort is that we can eliminate the communicate stage in the first two passes.

We use in-core columnsort for the distributed-memory multiprocessor sort. We implemented three in-
core multiprocessor sorting algorithms: bitonic sort, radix sort, and columnsort. We found that in-core
columnsort, with an (M/P) × P matrix, was consistently faster than bitonic sort on problem sizes repre-
sentative of those we encounter in the sort stage. Radix sort was competitive with in-core columnsort over a
wide range of problem sizes, but we decided to use in-core columnsort because radix sort has a high depen-
dence on the key format and because columnsort’s communication patterns are independent of the values in
the keys.

Our implementation of in-core columnsort is multithreaded. In particular, there are two threads: one for
local sorting (steps 1, 3, 5, and 7 of the in-core sort) and one for communication (steps 2, 4, 6, and 8 of the
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in-core sort). These threads are in addition to the four non-sort threads inherited from threaded columnsort.
Wherever threaded columnsort’s pipeline had a single stage for sorting, M-columnsort’s pipeline has eight
stages. Each stage in a pipeline sends a buffer to its successor, and the additional threads in M-columnsort
require the allocation of four additional buffers.

The pipeline for each of the first two passes has 11 stages: read, the eight from in-core columnsort,
permute, and write. These 11 stages occupy only four threads: one for both read and write, one for permute,
one for the four local sorting steps of in-core columnsort, and one for the four communication steps of
in-core columnsort. We are able to eliminate the communicate stage from the out-of-core pipeline because
each column is shared among all the processors. After the in-core sort, each processor has its own portion of
the sorted data. Depending on the permutation stage of the out-of-core sort, this data is destined for a certain
set of target columns. Since each processor owns a portion of each column, we were able to design the
in-core sort to ensure that each processor can write out its data into its portion of each of the target columns.

The pipeline for the last pass is rather different. We eliminate one communicate stage, but each of the
two sort stages turns into eight in-core sort stages. Although the resulting pipeline has 20 stages, they occupy
only seven threads: one for both read and write, one for permute, one for the remaining communicate stage,
and two for each of the two in-core sorts.

5 Experimental results

The experimental results came from runs on a Beowulf cluster that has 16 dual 1.5-GHz P4 Xeon nodes,
each with 1 GB of RAM. The nodes run Redhat Linux 7.2 and are connected with a high-speed Myrinet
network which has a peak speed of 250 MB per second. Each node has an Ultra-160 10,000-RPM SCSI-3
hard drive, with about 10 GB of available disk space for user files. For disk I/O, we use the C stdio
interface. The nodes communicate using standard synchronous MPI [SOHL+98] calls within asynchronous
threads. Our threads are implemented using the pthreads package of Linux. Not all MPI implementations
work correctly in the presence of multiple threads. We found that MPI/Pro, which allows multiple threads
to issue MPI calls, worked well.

Although each node has two processors, we found no advantage to running more than one process per
node. Thus, we treat each node as if it had only one processor, and we use the terms “node” and “processor”
interchangeably.

Our experimental runs were for combinations of the following:

Algorithm: We ran threaded columnsort, subblock columnsort, and M-columnsort. For a baseline, we also
ran just the I/O portions of three and four passes of columnsort. In this way, we can determine how
much time of each run was spent waiting for non-I/O activity.

Buffer size: For threaded columnsort, subblock columnsort, and M-columnsort, we varied the buffer
size (r ). We report here results for buffer sizes of 224 and 225 bytes. Note that these buffer sizes,
being in bytes, are not in terms of number of records, and so they should not be construed as equaling
M/P . Record sizes varied between 64 and 128 bytes, but we found that the buffer size mattered more
than the record size.

Number of processors and volume of data: We ran various combinations with 4, 8, and 16 processors
and with an amount of data varying from 4 GB up to 32 GB. We did not run any experiments with
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Figure 2: Execution times, in seconds, for the three versions of columnsort plus baseline I/O times for three and four
passes.

less than 1 GB of data per processor because file-caching effects masked the out-of-core nature of
the problem. We were unable to perform any runs with more than 2 GB of data per processor due to
disk-space limitations.7 All runs, therefore, were for either 1 GB or 2 GB of data per processor.

For a given algorithm and buffer size, we found that the amount of data per processor was by far the most
important factor in determining run time. Given the large amount of disk I/O that each of the algorithms has
to perform, this characteristic did not come as a surprise. We couch our results in terms of GB of data per
processor.

Figure 2 summarizes our experimental results. Each plotted point in the figure represents the average of
multiple runs of an algorithm with a given buffer size, but with the number of processors and the record size
varying. Variations in running times were relatively small (within 10%). The horizontal axis is organized
by total number of GB of data sorted across all processors.

Due to the problem-size restriction of equation (1), threaded columnsort could not handle more than
4 GB of data. Results for threaded columnsort appear as single points in Figure 2. For a buffer size of 225

bytes, the total time is just barely above the baseline 3-pass I/O time; in other words, threaded columnsort
is almost purely I/O-bound. When we halve the buffer size, to 224 bytes, there are more frequent switches

7We did not overwrite the original data files so that we could verify the correctness of the output files. Moreover, our implemen-
tation requires a temporary file. Therefore, the input, output, and temporary files together induce a disk-space requirement of three
times that of the input file size. The cluster on which we ran our experiments did not permit us to use much more than 6 GB of disk
space per node.
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between pipeline stages and so the I/O-boundedness diminishes somewhat. We found that with only one
exception, larger buffer sizes resulted in faster execution. We could not make these buffers arbitrarily large
because there is a limit on how large these buffers can get until demand paging starts slowing down the
execution.

Due to the power-of-4 restriction on s in subblock columnsort, not all problem sizes were eligible to
be run for a given value of r (i.e., for a given buffer size). That is why the two lines plotted for subblock
columnsort in Figure 2 cover disjoint problem sizes, and why each line covers problem sizes that differ by
a factor of 4. With a buffer size of 225 bytes, the running times are only slightly above the baseline 4-pass
I/O time. (Recall that subblock columnsort has one pass more than threaded columnsort.) Thus, subblock
columnsort is substantially I/O-bound. With the smaller buffer size of 224 bytes, execution times increase
for the same reason as in threaded columnsort. Observe that each of the subblock columnsort lines rises
only slightly as the volume of data sorted increases, thus demonstrating our earlier claim that the volume of
data per processor is the most salient characteristic in determining execution time.

Figure 2 shows one particular advantage of M-columnsort over the other two algorithms: we were able
to run it at all four problem sizes. In fact, had sufficient disk space been available, we could have run M-
columnsort on up to one terabyte total on 16 processors with 225-byte buffers and 64-byte records. Execution
times are well above the baseline 3-pass I/O time, and so M-columnsort is not nearly as I/O-bound as the
other two algorithms. This fact is of course no surprise, since M-columnsort has a much more complicated
in-core sort stage and also uses more memory (due to the extra buffers required by the additional threads).

In all our runs, M-columnsort was clearly superior to subblock columnsort. According to the perfor-
mance results in Figure 2, M-columnsort was always at least as fast as subblock columnsort. The primary
reason that M-columnsort was faster is that it makes only three passes over the data rather than four passes.
For a given buffer size, subblock columnsort can handle only problem sizes that are powers of 4, whereas
M-columnsort can handle any power-of-2 problem size. Furthermore, for most realistic configuration sizes,
M-columnsort can sort larger problem sizes than subblock columnsort. By restrictions (2) and (3), M-
columnsort can handle a larger number of records than subblock columnsort if M 3/2/

√
2 > (M/P)5/3/42/3

or, equivalently, if M < 32P10. For example, if P = 8 processors, then as long as the total memory in the
system holds fewer than 235 records, M-columnsort will sort more records than subblock columnsort.

6 Conclusion

We have seen two ways to increase the problem-size bound in out-of-core columnsort. Subblock column-
sort modifies the original columnsort algorithm by adding extra steps and altering the exponent in the height
restriction. In the out-of-core implementation, subblock columnsort requires one additional pass. Like
threaded columnsort, subblock columnsort’s maximum problem size increases only with the amount of
memory per processor (though the increase is superlinear). M-columnsort leaves the original columnsort
algorithm intact, but it uses a different height interpretation in the out-of-core setting. By setting the column
height to the amount of memory across the entire system, M-columnsort’s maximum problem size increases
superlinearly in the amount of memory in the system. Experiments on a Beowulf cluster show that both sub-
block columnsort and M-columnsort run well but that M-columnsort is superior. Moreover, M-columnsort
handles a wider range of problem sizes than subblock columnsort.

There are several directions for our future work:

• We plan to combine subblock columnsort and M-columnsort into one four-pass algorithm which has
a problem-size bound of N ≤ M 5/3/42/3, i.e., restriction (2) but with M/P replaced by M . This
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algorithm would have a larger problem-size bound than either subblock columnsort or M-columnsort
alone.

• The closer the height interpretation is to r = M/P , the less communication overhead is incurred
during the sort stages. We will develop an implementation that allows for values of r between M/P
and M , depending on the problem size N for a given run.

• Our current implementations are I/O-bound, and their I/O bandwidth is below the sustainable rate
of the disks. There is only so much that we can do about I/O rates while keeping the I/O interface
at a reasonably high level. We do expect, however, to investigate memory-mapped I/O to eliminate
unnecessary copying of data.

• We would like to eliminate the power-of-2 requirement from as many parameters as possible.

• There may be other algorithms for the in-core sort stages of M-columnsort that are superior to in-core
columnsort. In particular, we will try a distribution-based sorting method.
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