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Exact formulae for the Lovasz Theta Function
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Abstract

The Lovasz theta function has attracted a lot of attention for its connection with diverse
issues, such as communicating without errors and computing large cliques in graphs. Indeed
this function enjoys the remarkable property of being computable in polynomial time, despite
being sandwitched between clique and chromatic number, two well known hard to compute
quantities.

In this paper I provide a closed formula for the Lovész function of a specific class of
sparse circulant graphs thus generalizing Lovész results on cycle graphs (circulant graphs of
degree 2).

Keywords: Lovdsz theta-function, Circulant graph, Linear programming

1 Introduction

Counsider a graph G whose vertices represent letters from a given alphabet, and where adjacency
indicates that two letters can be “confused”. The zero-error capacity of G is the number O(G)
of messages that can be communicated without any error. This notion was introduced in 1956
by Shannon [13], and has generated a lot of interest over the years. It was understood quite
early that the exact determination of the Shannon capacity is a very difficult problem, even

for small and simple graphs. In 1979 Lovész [8] introduced a related function, to become soon
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thereafter known as Lovasz theta function or Lovasz number, with the aim of estimating the
Shannon capacity.

The Lovész theta function (that will be denoted, here, by #(G), and called theta function
for short) is computable in polynomial time, although it is “sandwiched” between the clique
number w(G) and the chromatic number k(G), whose computation is NP-hard. Because of this
remarkable property and also of its relevance to communication issues, the Lovasz number is
widely studied (see the survey by Knuth [5] and the bibliography therein).

Despite a lot of work in the field, very little is known about classes of graphs for whose

theta function either a formula or a very efficient algorithm is available. A rare example of such
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a result is Lovdsz’s formula 6(C),) = for n-cycles, with n odd [8]. Recently Brimkov et
al. [2, 3] obtained formulae for the more general cases of circulant graphs with chord length two
and three.

In this paper I use a geometric approach to establish and prove a closed formula for the
theta function of circulant graphs of degree four, when the displacement j is even. The formula

itself was already identified in [3] but not fully proven.

Here I close the issue establishing that, for j even and n > 2(j + 1)j, the following holds:

n
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In order to make this document self-contained I will review some of the results already

established in [3].

2 Preliminaries

2.1 Some graph-theoretical notions and facts

Let us recall some well-known definitions from graph theory. Given a graph G(V, E), its com-
plement graph is the graph G(V, E), where E is the complement of E to the set of edges of the
complete graph on V. An automorphism of the graph G is a permutation p of its vertices such

that two vertices u,v € V are adjacent iff p(u) and p(v) are adjacent. G is vertex symmetric if



its automorphism group is vertex transitive, i.e., for given u,v € V there is an automorphism p
such that p(u) = v.

A graph G'(V', E') is an induced subgraph of G(V, E), if E' contains all edges from E that
join vertices from V' C V. G is called perfect if w(G4) = k(G4), VA C V, where G4 is the
induced subgraph of G on the vertex set A.

An n x n matrix A = (ai,j)zj;lo is called circulant if its entries satisfy a; ; = ag j—;, where
the subscripts belong to the set {0,1,...,n — 1} and are calculated modulo n. In other words,
any row of a circulant matrix can be obtained from the first one by a number of consecutive cyclic
shifts, and thus the matrix is fully determined by its first row. A circulant graph is a graph with
a circulant adjacency matrix. The expression (), ; will denote a circulant graph of degree four,
with vertex set {0, 1,...,n—1} and edge set {(i,7+1 mod n), (i,i+j mod n),i = 0,1,...,n—1},
where 1 < j < "T_l is the chord length. See for illustration Fig. 1a presenting the circulant graph
C13,2.

Several equivalent definitions of the Lovdsz number are available [5]. Presented here is

one which requires only little technical machinery.

Definition 1 Given a graph G, let A be the family of matrices A such that a;; = 0 if v;

and vj are adjacent in G. Let M\(A) > Xo(A) > ... > A\ (A) be the eigenvalues of A. Then
A (A

0(A) = maxgea{l — )\711((14))}

For various results related to the theta function I refer to [5]. In particular, the following

proposition holds.

Proposition 1 (see [5]) For every graph G with n vertices, 0(G) - 8(G) > n. If G is vertex
symmetric, then 6(G) - 0(G) = n.

2.2 LP formulation and related geometric constructions

Taking advantage of the particular properties of circulant matrices whose eigenvalues can be
expressed in closed formulae and so generalizing the approach in [5], the validity of the following

minmax formulation of the #-function of circulant graphs of degree 4 can be easily derived.
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Figure 1: a) The circulant graph Ci32. b) The truncated polyhedral cone related to Ci32, cut

at z = 2.

Lemma 1 (see [2]) Let fo(z,y) = n + 2z + 2y and, for some fized value of j, fi(x,y) =

2xc0s% + 2y cos 2“7”, 1=1,2,...,n—1. Then
. . n
6(Cos) = winmax { fiz,),i =0,1,..., 151} 2

This in turn is equivalent to the following Linear Programming problem, that I will refer to,

from now thereon:
0(Cp,j) = min{z : fi(z,y) —2<0,1=0,1,...,[%],z > 0}. (3)

Observe that the equalities fi(z,y) — 2 = 0,..., fn_1(z,y) — 2 = 0 define planes through the
origin. Having in mind the specific coefficients of these planes in the different ortants, as well
as the relations between the coefficients of two consecutive planes, one can see that the set
max;{f1(x,y),..., fn—1(x,y)} is a polyhedral surface, namely a polyhedral cone C' with apex at
the origin. The cone belongs to the positive halfspace z > 0 and the Oz axis is contained inside
the cone. The faces of the cone are portions of certain planes with equations z = f;(z,y), where
1 is in the range 1 < i < n — 1. The rays of C are intersections of planes, obtained for no more
than n — 1 pairs of indices 41,49, where 1 < i1,%9 < n — 1. The other intersections are not of
interest, since they all fall “below” the conic surface max;{f;} and thus are not part of it.
Now, consider the plane fy(z,y) = n+ 2z + 2y. Its intersection with the cone C produces

a new polyhedral surface, that is a truncated cone. This is the upper part of the cone C, i.e.,

the one above the plane f; (see Fig. 1b).



Clearly, the intersection points of the plane fy with C' are the possible candidates for
solution of the problem. The theta function is the intersection point with minimal z.

Consider the intersection of C' and fy. This intersection is the boundary of some 2D
convex polyhedron P (possibly unbounded). As mentioned above, the solution is at some of the
vertices of this intersection. Let this be the point A = (zg, yo, 2z0) (and thus 9 = zp) and assume
that we have intersected C by the plane z = z; (parallel to the zy-plane). The intersection
is a (bounded) convex polygon @,,. By construction, it follows that the polyhedron P and
the polygon @, intersect at a single point, i.e., the point A = (zg,y0,20). Point A will be
determined using the sides of Q,,, rather than the sides of P. Since the coefficients of z and y of
the plane z = n + 2z + 2y are equal (indeed they are both equal to 2), then it is not difficult to
see that A will be the vertex of @,,, obtained as the intersection of the two sides of @,, which
“sandwich” the straight line in z = 2z passing through A, and with a slope of 45 degrees. These
lines have equations 2z cos a + 2y cos(aj) = 2o and 2z cos 8 + 2y cos(8j) = zy, where o = 2T
and 8 = 27;—”, for some indices 77 and i3. Once i; and 42 are known, zg can be computed by
solving the linear system

z = 2zcosa+ 2ycos(ja)
z = 2xcosf+2ycos(jp)
z = n4+2z+2y.
Note that one can use any horizontal intersection of the cone, since all such intersections are
homothetic to each other.
Through a nontrivial analysis of the structure of the admissible region defined by the linear
constraints, it was possible to obtain closed formulae for some special cases of circulant graphs

of degree four [2]. For example, I report the least complex formula for the simplest case j = 2:

(4)

3 Proof of the Formula

As anticipated before, the proof is based on a geometric approach. It will be useful to introduce

the following definitions. Let S = {S1,S2,...,Sj4+1} be a set of adjacent intervals covering [0, 7]
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Figure 2: Pictorial description of the S-intervals for j = 6. The dashed lines correspond to

angles %TW’ forn=5land 1<k < "T_l

defined as
T T T T
S =[m— 2—j,7r],Sj+1 = [0, Z], and Sgy1 = [7 — (2k + 1)2—j,7r — (2k — 1)2—j],
for k=1,2,...,5 —1. So, 51,541 are intervals of width 21]., whereas 5>, S3,...,5; are intervals

of width g (see Fig. 2). The j/2 even numbered ones, Sy, for kK = 1,2,...,7/2, are those in
which cos(ja) is negative. Let B*) denote the angle corresponding to the center of Sp;. Thus
cos(jB%)) = —1 for all k. Notice that each interval contains no more than [?] lines.

Let us focus on S; U S2 and on the following sequence of lines l;,,0;, +1,...,ls, where [;,
is the line whose angle, «;, is the closest to the center of Sz, and [ is the line whose angle is
the largest within Sy, i.e., s = |n/2]. It is not hard to see that those lines define a set Cy of
segments that, together with the x and y negative axes, bind a convex polygon Q.

The same idea can be applied to the other even numbered intervals, Sox, k = 2,3,...,5/2,
to define the sequence of lines l;, ,1;, +1,...,ls,, where [;, is the line whose angle is the closest to
the center of Spi, whereas [, is the line whose angle is the largest in So,_;. It turns out that
for all k only I;, might intersect ). Furthermore, this would occur only when the angle of I;,,

«;, , satisfies

| aip, — B®) |<| iy — BV |</n . (5)



v

EENL

Leaning Point

Figure 3: Chain Property. Note that in this case also the Leaning Property holds for £ = u + 1.

As a consequence, the search for the solution can be restricted to the vertices of the polygon
formed by the two axes, the lines in S1 US> plus, possibly, the lines whose angles verify property 5.
Relying on formulation 3 I will focus on the geometric unintuitive regularities of the

polygon defined by the lines I;, of equation
zcos(ag) +ycos(jag) = 1, (6)

with af = %”k Let a(k) = 1/ cos(ag) and b(k) = 1/ cos(2mkj/n) be their z and y coordinates
(axes cuts) respectively. I will refer to angle ay as to the angle of line I.

Let us recall the following definitions that will be be instrumental to our analysis.

Definition 2 (Chain Property) Let u < v be two positive integers. We say that the sequence
of lines {l;},1 = u,u+1,...,v, possesses the Chain Property if the intersection points p; between
consecutive lines l; and l;11 are all vertices of the convex polygon Q defined by z,y < 0, and

Vie{u,u+1,...,v}, z-cosa; +y-cosja; <1



Definition 3 (Leaning Property) Let u < v be two positive integers. We say that the se-
quence {l;},1 = u,u+1,...,v, possesses the Leaning Property if it possesses the Chain Property
and, in addition, there exists an index k, u < k < v, such that line Iy forms, with the Oy axis,

an angle larger than 45° and lx4+1 forms, with the Oy azis, an angle smaller than 45°.

The sense of the Chain Property is that all the intersection points p; lie on a convex curve while
the Leaning Property implies, in addition, that @) leans on a line of equation y = —z + ¢ for
a proper ¢ < 0 (see Fig. 3). As we will see, this makes point p, a candidate solution for the
problem in (@),,. Observe that the Leaning Property holds in the case j = 2 and that allowed us
to establish the closed formula (4) for 6(Cy, 2) [2].

Interestingly it is possible to prove that the Leaning Property holds for appropriate sub-
sequences of lines and in addition the leaning vertex p, belongs to (),,. This means that p, is
never cut off by any other line not in {l;,,%;, +1,--.,ls} and that leaves it as the only solution to

the problem.

Theorem 1 Let n and j be integer numbers. Assume that j is even and n > 2(1+ j)j and let
2mb
a

lines {L]"}, for [ﬂ%];ln <i< mTfl, all possess the Chain Property.

2mbj —

Ly denote the line of equation x cos =~ = 1. Then for all m > n the sequences of

+ y cos

Proof. The idea behind the proof is the following. We can consider a continuous family of
lines that includes all the sequences {L;"} and determine its envelope curve as the locus of the
intersections of neighboring lines. This curve of the loci has the property of being tangent to
all the lines in all the sequences {L"}. Then I show that this curve of the loci is convex in the
interval of interest.

Let g(t) be the line of equation z cost+y cos jt = 1 and let (z4(s), y:(s)) be the intersection

point between ¢(t) and g(t + s). Note that L* = g(2mi/m). Let us prove the following facts:
1. The following two limits
2y = lim 2(s) and y; = lim y4(s)
exist and determine a parameterized curve X (t) = (zt, yi).

2. fort € (7r -5 7r), y¢(s) is monotonically increasing for s € [t, 7].



3. The curve of the loci X (¢) is convex for t € (7r -5 7r).

This will be enough as we can observe that, for all m, lines {L]"} are all tangent to X(¢),

have angles within (7r — %, 7r), and in the limit, as m goes to infinity, the “chain” of segments,

connecting intersection points between consecutive lines, converges to X () itself.

1. By Kramer rule

cost — cos(t + s)
cos j(t + s) cost — cos jt cos(t + s)
cost —costcos s+ sintsins

yi(s) =

cos t(cos jt cos js — sin jtsin js) — cos jt(cos t cos s — sint sin s)

Since cos s ~ 1 — s?/2 and sins ~ s, we can rewrite the expression as

2 .
5 .cost+s-sint

yt(s) ~ . .. 2 . 5 1-42 ;
s - [—j costsin jt + cos jtsint] + s - =5~ cost cos jt
5 -cost +sint

[—7 costsinjt + cos jtsint] + s - # cos t cos jt '
Analogously we can determine the z solution:

—cos jt + cos(j(t + s))
cos j(t + s) cost — cos jtcos(t + )
cos jtcos js — sin jt sin js — cos jt

zi(s) =

cos t(cos jt cos js — sin jtsin js) — cos jt(costcos s — sintsin s)

Again cos js ~ 1 — (j5)?/2 and sinjs ~ js, and so we can rewrite the expression as

(s) —@-cosjt—js-sinjt
I\ S ~ i
s+ [—jcostsinjt + cos jtsint] + s2 - 1_2—72(zostcosjt
—gs - cos jt — jsin jt

[—7 costsinjt + cos jtsint] + s - 1;2L2 cos tcos jt '
Thus, since —j cos tsin jt + cos jtsint does not vanish in (7 — 5 ), the following limits
exist

—j -sinjt

= limxy(s) =
b 550 i(s) —j costsin jt + cos jtsint

sint

ve = 5 ui(s) —jcostsinjt + cos jtsint

Examples of X (t) are given in Fig. 1. See also Fig. 3 for the behavior of the lines with

respect to X ().
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Figure 4: Curves of the loci X (t), for j = 2,4, 6.

. This claim can be proven by showing that dy;(s)/ds > 0 in the interval of interest. Let

A = —jcostsinjt+ cosjtsint
—j2
= 2 costcos jt .

By applying the rules of differentiation we obtain

) _ A oD) = (s ranB
ds - (A+ sB)?
st g 4 <Btsp — CStsB — Bsint
- (A + sB)?
st A — Bsint
= By

Now, let us study the sign of the numerator in the points in which A+ sB does not vanish.
In particular it is necessary to show that it is positive. By substituting A and B for their

expressions we obtain

cost . . 1—5%) . .
T(—]costsmjt—i-cosgtsmt) > 5 sint cost cos jt

10



—j(cost)?sinjt > —j?sintcostcos jt

(cost)?sinjt < jsintcostcos jt

Remembering that cost < 0 for t € (7 — %, 7), we can divide by cost and change sign:
costsinjt > jsintcosjt .

The left hand side is always positive in (7 — %, m), whereas the right hand side is negative
in (m— 5= %), but positive in (7 — 35> m). So, the critical case is the second part of the
interval. For that let us resort to asymptotic analysis, by Taylor expansions around 7. If

we substitute x = m — ¢t we can study the equivalent inequality
coszsinjx > jsinz cos jx
for z € [0, 2“—]] A positive lower bound to the left hand side is given by

2 : \3
cos x sin jx > (1—%) (jx—%)

whereas an upper bound to the right hand side is given by

(jz)? (jw)4>

jsinzcosjz < jx (1 - —+

2 41

And now the following must be shown

z T i i)
(1 . ?> <j$ . (]6)3> > a (1 G, Go )

or equivalently

G 2 Ge)e? o (o) (o)t
6 2 12 2 a1
2 - 2 4,2
J (jz) o J'z
4 q _ S
5 't T VT

2 -4 2
2 (] 7 J 2
J I o1
(6 12) > gy
PR=) | P33
12 3
2(:2
2] (J —2) 2,
221
12 < 37

11



Since the left hand side is a positive and increasing quantity in z, the worst case is attained

T

at x = 55, which corresponds to ¢t =7 — % Performing the substitution we have

m §%(* - 2) < gjz_l
4527 12 3
2
Vs 92 2,2
= (2 -2 22—
18" ) < 37

2 %\ , w2
2215 1
(3 48>j > 24

But this is true for 7 > 2 since the left hand side is greater than or equal to 1.8442 whereas
the right hand side is 0.5888.

3. Now, let us see the convexity of X (t) = (x¢,y¢), for t € (w — %,’/T). But this follows

immediately from point (2) and the fact that lines g(¢) move “clockwise”, as ¢ runs from

cost
cos jt?

T — % to . The reason is that the slope of line g(t), — is monotonically decreasing

forﬂ'—%<t<7r—21j,andfor7r—21j<t<ﬂ'.

The following lemma establishes a condition for the Leaning Property to hold:

Lemma 2 Let j be an even number and let n > 2(1 + j)j. Then the sequence of lines {l;}, for

[%}1)] <i< ”T_l possesses the Leaning Property.

Proof Theorem 1 assures that {/;} possesses the Chain Property. So, now let us prove that, if

n > 2(1+ j)j, two conditions hold:

1. Line [ , that has the smallest angle greater than or equal to = — 7/j, the center of

25

S, makes with the Oy axis an angle v > 45 degrees;

2. Line I; whose angle is the largest in Sy forms instead with the Oy axis an angle < 45

degrees.

The claim will then follow from the fact that the Chain Property implies that the angle formed
by line I; with Oy strictly decreases with the index 7 and so at some point it will necessarily
cross the border of 45 degrees (see Fig. 3, for u = [%;1)] and v = |3 ]).

12



X(t)

Figure 5: Simple case j = 2, n = 20. Notice how the lines are tangent to X ().

Figure 6: Smallest angle greater than the center of So (black dot).

1. Let A= (1/a,0) and B = (0,1/b) be the intersection points of l|—n(j—1)-| with the axes Oz
%
and Oy, respectively. The angle in question will be larger than 45 degrees if |a| < |b|.
Let ¢ = UpnGn, = %[%}1)1 and 6 = ¢ — (7 —m/j). We can see that |a| = | cos(¢)| and
%

|b| = | cos(jé)|- Thus to prove the lemma, it is necessary to show that | cos(4)| < | cos(jé)|
(see Fig. 6).

Note that if § = 0 then the lemma is clearly true. Let § # 0. We can safely assume that

13



j > 2, so that # — (m — 7/j) < w/2. Then our problem reduces to solving the inequality

cos(m — ¢) < cos(jé) or equivalently:

o (o2 2] <o (2 5] o).

Since function cos is monotone decreasing in [0, 7/2] the above expression is verified for
n(j—l)w , [ (]_W
2| ————| - -1)-2j | ——
and a fortiori for
) — 1 —1
2(%—%—1) —n<n(—1)—2j (M—Fl)
J
from which the claim follows.
2. By definition ¢ = argmax{271 | 27 <7 —3;} = |§ — {5]. As before, let A = (1/a,0) and
= (0,1/b) be the intersection points of I; with the axes Oz and Oy, respectively. The

angle in question will be smaller than 45 degrees if |a| > |b], i.e., if

G le-s)> =63 2 5))
COS n 2 4] Cos | 7 n 2 4] .

But this can be easily verified by observing that, for j > 2, it is certainly true that

(27r {n nJ) S 7r> ( 2 {n nJ)
cos\ —+ | — — — COS — COS | = — .
n 127 4 4 T 2 T

(Intuitively, as n increases, one gets ‘cos (2” . [% - %J)| ~ |cos(m — %)| = cos 33, and

‘cos(j-%”-[%—%J)‘ |cos(j(m — £))] = 0.) O

The main theorem can now be fully proven.

Theorem 2 Let n and j be integer numbers. Assume that j is even and n > 2(1+ j)j. Then

0(Ch ;) = 2o, where (zo,Y0,20) is the only solution to the following 3 X 3 linear system:

)
n+ 2z + 2y = 2z,
2z cos(ZE) + 2y cos(%kj) = z,
| 27 cos(%(kﬂ)) + 2y cos(ﬂ) = z,

for k= [%J And by Kramer’s rule this gives formula 4.

14



Proof The hypothesis, Theorem 1 and Lemma 2 imply that the sequence of lines {L} = I;},
for [%;1)-‘ <1< ”T_l, possesses the Leaning Property. So to prove the claim I need to show
that the leaning vertex p, of @ is the intersection point P(k) between lines [ and [y and it is

not cut off by any other lines defining Q.

Let us start with the first claim. The Leaning Property reduces the problem to identifying
the two angles across the zero of the trigonometric equation cos(ja) — cos(a) = 0. Basic
trigonometric calculations show that the only solution to the given equation within the second

half of interval Sy is given by
mJ
o= —.
Jj+1
To see this, let us first exploit the following classical identity

COS(jOt) - COS(C{) =-2 sin % . Sin% — 0 .

Then let us solve it for each term in the interval [r — n/j,m — m/2j], obtaining the following

candidates
27s 2mh

a1s=—— and aop=—",
Ls j+1 Zh 741

for h, s nonnegative integers. Thus the first term nullifies for all integers s such that

'_1 :2 l_l
J - <5<M.
2j 2]

We can see that there must exist only one solution given by
23 27 2
The second term, instead, nullifies for all integers h such that

-_12 '2_§'+l
(j ) <h<] 2'3 2
27 2]

and we can easily see that no such integer values can exist since, for j > 4,

(j— 1) _ (j—1)? _ 2+1 g j2-35+1
e

So the first of the two lines we are looking for will be found determining the largest integer k

such that % < a. This determines line /. The second one will be just the next one: l41.

15
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g(a)

Figure 7: Motion of g(a): Y («) increases with a.

The second claim is a little more complex. First observe that the only lines that might interfere
are those whose angles verify property 5. Now the worst possible case is represented by a line [’
that cuts the Oy axis in the point (0, —1) and the Oz axis in the point (1/ cos(8® + 27/n),0).
That would have equation z cos(8® + 27/n) —y = 1, where B®) = 7 —3x/j, cos(j - B?) = —1.
This comes from the fact that the two values 1/ cos(8®) + 2r/n) and —1 are upper bounds to
the z and y cuts of any possible “harmful” line, where, by harmful, I mean a line that verifies
property 5.

Let P(i) = (A;, B;) be the intersection point between line /; and line /;11. Let [* be the
line of equation z cos a* + y cos ja* = 1, where o verifies cos @* = cos ja*. This line belongs to

the family y = —z + ¢ and must pass between points P(k — 1) and P(k).
To see this, consider the family of lines
L={g(a): z-cosa+y-cosja=1|ac o, ar1]}

Clearly, L} =1l; =g (%) Now, imagine line g(a) that moves with continuity from Iy to lx11,

as « ranges from oy to ax1, and focus on the ordinate Y («) of the intersection point between
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Figure 8: P(k) is not cut off by I'.

I and g(a) (see Fig. 7). Since the Chain Property holds for all m, then Y («) must increase
monotonically from B,j_l to By . Furthermore, ay < o < ag41 and so [* must cut somewhere

the segment joining P(k — 1) and P(k).

Let P* = (A*, B*) be the intersection point between I’ and [*. It will be proven that B* < By_1.
Thus, since By_1 < By, a fortiori, P(k) cannot be compromised by line I’ (see Fig. 8).

Solving the intersection problems for lines ', [* and lines Iy_1, ), we obtain

COS (1 — COS

Bk_l == N T 3
COS (X, 1 COS Jx, — COS JOx—1 COS O},

cos a* — cos(m — 3w/j + 2w /n)

B* = .
—cosa* — cos ja* cos(m — 37/j + 2w /n)
Let us now compare the numerators. Clearly, it holds that

cos a1 < cosa’ < cosay < cosag_q1 < cos(m — 3mw/j + 2m/n) <0,

cos 41| > | cos | > | cosag| > |cos ag_1| > |cos(m — 37/ + 2w /n)| > 0,
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so it must be cos a® — cos(m — 37/j + 27/n) < cosag_1 — cosay. Let us now compare the

denominators. Clearly, it holds that
cos jag_1 < cos jay < cosja* < cosjagr <0,
| cos jag—1| > |cosjag| > | cosja*| > |cos jags1| > 0,

COSjag—1 > 1 and COS Q—1

and so cosja* cos a*

< 1. Tt is necessary to show that
—cos &* — cos ja* cos(m — 3w/j + 2w /n) > cos ay_1 COS jag, — cOS jag_1 COS o,
or equivalently

—cos & + €OS jag_1 COS @ > COS a1 €OS jay, + cos ja* cos(m — 3w /j + 2w /n) .

Dividing by — cos a* > 0 and remembering that cos o = cos ja*, the above inequality translates
into

1- ———cosap > ———(—cosjag) —cos(m — 3n/j +2m/n) .
a

But this follows from the fact that

COS Qi ,
1> i*l(—cosgak) >0
cos a
and
cos jo 1 )
— (- > — > — -3 2 >0.
s o (— cos ag) oS g, cos(m — 3w /j + 2m/n)
O
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