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Distributed Algorithms for Guiding
Navigation across a Sensor Network

Qun Li, Michael DeRosa, and Daniela Rus
Department of Computer Science

Dartmouth College
{liqun, mdr, rus}@cs.dartmouth.edu

Dartmouth Computer Science Technical Report TR2002-435

Abstract— We develop distributed algorithms for
self-reconfiguring sensor networks that respond to
directing a target through a region. The sensor net-
work models the danger levels sensed across its area
and has the ability to adapt to changes. It repre-
sents the dangerous areas as obstacles. A proto-
col that combines the artificial potential field of the
sensors with the goal location for the moving object
guides the object incrementally across the network
to the goal, while maintaining the safest distance to
the danger areas. We report on hardware experi-
ments using a physical sensor network consisting of
Mote sensors.

I. INTRODUCTION

We wish to create more versatile information
systems by using adaptive distributed sensor net-
works: hundreds of small sensors, equipped with
limited memory and multiple sensing capabili-
ties which autonomously organize and reorganize
themselves as ad-hoc networks in response to task
requirements and to triggers from the environment.
Distributed adaptive sensor networks are reactive
computing systems, well-suited for tasks in ex-
treme environments, especially when the environ-
mental model and the task specifications are un-
certain and the system has to adapt to them. A
collection of active sensor networks can follow the
movement of a source to be tracked, for example
a moving vehicle. It can guide the movement of

an object on the ground, for example a surveillance
robot. Or it can focus attention over a specific area,
for example a fire to localize its source and track its
spread.

A sensor network consists of a collection of sen-
sors distributed over some area that form an ad-
hoc network. Each sensor is equipped with some
limited memory and processing capabilities, mul-
tiple sensing modalities, and communication ca-
pabilities. Previous work in sensor networks has
concentrated on routing protocols for sensor net-
works. Often the network topology is unknown
and the network has to discover the best route for a
packet. Optimization criteria include shortest path
to destination, minimum power utilization, maxi-
mum minimum residual power in the network, etc.

In this paper we focus on a reactive task in sen-
sor networks: guiding the movement of a user
equipped with a node that can talk to the field
of sensors across the field. We also discuss how
sensor networks can serve as adaptive distributed
repositories of information.

More specifically, we build on important previ-
ous work by [3], [11], [32], [4], [20], [19] and
examine in more detail reactive sensors that can
adapt to their environment by capturing a danger
level map and distributing this map across the net-
work. We represent the danger detected by the
sensors as “obstacles” in the network and com-
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pute the artificial potential field that corresponds
to the current state. We then develop a distributed
protocol that combines this artificial potential field
with information about the direction and goal of
the moving object and guarantees the best safest
path to the goal. By safest path we mean the path
with the largest clearance of the danger zones. We
also develop a protocol for distributing the infor-
mation in the sensor network, such as the danger
map and shortest paths. We then show how sen-
sors equipped with limited memory can cooperate
to hold and retrieve information about the network.
Finally, we discuss an implementation of our pro-
tocols on a real sensor network consisting of 50
Mote sensors [10], [9], [31] and present our exper-
imental data.

II. RELATED WORK

We are inspired by previous work in sensor net-
works [27], [1], [7], [6], [2], [23], [29], [18], [16],
ad-hoc networks [12], [8], [24], [25], [26], [28],
[5], [22], [21], and robotics [14]. Our experimen-
tal work is done with the Mote hardware [10], [9],
[31].

In [3], Cedar and Estrin propose an adaptive self-
configuring sensor network topology. The nodes
self-configure to establish a topology that provides
communication and coverage. Each node can de-
cide whether to join the network by considering the
network condition, the loss rate, the connectivity,
etc. If a node can contribute to the network, it will
join the network, otherwise, it will sleep or adjust
its duty cycle. In our paper, we concentrate on the
application requirements, such as information dis-
tribution in the navigation guiding application.

In Intanagonwiwat et al.’s direct diffusion [11]
approach, data generated by sensor nodes is named
by attribute-value pairs. A node requests data by
sending interests for named data; the interests will
be propagated within the network to find the source
of the related data. The direct diffusion method is
used to reinforce the best path from the source to
the sink. We propose to actively disseminate the

information in the network, and consider the sensor
network as an information base.

Ye et al. [32] propose a MAC protocol that
aims at energy conservation and self-configuration.
They use periodic listen and sleep to conserve en-
ergy. In order to keep the nodes communicat-
ing with each other, they must be synchronized.
Sohrabi et al. [30] propose several algorithms for
the self-organization of a sensor network, which
includes the self-organizing medium access con-
trol, energy-efficient routing, and formation of ad-
hoc subnetworks for cooperative signal processing
functions.

In the broad area of ad-hoc networks, many rout-
ing protocols have been proposed, including [12],
[8], [24], [25], [26], [28], [5], [22], [21], [17].

The application developed in this paper uses
techniques from robotics, where a key problem is
how to plan the motion of moving robots. A good
overview of motion planning in robotics is given
by [14]. [15] proposes a robot motion planner that
rasterizes configuration space obstacles into a se-
ries of bitmap slices, and then use dynamic pro-
gramming to compute the distance from each point
to the goal and the paths in this space. This method
guarantees that the robot finds the best path to the
goal. [13] discusses the use of artificial potential
field for robot motion planning. A robot moving
in accordance to the potential will never hit ob-
stacles, but it may get stuck in local minima. We
combine the two methods to find the best path to
the goal, which is safe and short, and modify them
to adapted them to the distributed nature of sensor
networks.

III. A DISTRIBUTED ALGORITHM FOR

GUIDING THE NAVIGATION OF A USER

Sensors detect information about the area they
cover. They can store this information locally or
forward it to a base station for further analysis and
use. Sensors can also use communication to inte-
grate their sensed values with the rest of the sensor
landscape. In this section we explore using sen-
sor networks as distributed information reposito-
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ries. We describe a method to distribute the infor-
mation about the environment redundantly across
the entire network. Users of the network (people,
robots, unmanned planes, etc.) can use this infor-
mation as they traverse the network. We illustrate
this property of a reactive sensor network in the
context of a guiding task, where a moving object is
guided across the network along a safe path, away
from the type of danger that can be detected by the
sensors.

The guiding application can be formulated as a
robotics motion planning problem in the presence
of obstacles. The dangerous areas of the sensor
network are represented as obstacles. Danger may
include excessive heat (volcanoes, fire, etc), peo-
ple, etc. We assume that each sensor can sense
the presence or absence of such types of danger.
A danger configuration protocol run across all the
nodes of the network creates the danger map. We
do not envision that the network will create an ac-
curate geometric map, distributed across all the
nodes. Instead, we wish for the nodes in the net-
work to provide some information about how far
from danger each node is. If the sensors are uni-
formly distributed, the smallest number of commu-
nication hops to a sensor that triggers “yes” to
danger is a measure of the distance to danger. The
goal is to find a path for the moving object that
avoids the dangerous areas. We envision having
the user ask the network regularly for where to go
next. The nodes within broadcasting range from
the user supply the next best step.

There are numerous solutions to motion plan-
ning in the presence of obstacles and uncertainty.
For a good survey of the techniques see [14]. We
seek a solution that lends itself naturally to the dis-
crete nature of sensor networks. In [15], Donald et
al. describe an optimal solution for motion plan-
ning when the map of the world is given. The first
step of the solution is to rasterize the configuration
space obstacles into a series of bitmap slices. Dy-
namic programming is then used to calculate the
optimal path in this space. Although this method
can not be applied directly, it can be adapted for

Fig. 1. The top figure shows a typical setup for the navigation
guiding task. The solid black circles correspond to sensors
whose sensed value is “danger”. The white circles correspond
to sensors that do not sense danger. The dashed line shows the
guiding path across the area covered by the sensor network.
Note that the path travels from sensor to sensor and preserves
a maximal distance from the danger areas, while progressing
to the exit area. The bottom picture shows some Mote sen-
sors used for our experiments. The three sensors placed in the
upright position denote 2 obstacles (that is, danger areas) and
one goal.

sensor networks. Although the map is not immedi-
ately available, the motion planning algorithm fits a
sensor network well in two ways. First, the sensors
can be regarded as the bitmap pixels. Second, the
dynamic programming component of the algorithm
can be implemented by using the sensor communi-
cations.

In order to supply obstacle information to
the planning algorithm we use artificial potential
fields. In an artificial potential field, objects move
under the actuation of artificial forces. Usually, the
goal generates an attractive potential which pulls
the object to the goal. The obstacles generate a re-
pulsive potential which push the object away from
the goal. The (negated) gradient of the total poten-
tial is the artificial force acting on the object. The
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Algorithm 1 The potential field computation pro-
tocol.

1: for all sensors si in the network do
2: poti = 0
3: if sensed-value = danger then
4: hopsi = 0
5: Broadcast message (i, hops = 0)
6: if receive(j, hops) then
7: hopsj = min(hopsj , hops + 1)
8: Broadcast message (j, hopsj)
9: for all received j do

10: Compute the potential potj of j using
potj = 1

hopsj
2

11: Compute the potential at si using all potj ,
poti = poti + potj

direction of this force is the current best direction
of motion [14].

The “obstacles” (recall they correspond to the
dangerous areas) will have repulsing values and
the goal will have an attracting value according
to some metric (see Figure 1(Top)). Algorithm 1
shows the potential field protocol. The poten-
tial field is computed in the following way. Each
node whose sensor triggers “danger” diffuses the
information about the danger to its neighbors in a
message that includes its source node id, the po-
tential value, and the number of hops from the
source of the message to the current node. When
a node receives multiple messages from the same
source node, it keeps only the message with the
smallest number of hops. (The message with the
least hops is kept because that message is likely to
travel along the shortest path.) The current node
computes the new potential value from this source
node. The node then broadcasts a message with
its potential value and number of hops to its neigh-
bors.

After this configuration procedure, nodes may
have several potentials from multiple sources. To
compute its current danger level information, each
node adds all the potentials.

Note that the potential field protocol provides a

Algorithm 2 The safest path to goal computation
protocol.

1: Let G be a goal sensor
2: G broadcasts msg = (Gid,myid(G), hops =

0, potential = 0)
3: for all sensors si do
4: Initially hopsg = ∞
5: if receive((g, k, hops, potential) then
6: Compute the potential integration from

the goal to here:
Pg = min(Pg, potential + poti)

7: hopsg = min(hopsg, hops + 1)
8: if Pg == Pg + poti and

hopsg == hops + 1 then
9: priorg = k

10: Broadcast (Gid,myid(si), hopsg, Pg)

distributed repository of information about the area
covered by the sensor network. It can be run in an
initialization phase, continuously, or intermittently.
The sensor network can self-reconfigure adaptively
to the current landscape. It updates its distributed
information content by running the potential field
computation protocol regularly. In this way, the
network can adapt to sensor failure, to the addition
of new nodes into the network and to dynamic dan-
ger sources that can move across the network.

The potential field information stored at each
node can be used to guide an object equipped with
a sensor that can talk to the network in an on-line
fashion. The safest path to the goal can be com-
puted using Algorithm 2. The goal node initiates
a dynamic programming computation of this path
using broadcasting. The goal node broadcasts a
message with the danger degree of the path, which
is zero for the goal. When a sensor node receives a
message, it adds its own potential value to the po-
tential value provided in the message, and broad-
casts a message updated with this new potential to
its neighbors. If the node receives multiple mes-
sages, it selects the message with the smallest po-
tential (corresponding to the least danger) and re-
members the sender of the message.
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Algorithm 3 The navigation guiding protocol.
1: if si is a user sensor then
2: while Not at the goal G do
3: Broadcast inquiry message (Gid)
4: for all received messages m =

(Gid,myid(sk), hops, potential, prior)
do

5: Choose the message m with minimal
potential than minimal hops

6: Let myid(sk) be the id for the sender
of this message

7: Move toward myid(sk) and prior
8: if si is an information sensor then
9: if receive (Gid) inquiry message then

10: Reply with
(Gid,myid(si), hopsg, Pg, priorg)

A user of the sensor network can rely on the in-
formation computed using Algorithms 1 and 2 to
get continuous feedback from the network on how
to traverse the area. Algorithm 3 shows the nav-
igation guiding protocol. The user asks the net-
work for where to go next. The neighboring nodes
reply with their current values. The user’s sensor
chooses the best possibility from the returned val-
ues. Note that this algorithm requires the “inte-
grated” potential computed by Algorithms 1 and 2
in order to avoid getting stuck in local minima.

We can prove that our protocols will correctly
determine the safest path to the goal without get-
ting stuck in the local minima that are often an is-
sue with artificial potential fields methods.

Theorem 1: Algorithm 3 will always give the
user sensor a path to the goal.

Proof: In Algorithm 2, the prior link of
a node points to a node that has potential value
less than that of the current node. So for each
node other than the goal, there must be a neighbor-
ing node that has a smaller potential value. This
proves that there is no local minima in the network.

The user’s sensor can always find a node among
its neighbors that leads to a smaller potential
value. If the process continues, the node will end

up with the goal that has the smallest potential
value 0. Therefore, Algorithm 3 can always give
the user sensor a path to the goal.

Algorithms 1 and 2 ask each sensor to broadcast
upon receiving a message with fewer hops to the
dangerous area or a smaller potential integration to
the goal. Many broadcasts may not be necessary
since only the message with the least hops to the
danger or the minimal potential integration to the
goal is useful. To reduce the message broadcasts,
we can let each sensor wait for some time before it
broadcasts. The waiting time for sensor si is pro-
portional to one unit in Algorithm 1 and the value
poti in Algorithm 2. We can prove that the number
of message broadcasts for each sensor is 1 in each
algorithm. The detailed analysis can be found in
[18].

IV. USING SENSOR NETWORKS TO

DISTRIBUTE INFORMATION

Section III provided a simple example for how
to use a sensor network as a distributed information
repository about the environment in the context of
a navigation guiding application. In this section we
examine in more detail how to use a sensor network
as a distributed information repository.

Consider again the navigation guiding applica-
tion formulated as a motion planning problem.
Suppose multiple goal are installed in the network.
It is possible that each sensor has enough memory
to store all the pertinent information about these
goals. However, the current sensor hardware has
very limited memory which restricts the amount of
information that can be stored.

We argue that sensors do not have to store all the
information about the goals. Instead, all the nec-
essary information should be stored somewhere,
but not everywhere, in the network. The impor-
tant thing is being able to retrieve the information
any time it is needed.

Many sensors can cooperate to store information
by having each sensor locally store only part of it.
If the density of the network is such that multiple
sensors cover the same area, the local information



6

is the same for the sensors in some neighborhood.
Thus, it does not matter who stores what. We pro-
pose that when a node receives a piece of informa-
tion about the network, it randomly chooses to ei-
ther keep it or to discard the information. To make
this work, we must address (1) how to quantify the
probability of discarding the information with re-
spect to the information amount, the message size,
and the density of the nodes; (2) how to retrieve
the information from this sensor proximity, and (3)
what are the trade-offs between the memory uti-
lization and broadcasting amount.

In order to address the information storage ques-
tion, consider the proximity area S covered by a
group of sensors. All local (environmental) infor-
mation about S is the same for all these sensors.
To use Algorithm 3, at least one of the sensors in
S must store information about the goals. Let λ ·S
be the number of sensors in the area where λ is the
density of the sensor distribution and S is the area
of the field in question. Suppose each sensor has
memory m. Then mλS is the total memory across
all sensors. Let the amount of information to be
recorded be

∑
mi where mi is the size of informa-

tion i. If mλS ≥
∑

mi, then it is possible that in
the proximity area S, all the required information
can be found locally using Algorithm 3. To achieve
this information distribution when the amount of
information is too large for a node’s memory (that
is, m <

∑
mi), we can use a random, independent

and distributed method to store the information on
each sensor. Each sensor node randomly keeps a
piece of information with probability p = m∑

mi
.

When it receives a piece of information, the proba-
bility that the information can be found in this area
is 1 − (1 − p)λS (see Figure 2). Currently, we are
also exploring some other approaches to coopera-
tive caching data among proximity sensors.

Algorithm 4 summarizes the protocol for locat-
ing a piece of information in a sensor network. If
the information cannot be found in the proximity
area S, the sensor must try to retrieve information
beyond the area in the sensor network. Intuitively,
the request for information is broadcast to all the
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Fig. 2. This figure shows the probability (Y-axis) that a piece
of information can be found in S, some neighborhood of a
sensor. The X-axis is the probability that the sensor keeps a
piece of information. We plot for various numbers of sensors
in the area from λS = 2 to λS = 10 where λS is the number
of sensors in that area. As the number of the sensors increases,
the probability to find some information in that area is close
to 1 even though the probability that a sensor keeps the infor-
mation is small.

sensors in the area S. The sensors who have the
information reply to the request. If there is no re-
ply in the transmission range, the request must be
broadcast again to a larger area, by making larger
and larger concentric communication bands. More
specifically, the user sends out the information re-
quest; the sensors in the broadcast range hear the
request and reply if they have the information. Oth-
erwise no sensor replies to the request. After some
period of silence with no reply (∆, the transmission
time for the request and reply message), the user’s
requesting node sends out an information request
for two hops. Each node receiving this message
will broadcast the request out. If the information is
found, it is sent back to the requesting node. Other-
wise after some time of silence time with no reply
(2∆ here), the requesting node sends out an infor-
mation request for three hops, and so on, until fi-
nally the information gets back to the requesting
node.
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Algorithm 4 Sensor information query algorithm
1: if I am the query sensor s then
2: depth1 = depth2 = 1
3: while true do
4: Broadcast (s, query, depth1, depth2)
5: Wait for time depth1 ∗ ∆
6: if some reply arrives then
7: stop
8: else
9: depth1 + +, depth2 + +

10: if I am not the query sensor then
11: receive(s, query, depth1, depth2)
12: if I have already received a message with

prefix (s, query, depth1, ∗) then
13: discard the message
14: if I have the information to query then
15: send the information to s, stop
16: if depth2 − 1 == 0 then
17: stop
18: else
19: broadcast(s, query, depth1, depth2 − 1)

V. EXPERIMENTS

We have implemented the algorithms described
in Section III using the Mote MOT300 sensors
[10], [9], [31].

A. The Mote Hardware

The Mote hardware configuration includes a
microcontroller and devices such as LEDs, a
low-power radio transceiver, a photo-sensor, a
serial port, and a co-processor unit (see Fig-
ure 1(Bottom)). We have augmented this plat-
form with a power sensor and a sound sensor. We
are currently using the second generation MICA
Motes MOT300 with an Atmel ATMEGA103 pro-
cessor (4MHz, 128KB Instruction Memory, 4KB
RAM), and 4Mbit flash. The radio communica-
tion consists of an RF Monolithics 916.50 MHz
transceiver (TR1000), antenna, and some compo-
nents to adjust the physical layer characteristics
such as signal strength and sensitivity.

The operating system support for the Motes is
provided by TinyOS, an event-based operating sys-
tem. TinyOS consists of a very small scheduler
and components that abstract the Mote functions:
clocks for timing, RFM for radio raw data com-
munication, Radio Byte, Radio Packet and Ac-
tive Message for different abstractions of the mote
communication similar to the network stack. Each
component is triggered by explicit commands from
the upper level, or by events from other compo-
nents, such as clock interrupts, message arrivals,
message send completions, etc.

B. Correctness Validation

We have implemented the protocols in Algo-
rithms 1, 2, and 3. In our experiment, we asked
both the goals and the obstacles to generate the po-
tential field and propagate it to the entire network
periodically. So the goals and the obstacles can be
added to the network at any time.

The goal is represented with one Mote. The ob-
stacles are represented by one Mote each. The user
or robot traversing the sensor network is also rep-
resented by one Mote.

A first experiment was designed to show empir-
ically that the protocols work and are correct. In
this first experiment we used a grid of 12 first gen-
eration Motes. All neighbors are within communi-
cation range. The application is run by iterating a
request for the next step by the robot, a response by
the network, and a move to the direction of the net-
work response. To implement this last part we as-
sume that the nodes know their location and that it
can be transmitted to the moving object/robot. This
can be done by augmenting Motes with a GPS lo-
cation, or via triangulation. Since we have not done
this augmentation of the hardware yet, we simu-
late location knowledge by placing the Motes in a
grid pattern and supplying coordinates. The poten-
tial field and goal path computations are run by the
network continuously.

When an obstacle or goal broadcasts, the receiv-
ing network node checks its list of known goals,
and replaces the old data with the new broadcast if



8

the new broadcast has a lower hop count. If the ob-
stacle or goal is unknown, then an entry is created,
and it erases the oldest entry if there is no room.

When a node receives a broadcast, it degrades
the value of the broadcast based either on a linear
function on the number of hops (for goals) or by the
number of hops squared (for obstacles). If the new
value is not below a cutoff threshold, the packet is
transmitted to its neighbors.

When a robot requests potential estimates, all
nodes that can hear it respond. The robot chooses
the node with the lowest value (that is lower than
the value of the current node). The robot moves
toward this node.

This first experiment proved that a robot with a
sensor node actually went around the obstacles and
got to the goal, via the correct path. We also ob-
served that the network adapted to the introduction
of new obstacle nodes quickly and robustly.

When a new obstacle is inserted in the network,
the obstacle starts broadcasting its danger infor-
mation which affects the information held by each
node. At this point Algorithms 1 and 2 cause the
local information to change. We call the total time
for the network to identify the new distances from
danger and to the goal for each node the time for
the network to stabilize. In other words, the time
for the network to stabilize is the information prop-
agation time in the network, which depends on the
maximal hops from the goals or the obstacles to
any node in the network. In our experiment, the
maximal hop count was eight, so the network sta-
bilization time was 8 ∗ 0.07 = 0.56 seconds where
0.07 is the measured packet transmission time for
one hop. When an obstacle is added to the system
online, it takes an identical amount of time to dif-
fuse the information to the whole network. Since
each node only propagates the message with the
least hops, if we assume each node gets the least
hop messages earlier than the messages with more
hops, the number of messages each node trans-
mits is approximately the number of obstacles and
goals.

C. Measuring Adaptation

We have implemented the protocols in Algo-
rithms 1, 2, and 3 on the second generation Motes
MOT300. In this second experiment, we used a
50 Mote MOT300 testbed. We arranged the nodes
in the given topology and gave each node position
information (which could be obtained using a GPS
extension of the hardware.) We ran a suite of differ-
ent network topologies and measured the network
stabilization time when obstacles and goals are in-
jected on-line in the network. Tables I and II sum-
marize our data.

The layouts include grids with various numbers
of Motes, randomly dispersed Motes, and circles.
In each network we inserted obstacle sensors (as-
sumed to have detected danger) and goal sensors.
The focus of these experiments has been to de-
termine on how quickly the network responds to
the environmental change, specifically new danger
sources and goal changes.

We ran all the experiments on a large table in
our lab, as shown in Figure 1(Bottom). For each
experiment, we set the transmission range to be
very small (9”). In all these second round exper-
iments we focused on the network as a whole and
did not use a base station (thus, we did not collect
data in a central place.) Because Mote sensors do
not provide an easy way to synchronize clocks and
to do local time measurements, we used the follow-
ing procedure to capture timing data. Each time a
node sent a broadcast, one of its LEDs flashed. We
recorded the experiment with a Sony video cam-
era at a rate of 30 frames per second. We then
analyzed the resulting video to capture the tim-
ing measurements—which gave us a resolution of
1/30th of a second. We looked at the video se-
quence frame by frame and kept track of when and
which LED triggered. Since the overall timings are
on the order of seconds, we believe our methodol-
ogy is accurate enough.

We analyzed four metrics for each experiment:
the time for the danger information to propagate
from the danger/obstacle sensor to the whole net-
work, the time for all the nodes in the network
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TABLE I
THE DATA THAT SUMMARIZES TIMING MEASUREMENTS FOR SEVERAL EXPERIMENTS WITH A SENSOR NETWORK

CONSISTING OF MOTE SENSORS. ALL NETWORK TOPOLOGIES ARE SUMMARIZED AS GEOMETRIC ICONS AND ALL

MEASUREMENTS ARE IN SECONDS.

Exp.
Config.

danger
propagation

Shortest
distance

goal
propagation

safest
path

� � �
� � �

� �
� �

0.23 1.13 0.17 9.23
� � �
� � �
� � �
� � �

0.20 2.17 0.13 4.23
� � �
� � �
� � �
� � �

1.16 3.13 2.13 10.03

� � �
� � �
� � �
� � �

0.10 3.10 0.10 1.07

� � �
� � �

	 	
	 	

0.23 1.33 0.13 1.07


 
 


 
 

� � �
� � �

1.43 2.10 0.17 2.17

� � �
� � �

 
 

1.10 27.17 4.27 9.10
� � �
� � �

� �
� �

7.27 10.13 0.04 33.80
� � �
� � �

� �
� �

0.17 6.17 0.04 19.37
� � �
� � �
� � �
� � �

4.20 9.10 1.37 22.63

For each experiment, the goal is at the black disk and the danger is at the shaded disk.

to obtain their shortest distance to the dangerous
areas, the time for the goal information to propa-
gate to the whole network, and the time for all the
nodes in the network to obtain their safest path to
the goal. Tables I and II show the time distribution
of the four metrics.

We also did experiments to measure the re-
sponse time of the sensor network after changing

the topology of the network. Starting from the ini-
tial topology (No. 0), we changed the locations
of the obstacles and recorded the response time in
each experiment. Table III shows the data of 15
consecutive experiments. The response time is de-
fined as the period from the time when the topology
change occurs to the time when the robot finds the
path to the goal. The route cache on each mote is
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TABLE II
TABLE I CONTINUED

Exp.
Config.

danger
propagation

Shortest
distance

goal
propagation

safest
path

� � �
� � �
� � �
� � �

1.23 22.33 2.27 19.27
� � �
� � �
� � �
� � �

5.20 20.30 1.17 9.40
� � �
� � �
� � �
� � �

1.30 16.23 1.10 2.17
� � �
� � �

� �
� �

9.37 17.37 0.33 8.43

� � �
� � �
	 	 	
	 	 	

1.10 1.10 3.13 5.10


 
 


 
 

� � �
� � �

7.27 12.23 0.20 8.40

� � �
� � �
  
  

4.20 4.20 0.30 12.80

� � �
� � �
� � �
� � �

0.20 7.17 1.13 3.13

� � �
� � �
� � �
� � � 1.20 20.23 2.13 3.13

refreshed every 10 seconds. The route information
incurred by the topology change is updated only af-
ter flushing the cache. Without taking into account
the information propagation time, the average re-
sponse time is 5 seconds. The information propa-
gation adds extra time after the cache is flushed.

Several interesting aspects of these experiments
can be observed. The time for network stabiliza-
tion (that is, the time for all the nodes to get the
shortest distance to the danger source and the time
for all the nodes to get the safest path to the goal)
takes much longer than we expected. In our al-
gorithms we made two typical assumptions: (1)

a node broadcasts the message received immedi-
ately and (2) each node gets the packet traveling
through the shortest path. We observed that on
the hardware testbed neither of these assumptions
held. The network stabilization takes a long time
because of network congestion and transitory link
status. Often, nodes seemingly out of range hear
each other for brief moments of time.

Our observations of these hardware experiments
have taught us some lessons about the assumptions
used by most distributed sensor network protocols
examined theoretically or in simulation.

1) Data loss. Data loss is not rare in sensor net-
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TABLE III
THE DATA OF THE RESPONSE TIME FOR SEVERAL EXPERIMENTS WITH A SENSOR NETWORK CONSISTING OF MOTE

SENSORS. ALL NETWORK TOPOLOGIES ARE SUMMARIZED AS GEOMETRIC ICONS AND ALL MEASUREMENTS ARE IN

SECONDS.

Exp.
No.

Exp.
Config.

Response
Time

Exp.
No.

Exp.
Config.

Response
Time

0

� � �
� � �
� � �
� � �

0 8
� � �
� � �
� � �
� � �

4.43

1

� � �
� � �
� � �
� � �

3.63 9

� � �
� � �
� � �
� � �

5.33

2

� � �
� � �
	 	 	
	 	 	

6.83 10


 
 


 
 

� � �
� � �

4.43

3

� � �
� � �
  
  

3.60 11

� � �
� � �
� � �
� � �

9.63

4

� � �
� � �
� � �
� � �

4.93 12

� � �
� � �
� � �
� � �

6.27

5

� � �
� � �

� �
� �

2.13 13

� � �
� � �

� �
� �

4.50

5
� � �
� � �

� �
� �

1.73 14

� � �
� � �
� � �
� � �

4.87

7

� � �
� � �
� � �
� � �

2.23 15

� � �
� � �
� � �
� � �

6.70

For each experiment, the goal is at the black disk and the danger is at the shaded disk. The black line
and arrow signify the safe path found in each network topology.

works. This is due to network congestion,
transmission interference, and garbled mes-
sages.

2) Asymmetric connection. We observed that
the transmission range in one direction may
be quite different from that in the opposite
direction. Thus, the assumption that if a node
receives a packet from another node, it can
send back a packet is too idealistic. In rout-
ing algorithm design, the existence of a route
that can carry a packet from the source to a
node does not guarantee a reverse route from
that node to the source.

3) Congestion. Network congestion is very
likely when the message rate is high. This
is aggravated when the nodes in proximity
of each other try to send packets at the same

time. For a sensor network, because of its
small memory and simplified protocol stack,
congestion is a big problem.

4) Other unpredictable network conditions. In
our sensor networks nodes that should be
several hops away from each other occasion-
ally come in direct communication range.
We expect many transitory links (on and off)
in a unstable network due to the impact of
the unpredictable conditions.

We conclude that the uncertainty introduced by
data loss, asymmetry, congestion, and transient
links is fundamental in sensor networks. We need
new models, algorithms, and simulations that take
this kind of uncertainty into account. Guided by
these lessons, we are currently conducting experi-
ments to characterize better the likelihood of these
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uncertainty conditions.

VI. CONCLUSION

We have discussed self-reconfiguring sensor net-
works that can react to their environment and adapt
to changes. We have described a novel application:
using the sensor network to guide the movement of
a user (human or robot, equipped with a sensor that
can talk to the network) across the area of the net-
work along a safest path. Safety is measured as the
distance to the sensors that detect danger. We de-
scribed several protocols for solving this problem.
Our protocols implement a distributed repository
of information that can be stored and retrieved ef-
ficiently when needed. We have used ideas from
robotics to provide a correct solution to the navi-
gation guiding task. We have implemented these
protocols on a network of 50 Mote sensors. The
key metric used in our experimental evaluations is
the time it takes the network to adapt to a new situ-
ation (detecting a moving vehicle, detecting a new
obstacle, adding a new sensor in the network, re-
moving a sensor from the network, etc.). Our ex-
perimental work has taught us a number of lessons
about some typical assumptions for designing pro-
tocols and have pointed out some important new
directions of research.
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