
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

2-4-2002

Trusted Paths for Browsers: An Open-Source Solution to Web Trusted Paths for Browsers: An Open-Source Solution to Web

Spoofing Spoofing

Zishuang (Eileen) Ye
Dartmouth College

Sean Smith
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Ye, Zishuang (Eileen) and Smith, Sean, "Trusted Paths for Browsers: An Open-Source Solution to Web
Spoofing" (2002). Computer Science Technical Report TR2002-418.
https://digitalcommons.dartmouth.edu/cs_tr/194

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/194?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Trusted Paths for Browsers:
An Open-Source Solution to Web Spoofing

Zishuang (Eileen) Ye, Sean Smith
Department of Computer Science

Dartmouth College

Technical Report TR2002-418

www.cs.dartmouth.edu/˜pkilab/demos/spoofing/

February 4, 2002

Abstract

The security of the vast majority of “secure” Web
services rests on SSL server PKI. However, this
PKI doesn’t work if the the adversary can trick the
browser into appearing to tell the user the wrong
thing about the certificates and cryptography. The
seminal web spoofing work of Felten et al [6]
demonstrated the potential, in 1996, for malicious
servers to impersonate honest servers. Our recent
follow-up work [15] explicitly shows how malicious
servers can still do this—and can also forge the ex-
istence of an SSL session and the contents of the
alleged server certificate.

This paper reports the results of our work to system-
atically defend against Web spoofing, by creating a
trusted path from the browser to the user. Starting
with the Mozilla source, we have implemented tech-
niques that protect a wide variety browser-user com-
munications, that require little participation by the
user and minimal disruption of the displayed server
content. We have prepared shell scripts that install
these modifications on the Mozilla source, to enable
others to replicate this work.

In on-going work, we are cleaning up and fine-
tuning our code. In future work, we hope to ex-
amine more deeply the role of user interfaces in en-
abling users to make effective trust judgments.

1 Introduction

Section 2 discusses the problem. PKI (or any other
distributed security scheme) needs to address not
just the channel from server to client, but also from
client to human. Web spoofing techniques can sub-
vert this last step.

Section 3 develops criteria for a systematic, effec-
tive solution, that secures as broad as possible fam-
ily of parameters that humans use to form trust judg-
ments about servers. Section 4 discusses some so-
lution strategies we considered and the one we set-
tled on, synchronized random dynamic boundaries.
Section 5 discusses how we implemented this solu-
tion and the status of our prototype. Section 6 offers
some conclusions, and discusses avenues for future
work.

2 The Problem

2.1 Effective Trust Judgments

The research this paper reports had roots in our con-
sideration of public key infrastructure (PKI).

1

In theory, public-key cryptography enables effective
trust judgments on electronic communication be-
tween parties who have never met. The bulk of PKI
work focuses on distribution of certificates. We de-
cided instead to focus on a broader definition of “in-
frastructure” as “that which is necessary for public-
key cryptography to achieve this vision in practice.”
We then focused on the Web server SSL PKI, as per-
haps the most accessible (and e-commerce critical)
instantiation of PKI in our society.

Loosely speaking, the PKI in SSL establishes a
trusted channel between the browser and server.
Our initial set of projects (e.g., [7, 11]) examined
the server end, and how to extend the trust from the
channel itself into data storage and computation at
the server.

However, computer scientists tend to think of com-
putation and communication as ending with a ma-
chine. But in the case of the Web, the true “client”
is not the browser, but is rather the human using
the browser. For the “secure Web” to work, the hu-
man needs to be able to make effect trust judgments
about the server with which his or her browser is
interacting. Our immediate motivation was that,
for our server-hardening techniques to be effective,
the human needs to determine if the server is using
them; however, this issue has much broader impli-
cations.

2.2 Web Spoofing

To make an effective trust judgment about a server,
perhaps the first thing a user might want to know is
the identity of the server. Can the human accurately
determine the identity of the server with which their
browser is interacting?

On a basic level, a a malicious server can offer real-
istic content from a URL that disguises the server’s
identity. Such impersonation attacks occur in the
wild:

• by offering spoofed material via a URL in
which the spoofer’s hostname is replaced with
an IP address (e.g. [9, 14])

• by typejacking—e.g., registering a hostname
deceptively similar to a real hostname, offer-
ing malicious content there, and tricking users
into connecting (e.g., [12])

Furthermore, (as pointed out yet again in [1]) RFC
1738 permits the hostname portion of a URL to be-
gin with a username and password. Many servers
(including ours) ignore these; Hoke [14] could have
made his spoof of a Bloomberg press release even
more effective by prepending his IP-hostname with
a “bloomberg.com” username. (See our web site for
a demonstration.)

More sophisticated web users might use more so-
phisticated identification techniques that would ex-
pose these attacks. Users might examine the loca-
tion bar for the precise URL they are expecting; or
examine the SSL icon and warning windows to de-
termine if an authenticated SSL session is taking
place; or even examine the server’s certificate and
validation information, to make full use of the server
PKI.

The seminal web spoofing work of Felten et al [6]
showed that, in 1996, a malicious site could forge
many of the clues that humans use to decide server
identity, except the SSL lock icon for an SSL ses-
sion. (Instead, Felten et al used a real SSL ses-
sion from the attacker server.) Subsequent re-
searchers [3] reported difficulty reproducing these
results, and Web techniques and browser user inter-
face implementation has evolved a lot since 1996.

In our initial study [15], we examined whether
(and to what degree) Web spoofing was still pos-
sible, with current technology. To summarize
our experiment: for Netscape 4 on Linux and
Internet Explorer 5.5 on Windows 98, using un-
signed JavaScript and DHTML:

• We can produce an entry link that, by mouse-
over, appears to go to an arbitrary site.

2

• If the user clicks on this link, and either
does not have JavaScript enabled or is using
a browser/OS combination we do not support,
then they really will go to that site.

• Otherwise, their browser opens a new window
that appears to be a functional browser win-
dow, at that site. Clues, bars, location infor-
mation, and most browser functionality can be
made to appear correct for that site. However,
the user is not visiting that site at all; he is vis-
iting ours.

• Furthermore, if the user clicks on a “secure”
link from this site, we can make convincing
SSL warning windows appear, then lock the
SSL icon, and have the SSL certificate infor-
mation all appear as the user expects—except
no SSL connection exists, and all the user’s
“secure” information is being sent in plaintext
to us.

A demonstration is available at our web site, and our
prior technical report [15] contains full technical de-
tails. (In a nutshell, we carefully examined how, for
each platform, to provide server content that, when
rendered, would appear to be the expected element.
Since the browser kindly tells us its OS and soft-
ware, we can customize the response appropriately.)

2.3 Other Factors

However, our goal was enabling users to make ef-
fective trust judgments about a server. The above
spoofing techniques focused on server identity. As
some researchers (e.g., [4]) observe, identity is just
one component for such a judgment—usually not a
sufficient component, and arguably not a necessary
component. We revisit this question in Section 6.2.

3 Towards a Solution

Previous work, including our own, suggested some
simplistic solutions. To address this fundamental

trust problem in this broadly deployed and service-
critical PKI, we need to design a more effective
solution—and to see that this solution is imple-
mented in usable technology.

3.1 Basic Framework

We’ll start with a slightly simplified model.

Browsers render content. When a browser is di-
rected to a site (by a user, or by previous content),
content C is downloaded and rendered, and the user
perceives some set

stuff(C) = status(C) ∪ content(C)

of windows, boxes, and elements; data from the
server, and meta-data from the browser.

The intention is that users can carry out a trust eval-
uation in two steps:

• They can recognize the material that is status
information:

recog(stuff(C)) = status(C)

• They can then judge the content based on an
evaluation of that status information:

judge(stuff(C)) = eval(recog(stuff(C)))

Web spoofing attacks work because the status and
content functions that browsers typically implement
suffer from collisions: there exist C1, C2 such that
content(C2) ∩ status(C1) can be substantial. This
overlap permits a malicious server to provide con-
tent C2 which tricks users into recognizing as status
from C1:

recog(stuff(C2)) = status(C1)

Consequently, users mistakenly judge C2 as they
would C1.

3

3.2 Trusted Path

A key to systematically stopping Web spoofing
would be to modify browsers so that their status and
content functions do not have such collisions, and so
users can (in theory, at least) always perform recog,
and hence judge, correctly.

In some sense, this is the classic trusted path prob-
lem. The browser software becomes a TCB, we
need to establish a trusted path between users and
the status component, that cannot be impersonated
by content output.

(Whether users should in fact trust their browsers is
another story, especially given the proliferation of
“click here for the latest Netscape” links one finds
on non-Netscape sites.)

3.3 Design Criteria

What are the criteria a solution must satisfy?

• Effectiveness. We need to ensure that users
can correctly recognize as large a subset of
status as possible. Browsing is a rich expe-
rience; lots of parameters play into user trust
judgment (and, as Section 6.2 discusses, the
current parameters may not even be sufficient).
A piecemeal solution will be insufficient; we
need a trusted path for as much of this data as
possible.

• Work. We cannot expect users to do a lot of
work. This constraint eliminates the clearly
impractical cryptographic approach of having
the browser digitally sign each trusted docu-
ment element. This constraint also eliminates
more practical schemes where users set up cus-
tomized, unguessable skin preferences.

• Intrusiveness. We must minimize our in-
trusion on content: on how documents from
servers (and browsers) are displayed. The web
is an important vehicle for commerce and ser-

vices; an industry exists in optimizing web de-
sign to achieve various goals.

This constraint eliminates the simplistic solu-
tion of turning off Java and JavaScript.

This constraint also eliminates the Tygar-
Whitten approach [13] of customizing back-
grounds.

In a nutshell, our solution must be effective (for
“trust judgment” functions that are still evolving),
and be low-impact.

Implementability. In the long run, an effec-
tive solution must be real. Examining the options
deploying our solution, we decided that working
within the open-source code base of Mozilla [10]
was the most feasible (although we had also given
serious consideration to Konqueror [8]). This gave
rise to another constraint: it must be possible for
our solution to be prototyped—and replicated—as
modifications to the Mozilla base.

4 Solution Strategies

4.1 Rejected Approaches

One approach to defending against some of the tech-
niques we used in our spoofing work would be to
identify page elements with high-trust information
or functionality (such as the Menu Bar, Tool Bar,
Status Bar, etc.), prevent them from being turned
off in the current browser window, and prohibit
the opening of new windows with them turned off.
However, we felt this technique would not cover a
broad enough range of browser-user channels (what
about pop-up warning windows, or certificate infor-
mation pages?), and would also overly constrict the
the display of server pages.

A natural way to address these broader problems
would be to clearly label the status material, in way
that distinguishes it from content material. We con-
sidered and rejected several such approaches.

4

In one such rejected approach, we considered hav-
ing the user enter a “MAC phrase” of their own
choosing at start-up. The browser could then insert
this MAC phrase into each status window (certifi-
cate status, SSL warning boxes, etc), to authenticate
it. However, we decided that this required too much
work from the user.

In another rejected approach, we considered adding
such meta-data (“trusted status” or “something
else”) to the title information that Mozilla sends
to the machine’s windowing system. However, we
did not really believe that users would pay attention
to these title bars; furthermore, a malicious server
could still spoof such a window by offering an im-
age of one within the regular content.

In an attempt to fix the above scheme, we decided
to use thick color instead of tiny text. Windows
containing pure status information from the browser
would have a thick border with a color that indicated
trusted; windows containing at least some server-
provided content would have a thick border with
another color that indicated untrusted. Because its
content would always be rendered within an un-
trusted window, a malicious server would not be
able to spoof status information, or so we thought.
Unfortunately, this approach suffers from the same
vulnerability as above: a malicious server could still
offer an image of a nested trusted window. (This is
how we spoofed SSL warning windows in our ear-
lier work.)

4.2 Synchronized Random Dynamic
Boundaries

This situation left us with a conundrum: the browser
needs to mark trusted status content, any determin-
istic approach to marking trusted content would be
vulnerable to this image spoof. So, we need a mark-
ing scheme that servers could not predict, but would
still be easy and non-intrusive for users to verify.

What we settled on was synchronized random dy-
namic (SRD) boundaries. In addition to having
trusted and untrusted colors, the thick window bor-

ders would have two styles. At random intervals,
the browser would change the styles on all its win-
dows. The SRD solution would satisfy the design
criteria:

• Effectiveness: A malicious server that did not
know the randomness could not provide con-
tent that changed at the right time; by the flash-
ing, users could recognize all windows that
came from the browser; and by the color, users
could distinguish those containing pure status
information.

• Work: To authenticate a window, all a user
would need to do is observe whether its border
is changing in synch.

• Intrusiveness. By changing the window
boundary but not internals, server content, as
displayed, is largely unaffected.

Some browser windows, like the main window, con-
tain trusted elements (such as the Menu Bar, etc)
as well as an area for rendering untrusted material
from the server. As far as we could tell in our
spoofing work, untrusted material could not overlay
or replace these trusted elements (rather, our attack
worked by opening new windows without these el-
ements, and adding our own facsimiles). The SRD
approach thus leads to a design question:

• Should we just mark the outside boundaries?

• Or should we also install SRD boundaries on
individual elements, or at least on trusted ones?

We use the terms outer SRD and inner SRD to de-
note these two approaches.

Inner SRD raises some additional questions that
may take it further away from the design criteria.
For one thing, having changing, colored boundaries
within the window arguably weakens satisfaction of
the minimal intrusiveness constraint. For another
thing, what about elements within a trusted win-
dow? Should we announce that any element in a

5

region contained in a trusted SRD boundary is there-
fore trusted? Or would introducing such anomalies
(e.g., whether a bar needs an trusted SRD boundary
to be trusted depends on the boundary of its win-
dow) needlessly and perhaps dangerously compli-
cate the user’s participation?

The reality of implementation required modification
to these semantics, as Section 5.4 discusses.

5 Implementation

We prototyped the SRD-boundary solution using
Mozilla open source on Linux.

Implementation took three steps. First, we needed
to add thicker colored boundaries to all windows.
Second, the boundaries needed to dynamically
change. Third, the changes needed to happen in a
synchronized fashion.

In Section 5.1 through Section 5.3 below, we dis-
cuss these steps. Section 5.4 discusses implications
the implementation has for the semantics of our so-
lution. Section 5.5 discusses the current status of
our prototype.

5.1 Adding Colored Boundaries

Mozilla has a configurable and downloadable user
interface, called a chrome. The presence and ar-
rangement of different elements in a window is not
hardwired into the application, but rather is loaded
from a separate user interface description, the XUL
files. XUL is an XML-based user interface language
that defines the Mozilla user interface. Each XUL
element is present as an object in Mozilla’s docu-
ment object module (DOM).

Mozilla uses Cascading Style Sheets (CSS) to
describe what each XUL element should look like;
this set of sheets together is called a skin. Mozilla
has customizable skins, which are CSS files located
in the source code “themes” directory. Changing

these CSS files changes the look-and-feel of the
browser.

The original Mozilla only has one type of win-
dow without any boundary. We added an orange
boundary into the original window skin (to mark
the trusted windows containing material exclusively
from the browser). Then we defined a new type of
window, external window, with blue boundary. We
added the external window skin into the global skin
file, and changed the “navigator window” to invoke
an “external window” instead.

As a result, all the “window” elements in XUL files
will have thick orange boundaries, and all the “ex-
ternal windows” would have thick blue boundaries.
In browsing, only the “navigator window” contains
material from the server; the others (page info,
SSL warning, etc) contain trusted material from the
browser.

5.2 Making the Boundaries Dynamic

Window objects can have attributes. When the at-
tibute is set, the window can be displayed with dif-
ferent style. This different style also is defined in
global.css file.

To make window boundaries dynamice, we added a
“borderStyle” attribute to the window.

externalwindow[borderStyle="true"]

{

border-style: outset !impor-

tant;

}

When borderStyle is true, the boundary style is out-
set (meaning: the left and top are dark, and the
bottom and right are light); when borderStyle is
“removed” (i.e., false), the boundary style is inset
(vice-versa). Mozilla itself has an application shell
that implements an observer that notices changes in
attributes and updates the displayed borderstyle ac-
cordingly.

6

With a reference to a window object, JavaScript
code can automatically set the attribute and remove
the attribute associated with that window. We use
the

document.getElementById("windowID")

method to get the reference.

When the window’s attribute is changed by
JavaScript code, the browser observer object no-
tices the change and schedules a browser event. The
event is executed and repaints the boundary with
different style.

Each XUL file links to JS files that specify what
should happen in that window with each of the
events in the browsing experience. We placed the
attribute-changing JavaScript into a separate JS file
and linked it into each corresponding XUL file.

For example, the file example.xul may have a
window element defined as

<window id=" example-

window">... </window>

Then the JavaScript file named example-
changeBorder.js may have code

document.getElementById("example-

window")

The link inserted into the example.xul is

<script type="application/x-

javascript"

src="chrome://$CHROMPATH/example-

changeBorder.js’’>

(The CHROMPATH depends on the directory in
which the JS file resides.)

With the

setInterval("function name",

intervalTime)

method, a JavaScript function can be called auto-
matically at regular time intervals. We let our func-
tion be called every 0.5 second, to check a random
value 0 or 1. If the random value is 0, we set win-
dow’s borderStyle attribute to be true; else remove
this attribute. The window’s onload event calls
this setInterval method to start this polling.

<window id="example-window"

onload="setInterval(..)">

If the window element does not have an ID asso-
ciate with it, we need to give it one in order to make
the JavaScript code work. The JS files need to in-
clude into corresponding jar.mn file in order to
be packed into the same jar as the XUL file.

5.3 Adding Synchronization

All the JavaScript files need to look at the same ran-
dom number, in order to make all windows flash-
ing synchronously. Since we could not get the
JavaScript files in Mozilla source to communicate
with each other, we used an XPCOM module to have
them communicate to a single C++ object that di-
rected the randomness.

XPCOM (theCross Platform Component Object
Model) is a framework for writing cross-platform,
modular software. As an application, XPCOM
uses a set of core XPCOM libraries to selec-
tively load and manipulate XPCOM components.
XPCOM components can be written in C, C++,
and JavaScript, and is the basic element of Mozilla
structure. Its interface is written in Cross-Platform
Interface Description Language (XPIDL).

JavaScript can directly communicate to a C++ mod-
ule through XPConnect. XPConnect is a technol-
ogy which allows JavaScript objects transparently
access and manipulate XPCOM objects. It also en-

7

ables JavaScript objects to present XPCOM compli-
ant interfaces to be called by XPCOM objects.

We maintained a singleton XPCOM module in
Mozilla which tracks the current “random bit.”
We defined a borderStyle interface in XPIDL,
which only has a string that is read-only (from
the JavaScript point of view). The XPIDL com-
piler transforms this IDL into a header file nsI-
BorderStyle.h and a typelib file nsBorderStyle.xpt.
The nsIBorderStyle has an interface for a pub-
lic function, GetValue, which can be called by
Mozilla JavaScript through XPConnect. The
NsBorderStyleImp class implements the nsIBor-
derStyle interface, and also has two private func-
tions, generateRandom and setValue. When a
JavaScript call accesses the borderStyle module
through GetValue, the module uses these pri-
vate functions to update the current bit (from
/dev/random) if it is sufficiently stale. The mod-
ule then returns the current bit to the JavaScript.

(We use these polling techniques since more ad-
vanced synchronization primitives did not easily in-
tegrate with Mozilla’s JavaScript.)

5.4 Semantic Wrinkles

This implementation work led to changes to the
SRD semantics as we originally envisioned.

One of the first changes is the precision of syn-
chronization. It turned out that coordinating all the
SRD boundaries to change at precisely the same
real-time instant was not feasible within the current
codebase. Instead, in our current implementation,
the changes all happen within an approximately 1-
second window. This imprecision is because only
one thread can access the XPCOM module; all
other threads are blocked until it returns. Since the
JavaScript calls access the random value sequen-
tially, the boundaries change sequentially as well.

However, we actually feel this increases the usabil-
ity: the staggered changes make it easier for the user
to perceive that changes are occurring.

A more substantial issue is the fact that, due to the
Mozilla structure, the existence of an SSL Warning
Window blocks the threads associated with main-
taining other window activity—including their SRD
boundaries.

The default approach (taken in our current proto-
type) is to declare that a trusted SRD window, when
all boundaries freeze, is trusted. However, this ap-
proach is troubling for two reasons.

First, such windows still might be forgable. Perhaps
a server could raise an image with a spoofed SRD
boundary, whose lack of synchronization is not no-
ticeable because the server also submitted some
time-consuming content that slows down the main
browser window so much that the it appears frozen.

More seriously, such windows greatly complicate
the semantics of how the user decides whether to
trust a window.

Currently, we are exploring how, within the Mozilla
source, to keep at least one other window—perhaps
a special reference window (trusted) opened at
browser start-up—active at all times, even with SSL
warning windows. Minimally, we can do this by
having the XPCOM module fork a separate process
that controls its own X-window.

5.5 Prototype Status

As with our earlier spoofing work, we feel that a
simple paper discussion of ideas is not sufficient. If
we are going to make an impact, we need to make
these ideas work in the field.

As discussed in Section 5, we have implemented
outer-SRD for the main navigator elements in mod-
ern skin Mozilla for Linux. Furthermore, we have
prepared scripts to install (and undo) these changes
in the Mozilla source tree; to reproduce our work,
one would need to download the Mozilla source, run
our script, then build.

8

These scripts, as well as an animated gif giving the
look-and-feel of browsers enhanced with outer-SRD
and inner-SRD, are available now by request, and
should be up on our web site very shortly.

In the lab, we are finishing modifications to add
outer SRB to the remaining elements (PSM, mail,
etc.,) as well as preparing an alternative version that
adds inner SRB. We are also finishing implemen-
tation of the reference-window approach. We an-
ticipate that this work should be done within two
months.

6 Conclusions and Future Work

6.1 Summary

A systematic, effective defense against Web spoof-
ing requires establishing a trusted path from the
browser to its user, so that the user can conclusively
distinguish between genuine status messages from
the browser itself, and maliciously crafted content
from the server.

Such a solution must effectively secure all channels
of information the human may use as parameters for
his or her trust decision; must minimize work by
the user and intrusiveness in how server material is
rendered, and be deployable within popular browser
platforms.

We believe our SRD solution meets this crite-
ria. The major work remaining is to decide how
to handle the background-freeze issue discussed
above, and to decide whether inner-SRD enhances
or weakens usability, and if this enhancement out-
weighs the increased intrusiveness.

We also offer this work back to the community,
in hopes that it may drive more thinking (and also
withstand further attempts at spoofing).

6.2 New Directions

This research also suggests many new avenues of
research.

Parameters for Trust Judgment. The exis-
tence of a trusted path from browser to user does
not guarantee that the browser will tell the user true
and useful things.

What is reported in the trusted path must accurately
match the nature of the session. Unfortunately, the
history of the Web offers many scenarios where is-
sues arose because the reality of a browsing session
did not match the user’s mental model. Invariably
this happens because the deployed technology is
a richer and more ambiguous space than anyone
realizes. For example, it is natural to think of
a session as “SSL with server A” or “non-SSL.”
It is interesting to then construct “unnatural” Web
pages with a variety of combinations of framesets,
servers, 1x1-pixel images, and SSL elements, and
then observe what various browsers report. For one
example, on Netscape platforms we tested, when
an SSL page from server A embedded an image
with an SSL reference from server B, the browser
happily established sessions with both servers—
but only reported server A’s certificate in “Security
Information.” Subsequently, it was reported [2] that
many IE platforms actually use different validation
rules on some instances of these multiple SSL chan-
nels.

What is reported in the trusted path should also pro-
vide what the user needs to know to make a trust
decision. For one example [5], the Palm Computing
“secure” web site is protected by an SSL certificate
registered to Modus Media. Is Modus Media au-
thorized to act for Palm Computing? Perhaps the
server certificate structure displayed via the trusted
path should include some way to indicate delega-
tion. For another example, the existence of technol-
ogy (or even businesses) that add higher assurance
to Web servers (such as our WebALPS [7, 11] work)
suggests that a user might want to know properties

9

in addition to server identity. Perhaps the trusted
path should also handle attribute certificates.

User Studies. The existence of a trusted path
from browser to user does not guarantee that users
will understand what this path tells them. It would
be interesting to do a follow-on user study, explor-
ing how humans make judgments about servers how
usable our approach is, and how to design better
ways to communicate security information.

Access Control on UI. Research into creating
a trusted path from browser to user is necessary,
in part, because Web security work has focused on
what machines know and do, and not on what hu-
mans know and do. It is now unthinkable for server
content to find a way to read an unencrypted pass-
word; however, it appears straightforward for server
content to create the illusion of a genuine browser
window asking for the user’s password. Integrating
security properties into document markup is an area
of ongoing work; it would be interesting to look at
this area from a spoof-defense point of view.

Multi-Level Security. It is fashionable for
younger scientists to reject the Orange Book and its
associated body of work regarding multi-level se-
curity, as being archaic and irrelevant to the mod-
ern computing world. However, our defense against
Web-spoofing is essentially a form of MLS: we are
marking screen elements with security levels, and
trying to build a user interface that clearly commu-
nicates these levels. (Of course, we are also trying
to retro-fit this into a large legacy system.) It would
be interesting to explore this vein further.

Acknowledgments

We are grateful to Yougu Yuan, Ed Feustel, Dan
Wallach, Drew Dean, Mark Vilardo, and Carl
Ellison for their helpful suggestions.

This work was supported in part by
Internet2/AT&T, and by the U.S. Department
of Justice, contract 2000-DT-CX-K001, However,
the views and conclusions do not necessarily
represent those of the sponsors.

References

[1] R. J. Barbalace. “Making something look hacked
when it isn’t.” The Risks Digest, 21.16, December
2000.

[2] S. Bonisteel. “Microsoft Browser Slips Up on SSL
Certificates.” Newsbytes. December 26, 2001.

[3] F. De Paoli, A. L. DosSantos and R. A. Kemmerer.
“Vulnerability of ‘Secure’ Web Browsers.”
Proceedings of the National Information Systems
Security Conference. 1997.

[4] C. Ellison. “The Nature of a Useable PKI.”
Computer Networks. 31: 823-830. 1999.

[5] Carl Ellison. Personal communication, September
2000. See https://store.palm.com/

[6] E. Felten, D. Balfanz, D. Dean, and D. Wallach.
“Web Spoofing: An Internet Con Game.” 20th
National Information Systems Security Conference.
1996.

[7] S. Jiang, S.W. Smith, K. Minami. “Securing Web
Servers against Insider Attack.” ACSA/ACM
Annual Computer Security Applications
Conference. December 2001.

[8] Konqueror. http://www.konqueror.org/
konq-browser.html

[9] M. Maremont. “Extra! Extra!: Internet Hoax, Get
the Details.” The Wall Street Journal. April 8, 1999.

[10] The Mozilla Organization. www.mozilla.org/
download-mozilla.html

[11] S.W. Smith. “WebALPS: A Survey of E-Commerce
Privacy and Security Applications.” ACM SIGecom
Exchanges. Volume 2.3, September 2001.

[12] Bob Sullivan. “Scam artist copies PayPal Web site.”
MSNBC. July 21, 2000.

[13] J. D. Tygar and Alma Whitten. “WWW Electronic
Commerce and Java Trojan Horses.” The Second
USENIX Workshop on Electronic Commerce
Proceedings.1996.

10

[14] United States Securities and Exchange
Commission. Securities and Exchange
Commission v. Gary D. Hoke, Jr. Litigation
Release No. 16266. August 30, 1999.

[15] E. Ye, Y. Yuan, S.W. Smith. Web Spoofing
Revisited: SSL and Beyond. Technical Report
TR2002-417, Department of Computer Science,
Dartmouth College. February 2002.

11

	Trusted Paths for Browsers: An Open-Source Solution to Web Spoofing
	Dartmouth Digital Commons Citation

	tmp.1600464963.pdf.yu8IN

