
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

2-4-2002

Virtual Hierarchies - An Architecture for Building and Maintaining Virtual Hierarchies - An Architecture for Building and Maintaining

Efficient and Resilient Trust Chains Efficient and Resilient Trust Chains

John Marchesini
Dartmouth College

Sean Smith
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Marchesini, John and Smith, Sean, "Virtual Hierarchies - An Architecture for Building and Maintaining
Efficient and Resilient Trust Chains" (2002). Computer Science Technical Report TR2002-416.
https://digitalcommons.dartmouth.edu/cs_tr/192

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/192?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Virtual Hierarchies - An Architecture for Building and Maintaining
Efficient and Resilient Trust Chains.

John Marchesini and Sean Smith
Department of Computer Science ∗

Dartmouth College
Technical Report TR2002-416

{carlo,sws}@cs.dartmouth.edu

February 4, 2002

Abstract

In Public Key Infrastructure (PKI), the simple, mo-
nopolistic CA model works fine until we consider
the real world. Then, issues such as scalability and
mutually suspicious organizations create the need
for a multiplicity of CAs, which immediately intro-
duces the problem of how to organize them to bal-
ance resilience to compromise against efficiency of
path discovery.

However, security has given us tools such as se-
cure coprocessing, secret splitting, secret sharing,
and threshold cryptography for securely carrying
out computations among multiple trust domains;
distributed computing has given us peer-to-peer
networking, for creating self-organizing distributed
systems.

In this paper, we use these latter tools to address the
former problem by overlaying a virtual hierarchy
on a mesh architecture of peer CAs, and achieving
both resilience and efficiency.

∗This work was supported in part by Internet2/AT&T, by
IBM Research, and by the U.S. Department of Justice, contract
2000-DT-CX-K001. However, the views and conclusions do
not necessarily represent those of the sponsors.

1 Introduction

1.1 The Problem

Current architectures for PKI attempt to provide re-
silience and efficiency. In this context we take re-
silience to mean the ability of a certificate issuing
entity, a Certificate Authority (CA), to protect its
private key from disclosure, and efficiency to mean
the running time of some algorithm which attempts
to verify a certificate (typically, something binding
a name to an key), or chain of certificates (i.e. trust
chain) issued by CAs in the architecture. These are
most often competing goals.

Practically, current architectures manipulate the ar-
rangement of the CAs in order to achieve different
goals.

Many current architectures impose a rigid structure
on the CAs so that path construction and valida-
tion can be deterministic and efficient. Although
this structure permits path algorithms to traverse the
topology within some efficient time constraints, it
also results in a large amount of authority residing
in a single place (e.g. the root CA).

In opposition to this view is the method of organiz-
ing CAs in a more decentralized way, in an effort to
increase resilience by not placing so much author-

1

ity in one centralized place. The implication is that
path validation algorithms must now do more work
and must often use non-determinism to decide if a
received trust chain is valid. These properties trans-
late into a decrease in efficiency and an increase in
complexity.

We believe that both properties—efficiency and
resilience—are important to any PKI, and thus, pro-
pose an architecture and are developing a prototype
which aims to bridge the gap between these seem-
ingly competing goals. We feel this is novel as cur-
rent architectures fail to provide both.

Finding algorithms which increase the efficiency of
path construction in decentralized organizations is
an emerging area of research. Algorithms which
use certificate extensions (such as name constraints
and policy extensions), as well as loop elimination
techniques have been developed to enhance effi-
ciency [5]. Our concern however, is the underlying
organization of CAs, and how they may be arranged
to achieve efficiency and resilience.

Common Architectures.

Hierarchies and meshes are canonical examples of
the structured and unstructured approaches, respec-
tively.

Traditionally, Hierarchies are used to achieve
O(logV) (where V is the number of CAs) verifi-
cation time. The drawback of this approach is that
it forces the CA’s private key to be stored in a cen-
tral location. If an intruder were to compromise the
root CA, the entire PKI must go offline until a re-
covery can occur (i.e. all certificates issued by that
CA are revoked, and new ones are reissued with the
CA’s new private key).

Mesh PKI architectures have been developed in an
effort to avoid this single point of failure. However,
the non-deterministic nature of peer-to-peer orga-
nization increases the path verification algorithm
significantly. Due to the fact that not all possible
choices lead to a trusted CA, coupled with trial-
and-error construction of the trust path (a path to
a trusted CA), verification time in these schemes is

usually high. Further, mesh architectures make no
guarantee to avoid cycles, leading to choices in the
path construction algorithm which may never ter-
minate.

Other common architecture schemes are more hy-
brid.

Extended Trust Lists are used to allow users the
ability to maintain lists of CAs which they choose
to trust. Each entry in this list may represent a
single CA or an entire PKI, which itself could be
a Hierarchy or a Mesh. This scheme poses new
challenges for validation algorithms, as the starting
point for these algorithms could be any node in the
list. The implication is that a path may have be to be
constructed using every entry in the list as a starting
point.

Bridge CAs provide another alternative. One com-
mon approach is to cross certify enterprise PKIs
through peer-to-peer relationships, which results in
(n2 −n)/2 relationships for n enterprises (in graph
theory, this graph is known as a complete graph on
n vertices, and is named Kn [14]).

The Bridge allows each of the enterprise PKIs to
cross certify to it, resulting in a star topology and
reducing the number of relationships to n. While a
seemingly attractive solution, the Bridge architec-
ture does not solve path validation issues in that
each of the enterprises themselves may be Hierar-
chies, Meshes, etc [7] [9].

Our objective is to devise an architecture which al-
lows for authentication entities (CAs) to organize
themselves in such a way as to maintain the follow-
ing two invariants:

1. Trust chains produced by any of the entities
may be verified in an efficient manner.

2. The secrets (private keys) can not be found in
any one place, and the fragments are fairly ran-
domly distributed throughout the topology.

1.2 Our Approach

Terms The mechanism we propose which accom-
plishes this task is a virtual hierarchy, a logical hi-
erarchy formed in a peer-to-peer network. A vir-
tual hierarchy is a tree in which nodes represent cer-
tificate issuing/message authenticating entities, and
edges represent trust relationships between them.
While each node represents one logical entity in the
virtual hierarchy, it is comprised of more than one
entity in the physical layer, none of which may per-
form the certificate issuing/message authentication
task alone as none of the entity holds the entire pri-
vate key.

We use the term collective for the physical group
of entities which acts as a single node in the virtual
hierarchy.

Physical Layer The physical layer is a peer-to-peer
network of secure coprocessors. The secure copro-
cessor is not strictly necessary to make the virtual
hierarchy layer work. However, since nodes in this
layer are CAs, they must all have a cryptographic
module, and using trusted hardware adds to the se-
curity of the scheme in that if the machine which
houses the module is compromised, the module it-
self is still secure. Practically speaking, part of our
decision to use secure coprocessors came from the
fact that we already had some devices, we had some
familiarity with the programming environment, and
the modules we had are validated to FIPS 140-1
Level 4.

2 Overall Structure

We approached the problem in two stages, the
first being to implement a peer access layer which
allows secure coprocessors [11] (we use IBM
4758s 1) to communicate securely, and the second

1Recently, a security vulnerability has been demonstrated
in an application (IBM’s CCA) which runs on the 4758. It
should be noted that this vulnerability belongs to the applica-
tion, and not the 4758 platform. At the time of writing, the
4758 has no known vulnerabilities.

TCP/IP Protocol Stack

Trusted Peer Access Layer (TPA)

Application Layer

Virtual Hierarchy Layer (VHL) Logical hierarchy layer.

CAs reside here.

Peer-to-peer layer.

The TPA uses TCP.

Figure 1: The protocol stack.

was to implement the virtual hierarchy algorithms
on top of that layer. The resulting protocol stack is
depicted in Figure 1.

Our prototype implements the VHL and the TPA.
The prototype version of the VHL contains a com-
mand line interface so that we don’t need to inte-
grate with a CA at this stage in development. The
peer access layer running inside of the IBM 4758s
is depicted as the TPA layer, and the algorithms
which construct and maintain the logical hierarchy
are shown as the VHL. The two layers are imple-
mented as separate processes, with the output of
the VHL being piped into the TPAL using standard
UNIX pipes.

Before we discuss the layers in detail, a simple ex-
ample will be useful in understanding the high level
operation and what we are trying to achieve. In the
following example, two machines A and B will con-
nect, negotiate a secret, and store on half of the se-
cret. This operation forms the root collective. Four
more machines will join the collective, and are able
to use the secret maintained by A and B. Then a
new collective will be formed by C and D, and the
hierarchy will grow. This is a simple example, but
will serve to familiarize the reader with the basic
concept.

3 Virtual Hierarchy Layer

From the highest level, the virtual hierarchy (i.e.
the logical hierarchy in the peer-to-peer network)

A B

TPA VHL

Step 1: Neither of the two machines hold any secrets, as denoted by the circle.

Step 2: A connects to B and they negotiate a secret. The two parties now each
 hold half of the secret, as denoted by the square. A collective is formed
 and a node is established in the virtual hierarchy.

A B N1

A B N1

 keys, as the maximum size of a collective for this example is six. Since the
 four new CAs are just using the key held by A and B, the virtual hierarchy
 remains unchanged.

Step 3: More nodes have joined the collective, although none are required to negotiate

A B

C D

N1

N2

Step 4: Machine D makes a connection to machine C, causing them to negotiate a
 new secret and each store half of it. This operation forms a new collective
 and a new node N2 in the virtual hierarchy.

Machine C is now in both collectives.

A B

C D

N1

N2

Step 5: Three CAs make connections to C and D, joining the new collective. Since a
 private key has already been established for that collective (held by C and D),

 unchanged.
 the new members do not need to negotiate one, and the virtual hierarchy remains

TPA VHL

is constructed by an algorithm that allows peer CAs
to establish a secure connection and negotiate a se-
cret which each of their communities may use as an
end-point in their trust chain. This trust root (ne-
gotiated secret) is then stored in fractional pieces
among the peers who negotiate it.

This leads us to make the following two claims:

Increased Resilience The result of this negotiation
produces a root “entity” whose role is distributed
among the n parties who are at a distance 1 (i.e.
directly connected) to one of the actors in the ne-
gotiation. This group of n parties is a collective.
The result of spreading pieces of the secret among
a group of peers alleviates the single point of failure
problem.

Increased Efficiency The result of this negotiation
produces a root “entity” whose role is to act as a
trust point for the n parties who are at a distance
1 to one of the actors in the negotiation. We will
show that this maintains a hierarchical trust struc-
ture similar to one which would be found in a phys-
ical hierarchy of CAs. Maintaining this hierarchy
allows trust calculations to be performed at an aver-
age of O(logV) time (again where V is the number
of CAs participating in the network).

It is important to realize that we make no claims that

we are achieving a more dynamic solution than the
status quo. If two CAs join in any of the traditional
architectures, the communities will require some
level of re-keying. Our approach requires some re-
keying as well.

3.1 Constraints

Our algorithm follows several rules that constrain
(and simplify) the problem.

In order to maintain the property that verification
may be done in O(logV), we design our algorithm
to maintain the invariant that there are no cycles in
the connection graph produced by the connection
network of CAs. These connections are accom-
plished using the protocol TPA Layer.

We maintain this invariant because if we were to
allow cycles at this layer, we would break the hier-
archical structure by transforming it from a tree into
a graph. Breaking the hierarchical structure would
have the following two implications:

First, to perform an efficient path verification algo-
rithm in this graph, the algorithm would need to
locate the shortest correct (i.e. matching the cer-
tificate chain) path. This would take longer than
O(logV) in the average case.

Second, any such algorithm would require state
to be maintained so that the shortest correct path
may be calculated without having to account for
the time it takes to discover the topology in real
time. This could be accomplished by implement-
ing a “smarter” routing algorithm in the TPA Layer
(e.g. reverse path forwarding [12]). Because we
maintain our no-cycle invariant, we can instead use
simple broadcasting. Alternative schemes that relax
this invariant are an area for future work.

In addition, our algorithm maintains simplifying
restrictions on the communication that occurs be-
tween two collectives. First, at least one collective
must be a root collective (the root node in some
virtual hierarchy). Without this restriction, intra-

collective connections would break the tree topol-
ogy. Second, nodes which hold a key for one col-
lective may not hold keys for another. This is done
by placing some restrictions on the caller. Allow-
ing nodes to hold keys for two collectives simulta-
neously forces that node to hold two separate trust
chains and it breaks the hierarchical constraints.

We considered having the algorithm maintain a bal-
ance invariant on the hierarchy (e.g., each opera-
tion would maintain some balance property in the
tree). However, this approach could result in large
changes in the topology when a single node joins
the network. We do make an assumption, however,
that the nodes join and leave the network in a ran-
dom fashion, resulting in a randomly built tree. It
can be shown that randomly built trees have a height
of O(logV), and a worse case height of V . (We
flag the possibilities of enforcing balance as future
work.)

Cryptography

Lastly, for ease of implementation, and for the sake
of reducing network traffic, we take the approach
that pieces of the negotiated secret are scattered
throughout the collective. Many cryptographic
techniques can enable this behavior. For simplic-
ity, we consider simple secret splitting [6]. When
a request is made to sign something, the key is
discovered by the host which received the request
by broadcasting to the collective and ordering the
pieces of the key. This is an ephemeral operation
in that the key is not stored at the host. Once the
operation has been performed, the host forgets the
key.

There are other cryptographic methods for accom-
plishing the same functionality, such as secret shar-
ing and threshold cryptography schemes [10]. For
purposes of this analysis and prototype, we assume
that the secret splitting is sufficiently representative.
We discuss implications of these other techniques
in Section 3.4.2, and plan to address these topics in
future work.

3.2 The Algorithms

The pseudocode procedures in the Pseudocode sec-
tion at the end of this paper maintain the invariants
put forth in our objectives. The client and server
actions (Figure 4 and Figure 5) guarantee the first
invariant by eliminating cycles in the topology. We
will show that the elimination of cycles is key to al-
low for efficient validation. They maintain the sec-
ond invariant by enforcing that parties which nego-
tiate a secret only store a fraction of it. This implies
that the secrets are distributed among members of
the collective.

The server action is responsible for accepting con-
nection requests, authenticating them, and deciding
whether the two parties need to negotiate a secret.
This decision is based on whether one of the parties
has a key fragment. The presence of such a frag-
ment in either party implies that at least one of the
parties belongs to an collective and the other one is
joining. The absence of a fragment implies that a
new secret must be negotiated, which in turn, im-
plies that a new collective is being formed.

The client action is called from an outside entity
(i.e. user code), and is essentially making the same
decision as above. The added burdens of avoiding
cycles and enforcing assumptions about communi-
cation between collectives belongs to this action.

The validation procedure’s sole responsibility is to
determine whether some trust chain it receives is
valid. This is done by traversing the list from the
front (trust point) to the rear, and validating each
node. The validation for any node is done by the
Verify call. If Verify is successful for every node in
the chain, then the validation procedure will return
true.

3.3 Explanation

The VHL enforces structural correctness and is re-
sponsible for verification. This was implemented as
a simple command line server which supports con-

necting to another node, viewing and exchanging
trust chains, and validating them. When the pro-
gram starts, it calls the AcceptConnections proce-
dure and the starts the interface. The output of the
commands are piped to the program which imple-
ments the TPA layer.

It should be noted that the viewing of trust chains is
not a feature of this layer, as these operations would
normally be located higher in the stack (i.e. in the
actual CA). Since we wanted a stand-alone appli-
cation instead of trying to merge our code with a
CA (for now) and having to build an entire PKI for
testing, we put this functionality in the prototype.

The following is a brief description of the major
sections of the prototype.

The Logic. The pseudocode functions Accept-
Connections, JoinNetwork, and Validate are in the
VHL. Logically, the VHL is responsible for main-
taining the tree topology as well as the other re-
strictions mentioned above. In order to accomplish
this, it must facilitate some communication facili-
ties other than those available via the TPA. These
facilities are used for sending data such as roots,
chains, and other variables, back and forth. We
did this with simple sockets for the prototype, al-
though something more secure (such as SSL) could
be used. What we wanted to avoid was placing this
traffic in the TPA, due to the lack of an intelligent
routing protocol (this is a feature, however).

The Interface. The interface is quite simple, sup-
porting only three commands:

1. Connect ipaddress attempts to establish a con-
nection with the machine at ipaddress. The
TPA layer attempts connection first, ensur-
ing mutual authentication and secure key ex-
change. If successful, a socket is established
to send and receive chains. Again, this socket
is implemented for our prototype only.

2. View prints the current chain variable to stdout.

3. Validate walks the chain and attempts to vali-
date it.

The Algorithms. Pseudocode implementations of
the algorithms are found in an appendix at the end
of this paper.

3.4 Analysis

In order to meet our claims of increased resilience
and efficiency, we need to show the following:

Structural Correctness The client and server ac-
tions maintain the negotiated secrets in a hierar-
chical, acyclic fashion. This is necessary to get
O(logV) average running times for the Validate
procedure. (We discuss this more in Section 3.4.1
below.)

Secret Distribution The functions maintain the
property that the secrets for each collective are dis-
tributed throughout the collective. (We discuss this
more in Section 3.4.2 below.)

3.4.1 Structural Correctness

The notion of structural correctness is used to show
that the client and server actions maintain the se-
crets in a hierarchical, acyclic topology.

The hierarchy is maintained in two ways. First, by
noting that the original two parties to connect form
the root collective. This is the code path on lines
28-35 in Figure 4, and lines 27-33 in Figure 5. As
additional nodes join one of these two nodes, they
are integrated into the collective as they are at a dis-
tance of one from one of the key-holders for the
collective.

As nodes make connections with collective mem-
bers which are not key holders, new collectives are
formed. Lines 34-40 in Figure 4 and 28-35 in Fig-
ure 5 represent the case where a caller is requesting
to start a new collective with a party which does not
belong to an already established collective. Lines
41-47 in Figure 4 and 36-42 in Figure 5 define the
case where the caller is requesting to start a new

collective. It is worth mentioning that a node which
does not belong to an collective is the root of an
collective which contains only itself.

Secondly, if there is a connection established be-
tween collectives, at least one of the collectives
must be a root collective. If this were not the case,
it would be possible for two leaf collectives to join,
resulting in every node in both trees to be reachable
from two different trust roots. This is exactly what
we are trying to avoid, as this is the type of situa-
tion which leads to validation algorithms having to
try multiple paths from an end point to a trust point.

Lines 41-47 in Figure 4 and 36-42 in Figure 5 are
executed when the caller is a member of a root col-
lective and Lines 48-58 in Figure 4 and 43-50 in
Figure 5 are executed when the caller is attempting
to join a root collective.

The algorithms maintain a topology which avoids
cycles. Each node in every collective maintains
a my root variable which is set to the root collec-
tive. This variable is managed to always contain
the node’s root collective. As nodes attempt to
make connections, they check this so as ensure that
they do not attempt to make connections with nodes
which already belong to the same tree (Line 7 in
Figure 5).

3.4.2 Secret Distribution

The client and server actions distribute the keys
across the collective in such a way that they can be
correctly reassembled, and used to sign statements
from the collective.

Splitting the private key into x pieces and re-
assembling them when the collective needs to sign
a statement does not invalidate the key. This tech-
nique is referred to as Secret Splitting [6], and for
our prototype, we let x = 2. There are formal algo-
rithms for this type of cryptosystem (e.g. Mediated
RSA), and emerging architectures which employ it
(e.g. Semi-trusted Mediators) [4].

The problem with this scheme is that we don’t man-
date redundancy of the key fragments. If Alice and
Bob each hold a fragment and Alice has a power
outage, the collective can no longer sign statements,
at least until a new key can be established (which in-
validates all the outstanding signed statements), or
Alice powers up again.

A better solution would be to allow multiple nodes
to key fragments, in an effort to produce a fair
amount of key redundancy in the collective. We
flag this for future work.

In opposition to ephemerally reassembling the key
and letting the result sign some statement, is to send
the statement around to each node holding a key
fragment. There are schemes such as secret shar-
ing and threshold cryptography which employ this
technique[10]. This requires a fair amount of ex-
tra traffic, as fragment holders are unknown, and
thus require a broadcast for each stage of operation.
This scheme would require broadcasting the state-
ment to be signed a number of times, so that the
node holding the first stage key fragment may per-
form the appropriate operation, then the node hold-
ing the second may operate on the result, and so on.

4 The Trusted Peer Access Layer

The TPA implements a protocol for trusted third
parties which allows them to communicate in a se-
cure fashion. By secure, we mean that all parties
mutually authenticate one another, and that all traf-
fic is encrypted by the trusted third party in such a
way that an intruder could not discover the plain-
text of the message — not even if the intruder is
host (that is, the computer which houses the card).
The protocol need only provide a decentralized
means to locate items stored among those partici-
pating in the network (e.g. Gnutella) [8].

Loosely, the TPA Layer is a peer access layer run-
ning in secure hardware (the IBM 4758 Secure Co-
processor). The protocol is implemented across two
communicating programs, one running on the host

and the other residing in the card.

The host code is responsible for 1) implementing
a command line interface which allows users (or
other programs) to issue commands, 2) connection
management between nodes over standard sockets,
and 3) handing the TCP payloads to the card for
processing and putting response packets from the
card onto a socket.

The card code is where the protocol’s packet pro-
cessing logic resides, as well as the routing tables
and secrets. The idea is that the card manufactures
outgoing packets, encrypts them using secrets ne-
gotiated by it and another coprocessor in the net-
work, and sends a chunk of cipher-text along with
a socket number to the host so that it may place the
cipher-text into a TCP payload and fire it to the in-
tended recipient. When a packet arrives, the host
program pulls the cipher-text out of the TCP packet
and sends it to the card for processing.

The following is a brief discussion of the four ma-
jor phases of development that drove our prototype
implementation.

Peer-to-Peer. Our first task was to evaluate exist-
ing true peer-to-peer protocols that allowed for dis-
tributed location without the aid of a central server
(like Napster). Gnutella was immediately appealing
due to its simplicity, community, and availability of
documentation and open source implementations.

It is important to understand what exactly Gnutella
is and what it is not. Gnutella is a protocol and noth-
ing more. In v0.4 (the base specification), Gnutella
defines five packet types (called descriptors), a for-
mat for headers, and six rules for routing. Gnutella
is only used to locate files across a network, trans-
fers are done out of band (usually over HTTP).

However, Gnutella is not an implementation of this
protocol. There are several implementations in ex-
istence, some of which add to the basic protocol,
but they implement at least the core functionality
described above [2].

We chose to use the core protocol as well as it

seemed to fit our needs (actually, the “Push” de-
scriptor type exceeds our needs, so we eliminated
it), and could help reduce our time to prototype.

Secure Hardware. The next task was to find a
fairly mature code base that implemented an open
source Gnutella servent (SERVer + cliENT). Our
constraints was that it should run on Linux, and
be command line driven in order that we may pipe
commands to it (something GUI based schemes
lack).

We chose Gnut v0.4.25 because it met our con-
straints, was well documented, and professionally
coded [1].

We then undertook the task of finding which pieces
of Gnut stayed on the host and which went to the
4758. As stated above, the socket management
code remained on the host, and the packet logic and
routing tables were ported to CP/Q++ (the native
OS of the 4758).

At the end of this phase, we were able to ob-
serve 4758-enabled machines store strings and us-
ing the command line interface, were able to let
other nodes locate them.

Adding Armor. In order to meet our definition of
resilience, we had to implement a protocol for au-
thentication and encryption, using the native cryp-
tographic services provided by the 4758.

First, we consider authentication. The first element
of our definition of resilience is that nodes must
have a way to mutually authenticate one another.
Bird et al. explain that nonce based protocols are
most secure, and since the 4758 provides a random
number generator, we decided to go this way. We
ended up implementing FIPS 196, which is essen-
tially the core of most authentication schemes used
in practice (e.g. Secure Sockets Layer) [13, 3].

Secondly, we consider encryption. Once nodes
have authenticated, the initiator sends four DES
keys generated by its 4758 to be used for further en-
cryption of all traffic between the two parties. Two
of the keys are for encrypting messages and the

other two are used for constructing a keyed Mes-
sage Authentication Code for each message. We
chose DES because it is fast.

The API. Lastly, in order to implement the algo-
rithm above, we made the TPA layer provides the
following primitives to higher layers:

1. The ability to place strings into secure storage
in the card. For our purposes, these strings will
be portions of cryptographic keys.

2. The ability to locate such strings on any ma-
chine which is participating in the network.

3. The ability to connect to other machines, au-
thenticate (to) them, and exchange crypto-
graphic secrets which will be used to encrypt
all further transmissions.

4. The ability to negotiate a shared secret with
another machine.

5 Current Status

We are currently in the process of implementing
the prototype. The TPA is lacking encryption sup-
port for all traffic. However, we do currently sup-
port authentication and are able to locate strings
(which would represent cryptographic keys) across
machines in the lab.

The design of the VHL is complete, and we are
in the process of writing the code. We have a
large amount of pseudocode that needs to be im-
plemented and tested. Once these tasks are com-
plete, we plan to make the code available for public
download.

6 Summary and Future Work

As it turns out, the result of this work has led to
many more questions. In its current state, we plan

to show proof of concept. As future work on this
project progresses, we plan to address some of the
questions that have been raised in order to evolve
the system past being just a proof of concept.

We are considering many ways to enhance the ar-
chitecture.

One direction is to examine data structures other
than trees. Balanced trees (e.g. AVL or Red-Black
trees), and directed acyclic graphs could possibly
lead to better solutions.

Another direction is to examine different routing
protocols in the TPA. Specifically, reverse path for-
warding or some other protocol which is a little
smarter than just broadcasting could be interesting.

Our current architecture uses secret splitting, but
(as mentioned) cryptography offers more advanced
tools. We plan to extending the prototype to use a
threshold cryptography scheme where the message
would travel around the collective to be operated
on instead of the key being reassembled at one ma-
chine. It may also be useful to merge this with an
actual CA and set up a PKI to further prove the con-
cept.

References

[1] Gnut documentation. www.gnutelliums.com/
linux unix/gnut/doc/gnut.html.

[2] The gnutella protocol specification v0.4.
http://www.clip2.com/GnutellaProtocol04.pdf.

[3] R. Bird, I. Gopal, A. Herzberg, P. Janson,
S. Kutten, R. Molva, and M. Yung. Systematic
design of a family of attack-resistant authenti-
cation protocols, September 1992.

[4] D. Boneh, X. Ding, G. Tsudik, and C. Wong.
A method for fast revocation of public key
certificates and security capabilities. In 10th
USENIX Security Symposium, pages 297–
308. USENIX, 2001.

[5] Y. Elley, A. Anderson, S. Hanna, S. Mullan,
R. Perlman, and S. Proctor. Building certifi-
cation paths: Forward vs. reverse. In Network
and Distributed System Symposium Confer-
ence Proceedings, 2001.

[6] H. Feistel. Cryptographic coding for data-
bank privacy. Technical Report RC 2827,
IBM Research, Mar 1970.

[7] R. Housley and T. Polk. Planning for PKI.
Wiley, 2001.

[8] D. Nicol, S. Smith, C. Hawblitzel, E. Feustel,
J. Marchesini, and B. Yee. Survivable trust for
critical infrastructure. In Internet2 Collabora-
tive Computing in Higher Education: Peer-to-
Peer and Beyond., 2002.

[9] T. Polk and N. Hastings. Bridge certification
authorities: Connecting b2b public key infras-
tructures. In PKI Forum Meeting Proceedings,
June 2000.

[10] G.J. Simmons. An introduction to shared se-
cret and/or shared control schemes and their
application. Contemporary Cryptology: The
Science of Information Integrity, pages 615–
630, 1992.

[11] S.W. Smith and S.H. Weingart. Building a
high-performance, programmable secure co-
processor. Computer Networks, 31:831–860,
April 1999. Special Issue on Computer Net-
work Security.

[12] Andrew Tanenbaum. Computer Networks.
Prentice Hall, third edition, 1996.

[13] U.S. Dept. of Commerce / National Institute
of Standards and Technology. Entity Au-
thentication Using Public Key Cryptography,
February 1997. FIPS PUB 196.

[14] Robin Wilson. Introduction to Graph Theory.
Addison Wesley, 1997.

Pseudocode

Each entity maintains the global variables listed in
Figure 2.

my root is used to store the root of this node’s
trust chain, represented as a signed statement issued
from the collective owning the “root” key.

my signature is used to hold the signature of col-
lective. This is useful in constructing and maintain-
ing the chain variable, as well as for determining if
parties belong to the same collective.

chain is a list of statements signed by the collec-
tives, which represent certificates in our prototype.
Each node in this list is a triple of the form

< root, signature n, public key n + 1 >

such that the public key contained in the nth cer-
tificate can be used to verifiy the next certificate in
the list. In the case where the node is the first in the
list, the public key may be used to verify the sig-
nature directly (i.e. the first node is a self signed
certificate), as well as the next one. The important
fact to note is that the order of this list maintains
the property that Validate can traverse the topol-
ogy suggested by this list efficiently. This is done
by carefully controlling how and where entries are
added to the list.

num connections is used to track the number of
current connections, which is vital in keeping the
number of nodes n in the collective below some
constant maximum. Otherwise, if n would get too
large, it will take longer than O(1) to reconstitute
the private key, as the broadcast to the collective
would get expensive. This implies that issuing a
certificate would be quite costly.

This was of little concern in our prototype, as we
did not have enough cards to test the boundaries of
Gnutella’s scalability. Furthermore, our prototype
did not issue actual certificates, it only maintained
the chain variable, which is only a representation of
a certificate chain.

have key is a boolean that determines whether the
node owns a key fragment.

Explanation of Auxiliary Functions

The functions described in this section are used by
the client and server actions, as well as the valida-
tion procedure. The boolean evaluation functions
were added in an effort to make the pseudocode as
mnemonic as possible.

SendConnectionRequest(ipaddress) sends a re-
quest to the TPA to establish a connection with the
machine residing at ipaddress. The TPA layer sends
the string “GNUTELLA CONNECT/0.4” per the
protocol specification. The 0.4 is the protocol ver-
sion number. If the servent is accepting connec-
tions, it responds with a random number generated
by the 4758, which then begins the FIPS 196 au-
thentication process.

Authenticate() polls the TPA layer to determine
whether the connection was completed. Successful
connection of two nodes in the TPA layer enforces
successful authentication.

SendMyHaveKeyWhenRequested() sets the layer
into a loop until 1) it receives a request for the value
of the have key boolean value, or 2) timeout occurs.

SendMyRootWhenRequested() sets the layer into
a loop until 1) it receives a request for the node’s
my root, or 2) timeout occurs.

SendMySignatureWhenRequested() sets the
layer into a loop until 1) a request for the
my signature variable is received, or 2) timeout
occurs.

SendMyChainWhenRequested() sets the layer
into a loop until 1) a request for the chain variable
is received, or 2) timeout occurs.

RequestHeHasKey() generates a request for the
value of the have key variable and sends it to the
machine on the other side of the connection estab-

lished in the client or server action.

RequestHisTrustRoot() generates a request for the
value of the my root variable and sends it to the con-
nected machine.

RequestHisSignature() generates a request for
value of the my signature variable and sends it to
the connected machine.

RequestHisChain() generates a request for the
chain variable and sends it to the connected ma-
chine.

NegotiateSecret(new root, public key) calls a
function in the TPA layer which initiates a key ne-
gotiation between the two parties. Once the key is
agreed upon, each party stores one half of this key
inside of the 4758. In actuality, a pair of the form:

< tag, key fragment >

pair is stored so that the key may be found by know-
ing only the tag. This function returns a message
signed by the negotiated key that may be used as
the value my root variable, as well as a public key.

MakeNewChainNode(root, signature, pub-
lic key) constructs the triple:

< root, signature n, public key n + 1 >

AppendChain(c) inserts the chain c into the back
of the local chain variable.

PrependChain(c) inserts the chain c into the front
of the local chain variable.

UpdateRootAndPrependChain(r, c) sends the
root r, and the chain c to all the connections except
the most recent one. This function is called in the
case when collectives are merging and the members
(as well as any subtrees) need to be informed of the
new root and chain information.

Verify(c) is the core of the validation algorithm. It
takes one entry in the chain variable (c), and at-
tempts to verify the signature using the public key

contained in the node c-1. In the case where Veri-
fying is working with the first certificate in the list,
the public key may be used to directly verify the
signature, as well as the signature of the next cer-
tificate.

NoOneHasKey() returns

(have key == false&&he has key == false)

DifferentColl() returns

(my signature! = his signature)

HeIsRootCollective() returns

(his root == his signature)

IAmRootCollective() returns

(my root == my signature)

1. my_root = 0
2. my_signature = 0
3. my_chain = 0
4. num_connections = 0
5. have_key = false

Figure 2: The global variables used in the following
procedures. (Note that we use value 0 as NULL: the
lack of an instance of this data type.)

Procedure Validate(Chain *c)
1. current = NULL;
2. if (c->first != NULL)
3. current = c->first
4. while (current != NULL)
5. {
6. success = Verify(current)
7. if (success == false)
8. return false
9. current = c->next
10. }
11. return true

Figure 3: Validation pseudocode.

Procedure AcceptConnections()
1. for(;;)
2. {
3. if (received_request && num_connections < MAX_CONNECTIONS)
4. {
6. SendMyRootWhenRequested(my_root)
7. SendMyHaveKeyWhenRequested(have_key)
8. SendMySignatureWhenRequester(my_signature)
9. he_has_key = RequestHeHasKey()
10. his_signature = RequestHisSignature()
11. if (have_key == false && he_has_key == true && my_root == 0)
12. {
13. his_root = RequestHisTrustRoot()
14. my_root = his_root
15. my_signature = his_signature
16. his_chain = RequestHisChain()
17. PrependChain(his_chain)
18. if (num_connections > 1)
19. UpdateRootAndPrependChain(my_root, my_signature, my_chain)
20. continue
21. }
22. else if (NoOneHasKey() || (DifferentColl() && his_signature != 0))
23. {
24. his_root = RequestHisTrustRoot()
25. NegotiateSecret(new_root, public_key)
26. have_key = true
27. if (his_root == 0 && my_root == 0)
28. {
29. my_root = new_root
30. my_signature = new_root
31. node = MakeNewChainNode(new_root, my_signature, public_key)
32. AppendChain(node)
33. }
34. else if (his_root != 0 && my_root == 0)
35. {
36. my_root = his_root
37. my_signature = new_root
38. his_chain = RequestHisChain()
39. AppendChain(his_chain)
40. }
41. else if (!IAmRootCollective() || HeIsRootCollective())
42. {
43. temp_signature = my_signature
44. my_signature = new_root
45. node = MakeNewChainNode(my_root, temp_signature, public_key)
46. AppendChain(node)
47. }
48. else
49. {
50. my_root = his_root
51. my_signature = new_root
52. his_chain = RequestHisChain()
53. DeleteChain(my_chain)
54. AppendChain(his_chain)
55. if (num_connections > 1)
56. UpdateRootAndPrependChain(my_root, my_signature, my_chain)
57. continue
58. }
59. }
60. SendMyChainWhenRequested()
61. }
62. }

Figure 4: Server Action pseudocode.

Procedure JoinNetwork(ipaddress)
1. SendConnectionRequest(ipaddress)
2. his_root = RequestHisTrustRoot()
3. he_has_key = RequestHeHasKey()
4. his_signature = RequestHisSignature()
5. SendMyHaveKeyWhenRequested(have_key)
6. SendMySignatureWhenRequested(my_signature)
7. if ((my_root != his_root || his_root == 0) &&
8. (!DifferentColl() || (NoOneHasKey() &&
9. (HeIsRootCollective() || IAmRootCollective())))
10. {
11. if (have_key == true && he_has_key == false && his_root == 0)
12. {
13. SendMyRootWhenRequested(my_root)
14. SendMyChainWhenRequested()
15. }
16. else if (NoOneHasKey() || (DifferenttColl() && my_signature != 0))
17. {
18. SendMyTrustRootWhenRequested(my_root)
19. NegotiateSecret(new_root, public_key)
20. have_key = true
21. if (his_root == 0 && my_root == 0)
22. {
23. my_root = new_root
24. my_signature = new_root
25. his_chain = RequestHisChain()
26. AppendChain(his_chain)
27. }
28. else if (his_root == 0 && my_root != 0)
29. {
30. temp_signature = my_signature
31. my_signature = new_root
32. node = MakeNewChainNode(my_root, temp_signature, public_key)
33. AppendChain(node)
34. SendMyChainWhenRequested()
35. }
36. else if (IAmRootCollective())
37. {
38. my_signature = new_root
39. his_chain = RequestHisChain()
40. DeleteChain(my_chain)
41. AppendChain(his_chain)
42. }
43. else if (HeIsRootCollective())
44. {
45. temp_signature = my_signature
46. my_signature = new_root
47. node = MakeNewChainNode(my_root, temp_signature, public_key)
48. AppendChain(node)
49. SendMyChainWhenRequested()
50. }
51. }
52. else
53. {
54. my_root = his_root
55. my_signature = his_signature
56. his_chain = RequestHisChain()
57. PrependChain(his_chain)
58. }
59. if (num_connections > 1)
60. UpdateRootAndPrependChain(my_root, my_signature, my_chain)
61. }
62. return

Figure 5: Client Action pseudocode.

	Virtual Hierarchies - An Architecture for Building and Maintaining Efficient and Resilient Trust Chains
	Dartmouth Digital Commons Citation

	tmp.1600464963.pdf.VDITw

