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Abstract

We consider shared memory systems in which asynchronous processes cooperate with each other
by communicating via shared data objects, such as counters, queues, stacks, and priority queues.
The common approach to implementing such shared objects is based on locking: To perform an
operation on a shared object, a process obtains a lock, accesses the object, and then releases
the lock. Locking, however, has several drawbacks, including convoying, priority inversion, and
deadlocks. Furthermore, lock-based implementations are not fault-tolerant: if a process crashes
while holding a lock, other processes can end up waiting forever for the lock.

Wait-free linearizable implementations were conceived to overcome most of the above draw-
backs of locking. A wait-free implementation guarantees that if a process repeatedly takes steps,
then its operation on the implemented data object will eventually complete, regardless of whether
other processes are slow, or fast, or have crashed.

In this thesis, we first present an efficient wait-free linearizable implementation of a class of
object types, called closed and closable types, and then prove time and space lower bounds on
wait-free linearizable implementations of another class of object types, called perturbable types.

• We present a wait-free linearizable implementation of n-process closed and closable types
(such as swap, fetch&add , fetch&multiply , and fetch&Φ, where Φ is any of the boolean
operations and , or , or complement) using registers that support load-link (LL) and store-
conditional (SC) as base objects.

The time complexity of the implementation grows linearly with contention, but is never
more than O(log2 n). We believe that this is the first implementation of a class of types (as
opposed to a specific type) to achieve a sub-linear time complexity.

• We prove linear time and space lower bounds on the wait-free linearizable implementations
of n-process perturbable types (such as increment, fetch&add, modulo k counter, LL/SC
bit, k-valued compare&swap (for any k ≥ n), single-writer snapshot) that use resettable
consensus and historyless objects (such as registers that support read and write) as base
objects.

This improves on some previously known Ω(
√

n) space complexity lower bounds. It also
shows the near space optimality of some known wait-free linearizable implementations.
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I had three pieces of limestone on my desk,
but I was terrified to find that they required to be dusted daily,
when the furniture of my mind was all undusted still,
and threw them out the window in disgust.

Henry David Thoreau
Walden

But often, in the world’s most crowded streets,
But often, in the din of strife,
There rises an unspeakable desire
After the knowledge of our buried life;
A thirst to spend our fire and restless force
In tracking out our true, original course;
A longing to inquire
Into the mystery of this heart which beats
So wild, so deep in us - to know
Whence our lives come and where they go.

Matthew Arnold
The Buried Life

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T.S. Eliot
Little Gidding
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Chapter 1

Introduction

1.1 Background

In an age of pervasive influence of the Internet on every aspect of the global society, the role of
distributed computation is greater than ever. With vast numbers of computers connected over
the Internet, algorithms that efficiently synchronize concurrent accesses to shared data resources
by widely dispersed computers will be increasingly important. This thesis studies such algorithms
in the more modest setting of shared memory systems.

A widely accepted method of synchronizing concurrent accesses of a data resource is by the
use of locks. A process that wants to access the data resource first acquires the lock; when the
process has completed using the data resource, it releases the lock. Since there is at most one
process holding the lock at any time, this approach enforces sequential, exclusive access to the
data resource. With this approach of lock-based synchronization, a process P has to wait for the
process Q that currently holds the lock to release the lock. The progress of P therefore depends
on the speed of Q. Furthermore, if Q crashes while holding the lock, P has no way of making
progress.

In this thesis, we study wait-free synchronization. In contrast to lock-based synchronization,
wait-free synchronization allows any process P to access a data resource without waiting for any
other process to perform any action. Consequently, the progress of P is completely independent
of the progress of any other process. Even if all other processes have crashed, P can still make
progress.

We explain below the model of computation, the basic concepts, and the terminology.

1.1.1 Shared Memory System

We consider a shared memory system, where n processes communicate through shared memory.
The system is asynchronous: There is no global clock that governs the speed of the processes in
the system. Therefore, a process may be arbitrarily fast, or slow, in taking steps to either access
shared memory, or perform local computation.

Shared registers in the memory support concurrent access by n processes. An operation on
a shared register is atomic, i.e. the operation appears to take effect at one instant in time, even
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though in reality it occupies a time interval, and may therefore overlap with other operations on
the same register.

A shared register supports read and write operations. In addition, depending on the architec-
ture, it may support some synchronization instructions, such as test&set, fetch&add, compare&swap,
LL (load-link) and SC (store-conditional).1

1.1.2 Shared Objects and their Implementation

In a shared memory system, processes need to access shared data structures, files and databases,
either in the course of their computation, or as a means of communicating and synchronizing with
other processes. Clearly, such shared objects are essential in such a system.

Shared objects include registers (which are usually implemented in hardware) and shared data
structures, such as queues, stacks, counters, heaps, files, databases (which must be implemented
in software). The type of a shared object O specifies O’s behavior when operations are applied
sequentially (without overlap) to O. Examples of types are: register supporting read and write;
register supporting compare&swap, read and write; queue; and counter.

The following are some examples of software implementations of shared objects: implement-
ing a shared queue, or a shared counter, using shared registers that support read, write and
compare&swap; implementing a shared register that supports read, write and compare&swap,
using shared registers that support read, write, LL and SC. The object being implemented is
called the implemented object. The shared objects used in the implementation are called base
objects.

1.1.3 Lock-based, Wait-free, and Nonblocking Implementation

The common approach to implementing shared data objects is based on locking: To perform an
operation on a shared object, a process obtains a lock, accesses the object, and then releases the
lock. Locking, however, has several drawbacks, including convoying (a descheduled process that
holds a lock causes other processes to wait), priority inversion (a low priority process holds a
lock needed by a high priority process, and the low priority process is preempted by a medium
priority process), and deadlocks (each of two processes waits for a lock currently held by the
other). Locking also limits parallelism: even when operations update disjoint parts of the data
structure, they are applied sequentially, one after the other. Finally, lock-based implementations
are not fault-tolerant: if a process crashes while holding a lock, other processes can end up waiting
forever for the lock.

Wait-free implementations were conceived to overcome most of the above drawbacks of locking
[Lam77, Her91]. A wait-free implementation guarantees that if a process repeatedly takes steps,
then its operation on the implemented data structure will eventually complete, regardless of
whether other processes are slow, fast, or have crashed. By definition, wait-free implementations
are free of convoying, priority inversion, deadlocks, and are also resilient to process crashes. A
weaker form of implementation, known as nonblocking implementation [Lam77], guarantees that
if a process P repeatedly takes steps, then the operation of some process (not necessarily P ) will

1These instructions are defined in Section 2.2.
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eventually complete. Thus, nonblocking implementations guarantee that the system as a whole
makes progress, but admit starvation of individual processes.

The locking and the lock-free (nonblocking/wait-free) approaches offer different trade-offs:
while lock-based implementations are susceptible to delays and lack fault-tolerance, lock-free
implementations tend to have higher latencies in practice. While lock-based implementations are
in widespread use in all computer systems, lock-free implementations hold great promise for the
future.

1.1.4 Linearizability

Whether implementations are lock-based or lock-free, they must ensure that concurrent operations
are linearizable, i.e. they appear to take effect in some serial order (no operation may see the
“partial effects” of another operation) [HW90]. Locking achieves this correctness condition by
explicitly serializing accesses to the data structure. Herlihy proved a fundamental result that this
correctness condition can also be achieved in wait-free implementations [Her91]. Specifically, he
presented a universal construction—an algorithm that transforms the sequential implementation
of any data structure into a wait-free implementation that multiple processes can concurrently
access.

1.1.5 Deterministic and Randomized Implementation

In a deterministic implementation of a shared object, the next step that a process takes is deter-
mined entirely by the current state of the system. On the other hand, in a randomized implemen-
tation of a shared object, the next step of a process may additionally depend on the outcome of
a random event, such as a coin toss.

1.2 Contributions of the Thesis

This thesis consists of two parts. In Part One, we present an efficient wait-free implementation
of a class of object types; In Part Two, we prove time and space lower bounds on wait-free
implementations of another class of object types. (A preliminary version of Part One appears in
[CJT98]. Part Two was first published in a preliminary version in [JTT96], and subsequently in a
journal [JTT00].) The following is a brief summary of our results. (In the following subsections,
we provide detailed descriptions of our contributions and their significance.)

• We identify a class of object types that we call closed types: Closed types include several
useful synchronization types, such as swap and fetch&add. We present a wait-free algorithm
that efficiently implements any closed type, with a polylogarithmic worst-case time com-
plexity. We believe that ours is the first wait-free algorithm that implements a class of types
(as opposed to algorithms that implement a specific type) to achieve a sub-linear worst-case
time complexity.

• We identify a class of object types that we call perturbable types: Perturbable types include
several well-known types, such as fetch&add, LL/SC bit and compare&swap. We prove a lin-
ear lower bound on both the space and time complexity of any wait-free implementation of
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a perturbable type, where such an implementation uses only historyless objects and consen-
sus objects. Our result improves on some previously known Ω(

√
n) space complexity lower

bounds. It also shows the near space-optimality of some known wait-free implementations.

1.2.1 A Polylog Time Wait-Free Construction for Closed Objects

In this section, we state our first result in detail. The design of wait-free implementations is intel-
lectually complex because of the need to simultaneously satisfy linearizability and wait-freedom.
Thus, it takes a great deal of effort to design an efficient wait-free implementation of every type
of useful shared object. To address this difficulty, Herlihy proposed the notion of a universal con-
struction, which we briefly describe below [Her91]. Universal constructions have since received a
lot of research attention [ADT95, AMTT97, AM95a, AM95b, AD96, Bar93, Her88, Her91, Her93,
IR94, JT92, Moi97b, Plo89, ST95, TSP92].

An n-process universal construction is an algorithm that takes as parameter the transition
function of any type,2 and has the following interesting property: if the parameter is bound to
the transition function of any type T , the algorithm becomes a wait-free implementation of a
type T object that can be accessed concurrently by n processes [Her91]. Thus, once we have an
efficient universal construction U , any type of shared object can be efficiently implemented simply
by passing the right parameter to U .

Unfortunately, the worst-case time complexity of every existing n-process universal construc-
tion is Ω(n). In fact, for a fairly large class of universal constructions, namely, oblivious universal
constructions,3 Ω(n) is a lower bound on the worst-case time complexity: to complete a single
operation on any shared object implemented using any oblivious universal construction, in the
worst case a process must perform Ω(n) local computation [Jay98a].

Since universal constructions with sub-linear time complexity do not seem possible, it is natural
to seek a sub-linear time “semi-universal” construction that can implement a large class of types
(as opposed to all types). We present such a construction in this thesis. Our contribution is
described in the next subsection.

1.2.1.1 Our Contribution

We present a construction that implements a large class of types, which we call closed types.
Informally, a type is closed if, for every pair (op′, op′′) of operations of the type, there is another
operation op of the type such that executing op has the same effect on the state as executing op ′ fol-
lowed by op′′. For example, the type supporting write and fetch&add operations is closed because
(1) fetch&add(a) and fetch&add(b) combine to fetch&add(a + b), (2) write(a) and fetch&add(b)
combine to write(a + b), and (3) for any operation op, op and write(b) combine to write(b). We
will give many more examples of closed types in Chapter 3. The highlight of our construction is
that it has a polylogarithmic worst-case time complexity and is also adaptive, as described below.

2For each state s and operation op, the transition function defines the response and the new state that result
from applying op in state s.

3Roughly speaking, a universal construction is oblivious if it does not exploit the structure of the transition
function that its parameter is bound to (by, for instance, providing different implementations for different classes
of transition functions).
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Let O be a shared object implemented using our construction. The contention (on O) at
time t is the number of operations executing on O at time t. Let op denote an execution of an
operation on O. The contention experienced by op is the maximum contention during the interval
in which op executed. If n is the maximum number of processes that the construction is designed
for and nc is the contention experienced by op, our construction guarantees that op terminates
in O(min(nc, log

2 n)) steps. Thus, when contention is low, the time complexity depends only on
the actual number nc of processes contending simultaneously, rather than the maximum number
n of processes that the construction is designed to handle. (Such constructions where the time
complexity depends on contention, and not on n, are known as adaptive constructions [ADT95].)
Furthermore, at all levels of contention, the time complexity is bounded by a small value, namely,
O(log2 n).

Jayanti characterized a class of types and proved a lower bound of Ω(log n) on the worst-case
time complexity of any implementation of a type from that class [Jay98b]. That class, it turns out,
contains some closed types. It follows that the worst-case time complexity of O(log2 n) achieved
by our construction is within a logarithmic factor of the optimal.

To the best of our knowledge, if we consider constructions that can implement a class of types
(as opposed to constructions that implement one specific type), this is the first time that the
linear time barrier has been broken for the worst-case time complexity.

1.2.1.2 Hardware support

Our construction assumes that LL and SC operations can be performed on shared memory words.4

Real machines do not directly support LL and SC operations, but this is not a problem because
there are constant time implementations [Moi97a, JP03] of LL/SC operations from hardware op-
erations supported by modern architectures, specifically the compare&swap operation supported
by UltraSPARC [WG] and Itanium [Int02] and the “realistic LL/SC” operations (weak LL/SC
operations, with spurious failures) supported by POWER4 [TDF+01], MIPS [Sys02] and Alpha
[Sit92]).

1.2.2 Time and Space Lower Bounds for Nonblocking Implementations

In this section, we state our second result in detail. Nonblocking and wait-free implementations of
shared objects have been the subject of much research. While there have been several results on
when such implementations are feasible and when they are not, results establishing their intrinsic
time and space requirements are relatively scarce, especially for randomized implementations. In
this thesis, we present a technique by which one can obtain a linear lower bound on the space
complexity of several randomized nonblocking implementations. The technique also yields a linear
lower bound on the time complexity of several deterministic nonblocking implementations.

Specifically, our results are as follows. Let I be any randomized nonblocking n-process imple-
mentation of any object in set A from any combination of objects in set B, where A = {increment,
fetch&add, modulo k counter (for any k ≥ 2n), LL/SC bit, k-valued compare&swap (for any
k ≥ n), single-writer snapshot}, and B = {resettable consensus} ∪ {historyless objects}. (Roughly

4Since closed types include some universal types (see Example 5 of Section 2.3), a construction such as ours that
implements closed types will necessarily require support for universal instructions, such as LL and SC.
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speaking, an object is historyless if each of its operations either does not affect the state of the ob-
ject or overwrites the previously applied operations. Examples include registers, test&set objects,
and swap registers.) The space complexity of I is at least n − 1. Moreover, if I is deterministic,
both its time and space complexity are at least n − 1. These lower bounds hold even if objects
used in the implementation are of unbounded size.

Some of our lower bounds improve known lower bounds, while others are completely new.
In particular, Fich, Herlihy & Shavit proved a Ω(

√
n) space complexity lower bound for a

randomized nonblocking n-process implementation of binary consensus from historyless objects
[FHS93, FHS98]. Using this result, they showed that any randomized nonblocking n-process imple-
mentation of compare&swap, or fetch&add , or bounded-counter from historyless objects requires
Ω(

√
n) instances of such objects. Our results on compare&swap, fetch&add , and bounded-counter

are stronger in two ways: (i) we show that at least n − 1 objects are necessary, and (ii) we show
that n − 1 objects are needed even if the implementation is free to use resettable consensus ob-
jects, besides the historyless objects allowed by [FHS93, FHS98]. On the other hand, our lower
bound technique applies only to implementations of “multiple-use” objects in which each process
can access the implemented object many times. In contrast, the technique of Fich, Herlihy, and
Shavit applies even to implementations of “single-use” objects. Thus, our proof technique does
not (and cannot) improve on the main result of Fich, Herlihy & Shavit, namely, their Ω(

√
n)

space complexity lower bound for a randomized nonblocking n-process implementation of binary
consensus.

Our result also implies that the following deterministic implementations in the literature are
almost space-optimal.

1. Afek et al. give two wait-free implementations of a single writer snapshot object consisting
of n segments, each one written by a different process: one from unbounded registers and
one from bounded registers [AWW93]. The one that uses unbounded registers is of space
complexity n. We prove a lower bound of n − 1.

2. Aspnes gives a wait-free implementation of an n-process bounded-counter from a single
instance of a single writer snapshot object [Asp90]. Combined with the above result of Afek
et al., this implies that bounded-counter can be implemented from n unbounded registers.
We prove that at least n− 1 registers are necessary when the bounded-counter is a modulo
k counter, where k ≥ 2n.

In both cases above, the lower bound of n − 1 is particularly appealing because it applies to
even randomized nonblocking implementations while the upper bound of n holds for deterministic
wait-free implementations.

In fact, the lower bounds proved here (and the lower bounds in [FHS93, FHS98]) apply not just
to nonblocking implementations, but to any implementation satisfying a weaker progress condition
called solo-termination, defined in [FHS98]. Roughly speaking, a deterministic implementation
is solo-terminating if at every configuration C in a system execution the following holds for all
processes p: if p runs alone from C, p’s operation on the implemented object will eventually
complete. For a randomized implementation to be considered solo-terminating we require that
for all C and p, if p runs alone from C there is at least one sequence of outcomes for p’s coin
tosses that will enable p to complete its operation on the implemented object.
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It is well-known that a wait-free implementation is also nonblocking. It is clear that a non-
blocking implementation is also solo-terminating. Thus, the lower bounds that we prove here for
solo-terminating implementations apply also to nonblocking and wait-free implementations.

There is a large body of research on algorithms for synchronous parallel computers (such
as the PRAM model, the mesh, perfect shuffle and hypercube architectures) that has resulted
in many algorithms whose time complexity is polylogarithmic in the number of processors. In
contrast, for the asynchronous model of computing, wait-free algorithms of polylog complexity are
rare ([Cha96, Aum97] and the algorithm in Part One of this thesis ([CJT98]) are some notable
exceptions). In fact, our lower bound implies that for deterministic wait-free implementations
of many common objects from certain base objects, there are no algorithms of sub-linear time
complexity, let alone polylog complexity.

Our proof technique for the lower bounds is general in that we have successfully applied
it to implementations of a variety of objects. The technique is also interesting because (i) it
simultaneously yields a lower bound on time and space complexities of implementations, (ii) the
lower bound on space complexity holds even for randomized implementations, and (iii) the lower
bounds apply not just to nonblocking or wait-free implementations, but to any implementation
satisfying the weaker solo-termination progress condition.

1.3 Organization of the Thesis

The model of computation is presented in Chapter 2.
Part One of this thesis consists of three chapters: Chapter 3 presents an unbounded implemen-

tation of closed objects that requires unbounded shared memory. Chapter 4 presents a bounded
implementation, based on the unbounded implementation. Chapter 5 describes the enhancement
to the bounded implementation that is needed to make its time complexity contention-sensitive.

Part Two of the thesis is in Chapter 6, where we prove the lower bounds on nonblocking and
wait-free implementations of perturbable objects.
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Chapter 2

Model

In this chapter, we define the model of computation and the shared object types that we encounter
in this thesis.

2.1 Object Type

An object type T is a tuple (OP ,RES , Q, δstate, δresp), where OP is a set of operations, RES is a
set of responses, Q is a set of states, δstate : Q×OP → Q is a state transition function, and δresp :
Q × OP → RES is a response function. Informally, if δstate(σ, op) = σ′ and δresp(σ, op) = res,
applying operation op to an object in state σ causes the object to move to state σ ′ and return the
response res. (δstate, δresp) is known as the sequential specification of type T .

2.2 Common Object Types

We provide the definitions of some common object types below.

2.2.1 Test&Set

A test&set object O is a bit that supports two operations: test&set and reset. The operation
test&set sets the state to 1, and returns the old state of O. The operation reset sets the state to
0, and returns ack.

2.2.2 Swap

A swap object O is a register that supports read and swap. The operation read has the standard
semantics. We now define swap (u). Let the old state of O be w, then swap (u) causes the new
state to become u, and returns w.

2.2.3 Compare&Swap

A compare&swap object O is a register that supports read, write, and compare&swap. The
operations read and write have the standard semantics. We now define compare&swap (u, v). If
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the old state of O is u, then the new state after compare&swap (u, v) is v, and the operation
returns true. If the old state of O is not u, then the state after compare&swap (u, v) is unchanged,
and the operation returns false.

2.2.4 Fetch&Add

A fetch&add object O is a register that supports read, write, and fetch&add. The operations read
and write have the standard semantics. We now define fetch&add (a). If the old state of O is x,
then the new state after fetch&add (a) is x + a, and the operation returns x.

2.2.5 Increment

An increment object is a restricted form of a fetch&add object that supports only read, write, and
fetch&add (1).

2.2.6 Fetch&Multiply

A fetch&multiply object O is a register that supports read, write, and fetch&multiply. The oper-
ations read and write have the standard semantics. We now define fetch&multiply (a). If the old
state of O is x, then the new state after fetch&multiply (a) is x× a, and the operation returns x.

2.2.7 Fetch&Φ

A fetch&Φ object O is a register that supports read, write, and fetch&Φ, where Φ is the logical
and , or , or complement . The operations read and write have the standard semantics. Let the old
state of O be x. fetch&and (a) causes the new state to become x ∧ a (bitwise conjunction), and
returns x. fetch&or (a) causes the new state to become x∨a (bitwise disjunction), and returns x.
fetch&complement causes the new state to become the bitwise complement of x, and returns x.

2.2.8 LL, SC, and VL

Our construction for closed objects (in Part One) uses shared registers that support LL, SC, VL,
read and write as base objects. The formal specification of such a register r is given in Figure 2.1.
We now describe the behavior of r. The state of r is a pair (value(r), Pset(r)), where value(r)
is the value of the register r, and Pset(r) is a set of processes to be defined shortly. An update
to value(r) takes place whenever an operation writes successfully to r. Thus, it is possible that
an update to value(r) does not change the value of r. Pset(r) is the set of processes that have
executed a LL operation on r since the most recent update to value(r).

Suppose pi executes LL(r) when value(r)=x, Pset(r) = S. Then, after LL(r), value(r)=x,
Pset(r)=S ∪ {P}, and x is the value returned.

Suppose pi executes VL(r) when value(r)=x, Pset(r) = S. VL(r) does not change the state
of r. VL(r) returns true if P ∈ S, and returns false otherwise. Thus, VL(r) indicates whether
value(r) has been updated since pi’s most recent LL(r).

Suppose pi executes SC(r, v) when value(r)=x, Pset(r) = S. The operation SC(r, v) succeeds
if P ∈ S; otherwise, SC(r, v) fails. (SC(r, v) succeeds if value(r) has not been updated since pi’s
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LL(r) SC(r, v) read(r)

Pset(r) := Pset(r) ∪ {pi} if pi ∈ Pset(r) return value(r)
return value(r) value(r) := v

Pset(r) := ∅ write(r, v)

VL(r) return true value(r) := v

if pi ∈ Pset(r) return true else return false Pset(r) := ∅
else return false

Figure 2.1: Specification of register r supporting {LL, SC, VL, read, write} by process pi (1 ≤ i ≤ n)

most recent LL(r); SC(r, v) fails otherwise.) If SC(r, v) succeeds, then the new state of r is (v, ∅),
i.e. the new value of r is v, and Pset(r) is set to ∅ (because value(r) has just been updated). A
successful SC(r, v) returns true. If SC(r, v) fails, then the state of r is unchanged, and SC(r, v)
returns false.

A write operation write(r, v), or equivalently, r := v, changes the state of r to (v, ∅), i.e. the
new value of r is v, and Pset(r) is set to ∅ (because value(r) has just been updated). A read
operation on r does not change the state of r, and returns value(r).

2.2.9 Resettable Consensus

We now define the type resettable consensus. The state of O is either ⊥ or a natural number.
O supports three operations: propose v, where v is a natural number, read, and reset. read simply
returns the current state of O, leaving the state unchanged. reset sets the state of O to ⊥, and
returns ack. The behavior of O when propose v is applied depends on the old state of O: If the
old state is ⊥, the new state becomes v, and v is returned. If the old state is u (some natural
number), then the state is unchanged, and u is returned. (In either case, the value returned is
the first value to be proposed after the most recent reset.)

Formally, the type resettable consensus is (OP,RES, Q, δstate, δresp), where

• OP = {read, reset} ∪ {propose v | v ∈ N}, where N is the set of natural numbers

• RES = N ∪ {ack},

• Q = N ∪ {⊥}

• δstate, δresp are as follows:

– For all u ∈ Q, δstate(u, read) = u, δresp(u, read) = u;

– For all u ∈ Q, δstate(u, reset) = ⊥, δresp(u, reset) = ack;

– δstate(⊥,propose v) = v, δresp(⊥,propose v) = v;

– For all u ∈ N , δstate(u,propose v) = u, δresp(u,propose v) = u.
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Resettable consensus was first defined by Herlihy [Her88, Her91], but included only the propose
and reset operations. We added the read operation to make our lower bound result stronger. Our
definition of resettable consensus is similar to the sticky bit defined by Plotkin [Plo89].

2.3 Closed and Closable Types

We say that operations op′ and op′′ combine to op, denoted by op′
⊗

op′′ = op, if for all s ∈ Q we
have δstate(s, op) = δstate(δstate(s, op

′), op′′). That is, from any state s, applying op results in the
same state as first applying op′ and then applying op′′. (There is no constraint on δresp(s, op).)
We note that

⊗
is associative: (op1

⊗
op2)

⊗
op3 = op1

⊗
(op2

⊗
op3). The type T is closed if,

for all ordered pairs (op′, op′′) ∈ OP × OP , there exists op ∈ OP such that op′
⊗

op′′ = op.
We restrict our focus to closed types for which the functions δstate, δresp, and

⊗
can be

computed in O(1) time, and a state or an operation can be stored in a small constant number of
machine words.

A type T ′ = (OP ′, RES′, Q′, δ′state, δ
′
resp) is a super type of T = (OP ,RES , Q, δstate, δresp) if

OP ′ ⊇ OP,RES′ ⊇ RES,Q′ ⊇ Q and, for all (s, op) ∈ Q×OP , we have δ ′state(s, op) = δstate(s, op)
and δ′resp(s, op) = δresp(s, op). A type T = (OP ,RES , Q, δstate, δresp) is closable if it has a closed
super type T ′ = (OP ′, RES′, Q′, δ′state, δ

′
resp) of T . Each operation in OP ′−OP is called a closing

operation of T .
Notice that whenever a shared object of a closable type T is desired, one can instead implement

a shared object of a closed super type of T . Thus, the construction presented in this paper for
closed types, is also good for implementing closable types. The following are examples of closed
or closable types (some examples are taken from [KRS86]):

1. The test&set object is clearly closed.

2. The type supporting swap and read operations is trivially closed.

3. The type supporting fetch&add (F&A), read , and write operations is closed, as verified
below:

• F&A(a)
⊗

F&A(b) = F&A(a + b)

• write(a)
⊗

F&A(b) = write(a + b)

• For any operation op, op
⊗

write(a) = write(a)

• For any operation op, op
⊗

read = read
⊗

op = op

4. Consider the type supporting read and all of the operations in the fetch&Φ family, where Φ
is the logical and , or , or complement .

We claim that the above type is closable: to close the type, add the operation closing-
op(a, b, f), where the arguments a and b are bit vectors (of the same length as the state)
and f is a boolean. This operation changes the current state x as follows: if f is false, the
new state is (a ∧ x) ∨ b; otherwise the new state is (a ∧ x) ∨ b, where ∧ and ∨ are bitwise
logical operations, and x is the bitwise complement of x.
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To see that this type is closed, we first observe that, with respect to the resulting state,
fetch&and, fetch&or , and fetch&complement are all instances of closing-op(a, b, f). For ex-
ample, fetch&and(c) = closing-op(c, 0, false), where 0 is the vector 00...00. It suffices there-
fore to show that two closing-ops combine to a closing-op. Since a closing-op consists of three
component logical operations: complement (optional, depending on the third parameter of
the closing-op), and , and or , we need to show only that closing-op(a, b, f)

⊗
fetch&and(c),

closing-op(a, b, f)
⊗

fetch&or(c), closing-op(a, b, f)
⊗

fetch&complement are closing-ops. This
is indeed the case, as shown by the following easily verified facts:

• closing-op(a, b, f)
⊗

fetch&and(c) = closing-op(a ∧ c, b ∧ c, f)

• closing-op(a, b, f)
⊗

fetch&or(c) = closing-op(a, b ∨ c, f)

• closing-op(a, b, f)
⊗

fetch&complement = closing-op(b, a ∨ b, f)

With these facts, we see that an object that supports read and all of the operations in the
fetch&Φ family is indeed closable.

5. The type supporting all of read , swap, fetch&add and fetch&multiply . Here again we close
the type by adding the operation closing-op(a, b) which, when applied in state x, changes
the state to ax + b. We note that, with respect to the resulting state, fetch&add and
fetch&multiply are instances of closing-op(a, b). With this closing-op, the type is closed, as
verified below:

• closing-op(a, b)
⊗

closing-op(c, d)= closing-op(ac, bc + d)

• swap(a)
⊗

closing-op(c, d)= swap(ac + d)

• For any operation op, op
⊗

swap(a) = swap(a)

• For any operation op, op
⊗

read = read
⊗

op = op

6. The type whose state consists of a pair of values (x, y), and supports the following operations
(for each operation, the state immediately before the operation is assumed to be (x, y)):
move1 changes state to (x, x), move2 changes state to (y, y), swap changes state to (y, x),
write1(z) changes state to (z, y), write 2(z) changes state to (x, z), write(z, z ′) changes state
to (z, z′), and read returns (x, y).

We define the following closing-op(l, r), where the value of l, and r is either X, Y , (X,Y are
special symbols), or some valid value v. Let the state of the object before closing-op(l, r) be
(x, y). Let v be a valid value. Then, the state of the object after closing-op(l, r) is defined
as follows: (* denotes that the component is not defined.)

• the state of the object after closing-op(X, ∗) is (x, ∗).
• the state of the object after closing-op(∗, X) is (∗, x).

• the state of the object after closing-op(Y, ∗) is (y, ∗).
• the state of the object after closing-op(∗, Y ) is (∗, y).

• the state of the object after closing-op(v, ∗) is (v, ∗).
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• the state of the object after closing-op(∗, v) is (∗, v).

It is easy to verify that all the operations, such as move1, write1, are instances of closing-
op(l, r). The rules for combining two closing-ops are:

• closing-op(e, f)
⊗

closing-op(X, ∗) =closing-op(e, ∗).
• closing-op(e, f)

⊗
closing-op(∗, X) =closing-op(∗, e).

• closing-op(e, f)
⊗

closing-op(Y, ∗) =closing-op(f, ∗).
• closing-op(e, f)

⊗
closing-op(∗, Y ) =closing-op(∗, f).

• closing-op(e, f)
⊗

closing-op(v, ∗) =closing-op(v, ∗).
• closing-op(e, f)

⊗
closing-op(∗, v) =closing-op(∗, v).

Therefore, our type is closable. Unlike previous examples, this type is universal [Her91]. 1

Thus, there is a lot of variety among closed and closable types: there are commutative,
overwriting, non-commutative and non-overwriting, and universal types. Further, as the examples
have shown, this class includes many commonly used synchronization objects. Our construction
implements all of these in polylog time.

2.4 Historyless Types

Let op(σ) denote δstate(σ, op). The following definitions are from Fich et al [FHS98]. An operation
op is trivial if its application does not affect the state; that is, for all states σ, op(σ) = σ. Operation
op′ overwrites operation op if applying op and then op′ results in the same state as simply applying
op′; more precisely, for all states σ, op′(op(σ)) = op′(σ). A type is historyless if all its nontrivial
operations overwrite one another. A test&set object, and a register that supports read, write and
swap are examples of historyless types.

Proposition 1 For a historyless type, the following statements are true:

1. For all states σ, nontrivial operations opk and finite sequences opk−1 · · · op1 of operations,
opk(opk−1(· · · op1(σ) · · ·)) = opk(σ).

2. For all states σ and finite sequences opkopk−1 · · · op1 of trivial operations,
opk(opk−1(· · · op1(σ) · · ·)) = σ.

Proof By a simple induction on the length of the operation sequence. 2

1Universal types are defined in Section 2.7.
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2.5 Implementation

A randomized implementation is specified by the following elements:

• the type and the initial state of the implemented object O (the initial state of O is a state
of its type).

• a set of objects O1, . . . , Om from which O is implemented, their types and their initial states.

• a set of processes p1, p2, . . . , pn that may access O. (For notational convenience, the processes
are named 0, 1, . . . , n − 1, instead of p1, p2, . . . , pn, in Part One of this thesis.)

• a set of randomized access procedures apply(pi, op,O), for 1 ≤ i ≤ n and op ∈ OP, where
OP is the set of operations associated with the type of O.

The access procedure apply(pi, op,O) specifies how pi should execute the operation op on O
in terms of operations on O1, . . . , Om. The value returned by the procedure is deemed to be
the response from O. We call O1, . . . , Om the base objects of the implementation. The space
complexity of the implementation is m.

We consider a system that consists of processes p1, . . . , pn and an implemented object O that
p1, . . . , pn may access. We denote such a system by (p1, . . . , pn;O). Each pi has a set of states
and has a distinguished input variable op-list i. This variable is an infinite sequence of operations
op1, op2, . . . where each opj is an operation supported by O. 2 Each pi performs the following
actions repeatedly forever: obtain the next operation op from op-list i and execute the access
procedure apply(pi, op,O) until it returns.

Let coinspace be a non-empty countable set of all possible outcomes of a coin toss, where
the probability of each outcome in the set is non-zero, and the sum of the probabilities of all
outcomes is one. The state of pi consists of a pointer to the operation op in op-list i that pi

is currently executing on O, its program counter (i.e. the Line of apply(pi, op,O) that it is
executing), and the values of pi’s local registers (as specified by apply(pi, op,O)). Process pi

executes apply(pi, op,O) in steps. Each step consists of the following sequence of actions, all of
which occur together atomically:

• pi tosses a coin. (All coin tosses are independent.) Let toss-outcome ∈ coinspace denote
the outcome of this toss.

• toss-outcome and pi’s current state uniquely determine an operation oper and a base object
Oj that oper should be applied to. Accordingly, pi performs some local computations, then
applies oper to Oj .

• Oj changes state and returns a response. The new state of Oj and the response are uniquely
determined by the sequential specification of Oj.

2op-list i or a finite prefix of op-list i is the sequence of operations that pi applies on O. The sequence of operations
that pi applies on O may be decided by pi dynamically (i.e. it does not need to be fixed during initialization).
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• The response from Oj , together with toss-outcome and pi’s current state, uniquely determine
the local computations that pi now performs, and the new state of pi after these local
computations. It is possible for the procedure apply(pi, op,O) to terminate, returning some
response. In this case, the new state of pi reflects both the fact that the access procedure
terminated and the response returned by the access procedure. Further, pi’s step enabled
from this state corresponds to the first step of the access procedure apply(pi, op

′,O), where
op′ is the operation that immediately follows op in op-listi.

Thus, in one step, a process applies one operation on a base object, and performs some number
of local computations.

A deterministic implementation is a special case of a randomized implementation for which
coinspace, the set of possible outcomes for a coin toss, is a singleton set.

A configuration of (p1, . . . , pn;O) is a tuple (σ1, . . . , σn, rem1, . . . , remn, τ1, . . . , τm), where σi is
a state of pi, rem i is a suffix of op-list i (and corresponds to the infinite sequence of operations that
pi is yet to initiate on O), and τj is a state of base object Oj . We note that the implementation
specifies a unique initial state for each base object and a unique initial state for each process
pi. It follows that the initial configuration is uniquely determined by an assignment of infinite
sequences of operations to the input variables op-list i (1 ≤ i ≤ n). An execution fragment from
configuration C0 of (p1, . . . , pn;O) is a finite or infinite sequence C0, C1, C2, . . . of configurations
such that, for all k ≥ 0, Ck+1 is the configuration that results when some process performs a step
in configuration Ck. An execution, or a run, is an execution fragment from an initial configuration.

A schedule is a finite or an infinite sequence [pi1 , t1], [pi2 , t2], . . . where each pij is from {p1, . . . , pn}
and each tj is from coinspace. If C is a configuration and α = [pi1 , t1], [pi2 , t2], . . . is a schedule,
exec(C,α) denotes the execution fragment C0, C1, C2, . . . where C = C0 and each Ck results from
Ck−1 when pik takes a step in which the outcome of pik ’s toss is tk. A configuration C is reachable
if there is some initial configuration C0 and a finite schedule α such that the configuration at the
end of exec(C0, α) is C.

An implementation is correct if it has two properties—linearizability (safety property) and a
liveness property (wait-freedom in Part One, solo-termination in Part Two). These properties are
described next.

2.6 Linearizability

Let O be an implemented object shared by processes p1, . . . , pn. Consider an execution E of
(p1, . . . , pn;O) in which process pi applies operation op on O, i.e., pi invokes the procedure
apply(pi, op,O). We say that op is complete in E if the procedure apply(pi, op,O) terminates in
E. We say that op is incomplete in E if apply(pi, op,O) does not terminate in E. An execution
E of (p1, . . . , pn;O) is linearizable if there exists a set S of all the complete operations and some
(possibly all) of the incomplete operations in E, such that:

• for every operation op (say) by process pi (say) in S, the operation appears to take effect
at some instant during the execution of apply(pi, op,O) (in other words, operations in S
appear atomic).
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• no other operation takes effect.

The implementation of O is linearizable if every execution of (p1, . . . , pn;O) is linearizable.
The order in which the operations in S take effect is called the linearization order.

2.7 Wait-freedom

An implementation whose access procedures never terminate is trivially linearizable. Such an
implementation, however, is not likely to be useful. Thus, in addition to linearizability, imple-
mentations should guarantee certain progress properties. Wait-freedom and nonblockingness are
the progress conditions that received the most attention recently [HS93]. In this thesis, we present
only deterministic (and no randomized) wait-free algorithms. Thus, we define wait-freedom here
in the restricted context of deterministic algorithms.

An implementation of object O is wait-free if the following holds: Let E be any execution in
which process pi takes infinitely many steps. Then every operation by pi in E is complete.

A type T is universal [Her91] if it is possible to implement, wait-freely and deterministically,
an object of any type using only registers that support read and write, and objects of type T .

2.8 Solo-termination

In Part Two, we consider a progress property for a randomized implementation that is weaker
than wait-freedom and nonblockingness: it is called solo-termination, first defined in [FHS98].
An implementation has the solo-termination property if for each reachable configuration C and
each process p the following holds: if p runs alone from configuration C, then there is at least
one sequence of outcomes for p’s coin tosses that will enable p to complete an operation on
the implemented object. More precisely, a randomized implementation of O is solo-terminating
if, for all reachable configurations C and all processes pi, there is some finite schedule α =
[pi, t1], [pi, t2], . . . , [pi, tk] such that pi completes an operation on O during exec(C,α). (Since the
probability of each tj is non-zero by definition, there is a non-zero probability of pi completing an
operation on O when pi runs alone from C.)

The lower bounds proved in Part Two apply to solo-terminating (and therefore to nonblocking
and wait-free) implementations.

2.9 Notation

For a schedule α, |α| denotes its length. We say α contains process p if, for some t, [p, t] is in the
sequence α. pset(α) denotes the set of all processes contained in α. If α and β are any schedules,
αβ denotes the schedule which is the concatenation of α and β.

If Σ is a set, Σ∗ denotes the set of all finite sequences of elements from Σ (including the empty
sequence, denoted by ε). Notice that ({p1, . . . , pn}×coinspace)∗ is the set of all finite schedules.

In our proofs in Part Two, when we consider a system (p1, . . . , pn;O) (where O is an object
implemented for processes p1, . . . , pn), we fix the initial configuration of the system at some value,
say C0, right at the beginning of the proof by specifying the initial values of the input variables
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op-list i (1 ≤ i ≤ n). Since the initial configuration is fixed, each schedule α ∈ ({p1, . . . , pn} ×
coinspace)∗ uniquely determines the execution exec(C0, α). Therefore, for brevity, if α is a
schedule, we will use the same symbol α to also denote the execution exec(C0, α). From the
context it will be clear whether α refers to the schedule or to the execution. If α and β are
schedules and S is a set of processes or a set of base objects, We write α ≈S β if, for all A ∈ S,
A is in the same state at the end of the executions α and β.

2.10 Shared-access and Local Time Complexity

Let op be a complete operation applied by pi in execution E. The shared-access time complexity
of operation op (in E) is the total number of operations that pi performs on the base objects
(equivalently, the number of steps pi takes) in executing apply(pi, op,O) in E. The local time
complexity of operation op (in E) is the total number of local computations that pi performs in
executing apply(pi, op,O) in E.

The shared-access time complexity of an implementation is the maximum shared-access time
complexity of an operation, over all complete operations in all executions,. The local time com-
plexity of an implementation is the maximum local time complexity of an operation, over all
complete operations in all executions.

2.11 “Just Completes” and Solo-Termination Time Complexity

Let E be any execution fragment of (p1, . . . , pn;O), where O is an object implemented using a
randomized implementation. We say process pi just completes an operation on O in E if in its
last step in E, pi returns from an access procedure completing an operation on O.

The solo-termination shared-access time complexity of a deterministic implementation of O is
the maximum, over all reachable configurations C of (p1, . . . , pn;O) and all processes pi, of |α|
such that (1) α is a schedule that contains only pi, and (2) in exec(C,α), pi completes exactly
one operation on O and, in fact, just completes it.

We note that if the solo-termination shared-access time complexity of a deterministic imple-
mentation of O, for any deterministic solo-terminating implementation of O, is at least k, then
the shared-access time complexity of any deterministic nonblocking (or wait-free) implementation
of O is also at least k.
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Part I

Wait-Free Construction for Closed
Objects
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Chapter 3

Unbounded Construction for Closed
Objects

3.1 Introduction

In this Chapter, we present a construction for closed objects, using registers that support LL,
SC, read and write as base objects. It deviates from the final algorithm that we shall present in
Chapter 5 in two ways:

1. It requires unbounded shared memory. Specifically, it requires that each process has a pool
of unbounded number of cells.

2. It is not contention-sensitive: both its shared-access time complexity and its local time
complexity are O(log2 n).

We approach our final algorithm, which requires only bounded shared memory, and is contention-
sensitive, in two stages: In Chapter 4, we present an enhanced version of the unbounded algorithm
in this Chapter. It requires only bounded shared memory. However, it is still not contention-
sensitive. Chapter 5 presents the modification that makes our construction contention-sensitive.

3.2 Informal Description of the Construction

This section provides the intuition for how our construction works. We develop the ideas, the
data structures, and informally argue the correctness of the construction.

3.2.1 Binary Tree Preliminaries

Let n be the number of processes in the system. We assume that n is a power of 2. All trees
considered in this section are binary trees and are of height at most log n. We say a tree is fully
formed if its height is exactly log n. We use the standard definition that a tree is complete if
all leaves are at the same level and all interior nodes have two children. Below, we describe our
scheme to number the nodes of a tree [Knu73].
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(a) A fully formed tree, (b) Numbering a fully formed tree that is not complete, (c) A non-fully formed tree.

Figure 3.1: Examples of trees

First, we describe the scheme for a complete, fully formed tree. Figure 3.1(a) shows such a
tree for n = 4. We assign the number 1 to the root and number the remaining nodes breadth-first.
The number assigned to a node is its position in the tree. Our numbering scheme causes the leaves
to be at positions n, n + 1, . . . , 2n − 1. In particular, the P th leaf (we consider the leftmost leaf
to be the 0th leaf) is at position n + P . Also, the parent of a node at position i, where i 6= 1, is
at position bi/2c, and the left child and the right child of a node at position i are at positions 2i
and 2i + 1, respectively.

The above numbering scheme can be extended to fully formed trees that are not complete.
Figure 3.1(b) presents such a tree (assuming n = 4). The position of a node in such a tree is the
number that would be assigned to it if the tree were complete. Thus, the position of the leaf in
the example tree is 6.

Finally, consider a tree that is not fully formed. For example, if n = 4, the tree in Figure
3.1(c) is not fully formed. In our algorithm, a non-fully-formed tree of height h will grow by
getting a new root, thus becoming a sub-tree in a tree of height h + 1. (Thus, a leaf will always
remain a leaf, as the tree grows.) Since there are multiple ways in which such a tree can be grown
into a fully formed tree, it is impossible to determine the positions of the nodes without further
information. However, if the position of any one node is given, the positions of others can be
easily determined. For example, if (for the tree in Figure 3.1(c)) the rightmost leaf is given to be
at position 5, we can infer that its parent is at position 2 and the other leaf is at position 4.

3.2.2 How Operations are Represented

We now proceed to describe the shared data structure that represents all the operations that have
so far been applied on O, and their linearization order. As a process P invokes an operation op, it
accesses and modifies the data structure, in order to register the fact that op needs to be properly
linearized. Once op has been linearized, P can compute the correct response of O to op. More
than one process may compete to take steps to modify the shared data structure in incompatible
ways. Our construction handles such race conditions, so that the resulting data structure remains
always correct.

We now describe our data structure. A cell is a shared data structure with many fields. A field
holds such information as an operation, a state of O, or a pointer. Cells are organized into binary
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Figure 3.2: A snapshot of data structure

trees. The complete data structure consists of a sequence of fully formed trees, and a collection
of non-fully formed trees.

Each process P has its own pool of unused cells. As and when P needs a new cell to install
into the data structure, it creates such a cell from its pool of cells. Figure 3.2 shows an example
for n = 4. Here Trees A, B and C are fully formed, while Trees D and E are not. The sequence
of fully formed trees is: Trees A, B and C. Trees D and E are not ordered. (The number at a cell
indicates its position in the tree; the letter inside a cell is the operation stored in that cell; and a
black square inside a cell denotes a nil pointer.)

Recall that n, n+1, . . . , 2n− 1 are the leaf positions (in a complete, fully formed tree). In our
construction, the leaf at position n+P of a tree, if it exists, is associated exclusively with process
P (processes are numbered 0, 1, . . . , n−1). In particular, if a tree has a cell at position n+P , that
cell was introduced into the data structure by process P and it stores an operation from process
P . Thus, Tree A (in Figure 3.2) contains operations from all four processes — operation a from
Process 0 (at position 4), operation b from Process 1, and operations c and d from processes 2
and 3, respectively. Tree B contains only one operation — operation e from Process 3 (looking at
the shape of this tree, we know that the only leaf is at position 7 and hence contains an operation
from Process 3). Tree C contains two operations — operation f from Process 0 and operation
g from Process 2. Tree D is not fully formed (since its height is less than log n). In fact, given
that this tree has only one cell so far, it would be normally impossible to say what the position
of this cell is. Our construction, however, ensures that each tree grows bottom-up — from leaves
to the root. Thus, one can conclude that the lone cell in Tree D will eventually be a leaf (in a
fully formed tree). As already mentioned, our construction also ensures that a leaf created by
process P will be at position n+P of a fully formed tree. Thus, assuming that the cell in Tree D
was created by Process 1, we indicated its position as 5 (in a fully formed tree that this cell will
eventually be a part of). Tree E in the figure is also not fully formed. It contains one operation
— operation i from Process 3.

3.2.3 Linearization Order

In our construction, an operation takes effect the moment it becomes a part of a fully formed tree.
Thus, in our example in Figure 3.2, operations a through g took effect, but operations h and i did
not. All fully formed trees form a total order Ω, according to the times their cells at position 1
are formed: at the moment a tree becomes fully formed by getting a cell at position 1, it becomes
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the last tree in Ω. Operations that took effect are linearized according to the following rules: if
Tree A precedes Tree B in Ω, then all operations in Tree A are linearized before any operation
in Tree B. Operations within a tree are linearized in the natural left to right order on the leaves.
Thus, in our example, a, b, c, d, e, f, g is the linearization order. Since the two non-fully-formed
trees (Trees D and E) can grow to become fully formed trees in many ways, it is possible that
operation i may precede h, and be separated from h by other operations, in the final linearization
order.

3.2.4 Growing Trees Bottom-up

In our construction, when a process P wishes to apply an operation op on the implemented object,
P gets a cell from its private pool of cells, stores op in the cell, and creates a tree out of this
single cell. (Tree D in Figure 3.2 is an example of such a tree: here Process 1 has just created
a tree out of its operation cell.) P then makes an effort to grow this (single-celled) tree into a
fully formed tree (of height log n) in which its operation cell will be a leaf at position n + P . We
already mentioned that P ’s operation takes effect only after its operation cell becomes a leaf of a
fully formed tree. Since a process returns from its operation only after the operation takes effect,
our construction satisfies the following property:

Completion Rule: A process P returns from its operation only after its operation cell is
a leaf (at position n + P ) of a fully formed tree.

Our construction also ensures that a tree always grows bottom-up. Specifically, the construc-
tion satisfies the following property:

Bottom-up Rule: If C is a cell in a tree, then the subtree rooted at C does not subsequently
change.

For example, consider Tree E in Figure 3.2. The parent of the cell containing operation i has
no left child. By the bottom-up rule, this cell will never get a left child in the future.

It is immediate from the bottom-up rule that a fully formed tree never subsequently changes:
there won’t be any addition or removal of cells from a fully formed tree. This fact implies that
our linearization order respects operation precedence, as we argue now. Consider two operations
op and op′ such that op precedes op′ (i.e., op returns before op′ is invoked). By the completion
rule, when op′ is invoked, op is already a leaf of a fully formed tree. Since fully formed trees never
subsequently change, op′ becomes a leaf in a later tree. As a result, by our linearization rule, op
is linearized before op′, as required.

3.2.5 How a Process Makes Progress

To understand how processes make progress, let us consider a specific example: suppose that
Process 0 invokes the operation j and runs alone from the configuration depicted in Figure 3.2.
(In Figures 3.3(a)-3.3(c), we will depict the sequence of changes to the configuration. Since the
three fully formed trees are a part of all of these configurations, we will not repeat them in these
figures.) Process 0 creates a (single-celled) tree containing its operation cell (Figure 3.3(a)). The
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(a) Process 0 creates an operation cell for j, (b) Process 0 creates a cell whose left and right children are j and h, 
(c) Process 0 creates a cell at position 1. j has now taken effect.

Figure 3.3: Example of a process making progress

next goal of Process 0 is to make this operation cell a leaf (at position n+P = n) of a fully formed
tree; i.e., to get this cell a parent (at position b(n+P )/2c = n/2), then a grandparent (at position
b(n+P )/4c = n/4), then a parent for the grandparent and so on, until its operation cell has log n
ancestors. Thus, the immediate subgoal is to get a parent for its operation cell (containing the
operation j). Since the parent will be a cell at position b(n+P )/2c, which in our example is 2, the
parent can potentially have two children: one at position 4 and another at position 5. Therefore,
Process 0 checks if there is already an unparented cell at position 5 and finds the operation cell
containing h. So it creates a cell whose left and right children are the operation cells containing
j and h, respectively (Figure 3.3(b)). Process 0 then proceeds to get a parent (at position 1) for
this new cell. Since a cell at position 1 can potentially have cells at positions 2 and 3 as its left
and right children, it checks if there is an unparented cell at position 3. Since there is such a cell,
it creates a cell at position 1 as shown in Figure 3.3(c). At this point, the operation j of Process
0 has taken effect. So have the operations h and i of processes 1 and 3: the steps of Process 0
have helped them take effect as well.

The above example also roughly suggests why our shared-access and local time complexity
has a logarithmic, rather than linear, dependence on n.

To understand certain intricacies of our construction, let us consider another example: a run,
again starting from the configuration in Figure 3.2, in which the steps of Process 0 and Process 1
interleave. (We will depict the sequence of changes to the configuration in Figures 3.4(a)-3.4(f).)
Specifically, the run is as follows:

• Process 1, which has already announced its operation h, proceeds to get a parent for its
operation cell. This parent can potentially have a cell at position 4 as its left child; however,
Process 1 does not find an unparented cell at position 4. So it creates a cell C whose left
child is nil and right child is the operation cell containing h (see Figure 3.4(a)).

• Process 0 announces a new operation j (Figure 3.4(b)).

• Process 0 proceeds to get a parent for its operation cell. Since this parent can potentially
have a cell at position 5 as its right child, it looks for an unparented cell at position 5. Since
there is no such cell, it creates a cell C ′ whose right child is nil and left child is its operation
cell (see Figure 3.4(c)).
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Figure 3.4: Another example of a process making progress
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Figure 3.5: The lists for the trees in Figure 3.2

Notice that Cell C ′, like Cell C, is a cell at position 2. If we make it possible for Process
0 to install cell C ′ into the data structure, there will be two unparented cells at position 2.
Our construction does not permit this. Specifically, our construction satisfies the following
invariant:

At Most One Orphan Rule: There is at most one unparented cell in any non-root
position at any time.

Accordingly, the attempt of Process 0 to install C ′ into the data structure (at position 2)
will fail.

• Suppose Process 0 is the only process alive. Clearly, because of “At most one orphan rule”
and “bottom-up rule” (described earlier), Process 0 will not be able to get a parent for its
operation cell until C gets a parent. So Process 0 gets a parent for C, even though its
operation cell is not a descendant of C (see Figure 3.4(d)).

• Process 0 then gets a parent for its operation cell (Figure 3.4(e)) and then a grandparent
(Figure 3.4(f)). At this point, its operation j has taken effect.

3.3 The Data Structure

We present our unbounded construction for closed objects in Figures 3.6 to 3.9. In this section,
we give a concrete description of the data structure used by our algorithm, and state the rules
that our algorithm respects when manipulating the data structure.

As already explained, the principal data structure maintained by our algorithm is a sequence
of trees. With the passage of time, this sequence grows without bound. The sequence of trees at
a point in a run is represented using 2n − 1 singly linked lists (we will use the sequence of trees
in Figure 3.2 as our running example). The lists are denoted by List[1], List[2], · · · , List[2n − 1].
List[lst ] consists of all cells at position lst in the sequence of trees. Figure 3.5 depicts the lists for
the trees in Figure 3.2. The parent-child relationship within each tree is preserved by including
appropriate left child and right child pointers between cells in different lists. For example, Figure
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3.5 depicts these pointers corresponding to Tree C in Figure 3.2. (To keep the figure uncluttered,
the left child and right child pointers corresponding to the remaining trees are not shown.)

We call List[1] the root list, List[lst], where lst is between n and 2n−1, a leaf list, and List[lst],
where lst is between 2 and n − 1, a non-root interior list. A cell in the root list is called a root
cell. A cell in a leaf list is called a leaf cell. A cell in a non-root interior list is called a non-root
interior cell.

Notice that, if c is a cell in List[lst ], either c has no left child or c’s left child is a cell in
List[2 ∗ lst ]. Similarly, either c has no right child or c’s right child is a cell in List[2 ∗ lst + 1].

3.3.1 The Representation of a List

3.3.1.1 The Fields of a Cell

The various fields of a cell in a list are as follows:

• The LC , RC , and Parent fields of a cell point to the left child, right child, and parent of
that cell. (If a cell has no left child, right child or parent, the corresponding field has ⊥).

• The Next field points to the next cell in the same list. (If a cell is the last one in a list, its
Next field has ⊥).

• The Op field of a cell y contains a single operation that results from combining the operations
at the leaves of the subtree rooted at y. For example, the Op field of the first cell in List[1]
contains the operation a

⊗
b
⊗

c
⊗

d. The Op field of the first cell in List[3] contains c
⊗

d,
and the Op field of the first cell in List[4] contains a.

• The Lop field of a cell y contains a single operation that results from combining the opera-
tions at the leaves of the left subtree of y (if y has no left child, then y’s Lop field has the
value ⊥). For example, the Lop field of the first cell in List[1] contains a

⊗
b, the Lop field

of the first cell in List[3] contains c, and the Lop field of the first cell in List[4] contains ⊥.

• The State field of a cell y is used for recording the state that results from applying all
operations at the leaves to the left of y, in the natural left-to-right order, to the implemented
object in the initial state.1 (Leaves to the left of y are all the leaves, in all trees, that are to
the left of the leftmost leaf descendant of y.) For example, the State field of the third cell
in List[3] contains the state that results from applying the operations a, b, c, d, e, f , in that
order.

• Finally, each cell has a Ready field that holds a boolean value. A value of false indicates
that the cell is not yet ready to have a parent, while a value of true indicates that the cell
is ready to have a parent. As will be clear later, this field helps the algorithm ensure that
a cell becomes a “full-fledged” member of its list before its parent becomes a full-fledged
member of the parent-list.

1The initial state of the implemented object is specified in the implementation.
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3.3.1.2 The Head Variables

Associated with each List[lst], 1 ≤ lst ≤ 2n − 1, there is a shared variable Head [lst ] that intends
to point to the last cell in that list.2 Since a cell c is first appended to List[lst] and only later is
Head [lst ] updated to point to c, there is a small window of time during which Head [lst ] points
not to the last cell in the list, but to the cell previous to the last.

Initially, each List[lst] has a single dummy cell, that we call anchor lst, and Head [lst ] points to
this cell. (See Lines 1-4 of the initialization section of the algorithm in Figure 3.6.)

3.3.2 Stability and Order Properties

Our algorithm ensures that the fields of a cell are stable: once a field is assigned a non-⊥ value, it
remains unchanged forever. The algorithm also ensures that events—modifying a field, appending
a cell to a list, modifying a Head variable—occur in a particular order. The stability and the order
properties, which we state below, are crucial to the correctness of the algorithm.

Let c be a cell in List[lst], 1 ≤ lst ≤ 2n − 1. The values in the following fields of c remain
unchanged from the time when c first becomes a cell in List[lst]: c → LC, c → RC, c → Op,
c → Lop.

The order in which the remaining fields of a cell are updated is slightly different depending
on whether the cell is in the root list (i.e., List[1]), a leaf list, or a non-root interior list. Below,
we therefore consider these cases separately.

3.3.2.1 Stability and Order Properties for a Non-root Interior Cell

Order of Events

Let d be a cell (other than the first cell) in List[lst], 2 ≤ lst ≤ n−1, c be d’s immediate predecessor
(i.e., c → Next points to d), and e be d’s parent (in List[blst/2c]). Then, the appending of d to
List[lst], the appending of e to List[blst/2c], and the processing of d’s fields must have occurred
in the following order:

1. Head [lst ] points to c, and c is the last cell in List[lst].

2. d is appended to List[lst], i.e., c → Next gets the value d.

3. d becomes ready, i.e., d → Ready is assigned true.

4. e is appended to List[blst/2c]. At this point, e → LC or e → RC, whichever is appropriate,
holds the value d.

5. d → Parent is assigned the value e.

6. Head [lst ] is updated to point to d, and at this point d is the last cell in List[lst ].

7. e becomes ready.

2Even though this variable points to the tail of a list, it is called Head to maintain consistency with established
usage.
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8. d → State is assigned a non-⊥ value.

The above order is presented here because it is crucial to our proof of correctness. (Where
no explicit ordering between the updating of two fields in the data structure is implied by the
above order, there may or may not be an ordering constraint. Our formal proof will reveal all
such ordering constraints.)

Stability of fields

Consider the point t in time when a cell d is appended to a cell c in List[lst], 2 ≤ lst ≤ n− 1 (i.e.,
at time t, c → Next is assigned d). The stability properties are stated with respect to time t as
follows:

(S1.) The values of d → LC and d → RC will never subsequently change (from their values when
d is appended to the list).

This property captures the fact that trees grow bottom-up: From the time that d is appended
to the list, no nodes will be added to, or removed from the subtree rooted at d (this subtree
consists of d, its children, their children and so on).

(S2.) When d is appended to the list, d → Op holds the operation that combines the Op fields of
the left child and the right child of d. The value of d → Op will never subsequently change.

It follows that that d → Op always holds the operation obtained by combining the operations
at the leaf descendants of d.

(S3.) When d is appended to the list, d → Lop holds the operation in the Op field of the left child
of d. The value of d → Lop will never subsequently change.

It follows that d → Lop always holds the operation obtained by combining the operations
at the leaf descendants of the left child of d.

(S4.) When d is appended to the list, d → Parent has ⊥. The value of this field changes at most
once in the future.

(S5.) When d is appended to the list, d → Next has ⊥. The value of this field changes at most
once in the future.

(S6.) When d is appended to the list, d → Ready has false. The value of this field changes at
most once in the future (to true).

(S7.) When d is appended to the list, d → State has ⊥. The value of this field changes at most
once in the future.

3.3.2.2 Stability and Order Properties for a Leaf Cell

If d is a cell in a leaf list, i.e., in List[lst ], where lst is between n and 2n−1, then the stability and
order properties are the same as above with one change: items (2) and (3) are interchanged in
the order. Thus, when d is appended, d → Ready has true and this value will never subsequently
change.
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3.3.2.3 Stability and Order Properties for a Root Cell

Let d be a cell in the root list and, as before, let c be d’s immediate predecessor in List[1] (in
this case, there is no e, the parent of d, because a cell in the root list does not have a parent).
The stability properties of the fields of d are the same as before (except that d → Parent remains
unchanged from its value of ⊥). The order of events is now: items (1), (2), (3), (8), (6). Thus,
d → State is assigned a non-⊥ value before Head [1] is updated to point to d.

3.3.3 Facts about the Head Variables

A cell d in List[lst] has a parent if there is a cell e in List[blst/2c] such that e → LC or e → RC
has the value d. Notice that during the interval lasting from when e is appended to List[blst/2c]
to when d’s Parent field is assigned e, d’s parent field has ⊥ even though, by our definition, d has
a parent. A cell is an orphan if it has no parent. We say a cell has a ready parent if it has a parent
whose ready field has true. Similarly, a ready orphan is an orphan whose ready field has true.

The following property states certain facts about the Head variables. We don’t prove it here,
but it follows easily from the order of events stated above. (This order of events is enforced by
our algorithm.)

(P1.) This property is stated in three parts.

1. For any List[lst], 1 ≤ lst ≤ 2n − 1, we have:

(a) Head [lst ] is never ⊥, and whenever the value of Head [lst ] changes from c to d, we
have c → Next = d.

(b) Head [lst ] points either to the last cell or the cell immediately before the last cell
in List[lst].

2. For any non-root list List[lst], 2 ≤ lst ≤ 2n − 1, we have:

(a) If Head [lst ] points to a cell c, then c and every cell before c in List[lst ] has a parent
in List[blst/2c].

(b) If a cell c in List[lst ] has a ready parent, then Head [lst ] points to c or a cell after
c in List[lst ].

3. For the root list (i.e., List[1]), the following holds: If Head [1] points to a cell c, then
the state field of c and the state field of every cell before c in List[1] has a non-⊥ value.

3.3.4 Definition of Correct State

For any cell c in a fully formed tree, the operation sequence preceding c is is the sequence of
operations at the leaves (in that tree and all preceding trees) that are to the left of the left-most
leaf descendant of c. For example, for the cell at position 3 of Tree C of Figure 3.2, this sequence
is a, b, c, d, e, f . As another example, for the cell at position 3 of Tree A, this sequence is a, b.

For a cell c in a fully formed tree, let op1, op2, . . . , opk denote the operation sequence preceding
c. We define the correct state for cell c as the state that results from applying the operations
op1, op2, . . . , opk, in that order. More precisely, the correct state for c is δstate(initialstate, op),
where op = op1

⊗
op2

⊗ · · ·⊗ opk.
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A crucial aspect of the proof of correctness of our algorithm is to show that, for each cell c,
the algorithm writes into c’s state field the correct state for c.

3.4 How the Algorithm Works

In this section, we describe how the various procedures constituting the algorithm work together.
We argue the correctness of each procedure by top-down reasoning: if procedure A calls procedure
B, we argue that A satisfies its stated properties on the premise that B satisfies its properties,
and later justify the premise. The presentation is informal and intended to provide an intuitive
understanding of the algorithm. A rigorous proof of correctness is provided in the next section.

3.4.1 How apply Works

A process P applies an operation op on the implemented object by executing the procedure
apply(P, op,O). We argue the correctness of the response returned by apply on the premise that
promote and percolateState satisfy certain properties, stated informally as follows:

(P2.) If cell c in a non-root list List[lst] is ready, then an execution of promote(lst) ensures that
c has a ready parent.

(P3.) If c is a ready cell in the root list that has ⊥ in its state field, an execution of promote(1)
ensures that (1) c’s state field holds the correct state for c, and (2) Head[1] points to c or
beyond.

(P4.) If c is a cell in List[lst] and the state field of c’s root-ancestor has the correct state, then an
execution of percolateState(c, lst) ensures that the correct state for c is written into c’s
state field.

When a process P calls apply(P, op,O), it first executes announce(op, P ). During this pro-
cedure, P grabs a fresh cell, opcell, from its private pool of cells, stores op in the operation field,
marks the cell ready, and appends opcell to the end of P ’s leaf list, namely, List[n + P ]. 3 P
then calls promote(n + P ) which, by Property P2 stated above, results in opcell getting a ready
parent. P then calls promote(b(n+P )/2c), then promote(b(n+P )/4c), and so on, so that opcell
gets a ready grandparent, a ready parent to grandparent, and so on. Ultimately, after log n such
calls, opcell has a ready ancestor c in the root list, i.e., List[1]. P then calls promote(1) which, by
Property P3, ensures that c’s state field holds the correct state for c. P then calls percolateState
which, by Property P4, ensures that the state field of opcell holds the correct state. P applies its
operation op to this state, and returns the resulting response as the implementation’s response to
op.

3The use of LL,SC in Lines 3,4 of announce(op, P ) can in fact be replaced with write. However, the use of LL,
SC here allows for a cleaner proof of correctness.
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initialization

∀i, 1 ≤ i ≤ 2n-1 : anchori : ∗cell

1. for i := 1 to 2n-1:
2. anchori → Next := ⊥,Head[i] := anchori

3. anchor1 → State := initialstate

4. anchor1 → Op := ⊥
end initialization

apply (P : integer, op : op, O) returns res

1. opcell := announce (op, P )
2. for i := 0 to log n
3. promote (b(n+P)/2ic)
4. percolateState (opcell, n+P)
5. return δresp (opcell → State, op)

end apply

promote (lst : integer)
1. if lst = 1
2. head := LL(Head[lst])
3. newcell := head → Next
4. if newcell = ⊥ return

5. if newcell → Ready = false return

6. newcell → State := δstate (head → State, head → Op)
7. SC(Head[lst],newcell)
8. return

9. append (blst/2c)
10. promote (blst/2c)
11. append (blst/2c)

end promote

Figure 3.6: Unbounded construction for closed object O (Figures 3.6 to 3.9)
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append (lst : integer)
1. head := Head [lst]
2. newcell := LL(head → Next)
3. if newcell = ⊥
4. (lc, lop) := readyOrphan (2 ∗ lst)
5. (rc, rop) := readyOrphan (2 ∗ lst + 1)
6. if (lc 6= ⊥) or (rc 6= ⊥)
7. c := combine (lc, lop, rc, rop)
8. SC (head → Next, c)
9. newcell := head → Next
10. if newcell = ⊥ return

11. lchild := newcell → LC
12. if lchild 6= ⊥
13. if LL(lchild → Parent) = ⊥
14. SC(lchild → Parent, newcell)
15. lchead := LL(Head[2*lst])
16. if lchead → Next = lchild
17. SC(Head[2*lst], lchild)

18. rchild := newcell → RC
19. if rchild 6= ⊥
20. if LL(rchild → Parent) = ⊥
21. SC(rchild → Parent,newcell)
22. rchead := LL(Head[2*lst+1])
23. if rchead → Next = rchild
24. SC(Head[2*lst+1], rchild)

25. newcell → Ready := true
end append

Figure 3.7: Unbounded construction for closed object O (Figures 3.6 to 3.9)
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readyOrphan (lst : integer) returns (∗cell,op)
1. head := Head [lst]
2. newcell := head → Next
3. if newcell = ⊥ return (⊥,⊥)
4. if newcell → Ready = false return (⊥,⊥)
5. return (newcell, newcell → Op)

end readyOrphan

announce (op : op, P : integer) returns ∗cell

1. allocate a new cell c and initialize it as follows:
c → Parent := ⊥, c → Next := ⊥, c → State := ⊥
c → LC := ⊥, c → RC := ⊥,
c → Op := op, c → Lop := ⊥, c → Ready := true

2. head := Head [n+P]
3. if LL(head → Next) = ⊥
4. SC(head → Next, c)
5. return c

end announce

Figure 3.8: Unbounded construction for closed object O (Figures 3.6 to 3.9)
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combine (lc : ∗cell, lop : op, rc : ∗cell, rop : op ) returns ∗cell

1. allocate a new cell c and initialize it as follows:
c → Parent := ⊥, c → Next := ⊥, c → State := ⊥
c → LC := lc, c → RC := rc,
c → Lop := lop, c → Op := (lop

⊗
rop)

c → Ready := false
2. return c

end combine

percolateState (c : ∗cell, lst : integer)
1. if lst = 1 return

2. p := c → Parent
3. percolateState (p, blst/2c)
4. if lst = 2 ∗ blst/2c
5. c → State := p → State
6. else c → State := δstate (p → State, p → Lop)

end percolateState

Figure 3.9: Unbounded construction for closed object O (Figures 3.6 to 3.9)
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3.4.2 How promote Works on a Non-root List

We now argue that promote(lst), lst > 1, satisfies Property P2 on the premise that the following
two properties are true.

(P5.) At the time that a cell c in List[lst] becomes a ready orphan, suppose that the head of the
parent list (i.e., Head[blst/2c]) points to cell d. Then, the parent that c will get in the future
will be within two cells from d (i.e., if e and f are the cells that will immediately follow d,
then one of e and f will be c’s parent).

(P6.) At a time that a cell c in List[lst] is a ready orphan, suppose that Head[blst/2c] points to a
cell d. Then, an execution of append(blst/2c) ensures that d has a ready cell immediately
following it.

To verify that promote satisfies Property P2, suppose that cell c in a non-root list List[lst] is
ready before an execution of promote(lst). Our aim is to show that after promote(lst) terminates,
c has a ready parent. Let t be the time when c first becomes a ready orphan. Let Head[blst/2c]
point to cell d at time t. Clearly, c’s parent cannot be d or any cell preceding d in List[blst/2c].

The execution of promote(lst) begins with append(blst/2c) (on Line 9 of promote). By Prop-
erty P6, when append terminates, d has a ready cell e immediately following it. If e is c’s parent,
then we have Property P2.

Suppose that e is not c’s parent. After the recursive call to promote(blst/2c) on Line 10,
Head[blst/2c] points to e or beyond (we denote this fact by (@)), as argued below. If blst/2c > 1,
Line 10 ensures, by an inductive application of Property P2, that e has a ready parent; then, by
Property P1(2b), Head[blst/2c] points to e or beyond. If blst/2c = 1, the recursive call on Line 10
ensures, by Property P3, that Head[blst/2c] points to e or beyond.

Let t′ be the time when Head[blst/2c] first points to e. By the order of events, e is the last cell
in List[blst/2c] at t′. We note that t′ is a time before the execution of append(blst/2c) on Line 11
of promote (by (@)), and that at t′, c in List[lst] is a ready orphan (because e is not c’s parent),
Head[blst/2c] points to cell e. We now apply Property P6 to this execution of append(blst/2c).
Thus, when append(blst/2c) on Line 11 terminates, e has a ready cell f immediately following it.
By Property P5, f is c’s parent and so, we have Property P2.

3.4.3 How promote Works on a Root List

To verify that promote(1) satisfies Property P3, suppose that c is a ready cell in List[1] that has
⊥ in its state field. By the conjunction of Property P1(1b) and P1(3), Head[1] points to the cell b
immediately before c. Thus, when promote(1) is executed, head is assigned b (Line 2), newcell is
assigned c (Line 3), and newcell is found to be non-⊥ and ready (Lines 4 and 5). Then, b’s state
field holds a non-⊥ value s (by Property P1(3)) and b’s operation field combines the operations
at the leaves of b. Assuming that s is correct for b, it is obvious that s′ = δstate(s, b → Op) is
correct for c. Line 6 writes s′ into c’s state field. If the SC on Line 7 succeeds, Head[1] points to c;
otherwise some other process must have already updated Head[1] to c. Hence, we have Property
P3.
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3.4.4 How append Works

A leaf list, i.e., List[n+P ] (0 ≤ P ≤ n−1), grows when process P executes announce(op, P ) and
appends its operation cell to the list. An interior list List[lst ] (1 ≤ lst ≤ n−1), on the other hand,
grows when a process P executes append(lst). Roughly speaking, this procedure finds the “end”
of List[lst ] and appends there a cell that becomes the parent to ready orphans in List[2 ∗ lst ] and
List[2 ∗ lst + 1].

We now describe informally how process P executes append(lst). P reads Head [lst ] and
obtains a pointer to either the last or the previous-to-last cell in List[lst ] (Line 1). To distinguish
between the two cases, P inspects the next field of head (Line 2). If there is a cell next to head, P
proceeds to help it (Line 11 onwards). Otherwise P looks at the child lists, namely, List[2 ∗ lst ]
and List[2 ∗ lst + 1], to check if they have ready orphans (Lines 4 and 5). If so, P attempts
to create a parent for these ready orphans by combining the information in the ready orphans
in a new cell (Lines 6 and 7), and then attempting to append the new cell to the end of the
List[lst ] (Line 8). Its attempt may fail if some other process has already appended a cell to head.
Regardless of whether it succeeded in appending newcell or someone else succeeded in appending
some other cell, P obtains a pointer to the cell next to head (Line 9). If no cell exists there, it
means that there was nothing to append to head, and so P returns from the procedure (Line 10).
Otherwise, newcell is a cell next to head, and P proceeds to notify newcell’s children of the fact
that they now have a parent. It sets the parent field of newcell’s left child to newcell (Lines 12-14)
and, since newcell’s left child is now parented, updates Head [2 ∗ lst ] to point to newcell → LC
(Line 15-17). P notifies newcell’s right child similarly (Lines 18-24). Once newcell’s children have
been notified, newcell is allowed to have a parent. To reflect this fact, P sets newcell’s ready field
to true (Line 25).

Properties P5 and P6 follow easily from the way the append procedure is designed. Their
proofs, however, are long and tedious because of the need to address many cases. So we defer rig-
orous proofs to the next section and, in the following, only informally describe why the properties
hold.

3.4.4.1 Why Property P5 Holds

We now explain why Property P5 holds. Suppose that Head[blst/2c] points to a cell d at the time
t when a cell c becomes a ready orphan in List[lst]. Let b be the cell whose next field points to
c. By the conjunction of Property P1(1b) and P1(2a), Head[lst ] points to b at time t. Let e and
f be the two cells that immediately follow d, at some instant of time after t. To verify P5, we
show that either e or f is c’s parent. (Clearly, c’s parent cannot be d or any cell preceding d.) It
suffices to show that, if e is not c’s parent, then f is.

Suppose that e is not c’s parent. We claim that at any time after t, and before f is appended
next to e, Head[lst ] points to b (We denote this claim by (*)). This claim is true for the following
reason: By the order of events, if Head[lst ] points beyond b, then c already has a parent. However,
by assumption, c does not have a parent before f is appended next to e. Thus, claim (*) holds.

Consider the execution A of append(blst/2c) that will append f next to e. A must have
obtained e when it read Head[blst/2c] on Line 1. This implies that A performed Line 1 after time
t (because, at time t, Head[blst/2c] was pointing to d, not e). By claim (*), when Lines 4 and 5
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are performed by A, the ready orphan c in List[lst] will be noticed by combine (called in Line
7 of append), and will become cell f ’s child. Thus, cell f appended next to e will be c’s parent.
Hence, we have Property P5.

3.4.4.2 Why Property P6 Holds

To understand why Property P6 holds, suppose that at time t List[lst] has a ready orphan c and
Head[blst/2c] points to d. Consider an execution A of append(blst/2c) that begins after time t.
When A reads Head[blst/2c] on Line 1, there are three possibilities for what it obtains: (1) it
obtains d, (2) it obtains a cell e immediately following d, or (3) it obtains a cell f that follows d,
but not immediately following d. Let us first consider the last two cases. By Property P1(2a),
the cell that Head[blst/2c] points to and every preceding cell has a parent. Further, by the order
of events, a non-root cell must be ready before it has a parent. Therefore, in Case (3), f and
every cell preceding f has a parent and is ready. In particular, it follows that the cell immediately
following d is ready. Similarly, in Case (2), the cell e (which immediately follows d) has a parent
and is ready. This establishes Property P6 for cases (2) and (3).

Let us now consider Case (1): when A reads Head[blst/2c] on Line 1, it obtains d (so head gets
the value d). Then, when A performs LL(d → Next) on Line 2, there are two sub-cases: (a) it
obtains ⊥, or (b) it obtains a non-⊥ pointer e. In Subcase (b), when A eventually executes Line
25, e → Ready is set to true, thus satisfying Property P6.

In Subcase (a), A proceeds to execute Lines 4-10. When A executes Lines 4 and 5, c may or
may not be an orphan. Consider the case that A finds c to be a ready orphan in List[lst]. In this
case, the if-condition on Line 6 holds true, and so A executes Lines 7 and 8. If the SC on Line 8
succeeds, the reading of d → Next (Line 9) clearly returns a non-⊥ e and, subsequently, on Line
25 e’s ready field is set to true, thus satisfying P6. If the SC on Line 8 fails, then some other
process Q must have performed a successful SC, between the times when A executed Lines 2 and
8, that appended a cell e next to d. On Line 9, A’s reading of d → Next returns that cell e and,
subsequently, on Line 25 e’s ready field is set to true, thus satisfying P6. This leaves just one
case to consider: on Lines 4 and 5, A does not find c to be a ready orphan in List[lst]. This case
implies that, when A performs Lines 4 and 5, Head[lst] already points to c or beyond (otherwise
A would find c to be a ready orphan). It follows, by Property P1(2a), that c has a parent p (in
List[blst/2c]). Since c was an orphan at time t (when Head[blst/2c] pointed to d), it follows that
p is after d. In particular, it follows that d → Next is non-⊥. This implies that, when A reads
d → Next on Line 9, it obtains a non-⊥ cell e. Subsequently, on Line 25, A sets e’s ready field to
true, thus satisfying P6.

3.4.5 How percolateState Works

To verify that percolateState satisfies Property P4, let c be a cell in List[lst] and suppose
that the state field of c’s root-ancestor r holds the correct state. We argue that after executing
percolateState(c, lst), c holds the correct state. If lst = 1, we have c = r. Thus, P4 trivially
holds. Otherwise let d be c’s parent (Line 2). By induction, the recursive call on Line 3 ensures
that d holds the correct state. If c is the left child of d, then by the definition of correct state, the
correct state for c is the same as for d. This observation justifies Lines 4 and 5. If c is the right
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child of d, then by the definition of correct state, the correct state for c is obtained by applying
the operations in the left subtree of d to the state in d. This is done in Line 5.

3.5 Proof of Correctness

We present now a proof of correctness of our closed object construction. In Section 3.5.1, we prove
that when apply(P, op,O) completes, the operation cell that represents op has a root ancestor in
the sequence of trees. Thus, op has indeed taken effect. In Section 3.5.2, we prove that the value
returned by apply(P, op,O) is consistent with the intended linearization order on the operations,
as represented by the sequence of trees.

3.5.1 Proof of Progress

3.5.1.1 Reachable Cell

We first show that the fields of a cell are stable, i.e. once such a field holds a non-trivial value, that
value never changes. More specifically, for any cell c, c → LC, c → RC, c → Lop, and c → Op
are unchanged throughout a run. Further, once c → Next and c → Parent hold a non-⊥ value d,
then they hold the value d forever. Finally, once c → Ready becomes true, it stays true forever.
(The stability of c → State is proved in Lemma 28(b).)

Lemma 1 Let c be a cell returned either by announce to Line 1 of apply, or by combine to Line
7 of append.
(a) The value of c → LC is unchanged.
(b) The value of c → RC is unchanged.
(c) The value of c → Lop is unchanged.
(d) The value of c → Op is unchanged.
(e) Let c → Next = d, d 6= ⊥, at time t. Then at any time t′ such that t′ ≥ t, c → Next = d.
(f) Let c → Parent = d, d 6= ⊥, at time t. Then at any time t′ such that t′ ≥ t, c → Parent = d.
(g) Let c → Ready = true, at time t. Then at any time t′ such that t′ ≥ t, c → Ready = true.

Proof

(a),(b) c → LC and c → RC are assigned values only once: in Line 1 of announce or Line 1 of
combine. This observation implies Lemmas 1(a) and 1(b).
(c),(d) c → Lop and c → Op are assigned values only once: in Line 1 of announce or Line 1 of
combine. This observation implies Lemmas 1(c) and 1(d).
(e)We first note that c → Next is assigned the value ⊥, only during the initialization of c in
announce and combine, and nowhere else. There are only two places where c → Next can
take on a non-⊥ value: Line 4 of announce, and Line 8 of append. If process P executes a
successful SC(c → Next, d), d 6= ⊥, in Line 4 of announce, then P must have previously executed
LL(c → Next) in Line 3, with ⊥ as the LL operation’s return value. This implies Lemma 1(e).

If process P executes a successful SC(c → Next, d), d 6= ⊥, in Line 8 of append, then P must
have previously executed LL(c → Next) in Line 2, with ⊥ as the LL operation’s return value
(Line 3). This implies Lemma 1(e).
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(f)We first note that c → Parent is assigned the value ⊥, only during the initialization of c in
announce and combine, and nowhere else. There are only two places where c → Parent can take
on a non-⊥ value: Lines 14, 21 of append. If process P executes a successful SC(c → Parent, d),
d 6= ⊥, in Line 14 (resp. 21) of append, then P must have previously executed LL(c → Parent)
in Line 13 (resp. 20), with ⊥ as the LL operation’s return value. This implies Lemma 1(f).
(g)This follows from the fact that c → Ready is assigned false only during the initialization of c
in combine, and nowhere else.

2

Lemma 2 Let c be any cell. There is at most one cell b such that b → Next = c.

Proof There are only two places where b → Next (for some b) can be assigned the value c:
Line 4 of announce, Line 8 of append. In both of these places, process P initializes a new cell
c and executes SC(b → Next, c). Given any cell c, at most one process executes the operation
SC(b → Next, c) (for some b); further, this process executes the operation once only. Hence, there
is at most one cell b such that b → Next = c.

2

At any time t, if a cell c can be reached by the chain of Next pointers, starting at anchor lst,
then we say that c is reachable at position lst at time t. By definition, anchorlst is not reachable.
Formally,

Definition 1 Let c be a cell, 1 ≤ lst ≤ 2n− 1. c is reachable at position lst at time t if and only
if, at time t:

• anchorlst → Next = c, or

• ∃ a reachable cell b at position lst such that b → Next = c.

By Lemma 1(c), if c is reachable at time t, then c is reachable at all times after t. We now
consider all the cells that are eventually reachable at position lst in a run, and use List[lst] to
denote the sequence of such eventually reachable cells. Formally,

Notation 1 Let lst, 1 ≤ lst ≤ 2n − 1, be a position. Let List[lst] denote the list
[List[lst](0), List[lst](1), List[lst](2), · · ·], where ∀k, k ≥ 0, List[lst](k) is defined as follows:

• List[lst](0) = anchorlst.

• ∀k, k ≥ 1, if List[lst](k−1) is defined, and at some time t, List[lst](k−1) → Next = c, c 6=
⊥, then define List[lst](k) = c. Otherwise, List[lst](k) is undefined.

The next Lemma asserts that the cells in the 2n − 1 lists, List[lst], 1 ≤ lst ≤ 2n − 1, are all
distinct.

Lemma 3 Let lst, lst′ be such that 1 ≤ lst, lst′ ≤ 2n− 1. Let i, j be such that i ≥ 0, j ≥ 0. Then,
(List[lst](i) = List[lst′](j)) ⇒ ((lst = lst′) ∧ (i = j)).
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Proof This Lemma follows from Lemma 2.
2

Notation 2 If c is reachable at lst, then the position of c, denoted by pos(c), is defined to be lst.

By Lemma 3, pos(∗) is well-defined.

Definition 2 Let c be reachable.

• If pos(c) = 1, c is root reachable.

• If pos(c) > 1, c is non-root reachable.

• If pos(c) ≥ n, c is leaf reachable.

• If pos(c) < n, c is non-leaf reachable.

3.5.1.2 Head

Definition 3 We say that c is head at position lst at time t if and only if Head[lst] = c at t.
We say that c has been head at position lst at time t if and only if ∃t′, t′ ≤ t, such that c is

head at lst at time t′.

We note that “c has been head at t” says nothing about whether c is head at t. We will now
show, in Lemma 5(a), that the initial value of Head[lst] is List[lst](0). The sequence of values
that have been successfully written to Head[lst] at time t is:
List[lst](1), List[lst](2), · · · , List[lst](k), for some k ≥ 0. As a preliminary step, the next Lemma
relates any two successive values of Head[lst].

Lemma 4 Let k ≥ 0. Suppose at some time t Head[lst] = List[lst′](k).4 Let c be the first value
that is successfully written to Head[lst] after t. Let t′ be the time c is successfully written to
Head[lst]. Then,

• c = List[lst′](k + 1).

• At time τ such that τ ≥ t′, List[lst′](k) → Next = List[lst′](k + 1).

Proof Head[lst] can be written to in three places: Line 7 of promote, Lines 17,24 of append. In
all these places, Head[lst] changes value from b, the value of Head[lst] returned by the immediately
preceding LL(Head[lst]) (Line 2 of promote, Lines 15,22 of append), to c = b → Next through a
successful SC(Head[lst], c). Further, by Line 4 of promote, Lines 12,16 of append, Lines 19,23 of
append, we have b → Next = c 6= ⊥. By Lemma 1(c), once b → Next = c holds, b → Next = c
at all subsequent times. This implies our Lemma.

2

4Lemma 5(a) shows that lst = lst′.
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In Lemma 5(b),(d),(f), we encounter the first instances of invariants in any run, expressed as
implications (⇒). Consider Lemma 5(b), which has the form:
(c has been head)∧(c is not head)⇒ (d has been head).

The interpretation of this implication is: In any run, at any time t, if (c has been head at t)
and (c is not head at t), then (d has been head at t). Thus, both sides of the implication (⇒)
have an implicit qualification concerning time: They both concern the state of the cells, or other
data objects, at a common instant in time.

Lemma 5(d) says that if a cell c is head, then c is either anchorlst or reachable. Lemma 5(e)
says that c → Next is reachable.

Lemma 5

(a) The initial value of Head[lst] is List[lst](0). The sequence of values that have been successfully
written to Head[lst] at time t is:
List[lst](1), List[lst](2), · · · , List[lst](k), for some k ≥ 0.
(b) (List[lst](i) has been head)∧ (List[lst](i) is not head) ⇒ (List[lst](i + 1) has been head).
(c) Let k ≥ 1. At the time List[lst](k) is successfully written to Head[lst], List[lst](k) is reachable.
(d) (c is head at lst)⇒ (c = anchorlst) ∨ (c is reachable at lst).
(e) Let c = Head[lst] → Next, then c is reachable at lst.
(f) (c is head at lst) ∧ (c → Next = ⊥) ∧ (d is reachable at lst) ⇒ (d has been head at lst)

Proof

(a) We note that at initialization, Head[lst] = anchorlst = List[lst](0). This statement is a
corollary of Lemma 4.
(b) This follows immediately from Part(a).
(c) The proof proceeds by induction on k, and uses Lemma 4. The Induction Step proceeds
as follows: Suppose that List[lst](k − 1) is reachable (Induction Hypothesis). Then, at the time
List[lst](k) is successfully written to Head[lst], List[lst](k−1) → Next = List[lst](k) (by Lemma
4). Thus, by Definition 1, List[lst](k) is reachable.
(d) This is a re-statement of Part(c).
(e) We note that Head[lst] is head at lst. By Part(d), we have (Head[lst] = anchorlst)∨(Head[lst]
is reachable at lst). In either case, c = Head[lst] → Next is reachable at lst.
(f) By Part(a), there exists a k such that c = List[lst](k). Since (c → Next = ⊥)∧ (d is reachable
at lst), we have d = List[lst](m), for some m such that k ≥ m ≥ 1. By Part(a), d has been head
at lst.

2

Lemma 6 Let b → Next = c. (c is reachable at lst) ⇒ (b has been head at lst).

Proof From the algorithm, b → Next is assigned the value c in either Line 4 of announce,
or Line 8 of append. In both these places, a process first executes head:= Head[lst ′] for some
lst′ (Line 2 of announce, Line 1 of append), and then changes the value of head → Next from
⊥ to c through a successful SC(head → Next, c). After the successful SC(head → Next, c),
Head[lst′] → Next = c. By Lemma 5(e), c is reachable at lst′. Hence, lst′ = lst. Since
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Head[lst] → Next = c and b → Next = c, Head[lst] = b (Lemma 2). In other words, b has been
head at lst. This completes our proof.

2

Lemma 6 implies that, if b is head and b → Next = c at time t, then c → Next = ⊥ at t. In
other words, there is at most one reachable cell beyond the head.

3.5.1.3 Ancestor and Descendant

Definition 4 Let c be reachable. We say that c is ready if and only if c → Ready = true.

Notation 3 Let c be non-leaf reachable. c = parent(d) denotes (d 6= ⊥) ∧ (c → LC = d ∨
c → RC = d)

We note that c = parent(d) says nothing about the value of d → Parent. It is possible that,
at time t, c = parent(d) and d → Parent = ⊥.

Definition 5 Let c be reachable.

• We say that c is an ancestor of d if and only if:

– c = d, or

– c = parent(d), or

– ∃a such that a is an ancestor of d, and c = parent(a).

• We say that c is a root ancestor of d if and only if:

– c is an ancestor of d, and

– pos(c) = 1.

• We say that d is a descendant of c if and only if c is an ancestor of d.

• We say that d is a leaf descendant of c if and only if:

– d is a descendant of c, and

– pos(d) ≥ n.

We note that, by definition, c is an ancestor, as well as a descendant, of c.

3.5.1.4 Precedence Relations

In this Section, we prove certain precedence relations among the key events of a cell and its
parent. These relations form the basis of all subsequent proofs. We provide here an informal and
incomplete statement of the result that we aim to prove:

Let c, d be eventually reachable. Let c = parent(d). Then, the following list specifies
the order in which events happen:
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1. d becomes reachable.

2. d becomes ready.

3. c becomes reachable.

4. d becomes head.

5. c becomes ready.

(If d is leaf reachable, then 1. and 2. above are concurrent, i.e. d becomes ready at
the same time it becomes reachable.)

Lemmas 8 to 11 are the rigorous formulations of this informal statement.
Lemma 7 says that if c = parent(d) at time t, then d is reachable and ready at t. Further,

pos(c) and pos(d) occupy the appropriate parent and child positions in the binary tree.

Lemma 7 Let c be non-leaf reachable.
(a) c → LC = d 6= ⊥ ⇒ (d is reachable) ∧(pos(d) = 2 ∗ pos(c))∧ (d is ready).
(b) c → RC = d 6= ⊥ ⇒ (d is reachable) ∧(pos(d) = 2 ∗ pos(c) + 1)∧ (d is ready).

Proof (a) c → LC is assigned the value d in combine (d, *, *, *), called in Line 7 of append
(lst). Further, (d, ∗) is the value returned by readyOrphan (2 ∗ lst) (Line 4 of append (lst)). In
readyOrphan (2 ∗ lst), head = Head[2 ∗ lst] (Line 1). d = head → Next (Line 2), d → Ready =
true (Line 4). Therefore, d is reachable at 2 ∗ lst (by Lemma 5(e)). Since c is reachable, some
process P executed a successful SC(head → Next, c) in Line 8 of append. When P executed Line
1 of append, head = Head[lst]. Therefore, c = head → Next is reachable at lst (by Lemma 5(e)).
Thus, pos(c) = lst, and pos(d) = 2 ∗ lst = 2 ∗ pos(c). Finally, d is ready, since d → Ready = true.
(b) Similar to the proof of part (a).

2

Lemma 8 says that event 1 (d becomes reachable) and event 2 (d becomes ready) precede
event 3 (c becomes reachable).

Lemma 8 Let c be non-leaf reachable. c = parent(d) ⇒ (d is reachable) ∧(d is ready).

Proof This follows immediately from Lemma 7.
2

Lemma 9 says that event 3 (c becomes reachable) precedes event 4 (d becomes head).

Lemma 9 Let d be non-root reachable. (d has been head)⇒ ∃ reachable c such that c = parent(d).

Proof d becomes head in either Line 17 or Line 24 of append. Consider the case of Line 17. (The
case of Line 24 is analogous.) Let P be the process that executed a successful SC(Head[2∗ lst], d),
where d = lchild, in Line 17, thus causing d to become head. We note that during P ’s execution
of append, lchild = newcell → LC (Line 11), newcell = head → Next (Line 2 or 9), head =
Head[lst] (Line 1). Let c in our Lemma be newcell. Then, by Lemma 5(e), c is reachable. By
Notation 3, c = parent(d) since c → LC = lchild = d. This completes the proof.

2
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Lemma 10 says that event 2 (d becomes ready) precedes event 4 (d becomes head). Lemma
10 applies not only to non-root reachable d (as indicated by the informal statement given at the
beginning of this section), but also to root reachable d.

Lemma 10 Let d be such that ∀lst, 1 ≤ lst ≤ 2n − 1, d 6= anchorlst. (d has been head) ⇒ (d is
ready).

Proof Since ∀lst, 1 ≤ lst ≤ 2n−1, d 6= anchorlst, and d has been head, d is reachable (by Lemma
5(d)). If d is non-root reachable, Lemma 10 is an immediate corollary of Lemmas 8 and 9.

Consider the case in which d is root reachable. d becomes Head[1] through a successful
SC(Head[1], d) in Line 7 of promote (1). Further, d → Ready = true (Line 5). Hence, d is ready.

2

Lemma 11 says that event 4 (d becomes head) precedes event 5 (c becomes ready).

Lemma 11 Let c be non-leaf reachable. Then, (c is ready)∧(c = parent(d)) ⇒ (d has been head).

Proof Consider the case of c → LC = d. (The case of c → RC = d is analogous.) c becomes
ready through process P executing Line 25 of append. Further, since lchild = c → LC = d 6= ⊥
(Lines 11,12), P executes Line 15 before executing Line 25. At the time t when P executes Line
15, c = parent(d) holds true. By Lemma 8, (c = parent(d)) ⇒ (d is reachable). Let x be such
that x → Next = d. By Lemma 6, x has been head at pos(d) at time t.

If x is not head at t, then, by Lemma 5(b), d has been head at t. Therefore our Lemma holds
in this case.

Suppose x is head at t. Since lchild = d (Line 11), P observes that lchead → Next = lchild
in Line 16, and executes SC(Head[pos(d)], d) in Line 17. If the SC operation returns true, then
d has been head when P completes Line 17, hence also when P completes Line 25. If the SC
operation returns false, then by Lemma 5(a), d has been head when P begins executing Line 17.
In either case, d has been head when P executes Line 25. This completes the proof.

2

By Lemma 10, event 2 (c becomes ready) precedes event 4 (c becomes head). By Lemma 11,
event 4 (d becomes head) precedes event 5 (c becomes ready). Combining these two results, we
have the next Lemma: (d becomes head) precedes (c becomes head).

Lemma 12 Let c be non-leaf reachable. (c has been head)∧(c = parent(d)) ⇒ (d has been head).

Proof By Lemma 10, (c has been head) ⇒ (c is ready). By Lemma 11, (c is ready)∧(c =
parent(d)) ⇒ (d has been head). Thus, our Lemma holds.

2

3.5.1.5 Uniqueness of Parent

The next Lemma asserts the uniqueness of reachable cell b such that b = parent(d).

Lemma 13 Let b, c be non-leaf reachable. (b = parent(d)) ∧ (c = parent(d)) ⇒ (b = c).
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Proof For contradiction, assume b 6= c. By Lemma 7, pos(b) = pos(c). Let b = List[pos(b)](k), c =
List[pos(b)](l). Without loss of generality, let k < l. Let P be the process that executes a success-
ful SC(head → Next, c) in Line 8 of append. Let t be the time P executes Line 1 of this append.
Thus, at t, Head[pos(b)] = List[pos(b)](l − 1). Since k < l, b has been head at t. By Lemma 12,
since b = parent(d), d has been head at t.

c = parent(d) implies that when P executes readyOrphan (pos(d)) in Line 4 or 5 of append
at some time after t , (d, ∗) is returned. This in turn implies that when P executes readyOrphan
(pos(d)), head = Head[pos(d)] in Line 1, and head → Next = d in Line 2. In other words, d has
not been head when P executes Line 1 of readyOrphan (pos(d)). Thus, d has not been head at t.
This contradiction proves that b = c.

2

Lemma 14 asserts that, if d has been head, then:

• there is a unique c such that c = parent(d) (uniqueness is proved in Lemma 13),

• c is reachable (this corresponds to event 3 (c becomes reachable) preceding event 4 (d
becomes head) in the informal statement at the beginning of the previous section),

• d → Parent holds the proper value c.

Lemma 14 Let d be non-root reachable. (d has been head)⇒ ∃ unique non-leaf reachable c such
that (c = parent(d)) ∧ (d → Parent = c).

Proof By Lemmas 9, (d has been head)⇒ ∃ reachable c such that c = parent(d). We now
show that c is non-leaf. By Lemma 7, since d is non-root reachable, and pos(d) = 2 ∗ pos(c), we
conclude that c is non-leaf reachable. By Lemma 13, such a c is unique. It remains to prove that
(d has been head)⇒ (d → Parent = c).

We consider the case of c → LC = d. (The case of c → RC = d is analogous.) Suppose that d
becomes head by process P executing a successful SC(Head[pos(d)], d) in Line 17 of append. This
implies that lchild = d (Line 17). In Line 11, lchild = newcell → LC. By Lemma 13, newcell = c.
We note that P executes Line 13 before executing Line 17 (or 24, in the case of c → RC = d).
If lchild → Parent = d → Parent = ⊥ (Line 13), then P executes SC(d → Parent, c) (Line 14).
If the SC operation returns true, then d → Parent = c after P executes Line 14. Our Lemma is
thus proved.

However, if either d → Parent 6= ⊥ (Line 13) or the SC operation in Line 14 returns false,
then d → Parent 6= ⊥ before P executes Line 15. d → Parent is assigned a non-⊥ value only
through some process P ′ executing a successful SC(d → Parent, newcell) in Line 14 of append.
However, when P ′ executes Line 11, d = newcell → LC. By Lemma 13, newcell = c. Therefore,
the non-⊥ value assigned by P ′ to d → Parent is c. This completes the proof.

2

3.5.1.6 Properties of append

Lemma 15 says the following: Suppose that the head at the child position lst is b, and the head
at the parent position blst/2c is c at time t. Suppose further that at some subsequent time t ′, b
is no longer head. Then, List[blst/2c] must have grown beyond c at t′.
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Lemma 15 Let lst > 1. Suppose at time t, Head[lst] = b, Head[blst/2c] = c. Then, (b has been
head)∧(b is not head)⇒ (c → Next 6= ⊥).

Proof For contradiction, suppose that at time t′, (b has been head)∧ (b is not head)∧(c →
Next = ⊥). By Lemma 5(a), t′ > t. By Lemma 5(b), there exists a reachable d such that
b → Next = d, and d has been head at t′. By Lemma 9, there exists a reachable a such that
a = parent(d) at t′. Since c is head, c → Next = ⊥, and a is reachable at pos(c) = blst/2c at t′,
we conclude that a has been head at t′ (Lemma 5(f)). Since c is head at both t and t′, a has been
head at t. By Lemma 12, (a has been head)∧(a = parent(d)) ⇒ (d has been head) at t. This
contradicts the assumption that b is head at t. Our Lemma is thus proved by this contradiction.

2

Lemma 16 is the key Lemma regarding the property of append. It says the following: Let t
be any time before the invocation of append(blst/2c). Suppose that at time t, the head at the
child position lst is b, the head at the parent position blst/2c is c, and b → Next is ready. Then,
after append(blst/2c) terminates, c → Next is ready. We note that c → Next could have become
ready before the invocation of append(blst/2c). Our Lemma allows for such a possibility.

Lemma 16 Suppose that at time t before process P invokes append(blst/2c), Head[lst] = b, b →
Next = d 6= ⊥, d is ready, Head[blst/2c] = c. Then, at any time after append(blst/2c) terminates,
∃ reachable e such that (c → Next = e) ∧ (e is ready).

Proof We note that c is head at t. If at any time during the execution of append(blst/2c) c is
not head, then by Lemma 5(b), ∃ reachable e such that (c → Next = e), and e has been head.
By Lemma 10, e is ready. Our Lemma is then proved.

We now consider the case where c is head throughout the execution of append(blst/2c). Con-
sider process P executing append(blst/2c). In Line 1, head = Head[blst/2c] = c.
Case 1 Suppose ∃ reachable e such that c → Next = e 6= ⊥ in Line 2.

We note that in this Case, Line 25 is always executed. Further, newcell = e (Line 2). This
implies that, at the time P completes Lines 25,, e → Ready = true. By Lemma 1(e), our Lemma
holds.
Case 2 Suppose c → Next = ⊥ in Line 2.

Consider P executing readyOrphan (lst) (Line 4 or 5 of append). Let t′ be the time P executes
Line 1 of readyOrphan (lst).
Case 2a Suppose Head[lst] 6= b at t′.

By Lemma 15, since (b has been head)∧ (b is not head) at t′, we have c → Next 6= ⊥ at t′.
Therefore, there exists a reachable e such that newcell = c → Next = e 6= ⊥ in Line 9 of append.
This implies that P always executes Line 25. By the argument used in Case 1, at the time P
completes Lines 25, e → Ready = true. Hence, our Lemma holds.
Case 2b Suppose Head[lst] = b at t′.

By the premise of our Lemma, in Lines 1-4 of readyOrphan (lst), newcell = b → Next = d 6=
⊥, newcell → Ready = true. Further, readyOrphan (lst) returns (b, ∗) to Lines 4 or 5 of append.
P then executes SC(c → Next, ∗) in Line 8 of append. Whether the SC operation returns true or
false, newcell = c → Next 6= ⊥ when P executes Line 9. By the argument used in Case 2a, our
Lemma holds in this case, too.

2
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3.5.1.7 Properties of promote

In this section, we prove the key property of promote. Lemma 17 concerns the property of
promote(1). It asserts that if a cell is ready before promote(1), then it has been head after
promote(1).

Lemma 17 Let r be root reachable and ready before the invocation of promote(1). Then, after
promote(1) terminates, r has been head.

Proof Let s be root reachable or anchor1, such that s → Next = r. By Lemma 6, since r is
reachable, s has been head before process P invokes promote(1). Suppose that at some time t
during P ’s execution of promote(1), Head[1] 6= s. By Lemma 5(b), r has been head at t. Thus,
our Lemma holds.

We now consider the case where Head[1] = s throughout the execution of promote(1). This
implies that head = Head[1] = s (Line 2 of promote(1)). Since newcell = s → Next = r 6= ⊥
(Line 3), newcell → Ready = r → Ready = true (Line 5), P executes SC(Head[1], r) in Line
7. Whether the SC operation returns true or false, Head[1] 6= s after P ’s execution of Line
7 (Lemma 4). This contradicts the assumption that Head[1] = s throughout the execution of
promote(1). The proof is now complete.

2

Lemma 18 asserts that if a cell d is ready before promote (pos(d)) (for any pos(d)), then d
has been head after promote (pos(d)) completes. Further, if d is non-root reachable, then d has
a ready parent after promote (pos(d)) completes.

Lemma 18 Let d be reachable and ready before the invocation of promote (pos(d)). Then, after
promote (pos(d)) terminates,
(a) d has been head,
(b) if d is non-root reachable, ∃ non-leaf reachable c such that c = parent(d) ∧ (c is ready).

Proof The proof is by induction on i, 0 ≤ i ≤ log n, such that 2i ≤ pos(d) ≤ 2i+1 − 1. (If i = 0,
d is root reachable. If i = log n, d is leaf reachable.)
Induction Basis i = 0.

This Lemma for i = 0 is identical to Lemma 17.
Induction Step Suppose Lemma 18 holds for all d such that 1 ≤ pos(d) ≤ 2i − 1, where
1 ≤ i ≤ log n. We now show that Lemma 18 holds for d such that 2i ≤ pos(d) ≤ 2i+1 − 1.

Let a be such that a → Next = d. Let t0 be the earliest time when d is reachable and ready.
By Lemma 6, since d is reachable, a has been head at t0. We now show that a is head at t0.
Suppose a is not head at t0. By Lemma 5(b), d has been head at t0. By Lemma 10, d becomes
ready before d becomes head. Therefore, d becomes head after t0. This contradiction proves that
a is head at t0.

We note that d is non-root reachable. Let Head[bpos(d)/2c] = e at t0. As shown above,
Head[pos(d)] = a, a → Next = d, d → Ready = true at t0. By assumption, t0 is a time before
process P invokes promote(pos(d)). In promote(pos(d)), P invokes append(bpos(d)/2c) in Line
9 after t0. By Lemma 16, after P completes append(bpos(d)/2c) in Line 9, there is a reachable
f such that (e → Next = f) and (f is ready). P next invokes promote(bpos(d)/2c) in Line 10.
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Applying the Induction Hypothesis, we observe that: Since f is reachable and ready before P
invokes promote(bpos(d)/2c) in Line 10, f has been head when P completes promote(bpos(d)/2c)
in Line 10. Let t1 be the earliest time when Head[bpos(d)/2c] = f .
Case 1 a is not head at t1.

We note that a is head at t0, and is not head at t1. By Lemma 5(b), d has been head at t1.
Thus, part (a) of our Lemma holds. By Lemma 9, there exists a reachable x at bpos(d)/2c such
that x = parent(d) at t1. Since t1 is the earliest time when Head[bpos(d)/2c] = f , f → Next = ⊥
at t1. By Lemma 5(f), x has been head at t1. By Lemma 10, x is ready at t1. Thus, x is non-leaf
reachable, x = parent(d) and x is ready at t1. Hence, part (b) of our Lemma holds.
Case 2 a is head at t1.

In this case, Head[bpos(d)/2c] = f,Head[pos(d)] = a, a → Next = d, d → Ready = true at
t1. t1 is a time before P invokes append(bpos(d)/2c) in Line 11. By Lemma 16, when P completes
append(bpos(d)/2c) in Line 11, there exists a reachable g such that (f → Next = g) and (g is
ready).

Let P ′ be the process that executes the successful SC(f → Next, g) in Line 8 of append.
Prior to Line 8, P ′ executes readyOrphan(pos(d)) in Lines 4,5 of append. Let τ be any time
when P ′ is executing readyOrphan(pos(d)). We note that f → Next = ⊥ at τ . Suppose
Head[pos(d)] 6= a at τ . Let t in Lemma 15 be t1. Since (a has been head)∧ (a is not head)
at τ , we conclude that f → Next 6= ⊥ at τ (Lemma 15). This contradiction proves that at any
time τ when P ′ is executing readyOrphan(pos(d)), Head[pos(d)] = a. Hence, as P ′ executes Line
1 of readyOrphan(pos(d)), head = a. Finally, readyOrphan(pos(d)) returns (d, d → Op) to Line
4, or 5 of append(bpos(d)/2c). This in turn implies that in combine (called in Line 7 of append),
(g → LC = d) ∨ (g → RC = d). In other words, g = parent(d). As was proved above, when P
completes Line 11 of promote(pos(d)), g is ready. So, g is non-leaf reachable, g = parent(d), and
g is ready. Part(b) of our Lemma is thus proved.

By Lemma 11, d has been head when P completes promote(pos(d)). Thus, part (a) of our
Lemma holds.

2

3.5.1.8 Properties of apply

We are now in a position to prove (in Lemma 21) the crucial property of apply that we need. In
Lemma 19, we prove the property of apply, assuming that opcell is reachable and ready, after
Line 1 of apply completes. In Lemma 20, we prove that this assumption indeed holds. Thus, in
Lemma 21, the property of apply holds without any assumption.

Lemma 19 asserts the following: Assume that opcell is reachable and ready after Line 1
of apply completes. Then, after the for loop in Lines 2-3 completes, at each of the log n + 1
positions along the path from opcell to the root, there is a unique ancestor of opcell. Thus, opcell
has log n + 1 ancestors (including opcell itself, and a cell at the root position). Further, each
ancestor of opcell (including opcell itself) has been head.

Lemma 19 Consider process P executing apply(P, op,O). Suppose that when P completes Line
1, opcell is reachable and ready. Then, after P exits the for loop in Lines 2-3, ∀i, 0 ≤ i ≤ log n,
∃ a reachable ai, such that:

48



• ai is a unique ancestor of opcell at position b(n + P )/2ic,

• ai has been head,

• ∀i < log n, ai → Parent = ai+1.

• a0 = opcell.

Proof By Definition 5 opcell is an ancestor of opcell at position n + P . Let a0 = opcell. If ai

is an ancestor of opcell, then ai+1 = parent(ai) is (by Definition 5) an ancestor of opcell too. By
Lemma 18, we have:

(*) ∀0 ≤ i ≤ log n: Let ai be reachable at b(n+P )/2ic and ready before the invocation
of promote (b(n + P )/2ic). Then, after promote (b(n + P )/2ic) terminates,

• ai has been head,

• ∀i < log n,∃ai+1 such that ai+1 is reachable at b(n+P )/2i+1c, ready, and ai+1 =
parent(ai).

We note that a0 is reachable at n+P , and ready before the for loop in Lines 2,3 of apply(P, op,O)
begins. In the for loop, P executes promote (b(n + P )/2ic), ∀i such that 0 ≤ i ≤ log n.

By log n + 1 applications of (*) above, we get: ∀i, 0 ≤ i ≤ log n : ∃ reachable ai such that ai

is an ancestor of opcell at b(n + P )/2ic, and ai has been head.
By Lemma 13, there exists at most one ancestor of opcell at b(n + P )/2ic, for any given i.

This proves the uniqueness of ai as stated in our Lemma.
Let i < log n. By Lemma 14, ai has been head implies that ai → Parent = ai+1.

2

Lemma 20 proves that the assumption in Lemma 19 indeed holds. The inductive proof of
Lemma 20 uses Lemma 19.

Lemma 20 Consider process P executing apply(P, op,O). When P completes Line 1, opcell is
reachable and ready, and opcell → Op = op.

Proof The proof is by induction on the successive invocations of apply(P, *, O) by P in a run.
Induction Basis Consider the first invocation of apply(P, *, O) by P . Let P invoke apply(P, op,O).
In Line 2 of announce(op, P ) (called in Line 1 of apply(P, op,O)), head = Head[n + P ] =
anchorn+P . We note that during initialization, anchorn+P → Next := ⊥, and that the only way
anchorn+P → Next can be assigned a new value is when P executes SC(head → Next, ∗) in
Line 4 of announce. Therefore the SC operation in Line 4 returns true, and opcell is reachable
when P completes announce(op, P ). By Line 1 of announce(op, P ), we have opcell → Ready =
true, opcell → Op = op. Thus, our Lemma holds.
Induction Step The induction hypothesis is that Lemma 20 holds for all previous invocations of
apply(P,*, O) by P . We now prove that Lemma 20 holds with respect to the current invocation.

Let the invocation of apply(P, *, O) by P that immediately precedes the current invoca-
tion, apply(P, op,O), be apply(P, op′,O). Let c′ = opcell, the value returned in Line 1 of
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apply(P, op′,O). By Lemma 19, c′ has been head when P completes apply(P, op′,O). Let t
be the time when P executes Line 3 of announce(op, P ) (called in Line 1 of apply(P, op,O)).
Since the only way c′ → Next can be assigned a non-⊥ value is by process P executing a success-
ful SC(head → Next, ∗) in Line 4 of announce, c′ → Next = ⊥ at t. This in turn implies that c′

is head at t, and hence also at the time P executes Line 2 of announce(op, P ). Hence P executes
SC(head → Next, opcell) in Line 4 of announce(op, P ). Further, the SC operation returns true.
This implies that opcell is reachable after P completes Line 1 of apply(P, op,O). By Line 1 of
announce(op, P ), opcell is ready, and opcell → Op = op. The proof is now complete.

2

Lemma 21 is the key result in this section. It is the statement of Lemma 19, without the
assumption that when P completes Line 1, opcell is reachable and ready.

Lemma 21 Consider process P executing apply(P, op,O). After P exits the for loop in Lines
2-3, ∀i, 0 ≤ i ≤ log n, ∃ a reachable ai, such that:

• ai is a unique ancestor of opcell at position b(n + P )/2ic,

• ai has been head,

• ∀i < log n, ai → Parent = ai+1.

• a0 = opcell.

Proof This Lemma is a corollary of Lemmas 19 and 20.
2

3.5.2 Proof of Linearizability

The objective of this section is to prove that our algorithm is linearizable. As a first step, we
define formally the notion of linearizability.

Definition 6 Consider a run R.

• invocations(R) denotes the set of invocations of apply in R.

• leafCells(R) denotes the set of leaf reachable cells in R.

• An invocation of apply(P, op,O) in R is complete if the procedure apply(P, op,O) termi-
nates in R.

Definition 7 The run R is linearizable if there exists a sequence, invocSeq(R), of invocations
in invocations(R), such that:

• each invocation in invocations(R) appears at most once in invocSeq(R).

• each complete invocation in invocations(R) appears exactly once in invocSeq(R).
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• Let invocations apply(P, op,O), apply(P ′, op′,O) be in invocSeq(R). If procedure
apply(P, op,O) terminates before procedure apply(P ′, op′,O) begins, then invocation
apply(P, op,O) precedes invocation apply(P ′, op′,O) in invocSeq(R).

• Let R′ be a run in which the invocations in invocSeq(R) are applied sequentially (without
overlap) to O. Suppose that procedure apply(P, op,O) returns x in R. Then, procedure
apply(P, op,O) returns x in R′.

3.5.2.1 Functions invoca and leaf

Definition 8 We define a function invoca: leafCells(R) → invocations(R) thus:

invoca(c) = (apply(P, op,O)) if and only if announce called in Line 1 of apply(P, op,O)
produces a leaf reachable cell c in R

Since each leaf reachable cell produced in announce is a new cell, invoca is well-defined.
Further, since each invocation produces at most one leaf reachable cell, invoca is one-to-one. Let
invocationsWithCells(R) denote the range of invoca.

Definition 9 We define a function leaf: invocationsWithCells(R) → leafCells(R) thus:

leaf(apply(P, op,O))=c if and only if invoca(c) = (apply(P, op,O)).

Since invoca is one-to-one, leaf is well-defined.
We note that leaf(apply(P, op,O)) is the cell returned by announce(op, P ) called in Line 1 of

apply(P, op,O).

Lemma 22 Let c = leaf(apply (P, op,O)). Then, c → Op = op.

Proof This is an immediate corollary of Lemma 20.
2

3.5.2.2 Leaf Sequence

Notation 4

• [x1, x2, x3, · · ·] denotes a sequence whose ith element is xi.

• Let σ1 be a finite sequence, and σ2 be a sequence. Then, σ1 ◦ σ2 denotes the concatenation
of σ1 and σ2.

• ε denotes the empty sequence.

We define the leaf sequence of a reachable cell c, denoted by leafSeq(c), to be the sequence of
the leaf descendants of c, in the left-to-right order. Formally,
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Definition 10 Let c be ⊥ or a reachable cell. We define the leaf sequence of c, denoted by
leafSeq(c), to be a sequence of leaf reachable cells satisfying the following:
(a) If c = ⊥, then leafSeq(c) = ε;
(b) If c is leaf reachable, then leafSeq(c) = [c];
(c) If c is non-leaf reachable, then leafSeq(c) = leafSeq(c → LC) ◦ leafSeq(c → RC).

By Lemma 7, if c is non-leaf reachable, then c → LC (and c → RC) is either ⊥ or reachable.
Thus, (c) in the above definition is well-defined.

2

Let R be a run. We define the leaf sequence of R, denoted by leafSeq(R), to be the concate-
nation of the leaf sequences of the root reachable cells in R.

Definition 11 Let R be a run. Recall that List[1] = [r0, r1, r2, · · ·], where r0 = anchor1, and
∀i > 0, ri−1 → Next = ri.

Define the leaf sequence of R, denoted by leafSeq(R), as follows: leafSeq(R)=leafSeq(r1) ◦
leafSeq(r2) ◦ leafSeq(r3) ◦ · · ·.

Thus, leafSeq(R) is the sequence of leaf cells of the root reachable cells in a run R, in the
left-to-right order.

Definition 12 Let c be a reachable cell in a run R. The prior leaf sequence of c, denoted by
priorLeafSeq(c), is defined to be the sequence α of leaf reachable cells such that α ◦ leafSeq(c) is a
prefix of leafSeq(R).

Let c be a reachable cell in a run R. By Definitions 10, 11, and Lemma 21, leafSeq(c) occupies
a unique position in leafSeq(R). α is therefore well-defined in the above Definition.

We note that priorLeafSeq(c) is the sequence of leaf reachable cells (in the left-to-right order)
up to, but excluding, the left-most leaf descendant of c.

3.5.2.3 Invocation Sequence

Definition 13 Let leafSeq(R) = [c1, c2, c3, · · ·]. Define the invocation sequence of R, invocSeq(R) =
[invoca(c1), invoca(c2), · · ·].

The next three Lemmas are important in our proof of linearizability.

Lemma 23 Each invocation in invocations(R) appears at most once in invocSeq(R).

Proof Each invocation produces at most one leaf reachable cell c. By Lemma 21, c has at
most one root ancestor. Thus, c appears at most once in leafSeq(R). Therefore, each invocation
appears at most once in invocSeq(R).

2

Lemma 24 Each complete invocation in invocations(R) appears exactly once in invocSeq(R).
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Proof Each complete invocation produces exactly one leaf reachable cell c. By Lemma 21, c has
exactly one root ancestor. Thus, c appears exactly once in leafSeq(R). Therefore, each complete
invocation appears exactly once in invocSeq(R).

2

Lemma 25 Let invocations apply(P, op,O), apply(P ′, op′,O) be in invocSeq(R). If procedure
apply(P, op,O) terminates before procedure apply(P ′, op′,O) begins, then invocation
apply(P, op,O) precedes invocation apply(P ′, op′,O) in invocSeq(R).

Proof Let List[1] = [r0, r1, · · ·]. By Lemma 21, leaf(apply(P, op,O)) has a root ancestor ri before
apply(P, op,O) terminates. By Lemma 7, and from the algorithm, leaf(apply(P ′, op′,O)) has a
root ancestor rj after apply(P ′, op′,O) begins. Thus, i < j. Hence, leaf(apply(P, op,O)) precedes
leaf(apply(P ′, op′,O)) in leafSeq(R). As a result, apply(P, op,O) precedes apply(P ′, op′,O) in
invocSeq(R).

2

3.5.2.4 Operation Sequence

Definition 14 Let c be reachable.

• Let leafSeq(c) be [c1, c2, c3, · · · , ck]. We define the operation sequence of c, opSeq(c) =
[c1 → Op, c2 → Op, c3 → Op, · · · , ck → Op].

• Let priorLeafSeq(c) be [c1, c2, c3, · · · , ck]. We define the prior operation sequence of c,
priorOpSeq(c) = [c1 → Op, c2 → Op, c3 → Op, · · · , ck → Op].

Thus, opSeq(c) is the sequence of operations in the Op fields of the cells of leafSeq(c). priorOpSeq(c)
is the sequence of operations in the Op fields of the cells of priorLeafSeq(c).

3.5.2.5 Op Field of a Cell

We define δ∗state(s, [op1, op2, · · · , opk]) to be the state of the object O after applying successively
the operations op1, op2, op3, · · · , opk to O in state s. Formally,

Definition 15 Let op+ be the set of sequences of one or more operations. Define δ∗state : Q ×
OP+ → Q as follows:

Let s ∈ Q be a state. Let op ∈ OP, γ ∈ OP +. Then,

• δ∗state(s, [op]) = δstate(s, op).

• δ∗state(s, γ ◦ [op]) = δstate(δ
∗
state(s, γ), op).

We note that given two sequences of operations γ1, γ2, δ∗state(δ
∗
state(s, γ1), γ2) = δ∗state(s, γ1◦γ2).

Recall that op′
⊗

op′′ = op if, for any state s, applying operation op to the implemented object
O in state s results in the same state as applying first op′, then op′′ to O in state s. We note that⊗

is associative. Thus, ((op1
⊗

op2)
⊗

op3)
⊗

op4 = op1
⊗

((op2
⊗

op3)
⊗

op4).
We define

⊎
on a non-trivial sequence of operations, such that

⊎
([op1, op2, · · · , opk]) is the

operation that results from combining, using
⊗

, the operations op1, op2, · · · , opk. Formally,

53



Definition 16 Let [op1, op2, · · · , opk] be a non-trivial sequence of operations. Define⊎
([op1, op2, · · · , opk]) as follows:

• If k = 1,
⊎

([op1]) = op1,

• If k > 1,
⊎

([op1, op2, · · · , opk]) = ((· · · ((op1
⊗

op2)
⊗

op3) · · ·
⊗

opk).

By the property of
⊗

, we have: Let s be any state. Let σ be a non-trivial sequence of
operations. Then, δstate(s,

⊎
(σ)) = δ∗state(s, σ).

Lemma 26 says that c → Op is the operation that results from combining, using
⊗

, the
operations of the leaf descendants of c.

Lemma 26 Let c be reachable. Then, c → Op =
⊎

(opSeq(c)).

Proof We proceed by induction.
Induction Basis Let c be leaf reachable. Then, opSeq(c) = [c → Op]. Our Lemma holds, since⊎

([op]) = op, by definition.
Induction Step Let c be non-leaf reachable. Suppose that (c → LC 6= ⊥) ∧ (c → RC 6= ⊥).
(Other cases are similar.)

c → Op = (c → LC → Op)
⊗

(c → RC → Op)

=
⊎

(opSeq(c → LC))
⊗ ⊎

(opSeq(c → RC))

=
⊎

(opSeq(c → LC) ◦ opSeq(c → RC))

=
⊎

(opSeq(c))

2

Lemma 27 is the immediate consequence of Lemma 26, which says that c → Op is the operation
that results from combining, using

⊗
, the operations of the leaf descendants of c.

Lemma 27 Let s be any state. Let c be reachable. Then, δstate(s, c → Op) = δ∗state(s, opSeq(c)).

Proof This is an immediate corollary of Lemma 26, and the observation that δstate(s,
⊎

(σ)) =
δ∗state(s, σ).

2

3.5.2.6 State Field of a Cell

Lemma 28 says that any non-⊥ value in c → State is the state that results from applying
the operations in priorOpSeq(c) to the implemented object in the initial state. Furthermore,
c → State is stable, i.e. once it holds a non-⊥ value, such a value will never change.

Lemma 28 Let c be reachable.
(a) If c → State 6= ⊥, then
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c → State = δ∗state(initialstate, priorOpSeq(c)).

(b) Let c → State = d, d 6= ⊥, at time t. Then at any time t′ such that t′ ≥ t, c → State = d.

Proof

Induction Basis Let c be root reachable. Let List[1] = [r0, r1, r2, · · ·]. Let c = ri, i ≥ 1.
ri → State can be assigned a non-⊥ value only in Line 6 of promote(1). From Line 3, head = ri−1.
Thus, the non-⊥ value of ri → State is δstate(ri−1 → State, ri−1 → Op). Since r0 → State =
anchor1 → State =initialstate, r0 → Op = ⊥, then by a simple induction on i, we have:

If c → State = ri → State 6= ⊥, then

c → State = δ∗state(initialstate, [r1 → Op, r2 → Op, · · · , ri−1 → Op])

Recall that

leafSeq(R) = leafSeq(r1) ◦ leafSeq(r2) ◦ · · · leafSeq(ri−1) ◦ leafSeq(ri) ◦ · · ·

Thus, priorOpSeq(c) = opSeq(r1) ◦ opSeq(r2) ◦ · · · opSeq(ri−1). Therefore,

c → State = δ∗state(δstate(initialstate, r1 → Op), [r2 → Op, r3 → Op, · · · , ri−1 → Op])

= δ∗state(δ
∗
state(initialstate, opSeq(r1)), [r2 → Op, r3 → Op, · · · , ri−1 → Op])(Lemma 27)

= δ∗state(δ
∗
state(initialstate, opSeq(r1) ◦ opSeq(r2)), [r3 → Op, r4 → Op, · · · , ri−1 → Op])

= δ∗state(initialstate, opSeq(r1) ◦ opSeq(r2)) ◦ · · · ◦ opSeq(ri−1))

= δ∗state(initialstate, priorOpSeq(c))

This proves part (a). It is easy to see that r0 → State = anchor1 → State =initialstate is
stable. By a simple induction on the index i, we see that ∀i, ri → State is also stable. Thus, part
(b) holds.
Induction Step Let c be non-root reachable.

The Induction Hypothesis is that Lemma 28 holds for c → Parent. c → State can be
assigned a non-⊥ value only in Line 5 or 6 of percolateState, and only if p → State 6= ⊥, where
p = c → Parent. By Lemma 21, when a process is executing percolateState, p = c → Parent
implies that p = parent(c) i.e. p → LC = c or p → RC = c.
Case 1 p → LC = c.

In this Case, priorOpSeq(c) = priorOpSeq(p). By Line 5 of percolateState, if c → State 6=
⊥, then

c → State = p → State

= δ∗state(initialstate, priorOpSeq(p)) (Induction Hypothesis)

= δ∗state(initialstate, priorOpSeq(c))
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Case 2 p → RC = c.
In this Case, priorOpSeq(c) = priorOpSeq(p) ◦ opSeq(p → LC). Since lop = lc → Op in

announce, we have p → Lop = p → LC → Op. By Line 6 of percolateState, if c → State 6= ⊥,
then

c → State = δstate(p → State, p → Lop)

= δstate(δ
∗
state(initialstate, priorOpSeq(p)), p → Lop) (Induction Hypothesis)

= δstate(δ
∗
state(initialstate, priorOpSeq(p)), p → LC → Op)

= δ∗state(δ
∗
state(initialstate, priorOpSeq(p)), opSeq(p → LC)) (Lemma27)

= δ∗state(initialstate, priorOpSeq(p) ◦ opSeq(p → LC))

= δ∗state(initialstate, priorOpSeq(c))

This completes the proof of part (a). By Induction Hypothesis, c → Parent → State is stable.
It follows immediately that c → State is also stable. This proves part (b).

2

Lemma 29 says that when a root reachable cell has been head, its State field holds a non-⊥
value.

Lemma 29 Let List[1] = [r0, r1, · · ·]. ∀i, i ≥ 0, (ri has been head)⇒ (ri → State 6= ⊥).

Proof

Induction Basis i = 0.
At initialization, r0 = anchor1 is head, and r0 → State 6= ⊥. Thus, our Lemma holds.

Induction Step Suppose Lemma 29 holds for ri−1.
We now prove that (ri has been head)⇒ (ri → State 6= ⊥). If ri has been head, then some

process P has executed a successful SC(Head[1], ri) in Line 7 of promote(1). When P executes
Line 6 , newcell = ri, and head = ri−1 (Lines 2,3). Thus, ri−1 has been head when P executes
Line 2. By the Induction Hypothesis, ri−1 → State 6= ⊥. As a result, ri → State = δstate(ri−1 →
State, ri−1 → Op) 6= ⊥ (Line 6). This completes the proof.

2

Lemma 30 says that after percolateState(opcell, n+P) terminates, opcell’s State field holds
a non-⊥ value. By Lemma 28, we therefore have the following: after percolateState(opcell,
n+P) terminates, opcell → State holds the state that results from applying the operations in
priorOpSeq(opcell) (which is the sequence of operations of the leaf reachable cells to the left of
opcell) to the implemented object in the initial state.

Lemma 30 After percolateState(opcell, n+P) in Line 4 of apply terminates, opcell → State 6=
⊥.
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Proof By Lemma 21, before process P begins percolateState, ∀i, 0 ≤ i ≤ log n − 1, ai →
Parent = ai+1, where a0 = opcell, ai+1 = parent(ai), alog n is root reachable. This implies that
eventually P makes the recursive call percolateState(alogn, 1). Further, by Lemma 21, alog n

has been head.
By Lemma 29, alog n → State 6= ⊥. In Lines 5,6 of percolateState, (p → State 6= ⊥) ⇒ (c →

State 6= ⊥), i.e. (ai+1 → State 6= ⊥) ⇒ (ai → State 6= ⊥). Hence, alog n → State 6= ⊥ implies
that ∀i, 0 ≤ i ≤ log n − 1, ai → State 6= ⊥ when percolateState(opcell, n+P) terminates. In
particular, opcell → State = a0 → State 6= ⊥.

2

3.5.2.7 Linearizability

Lemma 31(c) asserts that apply(P, op,O) returns a response that is the same as the response that
apply(P, op,O) would have obtained if the invocations of the run R were applied sequentially, in
the order specified in the invocation sequence, invocSeq(R). This is a crucial result, and a short
step from finally proving linearizability. Theorem 1 provides the full argument for linearizability.

Lemma 31 Let R be a run. Let leafSeq(R) = [c1, c2, · · ·]. Then,
(a) invocSeq(R) = [apply(∗, c1 → Op,O), apply(∗, c2 → Op,O), · · ·],
(b) ∀i, i = 1, 2, · · · : after Line 4 of apply(∗, ci → Op,O),
ci → State = δ∗state(initialstate, [c1 → Op, c2 → Op, · · · , ci−1 → Op]),
(c) ∀i, i = 1, 2, · · · : apply(∗, ci → Op,O) returns
δresp(δ

∗
state(initialstate, [c1 → Op, c2 → Op, · · · , ci−1 → Op]), ci → Op).

Proof

(a) Let invocSeq(R) = [apply(∗, op1,O), apply(∗, op2,O), · · ·]. Thus, ci=leaf (apply(∗, opi,O)).
By Lemma 22, opi = ci → Op.
(b) opSeq(R) = [c1 → Op, c2 → Op, · · · , ci−1 → Op, ci → Op, · · ·]. Therefore, priorOpSeq(ci) =
[c1 → Op, c2 → Op, · · · , ci−1 → Op]. By Lemmas 30 and 28, after Line 4 of apply(∗, ci → Op,O),

ci → State = δ∗state(initialstate, priorOpSeq(ci))

= δ∗state(initialstate, [c1 → Op, c2 → Op, · · · , ci−1 → Op])

(c) This follows immediately from part (b) of this Lemma.
2

3.5.3 Summary

Theorem 1 The closed object construction shown in Figures 3.6 to 3.9 is linearizable and wait-
free.

Proof The closed object construction is wait-free, by inspection of the algorithm.
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Consider a run R. By Lemmas 23, 24 and 25, invocSeq(R) satisfies the first three requirements
of Definition 7.

Consider a run R′ in which the invocations in invocSeq(R) are applied sequentially to the
implemented object, initialized to initialstate. Let procedure apply(P, op,O) return x in R.
Then, by Lemma 31(a),(c), apply(P, op,O) returns x in R′. Thus, invocSeq(R) satisfies the
last requirement of Definition 7. Therefore R is linearizable. Since R is an arbitrary run, our
construction is linearizable.

2

Theorem 2 The shared-access time complexity and local time complexity of the closed object
construction shown in Figures 3.6 to 3.9 are both O(log2 n).

Proof

We make the following observations:

1. A call to readyOrphan, announce, or combine results in O(1) accesses to shared objects
and O(1) local steps.

2. A call to append(lst) results in O(1) shared-memory steps and O(1) local steps.

3. When the recursion in the promote procedure is eliminated, a call to promote results in at
most 2∗ log n calls to append, thus giving rise to O(log n) shared-memory steps and O(log n)
local steps.

4. A call to percolateState(c, lst), or release(c, lst , ∗ ) results in O(log n) shared-memory
steps and O(log n) local steps.

5. apply makes one call to announce, 1 + log n calls to promote, one call to percolateState,
and one call to release. Therefore, a call to apply results in O(log2 n) shared-memory
steps and O(log2 n) local steps.

Thus, both the shared-access time complexity and local time complexity of the closed object
construction are O(log2 n).

2
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Chapter 4

Bounded Construction for Closed
Objects

4.1 General Principles

In the construction presented in Chapter 3, each time a process P invokes either announce or
combine, it allocates a new cell from its private pool of cells. Thus, each process requires a pool
of unbounded number of cells. We now describe the general approach that we have taken in
modifying the unbounded construction, in order to bound the total number of cells required.

First, we recall that once a cell c becomes head, any further changes to the fields of c come in
one of two ways:

• processes that installed the leaf descendants of c write to c → State during their execution
of percolateState.

• processes try to write to c → Next during their execution of combine or announce.

We provide every cell c with two additional fields: c → Free and c → Retired, to indicate
whether such changes to the fields of c may still happen.

c → Free = true indicates that all the leaf descendants of c have completed their percolateState.
Thus, c will no longer be accessed by any process executing percolateState. c → Retired = true
indicates that c has been head, but is no longer head. Thus, c → Next points to some cell d, and
d has been head. We say that a cell c is invalid if both c → Free and c → Retired hold true.
The fields of an invalid cell no longer holds any useful information. Our aim is to recycle invalid
cells. A recycled cell is said to be in a new incarnation.

There is no guarantee that an invalid cell c is no longer accessed by processes. Since c →
Free = true means that all the leaf descendants of c have completed their percolateState, we
know that no process will access an invalid c during percolateState. However, it is possible, for
example, for a process P to access an invalid c during Line 2 of readyOrphan: Suppose P reads
head := c in Line 1 when c is head. If P waits until c is invalid before executing Line 2, then P
accesses an invalid c.
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Therefore, we need to ensure that, whenever an invalid c is accessed, the algorithm behaves
in exactly the same way, whether c has been recycled (so that c is in a new incarnation, and its
fields hold indeterminate values) or not. In other words, the contents of an invalid c must not
affect the correctness of the algorithm. Furthermore, if c has been recycled, then the contents of
c must be protected from any change by the processes that intend to access an old incarnation of
c.

To achieve this, we first observe the following: If a cell c is accessed by a process P in procedures
other than percolateState, then the following is true:

P first reads Head[lst], for some lst, and sets head := Head[lst]. P then follows some pointers,
starting from head, to reach c: Either head = c, head → Next = c, head → Next → LC = c, or
head → Next → RC = c.

Suppose that initially P had executed head := LL(Head[lst]), instead of head := Head[lst].
Further suppose that P executes VL(Head[lst]) at some time t when c is invalid. We can prove
that at t, Head[lst] no longer equals head. Thus, the VL operation returns false. Hence, if
P executes VL(Head[lst]) immediately after reading values from c, and discards such values if
VL(Head[lst]) returns false, then values from an invalid cell c will never be used by P . If, on the
other hand, VL(Head[lst]) returns true, then the values read are indeed from a valid c. In this
case, P proceeds with the steps of the construction in Chapter 3.

We therefore require that every read operation on c be preceded by a LL(Head[lst]), and
followed by a VL(Head[lst]). If the VL operation returns false, then P abandons any further
operation on c, as no useful work remains to be done on c. On the other hand, if the VL
operation returns true, then P is assured that it has read values from a valid c. In this case, it
proceeds with the normal execution. By this mechanism, we ensure that the contents of an invalid
c (which are indeterminate) do not affect the correctness of our algorithm.

After reading from a valid c, P may want to write to c. We require that any write to c
observes certain rules. For example, consider the case where P wants to write x to c → Parent.
We require that P first executes parent :=LL(c → Parent). P then executes VL(Head[lst]), to
be sure that the value parent indeed came from a valid c. P then checks to see if parent = ⊥. If
parent 6= ⊥, P does nothing. If parent = ⊥, P executes SC(c → Parent, x).

We note that when P executes SC(c → Parent, x), c may be invalid. If c is invalid, then the
SC operation must fail. This is true for the following reason: Before P executes the SC operation,
P has executed the LL operation when c is valid, and c → Parent = ⊥. c → Parent must have
held a non-⊥ value, before c becomes invalid. Hence, when P executes the SC operation (at a
time when c is invalid), the SC operation must fail.

This ensures that the contents of an invalid c are not changed by P . Thus, if c has been
recycled, the contents of the current incarnation of c are not corrupted.

In summary, we use VL(Head[lst]) to ensure that either the values read from c are from a valid
c, or further operations on c are abandoned. Furthermore, we ensure that there is no successful
write operations on an invalid c. With these mechanisms, an invalid cell can be safely recycled.

As we shall prove, our bounded implementation requires only 3n(3n + log n) cells.
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4.2 Bounded Space Complexity* (BSC*) Implementation

We incorporate the changes outlined in the previous section into the unbounded construction
presented in Chapter 3 to obtain the algorithm (which we call the Bounded Space Complexity*
(BSC*) implementation) in Figures 4.1 to 4.5. BSC* differs from the final bounded implementa-
tion that we desire in only one particular: In BSC*, announce and combine always return new
cells. Thus, with BSC*, even though invalid cells can be safely recycled, no attempt is made to
recycle them. At a later section, we will present the final bounded implementation, which we call
the Bounded Space Complexity (BSC) implementation. In BSC, announce and combine return
either a new cell or a recycled, invalid cell. Thus, invalid cells are recycled in BSC.

The purpose of BSC* is to serve as a convenient tool in proving the correctness of BSC.

4.2.1 release procedure

The only major difference between BSC* and the unbounded construction in Chapter 3 is the
addition of the procedure release. We explain below how it works.

Process P executes release(opcell, n + P, left) (Line 6 of apply) after it has completed
percolateState. Thus, P executes release after it has written the appropriate value into
opcell → State. The purpose of release is to signal to the cells along the path from opcell to its
root ancestor w that P has completed its percolateState.

Recall that each cell c has a field c → Free. c → Free = true indicates that all the leaf
descendants of c have completed their percolateState. In addition to c → Free, c has two more
fields: c → LDone and c → RDone. c → LDone = true indicates that either c → LC = ⊥ or all
the leaf descendants of c → LC have completed their percolateState. Likewise, c → RDone =
true indicates that either c → RC = ⊥ or all the leaf descendants of c → RC have completed
their percolateState.

For any cell c, if c → LC 6= ⊥, then there is exactly one leaf descendant l of c → LC that
represents c → LC. We also say that the process that installed l represents c → LC. The process
that represents c → LC is responsible for setting c → LDone to true. Similarly, if c → RC 6= ⊥,
then there is exactly one leaf descendant r of c → RC that represents c → RC. The process that
installed r represents c → RC, and is responsible for setting c → RDone to true.

Suppose that d is an ancestor of P ’s opcell, and P represents d → LC. In this case, P will
execute Line 4 of release. After P sets d → LDone to true (Line 4), it checks d → RDone (Line
5). If d → RDone = true, then P executes SC(d → Free, true) (Line 6). If the SC operation
succeeds, then P represents d, and P executes ascend. In ascend, if d is a left child of e, then P
represents e → LC, and makes a recursive call release(e, ∗,left). Likewise, if d is a right child of
e, then P represents e → RC, and makes a recursive call release(e, ∗,right). Thus, the unique
process that executes a successful SC(d → Free, true) represents d to d’s parent e.

If after P sets d → LDone to true (Line 4), it finds that d → RDone =false, then P returns
from release. Likewise, if P executes a SC(d → Free, true) that returns false, then then P
returns from release. Thus, P begins at opcell at the leaf position, and proceeds up the path
from opcell to the root w, as far as P is able to represent the cells along the path.

We observe the following: If P has not begun release, then for all cells d along the path from
opcell to the root w, d → Free =false. Furthermore, let c be any cell. if c → Free =true, then
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all the leaf descendants of c have completed their percolateState.

4.3 Proof of Correctness of BSC*

Our first objective is to prove that BSC* is linearizable, and wait-free. More specifically, we want
to show that Theorems 1 and 2 in Chapter 3 hold with respect to BSC*. Our proofs of these
Theorems follow exactly the structure of their proofs in Chapter 3. However, the many changes
made to the algorithm in Chapter 3 (in particular, the insertion of many instructions of the form
if not VL(*) return), require that the proofs be carefully examined, to verify that the arguments
still hold.

We re-prove here Lemmas 1 to 17 with respect to BSC*. The proofs are essentially the same
as those presented in Chapter 3, with certain non-trivial differences. In particular, the proofs of
Lemmas 11, 14, 16, and 17 with respect to BSC* show significant difference from their proofs in
Chapter 3.

The proofs in Chapter 3 of Lemmas 18 to 31, and Theorems 1 and 2 (with obvious, and minor
changes) are easily seen as applicable to BSC*. We therefore omit re-proving them here. Since all
the Lemmas in Chapter 3 hold with respect to BSC*, we conclude, by Theorem 1 (with respect
to BSC*), that BSC* is linearizable and wait-free.

Lemma 1 Let c be a cell returned either by announce to Line 1 of apply, or by combine to Line
7 of append.
(a) The value of c → LC is unchanged.
(b) The value of c → RC is unchanged.
(c) The value of c → Lop is unchanged.
(d) The value of c → Op is unchanged.
(e) Let c → Next = d, d 6= ⊥, at time t. Then at any time t′ such that t′ ≥ t, c → Next = d.
(f) Let c → Parent = d, d 6= ⊥, at time t. Then at any time t′ such that t′ ≥ t, c → Parent = d.
(g) Let c → Ready = true, at time t. Then at any time t′ such that t′ ≥ t, c → Ready = true.

Proof

(a),(b) c → LC and c → RC are assigned values only once: in Line 1 of announce or Line 1 of
combine. This observation implies Lemmas 1(a) and 1(b).
(c),(d) c → Lop and c → Op are assigned values only once: in Line 1 of announce or Line 1 of
combine. This observation implies Lemmas 1(c) and 1(d).
(e)We first note that c → Next is assigned the value ⊥, only during the initialization of c in
announce and combine, and nowhere else. There are only two places where c → Next can
take on a non-⊥ value: Line 4 of announce, and Line 9 of append. If process P executes a
successful SC(c → Next, d), d 6= ⊥, in Line 4 of announce, then P must have previously executed
LL(c → Next) in Line 3, with ⊥ as the LL operation’s return value. This implies Lemma 1(e).

If process P executes a successful SC(c → Next, d), d 6= ⊥, in Line 9 of append, then P must
have previously executed LL(c → Next) in Line 2, with ⊥ as the LL operation’s return value
(Line 3). This implies Lemma 1(e).
(f)We first note that c → Parent is assigned the value ⊥, only during the initialization of c in
announce and combine, and nowhere else. There are only two places where c → Parent can take
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on a non-⊥ value: Lines 21, 35 of append. If process P executes a successful SC(c → Parent, d),
d 6= ⊥, in Line 21 (resp. 35) of append, then P must have previously executed LL(c → Parent)
in Line 20 (resp. 34), with ⊥ as the LL operation’s return value. This implies Lemma 1(f).
(g)This follows from the fact that c → Ready is assigned false only during the initialization of c
in combine, and nowhere else.

2

Lemma 2 Let c be any cell. There is at most one cell b such that b → Next = c.

Proof There are only two places where b → Next (for some b) can be assigned the value c:
Line 4 of announce, Line 9 of append. In both of these places, process P initializes a new cell
c and executes SC(b → Next, c). Given any cell c, at most one process executes the operation
SC(b → Next, c) (for some b); further, this process executes the operation once only. Hence, there
is at most one cell b such that b → Next = c.

2

Lemma 3 Let lst, lst′ be such that 1 ≤ lst, lst′ ≤ 2n− 1. Let i, j be such that i ≥ 0, j ≥ 0. Then,
(List[lst](i) = List[lst′](j)) ⇒ ((lst = lst′) ∧ (i = j)).

Proof This Lemma follows from Lemma 2.
2

Lemma 4 Let k ≥ 0. Suppose at some time t Head[lst] = List[lst′](k).1 Let c be the first value
that is successfully written to Head[lst] after t. Let t′ be the time c is successfully written to
Head[lst]. Then,

• c = List[lst′](k + 1).

• At time τ such that τ ≥ t′, List[lst′](k) → Next = List[lst′](k + 1).

Proof Head[lst] can be written to in three places: Line 11 of promote, Lines 27,41 of append. In
all these places, Head[lst] changes value from b, the value of Head[lst] returned by the immediately
preceding LL(Head[lst]) (Line 2 of promote, Lines 22,36 of append), to c = b → Next through a
successful SC(Head[lst], c). Further, by Line 4 of promote, Lines 17,26 of append, Lines 31,40 of
append, we have b → Next = c 6= ⊥. By Lemma 1(c), once b → Next = c holds, b → Next = c
at all subsequent times. This implies our Lemma.

2

1Lemma 5(a) shows that lst = lst′.
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initialization

∀i, 1 ≤ i ≤ 2n-1 : anchori : ∗cell

1. for i := 1 to 2n-1:
2. anchori → Next := ⊥, anchori → Free := true,

anchori → Retired := false,Head[i] := anchori

3. anchor1 → State := initialstate

4. anchor1 → Op := ⊥
end initialization

apply (P : integer, op : op, O) returns res

1. opcell := announce (op, P )
2. for i := 0 to log n
3. promote (b(n+P)/2ic)
4. percolateState (opcell, n+P)
5. release (opcell, n+P, left)
6. return δresp (opcell → State, op)

end apply

promote (lst : integer)
1. if lst = 1
2. head := LL(Head[lst])
3. newcell := head → Next
4. if newcell = ⊥ return

5. if newcell → Ready = false return

6. newstate := δstate (head → State, head → Op)
7. newcellstate := LL(newcell → State)
8. if not VL(Head[lst]) return

9. if newcellstate = ⊥
10. SC(newcell → State,newstate)
11. if SC(Head[lst],newcell)
12. head → Retired := true
13. return

14. append (blst/2c)
15. promote (blst/2c)
16. append (blst/2c)

end promote

Figure 4.1: BSC* construction for closed object O (Figures 4.1 to 4.5)
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append (lst : integer)
1. head := LL(Head [lst])
2. newcell := LL(head → Next)
3. if not VL(Head[lst]) return

4. if newcell = ⊥
5. (lc, lop) := readyOrphan (2 ∗ lst)
6. (rc, rop) := readyOrphan (2 ∗ lst + 1)
7. if (lc 6= ⊥) or (rc 6= ⊥)
8. c := combine (lc, lop, rc, rop)
9. result := SC (head → Next, c)
10. if not result
11. c → Free := true, c → Retired := true
12. newcell := head → Next
13. if not VL(Head[lst]) return

14. if newcell = ⊥ return

15. lchild := newcell → LC
16. if not VL(Head[lst]) return

17. if lchild 6= ⊥
18. lcparent := LL(lchild → Parent)
19. if not VL(Head[lst]) return

20. if lcparent = ⊥
21. SC(lchild → Parent, newcell)
22. lchead := LL(Head[2*lst])
23. lcnewcell := lchead → Next
24. if not VL(Head[2*lst]) go to L

25. if not VL(Head[lst]) return

26. if lcnewcell = lchild
27. if SC(Head[2*lst], lchild)
28. lchead → Retired := true

(continue on next Figure)

Figure 4.2: BSC* construction for closed object O (Figures 4.1 to 4.5)
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append (lst : integer)
(continued from previous Figure)

29.L rchild := newcell → RC
30. if not VL(Head[lst]) return

31. if rchild 6= ⊥
32. rcparent := LL(rchild → Parent)
33. if not VL(Head[lst]) return

34. if rcparent = ⊥
35. SC(rchild → Parent,newcell)
36. rchead := LL(Head[2*lst+1])
37. rcnewcell := rchead → Next
38. if not VL(Head[2*lst+1]) go to M

39. if not VL(Head[lst]) return

40. if rcnewcell = rchild
41. if SC(Head[2*lst+1], rchild)
42. rchead → Retired := true

43.M ready := LL(newcell → Ready)
44. if not VL(Head[lst]) return

45. if ready = false
46. SC(newcell → Ready, true)

end append

Figure 4.3: BSC* construction for closed object O (Figures 4.1 to 4.5)
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readyOrphan (lst : integer) returns (∗cell,op)
1. head := LL(Head [lst])
2. newcell := head → Next
3. if newcell = ⊥ return (⊥,⊥)
4. if newcell → Ready = false return (⊥,⊥)
5. newop := newcell → Op
6. if not VL(Head[lst]) return (⊥,⊥)
7. return (newcell, newop)

end readyOrphan

announce (op : op, P : integer) returns ∗cell

1. allocate a new cell c and initialize it as follows:
c → Parent := ⊥, c → Next := ⊥, c → State := ⊥
c → LC := ⊥, c → RC := ⊥,
c → Op := op, c → Lop := ⊥, c → Ready := true
c → LDone := false, c → RDone := true, c → Free := false, c → Retired := false

2. head := Head [n+P]
3. if LL(head → Next) = ⊥
4. SC(head → Next, c)
5. return c

end announce

combine (lc : ∗cell, lop : op, rc : ∗cell, rop : op ) returns ∗cell

1. allocate a new cell c and initialize it as follows:
c → Parent := ⊥, c → Next := ⊥, c → State := ⊥
c → LC := lc, c → RC := rc,
c → Lop := lop, c → Op := (lop

⊗
rop)

c → Ready := false, c → Free := false, c → Retired := false
if lc 6= ⊥

c → LDone := false
else c → LDone:= true
if rc 6= ⊥

c → RDone := false
else c → RDone := true

2. return c
end combine

Figure 4.4: BSC* construction for closed object O (Figures 4.1 to 4.5)
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Lemma 5

(a) The initial value of Head[lst] is List[lst](0). The sequence of values that have been successfully
written to Head[lst] at time t is:
List[lst](1), List[lst](2), · · · , List[lst](k), for some k ≥ 0.
(b) (List[lst](i) has been head)∧ (List[lst](i) is not head) ⇒ (List[lst](i + 1) has been head).
(c) Let k ≥ 1. At the time List[lst](k) is successfully written to Head[lst], List[lst](k) is reachable.
(d) (c is head at lst)⇒ (c = anchorlst) ∨ (c is reachable at lst).
(e) Let c = Head[lst] → Next, then c is reachable at lst.
(f) (c is head at lst) ∧ (c → Next = ⊥) ∧ (d is reachable at lst) ⇒ (d has been head at lst)

Proof

(a) We note that at initialization, Head[lst] = anchorlst = List[lst](0). This statement is a
corollary of Lemma 4.
(b) This follows immediately from Part(a).
(c) The proof proceeds by induction on k, and uses Lemma 4. The Induction Step proceeds
as follows: Suppose that List[lst](k − 1) is reachable (Induction Hypothesis). Then, at the time
List[lst](k) is successfully written to Head[lst], List[lst](k−1) → Next = List[lst](k) (by Lemma
4). Thus, by Definition 1, List[lst](k) is reachable.
(d) This is a re-statement of Part(c).
(e) We note that Head[lst] is head at lst. By Part(d), we have (Head[lst] = anchorlst)∨(Head[lst]
is reachable at lst). In either case, c = Head[lst] → Next is reachable at lst.
(f) By Part(a), there exists a k such that c = List[lst](k). Since (c → Next = ⊥)∧ (d is reachable
at lst), we have d = List[lst](m), for some m such that k ≥ m ≥ 1. By Part(a), d has been head
at lst.

2

Lemma 6 Let b → Next = c. (c is reachable at lst) ⇒ (b has been head at lst).

Proof From the algorithm, b → Next is assigned the value c in either Line 4 of announce,
or Line 9 of append. In both these places, a process first executes head:= Head[lst ′] for some
lst′ (Line 2 of announce, Line 1 of append), and then changes the value of head → Next from
⊥ to c through a successful SC(head → Next, c). After the successful SC(head → Next, c),
Head[lst′] → Next = c. By Lemma 5(e), c is reachable at lst′. Hence, lst′ = lst. Since
Head[lst] → Next = c and b → Next = c, Head[lst] = b (Lemma 2). In other words, b has been
head at lst. This completes our proof.

2

Lemma 7 Let c be non-leaf reachable.
(a) c → LC = d 6= ⊥ ⇒ (d is reachable) ∧(pos(d) = 2 ∗ pos(c))∧ (d is ready).
(b) c → RC = d 6= ⊥ ⇒ (d is reachable) ∧(pos(d) = 2 ∗ pos(c) + 1)∧ (d is ready).

Proof (a) c → LC is assigned the value d in combine (d, *, *, *), called in Line 8 of append
(lst). Further, (d, ∗) is the value returned by readyOrphan (2 ∗ lst) (Line 5 of append (lst)). In
readyOrphan (2 ∗ lst), head = Head[2 ∗ lst] (Line 1). d = head → Next (Line 2), d → Ready =
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percolateState (c : ∗cell, lst : integer)
1. if lst = 1 return

2. p := c → Parent
3. percolateState (p, blst/2c)
4. if lst = 2 ∗ blst/2c
5. c → State := p → State
6. else c → State := δstate (p → State, p → Lop)

end percolateState

release (c : ∗cell, lst : integer, dir : {left, right})
1. p := c → Parent
2. LL(c → Free)
3. if dir = left
4. c → LDone := true
5. if c → RDone
6. if SC(c → Free, true)
7. ascend (p, lst)
8. else c → RDone := true
9. if c → LDone
10. if SC(c → Free, true)
11. ascend (p, lst)

end release

ascend (c : ∗cell, lst : integer)
1. if lst =1 return

2. if lst = 2 ∗ blst/2c
3. release (c, blst/2c, left)
4. else release (c, blst/2c, right)

end ascend

Figure 4.5: BSC* construction for closed object O (Figures 4.1 to 4.5)
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true (Line 4). Therefore, d is reachable at 2 ∗ lst (by Lemma 5(e)). Since c is reachable, some
process P executed a successful SC(head → Next, c) in Line 9 of append. When P executed Line
1 of append, head = Head[lst]. Therefore, c = head → Next is reachable at lst (by Lemma 5(e)).
Thus, pos(c) = lst, and pos(d) = 2 ∗ lst = 2 ∗ pos(c). Finally, d is ready, since d → Ready = true.
(b) Similar to the proof of part (a).

2

Lemma 8 Let c be non-leaf reachable. c = parent(d) ⇒ (d is reachable) ∧(d is ready).

Proof This follows immediately from Lemma 7.
2

Lemma 9 Let d be non-root reachable. (d has been head)⇒ ∃ reachable c such that c = parent(d).

Proof d becomes head in either Line 27 or Line 41 of append. Consider the case of Line 27. (The
case of Line 41 is analogous.) Let P be the process that executed a successful SC(Head[2∗ lst], d),
where d = lchild, in Line 27, thus causing d to become head. We note that during P ’s execution
of append, lchild = newcell → LC (Line 15), newcell = head → Next (Line 2 or 12), head =
Head[lst] (Line 1). Let c in our Lemma be newcell. Then, by Lemma 5(e), c is reachable. By
Notation 3, c = parent(d) since c → LC = lchild = d. This completes the proof.

2

Lemma 10 Let d be such that ∀lst, 1 ≤ lst ≤ 2n − 1, d 6= anchorlst. (d has been head) ⇒ (d is
ready).

Proof Since ∀lst, 1 ≤ lst ≤ 2n−1, d 6= anchorlst, and d has been head, d is reachable (by Lemma
5(d)). If d is non-root reachable, Lemma 10 is an immediate corollary of Lemmas 8 and 9.

Consider the case in which d is root reachable. d becomes Head[1] through a successful
SC(Head[1], d) in Line 11 of promote (1). Further, d → Ready = true (Line 5). Hence, d is
ready.

2

Lemma 11 Let c be non-leaf reachable. Then, (c is ready)∧(c = parent(d)) ⇒ (d has been head).

Proof Consider the case of c → LC = d. (The case of c → RC = d is analogous.) c becomes ready
through process P executing a successful SC(c → Ready, true) in Line 46 of append. Further,
since lchild = c → LC = d 6= ⊥ (Lines 15,17), P executes Line 22 before executing Line 46. At
the time t when P executes Line 22, c = parent(d) holds true. By Lemma 8, (c = parent(d)) ⇒ (d
is reachable). Let d = List[pos(d)](k). Let x = List[pos(d)](k − 1). By Lemma 6, x has been
head at pos(d) at time t.

If x is not head at t, then, by Lemma 5(b), d has been head at t. Therefore our Lemma holds
in this case. Suppose x is head at t. In Line 23 of append, lcnewcell = x → Next = d.

In Line 24, if VL(Head[pos(d)]) returns false, then d has been head (by Lemma 5(b)) when
P executes Line 24. The proof is done in this case. Suppose the VL operation in Line 24 returns
true. Since lchild = d (Line 15), P observes that lcnewcell = lchild in Line 26, and executes
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SC(Head[pos(d)], d) in Line 27. If the SC operation returns true, then d has been head when P
completes Line 27, hence also when P completes Line 46. If the SC operation returns false, then
by Lemma 5(a), d has been head when P begins executing Line 27. In either case, d has been
head when P executes Line 46. This completes the proof. 2

Lemma 12 Let c be non-leaf reachable. (c has been head)∧(c = parent(d)) ⇒ (d has been head).

Proof By Lemma 10, (c has been head) ⇒ (c is ready). By Lemma 11, (c is ready)∧(c =
parent(d)) ⇒ (d has been head). Thus, our Lemma holds.

2

Lemma 13 Let b, c be non-leaf reachable. (b = parent(d)) ∧ (c = parent(d)) ⇒ (b = c).

Proof For contradiction, assume b 6= c. By Lemma 7, pos(b) = pos(c). Let b = List[pos(b)](k), c =
List[pos(b)](l). Without loss of generality, let k < l. Let P be the process that executes a success-
ful SC(head → Next, c) in Line 9 of append. Let t be the time P executes Line 1 of this append.
Thus, at t, Head[pos(b)] = List[pos(b)](l − 1). Since k < l, b has been head at t. By Lemma 12,
since b = parent(d), d has been head at t.

c = parent(d) implies that when P executes readyOrphan (pos(d)) in Line 5 or 6 of append
at some time after t , (d, ∗) is returned. This in turn implies that when P executes readyOrphan
(pos(d)), head = Head[pos(d)] in Line 1, and head → Next = d in Line 2. In other words, d has
not been head when P executes Line 1 of readyOrphan (pos(d)). Thus, d has not been head at t.
This contradiction proves that b = c.

2

Lemma 14 Let d be non-root reachable. (d has been head)⇒ ∃ unique non-leaf reachable c such
that (c = parent(d)) ∧ (d → Parent = c).

Proof By Lemmas 9, (d has been head)⇒ ∃ reachable c such that c = parent(d). We now
show that c is non-leaf. By Lemma 7, since d is non-root reachable, and pos(d) = 2 ∗ pos(c), we
conclude that c is non-leaf reachable. By Lemma 13, such a c is unique. It remains to prove that
(d has been head)⇒ (d → Parent = c).

We consider the case of c → LC = d. (The case of c → RC = d is analogous.) Suppose that
d becomes head by process P executing a successful SC(Head[pos(d)], d) in Line 27 of append.
This implies that lchild = d (Line 26). In Line 15, lchild = newcell → LC. By Lemma 13,
newcell = c. We note that P executes Line 20 before executing Line 27 (or 41, in the case of
c → RC = d). Further, lcparent = lchild → Parent = d → Parent in Line 20. If lcparent = ⊥
(Line 20), then P executes SC(d → Parent, c) (Line 21). If the SC operation returns true, then
d → Parent = c after P executes Line 21. Our Lemma is thus proved.

However, if either d → Parent 6= ⊥ (Line 20) or the SC operation in Line 21 returns false,
then d → Parent 6= ⊥ before P executes Line 22. d → Parent is assigned a non-⊥ value only
through some process P ′ executing a successful SC(d → Parent, newcell) in Line 21 of append.
However, when P ′ executes Line 15, d = newcell → LC. By Lemma 13, newcell = c. Therefore,
the non-⊥ value assigned by P ′ to d → Parent is c. This completes the proof. 2
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Lemma 15 Let lst > 1. Suppose at time t, Head[lst] = b, Head[blst/2c] = c. Then, (b has been
head)∧(b is not head)⇒ (c → Next 6= ⊥).

Proof For contradiction, suppose that at time t′, (b has been head)∧ (b is not head)∧(c →
Next = ⊥). By Lemma 5(a), t′ > t. By Lemma 5(b), there exists a reachable d such that
b → Next = d, and d has been head at t′. By Lemma 9, there exists a reachable a such that
a = parent(d) at t′. Since c is head, c → Next = ⊥, and a is reachable at pos(c) = blst/2c at t′,
we conclude that a has been head at t′ (Lemma 5(f)). Since c is head at both t and t′, a has been
head at t. By Lemma 12, (a has been head)∧(a = parent(d)) ⇒ (d has been head) at t. This
contradicts the assumption that b is head at t. Our Lemma is thus proved by this contradiction.

2

Lemma 16 Suppose that at time t before process P invokes append(blst/2c), Head[lst] = b, b →
Next = d 6= ⊥, d is ready, Head[blst/2c] = c. Then, at any time after append(blst/2c) terminates,
∃ reachable e such that (c → Next = e) ∧ (e is ready).

Proof We note that c is head at t. If at any time during the execution of append(blst/2c) c is
not head, then by Lemma 5(b), ∃ reachable e such that (c → Next = e), and e has been head.
By Lemma 10, e is ready. Our Lemma is then proved.

We now consider the case where c is head throughout the execution of append(blst/2c). This
implies that VL(Head[blst/2c]) in Lines 3,13,16,19,25,30,33,39,44 always return true. Consider
process P executing append(blst/2c). In Line 1, head = Head[blst/2c] = c.
Case 1 Suppose ∃ reachable e such that c → Next = e 6= ⊥ in Line 2.

Since VL(Head[blst/2c]) always returns true, Line 45 is always executed. newcell = e (Line
2), ready = e → Ready (Line 43). We note that for any non-leaf reachable g, the only place
g → Ready is changed, after g’s initialization in combine, is a successful SC operation in Line 46
of append. This implies that, at the time P completes Lines 45,46, e → Ready = true. Hence
our Lemma holds.
Case 2 Suppose c → Next = ⊥ in Line 2.

Consider P executing readyOrphan (lst) (Line 5 or 6 of append). Let t′ be the time P executes
Line 1 of readyOrphan (lst).
Case 2a Suppose Head[lst] 6= b at t′.

By Lemma 15, since (b has been head)∧ (b is not head) at t′, we have c → Next 6= ⊥ at
t′. Therefore, there exists a reachable e such that newcell = c → Next = e 6= ⊥ in Line 12 of
append. This implies that P always executes Line 45. Further, ready = e → Ready ((Line 43).
By the argument used in Case 1, at the time P completes Lines 45,46, e → Ready = true. Hence,
our Lemma holds.
Case 2b Suppose Head[lst] = b at t′.

By the premise of our Lemma, in Lines 1-4 of readyOrphan (lst), newcell = b → Next = d 6=
⊥, newcell → Ready = true. If VL(Head[lst]) returns false in Line 6 of readyOrphan (lst), then
(b has been head)∧(b is not head) when P executes Line 6. By an analogous argument to the one
used in Case 2a, our Lemma holds. If VL(Head[lst]) returns true in Line 6, then readyOrphan (lst)
returns (b, ∗). P then executes SC(c → Next, ∗) in Line 9 of append. Whether the SC operation
returns true or false, c → Next 6= ⊥ when P executes Line 12. newcell = c → Next 6= ⊥ (Line
12). By the argument used in Case 2a, our Lemma holds in this case, too. 2
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Lemma 17 Let r be root reachable and ready before the invocation of promote(1). Then, after
promote(1) terminates, r has been head.

Proof Let s be root reachable or anchor1, such that s → Next = r. Thus, if r = List[1](k), then
s = List[1](k − 1). By Lemma 6, since r is reachable, s has been head before process P invokes
promote(1). Suppose that at some time t during P ’s execution of promote(1), Head[1] 6= s. By
Lemma 5(b), r has been head at t. Thus, our Lemma holds.

We now consider the case where Head[1] = s throughout the execution of promote(1). This
implies that head = Head[1] = s and VL(Head[1]) in Line 8 returns true. Since newcell =
s → Next = r 6= ⊥ (Line 4), newcell → Ready = r → Ready = true (Line 5), P executes
SC(Head[1], r) in Line 11. Whether the SC operation returns true or false, Head[1] 6= s after P ’s
execution of Line 11 (Lemma 4). This contradicts the assumption that Head[1] = s throughout
the execution of promote(1). The proof is now complete. 2

As we explained earlier, Lemmas 18 to 31 hold with respect to BSC* as well. Consequently,
we have the following Theorems, which are the counterparts of Theorems 1 and 2 with respect to
the BSC* construction:

Theorem 3 The BSC* construction shown in Figures 4.1 to 4.5 is linearizable and wait-free.

Theorem 4 The shared-access time complexity and local time complexity of the BSC* construc-
tion shown in Figures 4.1 to 4.5 are both O(log2 n).

4.4 Properties of BSC*

In this section, we prove certain properties of BSC* that will be useful in proving the correctness
of the BSC implementation.

4.4.1 Invalid Cells

We use two fields, Free and Retired, in a cell c to indicate whether c is available for recycling.
We first define an invalid cell as a cell whose Free and Retired fields are both true. Thus, an
invalid cell is ready to be recycled.

Definition 17 A reachable cell c is invalid if and only if c → Free = true∧ c → Retired = true.
c is valid if and only if c is not invalid.

The next Lemma says that once Free and Retired hold the value true, they hold that value
forever. Hence, once a cell is invalid, it remains invalid forever.

Lemma 32 Let c be reachable.
(a) (c → Free = true at time t)⇒ (∀t′, t′ ≥ t : c → Free = true at time t′).
(b) (c → Retired = true at time t)⇒ (∀t′, t′ ≥ t : c → Retired = true at time t′).
(b) (c is invalid at time t)⇒ (∀t′, t′ ≥ t : c is invalid at time t′).
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Proof Let c be any cell. The only times when c → Free := false or c → Retired := false
are executed are during initialization (when anchori is initialized), or when c is initialized in
announce or combine. Hence, once c → Free = true, or c → Retired = true, holds, it holds
forever. Therefore, our Lemma holds. 2

4.4.2 Properties of c → Free

Recall that c → Free = true indicates that all the leaf descendants of c have completed their
percolateState. In this section, we prove various useful properties of c → Free.

Lemma 33

• In release(c, pos(c), ∗), if c is a left child of c → Parent, then the next recursive call to
release (if made) is release(c → Parent, pos(c → Parent), left).

• In release(c, pos(c), ∗), if c is a right child of c → Parent, then the next recursive call to
release (if made) is release(c → Parent, pos(c → Parent), right).

Proof This follows immediately from Lines 2,3,4 of ascend. 2

Lemma 34 (c → Free) ⇒ (c → LDone) ∧ (c → RDone)

Proof c → Free is set to true in either Line 6 or 10 of release. This Lemma is a consequence
of Lines 4-6, 8-10 of release. 2

Lemma 35 Let c be non-leaf reachable.

• If c → LC = ⊥, then c → LDone = true, and release(c, pos(c), left) is never invoked.

• If c → RC = ⊥, then c → RDone = true, and release(c, pos(c), right) is never invoked.

Proof If c → LC = ⊥, then by Line 1 of combine, c → LDone = true. In Line 5 of apply,
release(d, pos(d), left), where d is leaf reachable, is invoked by process P . All further release’s
executed by P are recursively invoked within this release(d, pos(d), left). By Lemma 33, if
release(c, pos(c), left) is ever invoked, then c → LC 6= ⊥. Hence, release(c, pos(c), left) is
never invoked.

The case of c → RC = ⊥ is analogous. 2

Lemma 36 Let c be non-leaf reachable. Suppose that the following statements hold:

• (c → LC 6= ⊥) ⇒ ∃a unique invocation of release(c, pos(c), left).

• (c → RC 6= ⊥) ⇒ ∃a unique invocation of release(c, pos(c), right).

Then, the following statements hold:
(a) In any invocation of release(c, pos(c), ∗), c is valid when Line 4 or 8 is executed.
(b) Let c → Free = true at time t. Any execution of SC(c → Free, true) after t returns false.
(c) c → Free = true eventually.
(d)
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• If c is a left child, then there exists a unique invocation of release(c → Parent, pos(c →
Parent), left).

• If c is a right child, then there exists a unique invocation of release(c → Parent, pos(c →
Parent), right).

(e) Let p = c → Parent. Then,

(p → Free) ⇒ (p → LC = ⊥ ∨ p → LC → Free) ∧ (p → RC = ⊥ ∨ p → RC → Free).

Proof We observe the following:

• c → LC 6= ⊥∨ c → RC 6= ⊥ (Line 7 of append).

• If c → LC = ⊥, then c → LDone = true, and no release(c, pos(c), left) is invoked (Lemma
35).

• If c → LC 6= ⊥, then exactly one release(c, pos(c), left) is invoked (premise of this
Lemma). Further, c → LDone = false before any release(c, pos(c), left) is invoked.

• If c → RC = ⊥, then c → RDone = true, and no release(c, pos(c), right) is invoked
(Lemma 35).

• If c → RC 6= ⊥, then exactly one release(c, pos(c), right) is invoked (premise of this
Lemma). Further, c → RDone = false before any release(c, pos(c), right) is invoked.

(a) We assume that c → LC 6= ⊥, and c → RC 6= ⊥. (It is easy to see how our proof can be
adapted in the other cases.) c → LDone = c → RDone = false on c’s initialization. c → LDone
(c → RDone resp.) can become true only when Line 4 (Line 8 resp.) of release(c, pos(c), left)
( release(c, pos(c), right) resp.) is executed. Let P (P ′ resp.) be the process that invokes the
release(c, pos(c), left) ( release(c, pos(c), right) resp.). By Lemma 34, since c → LDone =false
immediately before P executes Line 4, c → Free =false when P executes Line 4. By Definition
17, c is valid when P executes Line 4. Similarly, c → Free =false when P ′ executes Line 8. By
Definition 17, c is valid when P ′ executes Line 8. This proves Lemma 36(a).
(b) Since c → Free =false when P executes Line 4, therefore c → Free =false when P executes
Line 2. Consequently, P executes LL(c → Free) in Line 2 before any SC(c → Free, true)
is executed. Likewise P ′ executes LL(c → Free) in Line 2 before any SC(c → Free, true) is
executed. Only P , P ′ may execute SC(c → Free, true) (Lines 6 and 10). Therefore, the first SC
operation (if one exists) returns true, and the second SC operation (if one exists) returns false.
This proves Lemma 36(b).
(c) If c → RDone = true when P executes Line 5, then c → Free = true when P completes the
SC operation in Line 6. If c → RDone = false when P executes Line 5, then P ′ will subsequently
execute Line 8, setting c → RDone to true. Then P ′ will successfully execute SC(c → Free, true)
in Line 10. Hence, c → Free = true eventually. This proves Lemma 36(c).
(d) Let c be a left child. The unique process, P or P ′, that executes a successful SC(c →
Free, true) proceeds to call release(c → Parent, pos(c → Parent), left). No other process will
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ever invoke release(c → Parent, pos(c → Parent), left). An analogous argument holds for the
case when c is a right child. This completes the proof of Lemma 36(d).
(e) Let p = c → Parent. Suppose p → LC = c. p → Free = true implies that p → LDone =
true. This in turn implies that release(p, pos(p), left) has been invoked. This further implies
that c → Free = true. This proves Lemma 36(e).

2

Lemma 37 Let c be leaf reachable. Then,
(a) In any invocation of release(c, pos(c), ∗), c is valid when Line 4 or 8 is executed.
(b) Let c → Free = true at time t. Any execution of SC(c → Free, true) after t returns false.
(c) c → Free = true eventually.
(d)

• If c is a left child, then there exists a unique invocation of release(c → Parent, pos(c →
Parent), left).

• If c is a right child, then there exists a unique invocation of release(c → Parent, pos(c →
Parent), right).

(e) Let p = c → Parent. Then,

(p → Free) ⇒ (p → LC = ⊥ ∨ p → LC → Free) ∧ (p → RC = ⊥ ∨ p → RC → Free).

Proof c → RDone = true, c → LDone =false, during c’s initialization in announce. There exists
exactly one invocation of release(c, pos(c), left), called in Line 5 of apply. This is analogous to
the case in Lemma 36, where c is non-leaf reachable, with c → LC 6= ⊥, and c → RC = ⊥. The
proof of Lemma 36 applies here too. 2

Lemma 38 Let c be non-leaf reachable. Then,

• (c → LC 6= ⊥) ⇒ ∃ unique invocation of release(c, pos(c), left).

• (c → RC 6= ⊥) ⇒ ∃ unique invocation of release(c, pos(c), right).

Proof Define level(c) = l such that 2l ≤ pos(c) < 2l+1. Thus, a root cell is at level 0, and
a leaf cell is at level log n. Let level(c) = l. We prove inductively that Lemma 38 holds for all
descendants of c at level log n − 1, log n − 2, · · · , l.
Induction Basis Applying Lemma 37(d) to the leaf descendants (at level log n) of c, Lemma
38 holds for all descendants of c at level log n − 1.
Induction Step Applying Lemma 36(d) to the descendants of c at level k, Lemma 38 holds for
all descendants of c at level k − 1.

2

Lemma 39 Let c be reachable. Then, the following statements hold:
(a) In any invocation of release(c, pos(c), ∗), c is valid when Line 4 or 8 is executed.
(b) Let c → Free = true at time t. Any execution of SC(c → Free, true) after t returns false.

76



(c) c → Free = true eventually.
(d) Let p = c → Parent. Then,

(p → Free) ⇒ (p → LC = ⊥ ∨ p → LC → Free) ∧ (p → RC = ⊥ ∨ p → RC → Free).

Proof If c is leaf reachable, then Lemma 37 holds. Lemma 37(a), (b), (c), (e) are identical with
Lemma 39(a), (b), (c), (d).

If c is non-leaf reachable, then Lemma 38 implies that Lemma 36 is applicable. Lemma 36(a),
(b), (c), (e) are identical with Lemma 39(a), (b), (c), (d).

2

Lemma 40 Let g be a leaf descendant of c. Then, c → Free ⇒ g → Free.

Proof By Lemma 39(d), for any non-leaf reachable c, if c → Free, then c → LC = ⊥ ∨ c →
LC → Free, c → RC = ⊥ ∨ c → RC → Free. Repeated application of Lemma 39(d) yields our
Lemma. 2

Lemma 41 Let c be reachable, and be accessed at time t by a process executing percolateState.
Then c is valid at t.

Proof Let reachable c be accessed by some process P executing percolateState(opcell, n+P ).
Then, c is an ancestor of opcell, i.e. opcell is a leaf descendant of c. Let I be the interval during
which P is executing percolateState(opcell, n+P ). Since opcell → Free can become true only
when P executes release(opcell, n + P, left), opcell → Free =false throughout the interval I.
By Lemma 40, c → Free =false throughout I. Thus, c is valid throughout I. Our Lemma is
therefore proved. 2

Lemma 42 Let c be reachable.

(c → Free = true) ⇒ (c → Parent has been head).

Proof Let c be reachable. c → Free =false during the initialization of c in announce of combine.
The only places where c → Free becomes true are Lines 6 and 10 of release.

Suppose P executes SC(c → Free, true) in Line 6 or 10 of release. We note that when P
executes release, P has completed the for loop in Lines 2 to 3 of apply. By Lemma 21, if
p = c → Parent, then p = parent(c), i.e. (p → LC = c) ∨ (p → RC = c). Thus, c is an ancestor
of opcell. (By Definition 5, this includes the possibility that c = opcell.) c → Parent is therefore
also an ancestor of opcell. By lemma 21, every ancestor of opcell has been head. Therefore,
c → Parent has been head. 2

4.4.3 Properties of c → Retired

Recall that c → Retired = true indicates that c has been head, but is no longer head. Thus,
c → Next points to some cell d, and d has been head. We prove various useful properties of
c → Retired in this section.
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Lemma 43 Let c be reachable.

(c → Retired = true) ⇒ (c has been head) ∧ (c is not head)

Proof Let c be reachable. c → Retired =false during the initialization of c in announce or
combine. The only places where c → Retired becomes true are Line 12 of promote, Lines 28 and
42 of append. In all these places, process P executes c → Retired := true only if P has first read
Head[lst] = c, and then executed a successful SC(Head[lst], c → Next). (Specifically, P reads
Head[lst] in Line 2 of promote, Lines 22 and 36 of append. P executes the successful SC in Line
11 of promote, Lines 27 and 41 of append.) Hence, if c → Retired = true, then (c has been
head)∧(c is not head). 2

Lemma 44 Let c be a reachable cell. If (c has been head)∧(c is not head), then:
(a) there is exactly one execution of c → Retired := true, and no execution of SC(c → Retired, ∗),
(b) c → Retired = true eventually,

Proof During c’s initialization, c → Retired =false. If P executes c → Retired := true
in Line 11 of append, then c is not reachable. Thus, the only places where, for a reachable c,
c → Retired := true is executed are: Line 12 of promote, Lines 28 and 42 of append. In each
case, P first executes head :=LL(Head[l]) (Line 2 of promote, Lines 22 and 36 of append). P
then executes a successful SC(Head[l], head → Next) (Line 11 of promote, Lines 27 and 41 of
append). Finally, P executes head → Retired := true (Line 12 of promote, Lines 28 and 42 of
append).

Since (c has been head)∧(c is not head), there has been a successful SC(Head[∗], c → Next).
Thus, there is exactly one execution of head → Retired = true. Lemma 44(a), (b) therefore
follow. 2

4.4.4 Preliminary Lemmas

The Lemmas in this section concern the behavior of a VL or SC operation on an invalid cell c,
given certain conditions that relate the VL or SC operation to the immediately preceding LL
operation on c. These results are the foundation for the Lemmas on reading from, and writing
to, invalid cells in the next two sections.

Lemma 45 Suppose process P first executes headcell :=LL(Head[lst]), then executes VL(Head[lst])
at a later time t. Let c be either headcell, headcell → Next, headcell → Next → LC, or
headcell → Next → RC. If c is invalid at some time before t, then VL(Head[lst]) at t returns
false.

Proof By Lemma 32, since c is invalid at some time before t, c is invalid at t.
(a) Let c = headcell. Suppose that VL(Head[lst]) at t returns true. This implies that Head[lst] =
headcell = c at t. Thus, c is head at t. As observed, c is invalid at t. Therefore, c → Retired =
true at t. By Lemma 43, c is not head at t. This contradiction completes the proof.
(b) Let c = headcell → Next. Suppose that VL(Head[lst]) at t returns true. This implies that
Head[lst] = headcell at t. By Lemma 5(a), c has not been head at t. As observed, c is invalid at
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t. Therefore, c → Retired = true at t. By Lemma 43, c has been head at t. This contradiction
completes the proof.
(c) Let c = headcell → Next → LC. Suppose that VL(Head[lst]) at t returns true. This implies
that Head[lst] = headcell at t. Let d = headcell → Next. Thus, d → LC = c. By Notation 3,
d = parent(c). d has not been head at t. c is invalid at t. Thus, (c → Retired = true) ∧ (c →
Free = true) at t. By Lemma 43, c has been head at t. By Lemma 14, c → Parent = d at t. By
Lemma 42, c → Parent = d has been head at t. This contradicts the conclusion that d has not
been head at t. This completes the proof.
(d) Let c = headcell → Next → RC. The proof is analogous to the proof of part (c).

2

Lemma 46 Let c be reachable. Suppose P executes LL(c → Next) when c is valid, and the LL
operation returns ⊥. If P next accesses c → Next by executing SC(c → Next, ∗) when c is invalid,
then the SC operation returns false.

Proof This Lemma is an immediate consequence of the following Claims:
(a) If c → Next = d 6= ⊥ at time t, then ∀t′ ≥ t, c → Next = d at time t′.
(b) (c is invalid)⇒ c → Next 6= ⊥.

Claim (a) is Lemma 1(a). We now prove Claim (b). Suppose c is invalid. By definition,
c → Retired = true. By Lemma 43, (c has been head)∧(c is not head). By Lemma 5(b), 5(d),
c → Next 6= ⊥. Thus, Claim (b) holds. 2

Lemma 47 Let c be reachable. Suppose P executes LL(c → Parent) when c is valid, and the LL
operation returns ⊥. If P next accesses c → Parent by executing SC(c → Parent, ∗) when c is
invalid, then the SC operation returns false.

Proof This Lemma is an immediate consequence of the following Claims:
(a) If c → Parent = d 6= ⊥ at time t, then ∀t′ ≥ t, c → Parent = d at time t′.
(b) (c is invalid)⇒ c → Parent 6= ⊥.

Claim (a) is Lemma 1(d). We now prove Claim (b). Suppose c is invalid. By Lemma 43, c
has been head. By Lemma 14, c → Parent 6= ⊥. Thus, Claim (b) holds. 2

Lemma 48 Let c be reachable. Suppose P executes LL(c → Ready) when c is valid, and the LL
operation returns false. If P next accesses c → Ready by executing SC(c → Ready, ∗) when c is
invalid, then the SC operation returns false.

Proof This Lemma is an immediate consequence of the following Claims:
(a) If c → Ready = true at time t, then ∀t′ ≥ t, c → Ready = true at time t′.
(b) (c is invalid)⇒ c → Ready = true.

Claim (a) is Lemma 1(e). We now prove Claim (b). Suppose c is invalid. By Lemma 43, (c
has been head). By Lemma 10, c is ready. Thus, Claim (b) holds. 2

Lemma 49 Let c be root reachable. Suppose P executes LL(c → State) when c is valid, and the
LL operation returns ⊥. If P next accesses c → State by executing SC(c → State, ∗) when c is
invalid, then the SC operation returns false.

79



Proof This Lemma is an immediate consequence of the following Claims:
(a) If c → State = d 6= ⊥ at time t, then ∀t′ ≥ t, c → State = d at time t′.
(b) (c is invalid)⇒ c → State 6= ⊥.

We now prove Claim (a). Let c be root reachable. The only place where c → State can take on
a non-⊥ value is in Line 10 of promote. If process P executes a successful SC(c → State, d), d 6= ⊥,
in Line 10 of of promote, then P must have previously executed LL(c → State) in Line 7, with
⊥ as the LL operation’s return value. This proves Claim (a).

We now prove Claim (b). Suppose c is invalid. By Lemma 43, c has been head. By Lemma
29, c → State 6= ⊥. Thus, Claim (b) holds. 2

4.4.5 Reading from Invalid Cells

In this section, our aim is to show that if all invalid cells hold indeterminate values (i.e. all useful
values that such a cell held when it was valid have been lost), the BSC* implementation would
still function correctly. This clearly means that process P has to know whether the values that
it read came from a valid or invalid cell. If such values came from an invalid cell, then they are
unreliable, and P must discard them.

In the Lemmas that follow, we show, procedure by procedure, that all the component proce-
dures (including apply would still function correctly, even if all invalid cells hold indeterminate
values. This is a crucial property of BSC* that permits recycling of invalid cells.

Lemma 50 Suppose the following condition holds:

∀ process P ,∀ c, t such that c is reachable and invalid at t: if while P is executing
readyOrphan, P reads from any field in c at t, then the value returned to P is indeter-
minate (i.e. arbitrary). (If P reads from c while executing any other procedure, then c
returns the correct value to P .)

Then, our construction remains correct.

Proof In readyOrphan, P executes head :=LL(Head[lst]) in Line 1, and VL(Head[lst]) in Line
6. P reads values from head in Line 2, newcell = head → Next in Lines 4 and 5. P does not
write to any shared objects (namely, Head[∗] and reachable cells) in readyOrphan.

Suppose that when P reads from c = head in Line 2, c is invalid. Then, P ’s readyOrphan

returns with (⊥,⊥) in either Line 3,4, or 6. (This is because, if P does not return in Line 3
or 4, then P executes VL(Head[lst]) in Line 6. By Lemma 45, this VL operation returns false.
Thus, P returns with (⊥,⊥) in Line 6.) Even though the values in the various fields of c that are
returned to P are indeterminate, they do not affect the correctness of our construction.

Suppose now that when P reads from c = head → Next in Line 4, c is invalid. Then, P ’s
readyOrphan returns with (⊥,⊥) in either Line 4 or 6. (The argument here is analogous to the
one used for c = head.)

Suppose finally that when P reads from c = head → Next in Line 5, c is invalid. Then, P ’s
readyOrphan returns with (⊥,⊥) in Line 6.

Our Lemma is thus proved. 2
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Lemma 51 Suppose the following condition holds:

∀ process P ,∀ c, t such that c is reachable and invalid at t: if while P is executing
combine, P reads from any field in c at t, then the value returned to P is indeterminate
(i.e. arbitrary). (If P reads from c while executing any other procedure, then c returns
the correct value to P .)

Then, our construction remains correct.

Proof This is trivially true, since P reads from no reachable cell in combine. 2

Lemma 52 Suppose the following condition holds:

∀ process P ,∀ c, t such that c is reachable and invalid at t: if while P is executing
append, P reads from any field in c at t, then the value returned to P is indeterminate
(i.e. arbitrary). (If P reads from c while executing any other procedure, then c returns
the correct value to P .)

Then, our construction remains correct.

Proof The proof is similar in principle to the proof of Lemma 50. We examine the various seg-
ments of append where reachable cells are read, and prove that the correctness of our construction
is not affected by the condition stated in our Lemma.
Segment 1: Lines 1-3

P executes head := LL(Head[lst]). P reads from head in Line 2. If head is invalid, P returns
at Line 3 (by Lemma 45).
Segment 2: Lines 4-11

Lines 5-6: Lemma 50 applies.
Line 8: Lemma 51 applies.
P does not read from reachable cells in other Lines.

Segment 3: Lines 12-14

P reads from head in Line 12. If head is invalid, P returns at Line 13.
Segment 4: Lines 15-16

P reads from head → Next in Line 15. If head → Next is invalid, P returns at Line 16.
Segment 5: Lines 17-21

P reads from head → Next → LC in Line 18. If head → Next → LC is invalid, P returns at
Line 19.
Segment 6: Lines 22-28

P executes lchead :=LL(Head[2 ∗ lst]) in Line 22. P then reads from lchead in Line 23. If
lchead is invalid, P goes to Line 29, without making any further use of the value, lcnewcell, read
from lchead (Line 23).
Segment 7: Lines 29-42

This segment is analogous to Lines 15-28.
Segment 8: Lines 43-46

P reads from head → Next in Line 43. If head → Next is invalid, then P returns at Line 44.
2
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Lemma 53 Suppose the following condition holds:

∀ process P ,∀ c, t such that c is reachable and invalid at t: if while P is executing
promote, P reads from any field in c at t, then the value returned to P is indeterminate
(i.e. arbitrary). (If P reads from c while executing any other procedure, then c returns
the correct value to P .)

Then, our construction remains correct.

Proof

Segment 1: Lines 1-13

P first executes head :=LL(Head[lst]) in Line 1. P reads from head in Line 3. If head
is invalid at this point, then P either returns at Line 4, Line 5, or reads from head (Line 6),
head → Next (Line 7), and then returns at Line 8. In all of these cases, P executes no SC or
write operation on any shared object.

P reads from head → Next in Line 5. If head → Next is invalid at this point, then P returns
at either Line 5 or Line 8.

P reads from head in Line 6. If head is invalid at this point, then P returns at Line 8.
P reads from head → Next in Line 7. If head → Next is invalid at this point, then P returns

at Line 8.
Segment 2: Lines 14-16

Lines 14, 16: Lemma 52 applies.
Line 15: Since promote(lst) recurses to promote(1), Segment 1 serves as the basis of an

inductive proof.
2

Lemma 54 Suppose the following condition holds:

∀ process P ,∀ c, t such that c is reachable and invalid at t: if while P is executing
announce, P reads from any field in c at t, then the value returned to P is indeter-
minate (i.e. arbitrary). (If P reads from c while executing any other procedure, then c
returns the correct value to P .)

Then, our construction remains correct.

Proof P executes head := Head[n + P ] in Line 2. Let c = head. P reads from c at time t in
Line 3. We now prove that c is valid at t.

A new cell c becomes reachable at position n+P in only one way: when P executes announce,
from Line 1 of apply. By Lemma 19, when this apply terminates, c has become head. When
P next executes announce, c is head when P executes Line 3 of announce at t (since at this
point c → Next = ⊥). Now suppose c is invalid at t. By Lemma 43, c is not head at t. This
contradiction proves that c is valid at t. Since P does not read from any invalid cell when executing
announce, our Lemma holds. 2

Lemma 55 Suppose the following condition holds:
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∀ process P ,∀ c, t such that c is reachable and invalid at t: if while P is executing
percolateState, P reads from any field in c at t, then the value returned to P is
indeterminate (i.e. arbitrary). (If P reads from c while executing any other procedure,
then c returns the correct value to P .)

Then, our construction remains correct.

Proof This is an immediate consequence of Lemma 41. 2

Lemma 56 Suppose the following condition holds:

∀ process P ,∀ c, t such that c is reachable and invalid at t: if while P is executing
release, P reads from any field in c at t, then the value returned to P is indeterminate
(i.e. arbitrary). (If P reads from c while executing any other procedure, then c returns
the correct value to P .)

Then, our construction remains correct.

Proof In release(c, pos(c), ∗), c is the only reachable cell accessed by P . (We do not consider
the recursive call to release from ascend(p, pos(c)).) By Lemma 39(a), the only places where P
might read an invalid c are Lines 5 and 9. Suppose P reads c → RDone (Line 5) at time t, and
c is invalid at t. If c → RDone =false, P returns from release. If c → RDone =true, c executes
SC(c → Free, true) in Line 6. Since c is invalid at t, c → Free = true at t. By Lemma 39(b), the
SC operation in Line 6 returns false. Thus, the values in c after t do not affect the correctness
of our construction. The remaining case is that, when P reads c → LDone (Line 9), c is invalid.
An analogous argument suffices here. Our Lemma is therefore proved. 2

Lemma 57 Suppose the following condition holds:

∀ process P ,∀ c, t such that c is reachable and invalid at t: if while P is executing
apply, P reads from any field in c at t, then the value returned to P is indeterminate
(i.e. arbitrary). (If P reads from c while executing any other procedure, then c returns
the correct value to P .)

Then, our construction remains correct.

Proof

Line 1: Lemma 54 applies.
Line 2-3: Lemma 53 applies.
Line 4: Lemma 55 applies.
Line 5: Lemma 56 applies.
Line 6: We note that when P reads opcell → State in Line 6, opcell is head. Thus, by Lemma

43, opcell is valid.
Hence, our Lemma holds. 2
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Lemma 58 Suppose that the values in the invalid reachable cells are indeterminate. Our con-
struction remains correct.

Proof This Lemma is a concise re-statement of Lemma 57. 2

Definition 18 ∀i, 1 ≤ i ≤ 2n − 1:

• anchori is called an anchor.

• anchori is invalid if and only if (anchori → Retired = true) ∧ (anchori → Free = true).

• anchori is valid if and only if anchori is not invalid.

Lemma 59 Suppose that the values in an invalid anchor are indeterminate. Our construction
remains correct.

Proof No process accesses an anchor from percolateState or release, or from Line 6 of apply.
The arguments used to prove Lemma 58 proves this Lemma. 2

4.4.6 Writing to Invalid Cells

In this section, our objective is to show that no process will ever write successfully to an invalid
cell. (A process may execute a SC operation on an invalid cell. However, such an operation is
bound to fail.) Thus, the contents of an invalid cell are protected from being corrupted by the
write and SC operations of any process.

In the Lemmas that follow, we show, procedure by procedure, that all the component pro-
cedures (including apply) prevent processes from writing successfully to an invalid cell. This is
another crucial property of BSC* that permits recycling of invalid cells.

Lemma 60 ∀ process P ,∀ c, t such that c is reachable and invalid at t: While executing announce,
P does not successfully write to any field in c at t.

Proof The only place where P writes to a reachable cell is in Line 4. By the same argument as
that used in the proof of Lemma 54, head is valid at the time when P executes Line 4. Thus our
Lemma holds. 2

Lemma 61 ∀ process P ,∀ c, t such that c is reachable and invalid at t: While executing readyOrphan,
P does not successfully write to any field in c at t.

Proof P does not write to any shared object in readyOrphan. 2

Lemma 62 ∀ process P ,∀ c, t such that c is reachable and invalid at t: While executing combine,
P does not successfully write to any field in c at t.

Proof P does not write to any shared object in combine. 2
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Lemma 63 ∀ process P ,∀ c, t such that c is reachable and invalid at t: While executing append,
P does not successfully write to any field in c at t.

Proof

Lines 5-6: Lemma 61 applies.
Line 8: Lemma 62 applies.
Line 10: P has executed newcell :=LL(head → Next) in Line 2 at time t. In Line 3, P

executed VL(Head[lst]), which returns true. By Lemma 45, head = Head[lst] is valid at t.
By Line 4, newcell = ⊥. Lemma 46 is applicable. Thus, if head is invalid when P executes
SC(head → Next, c) in Line 10, the SC operation returns false.

Line 11: Suppose c executes Line 11, writing to cell c. By Line 10 and the fact that the SC
operation in Line 10 returns false, c is not reachable.

Line 21: P has executed LL(lchild → Parent) in Line 18 at time t. By Line 19, lchild is valid
at t. By Line 20, the LL operation in Line 18 returns ⊥. By Lemma 47, if lchild is valid when P
executes Line 21, then the SC operation returns false.

Line 27: P writes to Head[2 ∗ lst], which is not a cell.
Line 28: P writes to lchild → Retired. By Lemma 44(a), lchead → Retired =false when P

begins Line 28. Thus, lchead is valid when P begins Line 28. 2

Lines 35,41,42: similar to Lines 21,27, 28.
Line 46: P has executed LL(newcell → Ready) in Line 43 at time t. By Line 44, newcell is

valid at t. By Line 45, the LL operation in Line 43 returns false. By Lemma 48, if newcell is
invalid when P executes Line 46, the SC operation returns false.

2

Lemma 64 ∀ process P ,∀ c, t such that c is reachable and invalid at t: While executing promote,
P does not successfully write to any field in c at t.

Proof

Line 10: We note that newcell is root reachable. P has executed LL(newcell → State) in
Line 7 at time t. By Line 8, newcell is valid at t. By Line 9, the LL operation in Line 7 returns
⊥. By Lemma 49, if newcell is invalid when P executes Line 10, then the SC operation returns
false.

Line 11: P writes to Head[lst], which is not a cell.
Line 12: P writes to head → Retired. By Lemma 44(a), head → Retired = false when P

begins Line 12. Thus, head is valid when P begins Line 12.
Lines 14,16: Lemma 63 applies.
Line 15: Since promote(lst) recurses to promote(1), Lines 1-13 serve as the basis of an induc-

tive proof.
2

Lemma 65 ∀ process P ,∀ c, t such that c is reachable and invalid at t: While executing percolateState,
P does not successfully write to any field in c at t.

Proof This is an immediate consequence of Lemma 41. 2
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Lemma 66 ∀ process P ,∀ c, t such that c is reachable and invalid at t: While executing release,
P does not successfully write to any field in c at t.

Proof By Lemma 39(a), we need to consider only Lines 6 and 10.
Line 6: P executes SC(c → Free, true) in Line 6 at time t. Suppose c is invalid at t. Thus,

c → Free = true at t. By Lemma 39(b), the SC operation in Line 6 returns false.
Line 10: analogous to Line 6.

2

Lemma 67 ∀ process P ,∀ c, t such that c is reachable and invalid at t: While executing apply,
P does not successfully write to any field in c at t.

Proof

Line 1: Lemma 60 applies.
Line 2-3: Lemma 64 applies.
Line 4: Lemma 65 applies.
Line 5: Lemma 66 applies.

2

Lemma 68 No process writes successfully to any invalid, reachable cell.

Proof This Lemma is a concise re-statement of Lemma 67. 2

Lemma 69 No process writes successfully to any invalid anchor.

Proof No process accesses an anchor from percolateState or release, or from Line 6 of apply.
The argument used to prove Lemma 68 proves this Lemma. 2

Lemma 70 (anchori is no longer head)⇒ (anchori is valid eventually).

Proof We note that anchori → Free = true during initialization, and at all times subsequently.
The same argument that proves Lemma 44(b) proves that anchori → Retired = true eventually.
Thus, anchori is invalid eventually. 2

4.5 Bounded Space Complexity (BSC) Implementation

The Bounded Space Complexity (BSC) implementation is the BSC* construction as presented in
Figures 4.1 to 4.5, with the modification given in Figures 4.6 and 4.7. We note, in particular, the
following change:

in announce and combine, replace “allocate a new cell c” with “allocate an unused or
invalid cell c :=selectCell()”.

Thus, in contrast to BSC*, invalid cells are returned by the selectCell procedure to either
announce or combine in BSC. Invalid cells are therefore recycled in BSC.
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initialization

1. constant δ := 3n + log n
2. ∀ process P :
3. A := P ’s pool of 3δ − 2 cells

(2 cells of P ’s are used as anchors)
4. Z := 2 anchors from P ’s pool of cells
5. B, V, I := ∅

end initialization

selectCell () returns ∗cell

1. if |A| = 0
2. Z := V ∪ B
3. A := I
4. if |A| > δ
5. choose d ∈ A
6. A := A − {d}, Z := Z ∪ {d}
7. return d
8. else

9. for i := 1, 2, 3:
10. if |Z| > 0
11. choose c ∈ Z
12. Z := Z − {c}
13. if (c → Free) ∧ (c → Retired)
14. I := I ∪ {c}
15. else V := V ∪ {c}
16. choose d ∈ A
17. A := A − {d}, B := B ∪ {d}
18. return d

end selectCell

replace (c : ∗cell)
1. A := A ∪ {c}
2. if |A| > δ
3. Z := Z − {c}
4, else B := B − {c}

end replace

Figure 4.6: Selecting a valid cell

87



announce and combine

1(new version). allocate an unused or invalid cell c := selectCell () ...

append (lst : integer)
11(new version). c → Free := true, c → Retired := true, replace (c)

Figure 4.7: Modifying BSC* to get BSC implementation

4.5.1 selectCell and replace procedures

We now describe the selectCell and replace procedures. We note that these are local proce-
dures, i.e. they access no shared register. These procedures manage the bounded private pool of
cells so that a usable cell is always available to be returned by selectCell to either announce or
combine.

Suppose that at any time at most δ cells are valid. (The existence of such a δ will be proved
later.) We provide each process with a private pool of 3δ cells, initially divided into two sets: A is
the set of usable cells that are ready to be returned by selectCell. selectCell always returns
a cell from A. Z is the set of used cells. A cell in Z may be valid or invalid.

During initialization, A holds all 3δ new cells, and Z is the empty set. As long as |A| > δ,
each cell c ∈ A that selectCell returns is moved from A to Z (Lines 4 to 7).

At the point when |A| = δ (and |Z| = 2δ), each cell c ∈ A that selectCell returns is moved
from A to B (Lines 16 to 18). At the same time, with each execution of selectCell, three cells
in Z are examined as to whether they are valid or invalid (Lines 9 to 15). Valid cells are moved
from Z to V ; invalid cells are moved from Z to I.

Thus, when |A| reaches zero, all 2δ cells in Z have been examined, and moved to either V or
I. Since there are at most δ valid cells at any time, there are at least δ invalid cells in I, ready to
be recycled.

At this point, I (the set of invalid cells) becomes the new A (Line 3), and V ∪ B becomes
the new Z (Line 2). The cycles repeats at this point: selectCell returns cells from the new A,
which holds at least δ cells that are ready to be recycled.

replace is called by Line 11 of append, when a cell that was previously returned by selectCell

fails to become reachable. In this case, the cell is returned to A, from either Z or B, depending
on the action taken by the previous selectCell.
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4.6 Proof of Correctness of BSC

4.6.1 Provisional Correctness Proof

In this section, we give a provisional correctness proof: Suppose that selectCell indeed always
returns an unused or invalid cell, then the BSC implementation is linearizable and wait-free.
Proving this requires the properties of BSC*, proved in the previous sections, concerning reading
from, and writing to, invalid cells. Furthermore, an important property (Lemma 71) needs to be
proved, before we can assert the provisional correctness of BSC.

Notation 5 Let c(i) denote the ith incarnation of the cell c.

In the following, lcnewcell = c(i) (for example) means that the value in lcnewcell is c, and
that the incarnation of cell c that caused lcnewcell to hold the value c is the ith incarnation.

Lemma 71 Consider the BSC construction.

• Suppose that when process P executes Line 26 of append, lcnewcell = c(i), lchild = d(j).
Then,

(c = d) ⇒ (i = j)

• Suppose that when process P executes Line 40 of append, rcnewcell = c(i), rchild = d(j).
Then,

(c = d) ⇒ (i = j)

Proof

(a) Let t be the time process P executes Line 23. Since P executes Line 26, both VL operations
in Lines 24 and 25 return true. By Line 24, lcnewcell = c(i) is valid at t (by Lemma 45). By Line
25, lchild = d(j) is valid at t (by Lemma 45).

Suppose c = d. Since the incarnation c(i) pointed to by lcnewcell is valid at a time when the
incarnation c(j) pointed to by lchild is also valid, we have i = j.
(b) analogous to part (a).

2

Theorem 5 Assuming the correctness of selectCell, the BSC construction is linearizable and
wait-free.

Proof By Lemmas 58 and 59, once a cell (either a reachable cell or an anchor) c is invalid, the
contents of the fields in c are no longer needed for our BSC* construction to function correctly.
Suppose c is recycled, as specified in the BSC construction. By Lemmas 68 and 69, the content‘s
in c in any of its new incarnations are not corrupted by processes that would have accessed c in
its old, invalid incarnation in the BSC* construction.

Finally, pointers to distinct cells in the BSC* construction may point to different incarnations
of the same cell in the BSC construction. There are only two places where this feature may cause
problem: Lines 26 and 40 of append. By Lemma 71, if lcnewcell = lchild in Line 26 (likewise with
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the case of rcnewcell = rchild in Line 40), then lcnewcell and lchild (likewise with rcnewcell
and rchild) point to not only the same cell, but the same incarnation of the same cell.

Thus, even though Line 26 (likewise with Line 40) only checks whether lcnewcell = lchild,
lcnewcell = lchild in Line 26 implies that both lcnewcell and lchild point to the same incar-
nation of the same cell. The check in Line 26 in the BSC construction is therefore identical in
function to the check in Line 26 in the BSC* construction. With this fact, we conclude that the
BSC construction preserves the correctness of the BSC* construction. The BSC construction is
therefore linearizable and wait-free (by Theorem 3). 2

4.6.2 Bounding the Number of Valid Cells

Given a process P , a bound exists on the number of cells that are from P ’s pool, and valid (thus,
not available for recycling) at any instant in time. This is obviously an important bound for the
purpose of recycling cells. In this section, we prove this bound.

Lemma 72 Let c be a reachable cell or an anchor. Either c is head forever, or c is invalid
eventually.

Proof

Case 1 c is an anchor.
Lemma 70 applies.

Case 2 c is reachable.
Suppose c is not forever head. By Lemma 39(c), c → Free = true eventually. By Lemma

44(b), c → Retired = true eventually. Hence, c is invalid eventually.
2

Lemma 73 At any time t, there are at most (3n + log n) reachable cells and anchors that are
from process P ’s pool of cells, and valid.

Proof Let c be a reachable cell or an anchor from P ’s pool of cells.

Counting P ’s valid cells that are head

We note that pos(c) = b(n + P )/2ic, where 0 ≤ i ≤ log n. Thus, at most log n + 1 cells may be
head (and therefore valid) at t, and from P ’s pool.

Counting P ’s valid cells that are not head

By Lemma 72, for any cell c that is from P ’s pool, valid at t, but not head at t, there is some
process Q that is executing apply, such that Q will be setting either c → Retired or c → Free
to true during the apply.

We examine the places where c → Retired := true and c → Free := true occur.
(a) Line 11 of append: c is neither reachable, nor an anchor in this case.
(b) Line 12 of promote, Lines 28 and 42 of append: Each process may have at most one

pending operation (in any one of these Lines). Thus, each process can be responsible for at most
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one cell that is from P ’s pool, valid at t, but not head at t. This accounts for a total of at most
n cells.

(c) In release:
Each process Q can hold up at most log n + 1 cells (in positions b(n + Q)/2ic, where 0 ≤ i ≤

log n). Each of these cells is waiting for Q to complete release to become invalid.
However, we are focusing on P ’s cells, i.e. cells that occupy positions b(n + P )/2ic, where

0 ≤ i ≤ log n. If b(n + P )/2ic, where 0 ≤ i ≤ log n, has a leaf descendant position n + Q, then
Q can hold up one cell of P ’s in position b(n + P )/2ic. For each position b(n + P )/2ic, there are
n/(2log n−i) leaf descendant positions. Each such leaf descendant position n + Q, corresponds to
one process Q that may hold up one cell of P ’s in position b(n + P )/2ic.

The total number of P ’s cells that can be held up in position b(n + P )/2ic because some
process has not completed release (has not set Free field to true) is

≤ the number of leaf descendant positions of b(n + P )/2ic
= n/(2log n−i)

The total number of P ’s cells that can be held up because some process has not completed
release (has not set Free field to true) is

≤ sum of the numbers of leaf descendant positions of b(n + P )/2ic, 0 ≤ i ≤ log n

= n(1 + 2−1 + 2−2 + · · · 2− log n)

= 2n − 1

The total number of P ’s cells that are valid at t, but not head at t, is therefore at most the
sum of the numbers from (b), and (c), n + 2n − 1 = 3n − 1.

Since the number of P ’s cells that are head (hence valid) at t is at most log n + 1, the total
number of reachable cells and anchors that are from P ’s pool and valid at t is at most 3n+ log n.

2

4.6.3 Properties of selectCell

In this section, we prove that the selectCell procedure indeed always returns a cell that is
suitable for use, i.e. it returns either an unused cell or an invalid cell.

Lemma 74 Suppose at time t:

• P executes Line 4 of selectCell,

• |A| ≥ δ,

• |Z| + |A| = 3δ.

Let t1 > t be the earliest time after t when:
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• P executes Line 1 of selectCell,

• |A| = 0

Then, when P next executes Line 4 (i.e. when P executes Line 4 for the first time after t1),
|A| ≥ δ, |Z| + |A| = 3δ.

Proof Let t2, where t2 ≥ t, be the earliest time ≥ t when (a) P executes Line 4, and (b) |A| = δ.
Since during the time interval [t, t2], every cell that is removed from A is added to Z, |Z|+|A| = 3δ
at t2.

During the interval [t2, t1], all δ cells in A at t2 become reachable, and each such reachable
cell is moved from A to B. Thus, |B| = δ at t1.

Since |Z| + |A| = 3δ at t2, we have |Z| = 2δ at t2. There are at least 3δ executions of the for
loop in Lines 9-15 in [t2, t1]. No cells are added to Z in [t2, t1]. Thus, every cell c in Z has been
examined in [t2, t1]. If c is valid, c is moved from Z to V . If c is invalid, c is moved from Z to I.
Thus, |V | + |I| = 2δ at t1. Hence, |V | + |I| + |B| = 3δ at t1.

By Lemma 73, there are at most δ valid cells (hence, at least δ invalid cells) in Z at t2. By
Lemma 32(c), a cell that is invalid at t2 remains invalid throughout [t2, t1]. Thus, |I| ≥ δ at t1.

When P completes Line 3 for the first time after t1, Z = V ∪ B,A = I. Hence, |A| ≥
δ, |Z| + |A| = |V | + |B| + |I| = 3δ.

2

Lemma 75 If |A| = 0 when P executes Line 1 of selectCell, then when P next executes Line
4, |A| ≥ δ, |Z| + |A| = 3δ.

Proof This Lemma is proved by induction, using Lemma 74.
Induction Basis Consider P ’s first invocation of selectCell.

|A| = 3δ − 2 ≥ δ, |Z| = 2 (A,Z are as assigned during initialization), when P executes Line 4.
Therefore Lemma 75 holds for the first time when (a)P executes Line 1, (b)|A| = 0 (by Lemma
74).
Induction Step Suppose that Lemma 75 holds for the ith time when (a)P executes Line 1,
(b)|A| = 0. Then, by Lemma 74, Lemma 75 holds for the (i +1)th time when (a)P executes Line
1, (b)|A| = 0.

2

Lemma 76 selectCell always returns either an unused cell or an invalid reachable cell.

Proof Suppose that selectCell returns d. Then, d was in A. Consider the assignment of
A during the initialization, and in Line 3 of selectCell. Since I contains only invalid cells, A
contains only invalid cells after Line 3 of selectCell is executed. Thus, d is either an unused cell
or an invalid reachable cell.

By Lemma 75, when P executes Lines 5, 16 of selectCell to choose d ∈ A, A 6= ∅. Thus,
selectCell always returns a cell. Hence, our Lemma holds. 2
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4.6.4 Correctness of the BSC Implementation

Given the provisional correctness, and the correctness of selectCell, we reach an immediate
conclusion that BSC is linearizable and correct.

However, we need to further specify the details of implementing the data structures in selectCell,
in order to conclude that the local time complexity of selectCell is O(1).

We note that the operations performed on P ’s local sets S, where S may be A,B,Z, V , or I,
are (a)choose an element c from set S, and move c from S to S ′, (b)Z := V ∪ B (Line 2), (c)
A := I (Line 3).

To achieve O(1) local time complexity for each execution of selectCell and replace, we use
the following implementation:

A set S, where S may be B, V , or I, is implemented as an array of size 3δ, with a variable
size(S) that indicates the index of the last element in S. We always remove or add the last
element of the array.

There are six arrays: B0, B1, V0, V1, I0, I1, and two flags: ZFlag, and AFlag. A,B,Z, V, and
I are implemented as follows:

When ZFlag = i(i = 0, 1), Z is the combination of arrays Vi and Bi (in that order); V is the
array V1−i; B is the array B1−i. When AFlag = i(1 = 0, 1), A is the array Ii; I is the array I1−i.

In Line 2, Z := V ∪B is implemented by ZFlag := 1−ZFlag. In Line 3, A := I is implemented
by AFlag := 1 − AFlag.

With this implementation, we have:

Lemma 77 The local time complexity of a call to either selectCell or replace is O(1).

Theorem 6 (a)The BSC construction is linearizable and wait-free.
(b)The shared-access time complexity and the local time complexity of the BSC construction are
both O(log2 n).
(c)The BSC construction requires 3n(3n + log n) shared cells and 2n − 1 shared pointers to cells.

Proof

(a) By Lemma 76, selectCell is correct. By Theorem 5, the BSC construction is linearizable
and wait-free.
(b) By Theorem 4 and Lemma 77.
(c) Each process has a pool of 3(3n + log n) cells. Thus, there are 3n(3n + log n) shared cells in
total. In addition, there are 2n − 1 shared pointers to cells: Head[lst], 1 ≤ lst ≤ 2n − 1.

2
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Chapter 5

Contention-Sensitive Implementation

5.1 General Principles

Our objective is to enhance the BSC implementation, so that when there are few concurrent
invocations, a process can complete an invocation of apply quickly. Our general approach is as
follows: We introduce log2 n new node positions to the binary tree defined in Chapter 3. These
are the middle children of positions 1,2, · · · , k, · · · , log2 n. They are numbered 2.5, 4.5, · · · , 2k +
.5, · · · , 2 ∗ log2 n + .5 respectively. We note that these new positions are closer than the leaf
positions n, n + 1, · · · , 2n − 1 are to the root.

Concurrent processes compete for the right to install their operation cells at one of these new
node positions, and then traverse up from that position to the root position. A process that has
its operation cell installed as a middle child is able to avoid traversing the full length of the path
leading from a leaf to the root.

Let op be an invocation of apply. Recall that we defined the contention experienced by op,
denoted by nc, as the maximum number of concurrent invocations during the interval of op’s
execution. When P is the only process executing an invocation of apply, P installs its operation
cell at the middle child position of the root, thus fully exploiting the benefit of no contention.

In order to gain the right to install its operation cell at a middle child position (which is close
to the root), process P executes the getToken procedure. 1 Each of the middle child positions
2k+ .5 has a corresponding token k. If P gets token k, then P installs its operation cell at position
2k+ .5. If P fails to get any of the log2 n tokens, then P proceeds to execute its apply as specified
by BSC. In other words, P installs its operation cell at position n + P , and traverse up to the
root position.

We will show that if P gets token m, then the contention experienced by P ’s invocation is at
least m, i.e. nc ≥ m. Furthermore, if P gets token m, the time complexity of P ’s invocation of
apply is dominated by the time taken to execute getToken (i.e. the time taken to get the token),
which equals O(m). Since m ≤ nc,m ≤ log2 n, we achieve a time complexity of O(min(nc, log

2 n)).

1The idea of processes competing for tokens that signify possession of a node close to the root was first introduced
by Afek, Dauber, and Touitou [ADT95].
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type integer+ := {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, · · ·}

initialization

∀i, 1 ≤ i ≤ 2n-1 : anchori : ∗cell

∀j, 1 ≤ j ≤ log2 n : anchor2j+.5 : ∗cell

1. for i := 1 to 2n-1:
2. anchori → Next := ⊥, anchori → Free := true,

anchori → Retired := false,Head[i] := anchori

3. for j := 1 to log2 n:
4. i := 2 ∗ j + .5
5. anchori → Next := ⊥, anchori → Free := true,

anchori → Retired := false,Head[i] := anchori

6. anchor1 → State := initialstate

7. anchor1 → Op := ⊥
end initialization

apply (P : integer, op : op, O) returns res

1. lst := getToken(P )
2. opcell := announce (op, lst)
3. for i := 0 to blog lstc
4. promote (blst/2ic)
5. percolateState (opcell, lst)
6. response:= δresp (opcell → State, op)
7. release (opcell, lst,middle)
8. if lst 6= n+P
9. tokenblst/2c := 0

10. return response
end apply

Figure 5.1: Contention-sensitive construction for closed object O (Figures 5.1 to 5.9)
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promote (lst : integer+)
1. if lst = 1
2. head := LL(Head[lst])
3. newcell := head → Next
4. if newcell = ⊥ return

5. if newcell → Ready = false return

6. newstate := δstate (head → State, head → Op)
7. newcellstate := LL(newcell → State)
8. if not VL(Head[lst]) return

9. if newcellstate = ⊥
10. SC(newcell → State,newstate)
11. if SC(Head[lst],newcell)
12. head → Retired := true
13. return

14. append (blst/2c)
15. promote (blst/2c)
16. append (blst/2c)

end promote

Figure 5.2: Contention-sensitive construction for closed object O (Figures 5.1 to 5.9)
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append (lst : integer+)
1. head := LL(Head [lst])
2. newcell := LL(head → Next)
3. if not VL(Head[lst]) return

4. if newcell = ⊥
5. (lc, lop) := readyOrphan (2 ∗ lst)
6. (mc, mop) := readyOrphan (2 ∗ lst + .5)
7. (rc, rop) := readyOrphan (2 ∗ lst + 1)
8. if (lc 6= ⊥) or (mc 6= ⊥) or (rc 6= ⊥)
9. c := combine (lc, lop,mc,mop, rc, rop)
10. result := SC (head → Next, c)
11. if not result
12. c → Free := true, c → Retired := true, replace (c)
13. newcell := head → Next
14. if not VL(Head[lst]) return

15. if newcell = ⊥ return

16. lchild := newcell → LC
17. if not VL(Head[lst]) return

18. if lchild 6= ⊥
19. lcparent := LL(lchild → Parent)
20. if not VL(Head[lst]) return

21. if lcparent = ⊥
22. SC(lchild → Parent, newcell)
23. lchead := LL(Head[2*lst])
24. lcnewcell := lchead → Next
25. if not VL(Head[2*lst]) go to K

26. if not VL(Head[lst]) return

27. if lcnewcell = lchild
28. if SC(Head[2*lst], lchild)
29. lchead → Retired := true

(continue on next Figure)

Figure 5.3: Contention-sensitive construction for closed object O (Figures 5.1 to 5.9)
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append (lst : integer+)
(continued from previous Figure)

30.K mchild := newcell → MC
31. if not VL(Head[lst]) return

32. if mchild 6= ⊥
33. mcparent := LL(mchild → Parent)
34. if not VL(Head[lst]) return

35. if mcparent = ⊥
36. SC(mchild → Parent,newcell)
37. mchead := LL(Head[2*lst+ .5])
38. mcnewcell := mchead → Next
39. if not VL(Head[2*lst+ .5]) go to L

40. if not VL(Head[lst]) return

41. if mcnewcell = mchild
42. if SC(Head[2*lst+ .5], mchild)
43. mchead → Retired := true

44.L rchild := newcell → RC
45. if not VL(Head[lst]) return

46. if rchild 6= ⊥
47. rcparent := LL(rchild → Parent)
48. if not VL(Head[lst]) return

49. if rcparent = ⊥
50. SC(rchild → Parent,newcell)
51. rchead := LL(Head[2*lst+1])
52. rcnewcell := rchead → Next
53. if not VL(Head[2*lst+1]) go to M

54. if not VL(Head[lst]) return

55. if rcnewcell = rchild
56. if SC(Head[2*lst+1], rchild)
57. rchead → Retired := true

58.M ready := LL(newcell → Ready)
59. if not VL(Head[lst]) return

60. if ready = false
61. SC(newcell → Ready, true)

end append

Figure 5.4: Contention-sensitive construction for closed object O (Figures 5.1 to 5.9)
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readyOrphan (lst : integer+) returns (∗cell,op)

1. if (lst= 2 ∗ blst/2c + .5) and (lst > 1 + 2 ∗ log2 n) return (⊥,⊥)
2. head := LL(Head [lst])
3. newcell := head → Next
4. if newcell = ⊥ return (⊥,⊥)
5. if newcell → Ready = false return (⊥,⊥)
6. newop := newcell → Op
7. if not VL(Head[lst]) return (⊥,⊥)
8. return (newcell, newop)

end readyOrphan

announce (op : op, lst : integer+) returns ∗cell

1. allocate an unused or invalid cell c := selectCell () and initialize it as follows:
c → Parent := ⊥, c → Next := ⊥, c → State := ⊥
c → LC := ⊥, c → MC := ⊥, c → RC := ⊥,
c → Op := op, c → Lop := ⊥, c → Mop := ⊥, c → Ready := true
c → LDone := true, c → MDone := false, c → RDone := true,
c → Free := false, c → Retired := false

2. head := Head [lst]
3. if LL(head → Next) = ⊥
4. SC(head → Next, c)
5. return c

end announce

Figure 5.5: Contention-sensitive construction for closed object O (Figures 5.1 to 5.9)
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combine (lc : ∗cell, lop : op, mc : ∗cell, mop : op, rc : ∗cell, rop : op ) returns ∗cell

1. allocate an unused or invalid cell c := selectCell () and initialize it as follows:
c → Parent := ⊥, c → Next := ⊥, c → State := ⊥
c → LC := lc, c → MC := mc, c → RC := rc,
c → Lop := lop,
c → Mop := lop

⊗
mop

c → Op := (c → Mop)
⊗

rop
c → Ready := false, c → Free := false, c → Retired := false
if lc 6= ⊥

c → LDone := false
else c → LDone:= true
if mc 6= ⊥

c → MDone := false
else c → MDone := true
if rc 6= ⊥

c → RDone := false
else c → RDone := true

2. return c
end combine

percolateState (c : ∗cell, lst : integer+)
1. if lst = 1 return

2. p := c → Parent
3. percolateState (p, blst/2c)
4. if lst = 2 ∗ blst/2c
5. c → State := p → State, return

6. if lst = 2 ∗ blst/2c + .5
7. c → State := δstate (p → State, p → Lop), return

8. c → State := δstate (p → State, p → Mop), return

end percolateState

Figure 5.6: Contention-sensitive construction for closed object O (Figures 5.1 to 5.9)
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release (c : ∗cell, lst : integer+, dir : {left,middle, right})
1. p := c → Parent
2. LL(c → Free)
3. if dir = left
4. c → LDone := true
5. if c → MDone and c → RDone
6. if SC(c → Free, true)
7. ascend (p, lst)
8. return

9. if dir = middle
10. c → MDone := true
11. if c → LDone and c → RDone
12. if SC(c → Free, true)
13. ascend (p, lst)
14. return

15. c → RDone := true
16. if c → LDone and c → MDone
17. if SC(c → Free, true)
18. ascend (p, lst)
19. return

end release

ascend (c : ∗cell, lst : integer+)
1. if lst =1 return

2. if lst = 2 ∗ blst/2c
3. release (c, blst/2c, left), return

4. if lst = 2 ∗ blst/2c + .5
5. release (c, blst/2c, middle), return

6. release (c, blst/2c, right), return

end ascend

Figure 5.7: Contention-sensitive construction for closed object O (Figures 5.1 to 5.9)
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5.2 The Implementation

We highlight some noteworthy aspects of our contention-sensitive implementation, which we
present in Figures 5.1 to 5.9.

(1). In addition to the possible node positions as specified by a binary tree of height log n
(see Figure 3.1(a)), we have log2 n new node positions: 2j + .5, for j = 1, 2, · · · , log2 n. A node at
position 2j + .5 is the middle child of the node at position j.

(2). In the new construction, each cell in List[lst ], 1 ≤ lst ≤ log2 n, has three children: a left
child and a right child as in the original construction, and a middle child, which is either ⊥ or a
cell in list 2 ∗ lst + .5. The middle child, if present, is a leaf.

(3). In the BSC construction, when a process P invokes apply(P, op,O), it stores op in a cell
c, installs c (as a leaf) in the List[n + P ] (which belongs exclusively to P ), and works towards
making c a part of a fully formed tree (i.e., until c has log n ancestors).

In the new construction, when P invokes apply(P, op,O), it first executes the getToken pro-
cedure (Figure 5.8). Suppose P succeeds in getting a token m. It stores op in a cell c, and installs
c (as a leaf) in List[2m + .5]. P then works towards getting c a parent in List[m], a grandparent
in List[bm/2c] and so on, until c has an ancestor in List[1]. Then, P computes the response to its
operation, and releases token m. P ’s getToken takes O(m) time and the rest of the work takes
O(log2 m) time. We will show that m ≤ nc (nc is the contention experienced by P ’s invocation).
Further, m ≤ log2 n. Thus, the time complexity of our construction is O(min(nc, log

2 n)).
If P does not succeed in getting a token, then nc ≥ log2 n + 1. In this case, P performs its

operation as in the BSC construction, by installing an operation cell in List[n + P ] and working
towards the root from there. In this case, the total time spent is O(log2 n). Since nc ≥ log2 n+1,
we have the desired O(min(nc, log

2 n)) time complexity bound.
(4). We enhance the append procedure so that, when attempting to append a new cell c

to List[lst ], 1 ≤ lst ≤ log2 n, in addition to parenting any ready orphans in List[2 ∗ lst ] and
List[2 ∗ lst + 1], c will also adopt as its middle child any ready orphan in List[2 ∗ lst + .5].

(5). Each cell c has three fields that record operations: The Lop field records the operation
of c’s left child. The Mop field records the operation that results from combining the operations
of c’s left and middle children. The Op field records the operation that results from combining
the operations of c’s left, middle, and right children. Lop and Mop fields are useful in the
percolateState procedure, when computing the State fields of c’s children, given the State field
of c. Let s be the value in the State field of c. Then, the State field of c’s left child is s. The
State field of c’s middle child is the state that results from applying c’s Lop to the implemented
object in state s. The State field of c’s right child is the state that results from applying c’s Mop
to the implemented object in state s.

5.3 Proof of Correctness

With the exception of getToken, presented in Figure 5.8. the proof of linearizability and wait-
freedom of BSC in Chapter 4 carries over to our construction, with obvious minor changes. We
therefore prove only the relevant properties of getToken here.
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getToken(P : processes) returns integer+

1. for i := 1 to log2 n
2. if LL(tokeni) = 0
3. if SC(tokeni, 1)
4. return 2 ∗ i + .5
5. return n+P

end getToken

Figure 5.8: Contention-sensitive construction for closed objects: getToken (Figures 5.1 to 5.9)

5.3.1 Proof of Token Scheme

In getToken, process P tries to win a token tokeni by executing the for loop in Lines 1 to 4
with index i. P iterates the for loop with index i = 1, 2, · · · , log2 n. In each iteration, P executes
LL(tokeni) in Line 2. If tokeni = 0 in Line 2, then no process has yet won tokeni. In this case,
P executes SC(tokeni, 1) in Line 3. If the SC operation returns true, then P has won tokeni.
Clearly, at most one process can win any tokeni. If P wins tokeni, then P ’s getToken returns
2i+ .5, the middle child position that P is now entitled to install its opcell, by virtue of P ’s having
won tokeni. If P did not win any of tokeni, 1 ≤ i ≤ log2 n, then P ’s getToken returns n + P ,
which is the leaf position that, in all preceding algorithms, P installs its opcell.

Let tokeni be the token that P has won in getToken. Then, P releases tokeni in Line 9 of
apply, by setting tokeni to 0, just before apply terminates.

We say that P misses tokeni if when P executes the for loop with i = k, P either finds
tokenk = 1 in Line 2, or its SC operation in Line 3 returns false. Formally,

Definition 19

• We say that P misses tokenk if and only if ∀k, 1 ≤ k ≤ log2 n − 1: if process P begins Line
1 of getToken with index i = k + 1.

• If process P executes Line 5 of getToken, then we say that P misses tokenlog2 n.

Notation 6

• Let tPk be the time P begins Line 1 of getToken with index i = k (if P ever does so).

• Let tP
1+log2 n

be the time P begins Line 5 of getToken with index i = k (if P ever does so).

• Let process P miss tokenk, where 1 ≤ k ≤ log2 n. Then, tPk+1 is well-defined. Let IP
k denote

the time interval [tP1 , tPk+1].
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initialization

1. constant δ := 8n log log n
2. ∀ process P :
3. A := P ’s pool of 3δ − 3 cells

(3 cells of P ’s are used as anchors)
4. Z := 3 anchors from P ’s pool of cells
5. B, V, I := ∅

end initialization

selectCell () returns ∗cell

1. if |A| = 0
2. Z := V ∪ B
3. A := I
4. if |A| > δ
5. choose d ∈ A
6. A := A − {d}, Z := Z ∪ {d}
7. return d
8. else

9. for i := 1, 2, 3:
10. if |Z| > 0
11. choose c ∈ Z
12. Z := Z − {c}
13. if (c → Free) ∧ (c → Retired)
14. I := I ∪ {c}
15. else V := V ∪ {c}
16. choose d ∈ A
17. A := A − {d}, B := B ∪ {d}
18. return d

end selectCell

replace (c : ∗cell)
1. A := A ∪ {c}
2. if |A| > δ
3. Z := Z − {c}
4, else B := B − {c}

end replace

Figure 5.9: Contention-sensitive construction for closed objects: (Figures 5.1 to 5.9)
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Informally, if P misses tokenk, then [tPk , tPk+1] is an interval within which P executed the
for loop with i = k. In other words, P tries and fails to gain tokenk during [tPk , tPk+1]. During
IP
k = [tP1 , tPk+1], P tries and fails to gain token1, token2, · · · , tokenk.

Definition 20 ∀k, 1 ≤ k ≤ log2 n, if process P executes a successful SC(tokenk, 1) in Line 3 of
getToken, then we say that P wins tokenk.

Our objective is to prove Lemma 79, which asserts that if P wins tokenk+1, then there must
be at least k invocations that are concurrent with P ’s invocation. Lemma 78 is a technical Lemma
that leads easily to Lemma 79.

Lemma 78 asserts the following: Suppose that P misses tokenk. Then, there is an in-
stant in time τP

k during the interval IP
k (an interval during which P tries and fails to gain

token1, token2, · · · , tokenk) such that at τP
k , there are k distinct active processes, each having

won one of the following k tokens: token1, token2, · · · , tokenk.

Lemma 78 Let process P miss tokenk, where 1 ≤ k ≤ log2 n. Then, there exists a time τP
k ∈ IP

k

such that ∀j, 1 ≤ j ≤ k : ∃ process Qj such that:

• Qj is active, i.e. executing apply, at τP
k ,

• Qj wins tokenj.

Proof We proceed by induction on k.
Induction Basis k = 1.

In this case, P misses token1, We need to prove that ∃τP
1 ∈ IP

1 = [tP1 , tP2 ],∃Q1, such that:

• Q1 is active at τP
1 ,

• Q1wins token1.

Since P misses token1, there exists a time τP
1 ∈ IP

1 = [tP1 , tP2 ] when token1 = 1. Let Q1 be
the last process to execute a successful SC(token1, 1) in Line 3 of getToken before τP

1 . Thus, Q1

wins token1, and Q1 is active at τP
1 .

Induction Step The Induction Hypothesis is that Lemma 78 holds for k, 1 ≤ k ≤ m. We now
prove that Lemma 78 holds for k = m + 1.

Let process P miss tokenm+1, where 2 ≤ m + 1 ≤ log2 n. Since P misses tokenm+1, there
exists a time τ ′ ∈ [tPm+1, t

P
m+2] when tokenm+1 = 1. Let Qm+1 be the last process to execute

a successful SC(tokenm+1, 1) in Line 3 of getToken before τ ′. Thus, Qm+1 wins tokenm+1, and
Qm+1 is active at τ ′.

Since Qm+1 wins tokenm+1, Qm+1 misses tokenm. By the Induction Hypothesis, there exists

τ
Qm+1
m ∈ I

Qm+1
m = [t

Qm+1

1 , t
Qm+1

m+1 ], satisfying Lemma 78. Since P misses tokenm+1, P misses
tokenm. By the Induction Hypothesis, there exists τ P

m ∈ IP
m = [tP1 , tPm+1], satisfying Lemma 78.

Let τP
m+1 = max(τP

m, τ
Qm+1
m ).

We now proceed to prove that τP
m+1 satisfies Lemma 78.

Claim 1 τP
m+1 ∈ IP

m+1 = [tP1 , tPm+2].
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Proof of Claim We have tP1 ≤ τP
m ≤ tPm+1, tPm+1 < tPm+2, τ

Qm+1
m < τ ′ < tPm+2. Since tP1 ≤ τP

m <

tPm+2, τ
Qm+1
m < tPm+2, we have tP1 ≤ max (τP

m, τ
Qm+1
m ) < tPm+2, i.e. τP

m+1 ∈ [tP1 , tPm+2].
2

We need to define Qj,∀j, 1 ≤ j ≤ m + 1, for the purpose of Lemma 78. Qm+1 has been
defined above. If τP

m+1 = τP
m, then we let Q1, Q2, · · · , Qm be the m processes that are active at

τP
m, and are guaranteed to exist by the Induction Hypothesis (as stated above) applied to P . If

τP
m+1 = τ

Qm+1
m , then we let Q1, Q2, · · · , Qm be the m processes that are active at τ

Qm+1
m , and are

guaranteed to exist by the Induction Hypothesis applied to Qm+1.

Claim 2 ∀j, 1 ≤ j ≤ m,∃Qj such that:

• Qj is active at τP
m+1,

• Qj wins tokenj.

Proof of Claim This is an immediate consequence of our choice of Q1, Q2, · · · , Qm.
2

Claim 3 Qm+1 is active at τP
m+1.

Proof of Claim If τP
m+1 = τ

Qm+1
m , then our Claim is obvious. Suppose τP

m+1 = τP
m, i.e.

τ
Qm+1
m < τP

m. We must show that Qm+1 is active at τP
m. We note that Qm+1 is active throughout

the interval [τ
Qm+1
m , τ ′]. Since τ

Qm+1
m < τP

m < τ ′, Qm+1 is active at τP
m

2

By Claims 1, 2, 3, and the fact that Qm+1 wins tokenm+1, Lemma 78 holds for k = m + 1.
This complete the proof of Lemma 78.

2

Lemma 79 Let k be such that k ≥ 0. Suppose that process P wins tokenk+1. Then, P ’s invoca-
tion is concurrent with at least k invocations.

Proof Since P wins tokenk+1, P has previously missed tokenk. By Lemma 78, there exists a
time τP

k ∈ IP
k such that ∀j, 1 ≤ j ≤ k : ∃ process Qj such that:

• Qj is active, i.e. executing apply, at τP
k ,

• Qj wins tokenj.

We note that, by Notation 6, P is active, i.e. executing apply, at τ P
k . Since ∀j, 1 ≤ j ≤ k : Qj

wins tokenj, we know that Q1, Q2, · · · , Qk, and P are k + 1 distinct processes. Furthermore, as
we just observed, all k + 1 processes are active at τ P

k . Hence, P ’s invocation is concurrent with
at least k invocations, i.e. the invocations by Q1, Q2, · · · , Qk, at τP

k . This completes our proof.
2
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5.3.2 Bounding the Number of Valid Cells

Given a process P , a bound exists on the number of cells that are from P ’s pool, and valid (thus,
not available for recycling) at any instant in time. This is obviously an important bound for the
purpose of recycling cells. In this section, we prove this bound.

Lemma 80 Suppose that n ≥ 16. At any time t, there are at most 8n log log n reachable cells
and anchors that are from process P ’s pool of cells, and valid.

Proof Let c be a reachable cell or an anchor from P ’s pool of cells.

Counting P ’s valid cells that are head

Case 1

c is allocated during an invocation of apply when P wins a token.
We have pos(c) = i, or pos(c) = 2i + .5, where 1 ≤ i ≤ log2 n. Thus, at most 2 log2 n such

cells may be head (and therefore valid) at t, and from P ’s pool.

Case 2

c is allocated during an invocation of apply when P does not win any token.
We have pos(c) = b(n + P )/2ic, where 0 ≤ i ≤ log n. Thus, at most log n + 1 such cells may

be head (and therefore valid) at t, and from P ’s pool.

Hence, the total number of P ’s cells that are head (and therefore valid) at t is 2 log2 n+ log n (we
omit one cell, because of the double counting of the root position). Since we assume that n ≥ 16,
we have n ≥ log2 n > log n. Hence, 2 log2 n + log n ≤ 3n.

Counting P ’s valid cells that are not head

By Lemma 72, for any cell c that is from P ’s pool, valid at t, but not head at t, there is some
process Q that is executing apply, such that Q will be setting either c → Retired or c → Free
to true during the apply.

We examine the places where c → Retired := true and c → Free := true occur.
(a) Line 12 of append: c is neither reachable, nor an anchor in this case.
(b) Line 12 of promote, Lines 29 and 43 of append: Each process may have at most one

pending operation (in any one of these Lines). Thus, each process can be responsible for at most
one cell that is from P ’s pool, valid at t, but not head at t. This accounts for a total of at most
n cells.

(c) In release:
Each process Q can hold up either (a) at most log n + 1 cells in positions b(n + Q)/2ic, where

0 ≤ i ≤ log n, or (b) at most log log2 n cells along the path from a middle child position to the
root position. Each of these cells is waiting for Q to complete release to become invalid.

However, we are focusing on P ’s cells c:
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Case 1

Consider cells c such that either pos(c) = i, or pos(c) = 2i + .5, where 1 ≤ i ≤ log2 n. Among
these cells, only cells c such that pos(c) = i, where 1 ≤ i ≤ log2 n, can be waiting for Q to
complete release to become invalid. Each process Q can hold up cells in at most log log2 n of
these log2 n positions. Thus, the total number of valid cells waiting for Q to complete release is
n log log2 n = 2n log log n

Case 2

We consider P ’s cells c that occupy positions b(n + P )/2ic, where 0 ≤ i ≤ log n, such that
pos(c) > log2 n. In other words, we exclude all positions from 1 to log2n. Therefore, we are
considering cells that occupy positions b(n + P )/2ic, where 0 ≤ i ≤ w, w = log n− log log2 n − 1.

If c occupies such a position, then, the argument used in Lemma 73 applies here. If b(n+P )/2ic,
where 0 ≤ i ≤ w, has a leaf descendant position n + Q, then Q can hold up one cell of P ’s in
position b(n + P )/2ic. For each position b(n + P )/2ic, there are n/(2log n−i) leaf descendant
positions. Each such leaf descendant position n+Q, corresponds to one process Q that may hold
up one cell of P ’s in position b(n + P )/2ic.

The total number of P ’s cells that can be held up in position b(n + P )/2ic because some
process has not completed release (has not set Free field to true) is

≤ the number of leaf descendant positions of b(n + P )/2ic
= n/(2log n−i)

The total number of P ’s cells that can be held up because some process has not completed
release (has not set Free field to true) is

≤ sum of the numbers of leaf descendant positions of b(n + P )/2ic, 0 ≤ i ≤ w

≤ sum of the numbers of leaf descendant positions of b(n + P )/2ic, 0 ≤ i ≤ log n

= n(1 + 2−1 + 2−2 + · · · 2− log n)

= 2n − 1

The total number of P ’s cells that are valid at t, but not head at t, is therefore at most the sum
of the numbers from (b), and (c), n + (2n − 1) + 2n log log n ≤ 5n log log n.

Since the number of P ’s cells that are head (hence valid) at t is at most 3n, the total number
of reachable cells and anchors that are from P ’s pool and valid at t is at most 3n + 5n log log n ≤
8n log log n.

2
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5.3.3 Proof of Correctness

We are now in a position to prove the following Theorem that summarizes all the important
properties of our contention-sensitive construction.

Theorem 7 (a)The contention-sensitive construction is linearizable and wait-free.
(b)The shared-access time complexity and the local time complexity of the contention-sensitive
construction are both O(min(nc, log

2 n)).
(c)The contention-sensitive construction requires 24n2 log log n shared cells, 2n + log2 n shared
pointers to cells, and log2 n shared bits.

Proof

(a) Wait-freedom is easily seen from the algorithm. The proof of Theorem 6(a), which asserts
that the BSC construction is linearizable, carries over, with easy modifications, to the contention-
sensitive implementation.
(b) Consider process P executing apply. Suppose P succeeds in getting tokenm. It stores op in a
cell c, and installs c (as a leaf) in List[2m+.5]. P then works towards getting c a parent in List[m],
a grandparent in List[bm/2c] and so on, until c has an ancestor in List[1]. Then, P computes the
response to its operation, and releases tokenm. P ’s getToken takes O(m) time and the rest of
the work takes O(log2 m) time. By Lemma 79, P ’s operation is concurrent with at least m − 1
invocations. In other words, m ≤ nc, where nc is the contention experienced by P ’s invocation.
Further, m ≤ log2 n. Thus, the time complexity of our construction is O(min(nc, log

2 n)).
If P does not succeed in getting a token, then, by Lemma 78, nc ≥ log2 n + 1. In this case, P

installs an operation cell in List[n + P ] and working towards the root from there. The total time
spent is O(log2 n). Since nc ≥ log2 n + 1, we have the desired O(min(nc, log

2 n)) time complexity
in this case, too.
(c) By Lemma 80, we see that setting δ = 8n log log n in selectCell results in a selectCell that
always returns a unused or invalid cell. Thus, our contention-sensitive implementation requires a
total of 3n(8n log log n) = 24n2 log log n shared cells.

In addition, the log2 n new middle child positions require log2 n additional shared pointers to
cells. Hence, a total of 2n + log2 n shared pointers to cells are needed.

Finally, there are log2 n tokens, token1, token2, · · · , tokenlog2 n. Each token is a shared bit.
Thus, we have part(c).

2

In conclusion, we have presented, in Figures 5.1 to 5.9, a contention-sensitive, wait-free,
linearizable construction for closed objects, with time complexity of O(min(nc, log

2 n)), and
O(n2 log log n) shared memory requirement.
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Part II

Lower Bounds for Nonblocking
Implementations

110



Chapter 6

Time and Space Lower Bounds for
Nonblocking Implementations

6.1 The Lower Bound

This section has three parts. Section 6.1.1 illustrates the main ideas of our lower bound technique
for the special case of implementing an increment object. Our lower bound applies not just to
implementations of the increment object, but to implementations of a large class of objects, which
we call perturbable objects. Section 6.1.2 defines the class of perturbable objects. Section 6.1.3
proves the lower bound for any implementation of any perturbable object.

6.1.1 The Intuition

To illustrate the main ideas of the lower bound proof, we provide below a proof sketch for a simple
case of the full result. Consider any deterministic implementation of an increment object O,
shared by p1, . . . , pn, from swap objects. We will prove that the space and the shared-access time
complexity of the implementation are at least n−1. (The full result is more general in three ways:
it applies to randomized implementations; it applies to implementations of any perturbable object,
not just the increment object; and it applies even if base objects include resettable consensus
objects and any historyless objects.)

Consider Scenario 0 in which pn initiates a read operation on O and runs alone. We claim that
pn accesses some base object, before completing this read operation on O. For a proof, suppose
the claim is false. Then, pn cannot distinguish Scenario 0 from Scenario 0 ′ in which some process
completes an increment operation on O before pn starts taking steps. Yet, correctness requires
pn’s read operation to return different values in Scenarios 0 and 0 ′. This contradiction implies
the claim. Let B1 denote the first base object that pn accesses.

To force pn to access a second base object, the idea is to schedule other processes, before
scheduling pn, in such a way that they render the information in B1 of little value to pn. Conse-
quently, later when pn runs and accesses B1, it will not learn enough to determine the response
to its read operation on O; thus, pn is forced to access a second base object. The details are as
follows. Let Scenario 1 depict an execution in which processes other than pn take steps until some
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process, say pi1 , writes B1.
1 If pn runs after Scenario 1 , it accesses B1 because, until accessing B1,

this scenario is indistinguishable to pn from Scenario 0 . More significantly, we show below that,
when running after Scenario 1 , pn accesses some base object, besides B1, before completing its
first read operation on O. To see this, consider another scenario, Scenario 1 ′, which is the same as
Scenario 1 with the following exception: just before pi1 writes B1, some process pl other than pi1

and pn completes many increment operations on O, and after this pi1 takes a step and writes B1.
Clearly, B1’s value is the same at the end of Scenarios 1 and 1 ′. Now extend each of Scenarios
1 and 1 ′ by letting pn take steps. If pn accesses only B1, it is clear that the two scenarios would
be indistinguishable to pn. Yet, since many more increments operations completed in Scenario 1 ′

than in Scenario 1 , pn’s read operation on O must return different values in the two scenarios.
It follows that, in Scenario 1 (and in Scenario 1 ′), pn must access a second base object before
completing its read operation on O. Let B2 denote this base object.

To force pn to access a third base object, we repeat the above trick and render the information
in B2 of little value to pn. Specifically, consider Scenario 2 consisting of the following three
execution fragments, taking place in that order: (i) the prefix of Scenario 1 (described above) up
to, but excluding the write of B1 by pi1 , (ii) the steps of processes other than pi1 and pn until
some process, say pi2 , writes B2, and (iii) the write of B1 by pi1 . If pn were to run after Scenario
2 , it accesses B1 and B2 because, until accessing B2, this scenario is indistinguishable to pn from
Scenario 1 . We claim that pn accesses some base object, besides B1 and B2, before completing
its first read operation on O. The justification is as in the previous paragraph: if the claim is
false, pn cannot distinguish Scenario 2 from Scenario 2 ′, where Scenario 2 ′ is similar to Scenario
2 except that some process pl other than pi1 , pi2 , and pn completes many increment operations
on O just before the write steps of pi2 and pi1 on B2 and B1, respectively. This is a contradiction
since pn’s read operation on O must return different values in Scenarios 2 and 2 ′.

Repeating the above argument, we construct successively Scenarios 3, . . . , n − 2 with the
property that, if pn runs alone after Scenario k, it accesses at least k + 1 distinct base objects
before completing its first read operation on O. The lower bound of n − 1 on the space and
shared-access time complexity of the implementation is immediate from the existence of Scenario
n − 2. (We cannot proceed any further than Scenario n − 2 because processes other than pn

are all already used up: they play the roles of pi1 , . . . , pin−2
or as a process that does increment

operations just before the write steps of pi1 , . . . , pin−2
.)

In summary, the crux is to ensure that pn gets no useful information from B1, B2, . . . , Bn−2;
that is, B1, B2, . . . , Bn−2 are rendered useless to pn. This is accomplished by “using up” pij to
render Bj useless. This technique of using up one new process for each additional shared object
to be rendered useless, in the context of space complexity lower bounds, was used earlier by Burns
and Lynch [BL93].

We turn the above ideas into a rigorous inductive proof in Section 6.1.3. To understand
the correspondence between that proof and the above informal argument, note that Scenario 2
described above has three parts: a schedule involving p1, . . . , pn−1, followed by the write steps
of pi2 and pi1 (on objects B2 and B1, respectively), followed by the steps of only pn. More
generally, if we extended the argument to Scenarios 3, 4, . . . , Scenario k would consist of three

1It is possible that such an execution does not exist. To not obscure the basic intuition, we address this possibility
only in the formal proof, presented in Section 6.1.3.
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parts, where the first part is a schedule involving p1, . . . , pn−1, the second part is the write steps
of pik , pik−1

, . . . , pi1 on some base objects Bk, Bk−1, . . . , B1, and the third part is the steps of only
pn. Roughly speaking, these three parts of Scenario k ′ correspond to the schedules Λ, Σ, and Π,
respectively, in Definition 1 in Section 6.1.2, and to the schedules Λk, Σk, and Πk, respectively,
of the proof in Section 6.1.3. We caution the reader that this correspondence is not exact, but is
close enough to help the reader understand how the formal proof works.

6.1.2 Perturbable Types

The key property of the increment object exploited in the above proof is the following: it is
possible to create a new scenario, by scheduling the steps of some process pl immediately before
that of pik , pik−1

, . . . , pi1 , in such a way that pn is forced to distinguish the new scenario from
the older one. Below we state an abstract version of this property (which suffices for our proof
technique to work), and call any type that has this property a perturbable type.

Definition 21 Type T is perturbable for n processes, for initial state s if for every
linearizable and solo-terminating randomized implementation of an object O of type T , initialized
to s and shared by processes p1, . . . , pn, there exists an assignment of operation sequences to input
variables oplist1, . . . , oplistn such that the following statement holds:

If Λ, Σ, and Π are any schedules that satisfy the following four conditions,

– pset(Λ) ⊆ {p1, . . . , pn−1}
– pset(Σ) is a proper subset of {p1, . . . , pn−1} and each process appears at most once in

Σ.

– pset(Π) = {pn}
– In ΛΣΠ, pn’s first operation on O just completes and returns some response res.

then, for some pl ∈ {p1, . . . , pn−1} − pset(Σ), there is a schedule γ ∈ ({pl} × coinspace)∗

such that, in ΛγΣΠ, either pn’s first operation on O does not complete or it returns a response
different from res.

The key feature of a perturbable type can be informally explained as follows: Consider a
perturbable object O in a configuration C, with some pending operations by processes other than
pi. Let pi be the only process to take steps from C. Process pi now invokes operation op and obtains
a response x. x may be any of several values, depending on the unknown linearization order of
the operations. However, the fact that O is perturbable implies that there exists a sequence S of
operations, such that: Let C ′ be the configuration that results from C, when the operations in S
are executed sequentially to completion. (This definition of C ′ is only approximately true.) Let
pi be the only process to take steps from C ′. Process pi now invokes operation op and obtains a
response y. Then, y must necessarily be different from x, even though both x and y cannot be
determined fully, due to the uncertain linearization orders.
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There are schedules Λk, Σk, Πk such that the following conditions hold:

1. Λk, Σk ∈ ({p1, p2, . . . , pn−1} × coinspace)∗ and Πk ∈ ({pn} × coinspace)∗. That is, Λk

and Σk do not contain pn and Πk contains no process other than pn.

2. |Σk| = |pset(Σk)| = k. That is, k distinct processes take one step each in Σk.

3. In ΛkΣkΠk, pn accesses exactly k distinct base objects and pn’s first operation on O has
either not completed or just completed.

4. Let Sk be the set of base objects that pn accesses in ΛkΣkΠk. Let Pk = {p1, p2, . . . , pn−1}−
pset(Σk) and γ be any schedule in (Pk × coinspace)∗. Then, ΛkΣk ≈Sk

ΛkγΣk.

Figure 6.1: Statement Sk

6.1.3 The Main Result

We prove that the space complexity of any randomized solo-terminating implementation and
the shared-access time complexity of any deterministic solo-terminating implementation of any
perturbable object, shared by n processes, are both at least n − 1 if base objects are restricted
to be (any combination of) resettable consensus objects and historyless objects, such as registers,
test&set objects, and swap registers.

Theorem 8 Suppose that type T is perturbable for n processes, for some initial state s. Consider
any randomized implementation of an object of type T , initialized to s and shared by processes
p1, . . . , pn, from resettable consensus objects and historyless objects. If the implementation is
linearizable and solo-terminating:

1. Its space complexity is at least n − 1.

2. If the implementation is deterministic, its solo-termination shared-access time complexity is
at least n − 1.

Proof Let O be the implemented object, and C0 be the initial configuration of (p1, . . . , pn;O)
obtained by assigning to op-list1, . . . , op-listn the operation sequences mentioned in Definition 21.
The crux of the proof lies in the following claim: For all k, 0 ≤ k ≤ n−1, Statement Sk, presented
in Figure 6.1, is true. We prove this claim by induction. Below, we let Sk : j denote the jth part
of Statement Sk.
Base case: Let Λ0 = Σ0 = Π0 = ε (ε is the empty sequence). It is easy to verify that all of
S0 : 1-4 are true. Hence, we have the base case.
Induction step: Suppose 0 ≤ k ≤ n − 2 and Sk is true. Let Λk,Σk,Πk be so defined as to
make Statement Sk true. Let Sk denote the set of base objects that pn accesses in ΛkΣkΠk, and
Pk denote {p1, p2, . . . , pn−1} − pset(Σk). We now show that Sk+1 is true.
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By Sk : 3, in ΛkΣkΠk, pn’s first operation on O has either not completed or just completed.
Let π ∈ ({pn} × coinspace)∗ be such that, in ΛkΣkΠkπ, pn just completes its first operation on
O, returning some value. Since the implementation is solo-terminating, π exists.

Claim 4 π 6= ε and in ΛkΣkΠkπ, pn accesses a base object not in Sk.

Proof Suppose the claim is false. Recall that Pk = {p1, p2, . . . , pn−1} − pset(Σk). Since
|pset(Σk)| = k and k ≤ n− 2, Pk is non-empty. For all pl ∈ Pk and γ ∈ ({pl}×coinspace)∗, we
assert that ΛkΣkΠkπ ≈pn ΛkγΣkΠkπ. This assertion follows from the facts below: (i) ΛkΣk ≈pn

ΛkγΣk (since the schedules ΛkΣk and ΛkγΣk do not contain pn), (ii) ΛkΣk ≈Sk
ΛkγΣk (by Sk : 4),

(iii) the schedule Πkπ contains only pn, and (iv) the only base objects accessed by pn in ΛkΣkΠkπ
are the ones in Sk (by our assumption that Claim 4 is false).

The above assertion, together with the definition of π, implies that pn’s first operation on O
completes and returns the same response in ΛkγΣkΠkπ as in ΛkΣkΠkπ. This contradicts Definition
21 (to see the contradiction, substitute Λ,Σ,Π in the definition with Λk,Σk,Πkπ, respectively,
and note that the conditions in the definition hold because of the induction hypothesis). Hence,
we have Claim 4. 2

Definition 22 Define πk+1, Bk+1, and Πk+1 as follows:

• πk+1 is the shortest prefix of π such that, in ΛkΣkΠkπk+1, pn accesses a base object not in
Sk (by Claim 4, πk+1 exists).

• Bk+1 is the unique base object not in Sk that pn accesses in ΛkΣkΠkπk+1.

• Πk+1 = Πkπk+1.

Claim 5 Πk+1 ∈ ({pn} × coinspace)∗.

Proof Since Πk and πk+1 are both from ({pn} × coinspace)∗, we have Πk+1 ∈ ({pn} ×
coinspace)∗. 2

Claim 6 There exist λk+1 ∈ (Pk × coinspace)∗ and [pik+1
, tk+1] ∈ Pk × coinspace such that,

for all γ ∈ ((Pk − {pik+1
}) × coinspace)∗, Λkλk+1[pik+1

, tk+1] ≈Bk+1
Λkλk+1γ[pik+1

, tk+1].

Proof The following observation will be used many times in the proof:

Observation O1: For all γ ∈ ((Pk −{pik+1
})×coinspace)∗, Process pik+1

accesses the same
base object and applies the same operation in the last step of Λkλk+1[pik+1

, tk+1] as in the
last step of Λkλk+1γ[pik+1

, tk+1].

This observation follows from the fact that γ does not contain pik+1
.

In the following, we pick λk+1 and [pik+1
, tk+1] based on the type of Bk+1, and in each case

prove that our choice of λk+1 and [pik+1
, tk+1] satisfies Claim 6. In the rest of the proof, γ denotes

an arbitrary schedule in ((Pk − {pik+1
}) × coinspace)∗.

Case 1 Bk+1 is a historyless object.
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Subcase 1a There is some non-empty schedule λ ∈ (Pk × coinspace)∗ such that the last
step in Λkλ is a nontrivial operation on Bk+1.

Define λk+1 and [pik+1
, tk+1] so that λ = λk+1[pik+1

, tk+1].

By O1, pik+1
performs the same nontrivial operation on Bk+1 in the last step of Λkλk+1γ[pik+1

, tk+1]
as in the last step of Λkλk+1[pik+1

, tk+1]. This, together with Proposition 1, gives Claim 6.

Subcase 1b There is no such λ.

Define λk+1 to be ε and [pik+1
, tk+1] to be any element of Pk × coinspace.

It follows from the subcase in consideration that no nontrivial operation is performed on
Bk+1 in the last |λk+1[pik+1

, tk+1]| steps of Λkλk+1[pik+1
, tk+1] and in the last |λk+1γ[pik+1

, tk+1]|
steps of Λkλk+1γ[pik+1

, tk+1]. Therefore, by Proposition 1,
Λkλk+1[pik+1

, tk+1]≈Bk+1
Λk ≈Bk+1

Λkλk+1γ[pik+1
, tk+1]. Hence, we have Claim 6.

Case 2 Bk+1 is a resettable consensus object.

Subcase 2a There is some non-empty schedule λ ∈ (Pk × coinspace)∗ such that the last
step in Λkλ is a reset operation on Bk+1.

Define λk+1 and [pik+1
, tk+1] so that λ = λk+1[pik+1

, tk+1].

By O1, pik+1
performs a reset on Bk+1 in the last step of Λkλk+1γ[pik+1

, tk+1], just as it
does in the last step of Λkλk+1[pik+1

, tk+1]. Hence, we have Claim 6.

Subcase 2b There is no such λ. However, there is some non-empty schedule λ′ ∈ (Pk ×
coinspace)∗ such that the last step in Λkλ

′ is a propose operation on Bk+1.

Define λk+1 to be λ′ and [pik+1
, tk+1] to be any element of Pk × coinspace.

Let σ be the state of Bk+1 at the end of Λkλk+1. Since Subcase 2a is not applicable, it
follows that Bk+1 is not reset in the last |λk+1[pik+1

, tk+1]| steps of Λkλk+1[pik+1
, tk+1] and

in the last |λk+1γ[pik+1
, tk+1]| steps of Λkλk+1γ[pik+1

, tk+1]. Thus, Bk+1’s state is σ at the
end of Λkλk+1[pik+1

, tk+1] and at the end of Λkλk+1γ[pik+1
, tk+1]. Hence, we have Claim 6.

Subcase 2c Neither λ nor λ′ exists.

Define λk+1 to be ε and [pik+1
, tk+1] to be any element of Pk × coinspace.

It follows from the subcase under consideration that no reset or propose operation is per-
formed on Bk+1 in the last |λk+1[pik+1

, tk+1]| steps of Λkλk+1[pik+1
, tk+1] and in the last

|λk+1γ[pik+1
, tk+1]| steps of Λkλk+1γ[pik+1

, tk+1]. Therefore, Bk+1’s state at the end of
Λkλk+1[pik+1

, tk+1] is the same as its state at the end of Λkλk+1γ[pik+1
, tk+1]. Hence, we

have Claim 6.

This completes the proof of Claim 6. 2

Definition 23 Let λk+1 and [pik+1
, tk+1] be as in Claim 6. Define Λk+1 and Σk+1 as follows:

• Λk+1 = Λkλk+1
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• Σk+1 = [pik+1
, tk+1]Σk

Claim 7 Λk+1, Σk+1 ∈ ({p1, p2, . . . , pn−1} × coinspace)∗.

Proof By definition, λk+1 ∈ (Pk × coinspace)∗ and [pik+1
, tk+1] ∈ Pk × coinspace, where

Pk = {p1, p2, . . . , pn−1} − pset(Σk). This, together with Sk : 1, implies the claim. 2

Claim 8 |Σk+1| = |pset(Σk+1)| = k + 1.

Proof This claim follows from the definition of Σk+1 as [pik+1
, tk+1]Σk and the following two

facts: (i) |Σk| = |pset(Σk)| = k (by Sk : 2), and (ii)[pik+1
, tk+1] ∈ Pk × coinspace and Pk does

not include any process from pset(Σk). 2

Claim 9 Let Pk+1 = {p1, p2, . . . , pn−1} − pset(Σk+1). Let γ be any schedule from (Pk+1 ×
coinspace)∗. Then we have:

1. Λk+1[pik+1
, tk+1] ≈Bk+1

Λk+1γ[pik+1
, tk+1].

2. Λk+1Σk+1 ≈Bk+1
Λk+1γΣk+1.

3. Λk+1Σk+1 ≈Sk
ΛkΣk ≈Sk

Λk+1γΣk+1.

Proof Part (a) of this claim is a rephrasing of Claim 6. The proof of the other two parts of
this claim will use Observation O1, stated earlier in the proof of Claim 6.

By construction, pik+1
6∈ pset(Σk). By definition of γ, pset(γ)∩pset(Σk) = ∅. It follows that

Λk+1[pik+1
, tk+1] ≈pset(Σk) Λk+1γ[pik+1

, tk+1]. From this, the fact that each process in pset(Σk)
appears only once in Σk and |Σk| = k, we conclude that the sequence of base objects accessed
and the operations applied in the last k steps of Λk+1[pik+1

, tk+1]Σk are identical to the sequence
of base objects accessed and the operations applied in the last k steps of Λk+1γ[pik+1

, tk+1]Σk.
This, together with part (a) of the claim, implies part (b).

It follows from the induction hypothesis Sk : 4 that Λkλk+1[pik+1
, tk+1]Σk ≈Sk

ΛkΣk ≈Sk

Λkλk+1γ[pik+1
, tk+1]Σk. This, together with prior definitions of Λk+1 as Λkλk+1 and Σk+1 as

[pik+1
, tk+1]Σk, gives part (c) of the claim. 2

Claim 10

1. Let Sk+1 be the set of base objects that pn accesses in Λk+1Σk+1Πk+1. Then, Sk+1 =
Sk ∪ {Bk+1} and |Sk+1| = k + 1.

2. In Λk+1Σk+1Πk+1, pn’s first operation on O has either not completed or just completed.

Proof We make the following observations: (1) ΛkΣk ≈pn Λk+1Σk+1 (since neither ΛkΣk nor
Λk+1Σk+1 contains pn), (2) ΛkΣk ≈Sk

Λk+1Σk+1 (this is part (c) of Claim 9), (3) By definition
of Sk, Sk is exactly the set of base objects that pn accesses in ΛkΣkΠk, and (4) By definition of
πk+1, in ΛkΣkΠkπk+1, it is only in the last step that pn accesses a base object not in Sk (this
base object is Bk+1), and pn’s first operation on O has either not completed or just completed.

117



These observations imply Part (b) of the claim and that Sk+1 = Sk ∪{Bk+1}. This, together with
|Sk| = k (by induction hypothesis), implies |Sk+1| = k + 1.

2

We have proved all four parts of Statement Sk+1: Part 1 in Claims 7 and 5, Part 2 in Claim
8, Part 3 in Claim 10, and Part 4 follows from parts (b) and (c) of Claim 9 and Claim 7(a). This
completes the induction step and hence, the proof of Statement Sk, for all 0 ≤ k ≤ n − 1.

We now proceed to prove Theorem 8. The first part of the theorem is immediate from Part
3 of Statement Sn−1. To obtain the second part of the theorem, observe that a deterministic
implementation can be viewed as a randomized implementation for which coinspace is a singleton
set. Since Statement Sk (0 ≤ k ≤ n − 1) is proved for any non-empty countable coinspace,
Statement Sn−1 is true for any deterministic implementation. By Part 3 of Statement Sn−1, in
Λn−1Σn−1Πn−1, pn accesses n − 1 base objects and has either not completed or just completed
its first operation on O. This implies that the solo-termination time complexity is at least n− 1.
Hence, we have the theorem. 2

6.2 Examples of Perturbable Types

We show that the following common types of objects are perturbable for n processes: modulo k
counter for any k ≥ 2n, increment object, fetch&add, k-valued compare&swap for any k ≥ n,
LL/SC bit, and single writer snapshot. It follows from Theorem 8 that the space complexity of
a randomized implementation or the shared-access time complexity of a deterministic implemen-
tation of any of these objects from resettable consensus objects and historyless objects is at least
n − 1.

6.2.1 Modulo Counter and Related Objects

A modulo k counter supports increment and read operations. The states are
0, 1, . . . , k−1. The increment operation adds 1 to the state (modulo k) and returns ack . The read
operation returns the state, without affecting it. The following proposition is immediate from the
linearizability requirement.

Proposition 2 Let O be a modulo k counter, initialized to 0. Let E be a finite execution of
(p1, . . . , pn;O) such that in the configuration C at the end of E, process pn has no pending opera-
tion on O. Suppose pn runs alone from C and performs a read operation on O. If the number of
completed increments in E is at least v and the sum in E of the number of completed increments
and the number of pending increments is at most v ′, then the value returned by the read of pn is
in the range [v, v′]mod k.

Lemma 81 For all k ≥ 2n, modulo k counter is perturbable for n processes, for any initial state.

Proof Without loss of generality, we prove the lemma for initial state 0. Consider any
linearizable and solo-terminating randomized implementation of a modulo k counter O, initialized
to 0 and shared by processes p1, . . . , pn. For 1 ≤ i ≤ n − 1, let op-listi be an infinite sequence of
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increment operations, and op-listn be an infinite sequence of read operations. Let Λ, Σ, and Π
be any schedules that satisfy the four conditions listed in Definition 21.

Let pl be any process in {p1, . . . , pn−1}−pset(Σ), and γ ∈ ({pl}×coinspace)∗ be the shortest
schedule such that there are exactly n more completed increment operations on O in Λγ than in Λ.
Since the implementation is solo-terminating, γ exists. We now make the following observations:

1. If a process completes an increment on O in the last |Σ| steps of ΛΣ, then it has no pending
increment on O in ΛΣ. Furthermore, no process completes more than one increment on O
in the last |Σ| steps of ΛΣ.

This follows from the fact that each process appears at most once in the schedule Σ.

2. For any execution E, let NP(E) denote the number of pending increment operations on O
in E. The sum of NP(ΛΣ) and the number of increments that completed in the last |Σ|
steps of ΛΣ is at most n − 1.

This follows from Observation 1 and the fact that pset(ΛΣ) ⊆ {p1, . . . , pn−1}.

3. The sum of NP(ΛγΣ) and the number of increments that completed in the last |Σ| steps of
ΛγΣ is at most n − 1.

This also follows from Observation 1 and the fact that pset(ΛγΣ) ⊆ {p1, . . . , pn−1}.

4. For any execution E, let NC(E) denote the number of completed increment operations on
O in E. Let NC(Λ) = v. In ΛΣΠ, the value res, which pn’s first operation on O (which is
a read) returns, is in the range [v, v + n − 1]mod k.

This follows from Proposition 2 and the following two chains of inequalities:

NC(ΛΣ) ≥ NC(Λ) = v

NC(ΛΣ) + NP(ΛΣ)
= NC(Λ) + NP(ΛΣ)+

number of increments that completed in
the last |Σ| steps of ΛΣ

≤ v + n − 1 (by Observation 2)

5. In ΛγΣΠ, if pn’s first operation on O completes, it returns a value in the range [v + n, v +
2n − 1]mod k.

This follows from Proposition 2 and the following two chains of inequalities:

NC(ΛγΣ) ≥ NC(Λγ) = v + n

NC(ΛγΣ) + NP(ΛγΣ)
= NC(Λγ) + NP(ΛγΣ)+

number of increments that completed in
the last |Σ| steps of ΛγΣ

≤ (v + n) + (n − 1) (by Observation 3)
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Since k ≥ 2n, the range [v, v +n−1]mod k and the range [v +n, v+2n−1]mod k are disjoint.
This, together with Observations 4 and 5, implies Lemma 81. 2

An increment object is a special case of a modulo k counter, for k = ∞. Since the finiteness
of k is not used in the proofs of Proposition 2 or Lemma 81, we have the following result:

Lemma 82 An increment object is perturbable for n processes, for any initial state.

A fetch&add object supports the operation fetch&add(v), for any integer v. The states are
integers. The fetch&add(v) operation adds v to the state and returns the previous state. Pro-
ceeding analogously as in the proof of Lemma 81, with k = ∞ and the operations increment , read
replaced by fetch&add(1), fetch&add(0), we obtain the following lemma.

Lemma 83 A fetch&add object is perturbable for n processes, for any initial state.

6.2.2 Compare&Swap

A k-valued compare&swap object supports the operations read and c&s(u, v), for all u, v ∈
{1, 2, . . . , k}. The states are 1, 2, . . . , k. The effect of c&s(u, v) depends on whether or not the
state is u: if the state is u, c&s(u, v) changes the state to v and returns true; otherwise it returns
false without affecting the state. We say a compare&swap operation is successful if it returns
true.

Proposition 3 Let C be any reachable configuration of (p1, . . . , pn;O), where O is a k-valued
compare&swap object. Suppose that process pl has no pending operations on O in C. For any
w ∈ {1, 2, . . . , k}, if pl runs alone from C, completing the sequence of operations read, c&s(1, w),
c&s(2, w), . . . , c&s(k,w), then one of the following is true:

1. One of the c&s operations of pl returns true.

2. Some operation on O that was pending in C is linearized after the read and before the last
c&s operation of pl.

Proof Let v be the value returned by the read operation of pl. Suppose that Statement 1 in
the Proposition is false. Since c&s(v, w), which is one of the n c&s operations that p l performed
following the read, did not return true, some pending operation must have taken effect after the
read and before the c&s(v, w). 2

Proposition 4 Let C be any reachable configuration of (p1, . . . , pn;O), where O is a k-valued
compare&swap object. Suppose that process pl has no pending operations on O in C. Let
w ∈ {1, 2, . . . , k} and suppose that pl runs alone from C, completing the following sequence of
operations n times: read, c&s(1, w), c&s(2, w), . . . , c&s(k,w). Then, at least one of the c&s
operations returns true.

Proof Follows by successive application of Proposition 3 and the observation that there can be
at most n − 1 pending operations on O in C. 2
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Lemma 84 For all k ≥ n, k-valued compare&swap object is perturbable for n processes, for any
initial state.

Proof Consider any linearizable and solo-terminating randomized implementation of a k-
valued compare&swap object O, initialized to any value and shared by processes p1, . . . , pn. For
any 1 ≤ j ≤ k, let αj denote the operation sequence read , c&s(1, j), c&s(2, j), . . . , c&s(k, j). Let β
denote the operation sequence αn

1αn
2 . . . αn

k , where αm
i denotes the sequence αi repeated m times.

Thus, |αj| = k + 1 and |β| = nk(k + 1). For all 1 ≤ i ≤ n− 1, initialize the input variable op-listi

to the infinite sequence βββ . . . , and initialize op-listn to the infinite sequence of read operations.
Let Λ, Σ, and Π be any schedules that satisfy the four conditions listed in Definition 21.

Let pl be any process in {p1, . . . , pn−1} − pset(Σ). If pl has any pending operation on O at
the end of Λ, let γ ′ ∈ ({pl} × coinspace)∗ be such that pl just completes that operation in Λγ ′.
Otherwise let γ ′ = ε. Thus, at the end of Λγ ′, pl has no pending operation on O, and any pending
operations have to be from processes in {p1, . . . , pn−1} − {pl}. Let P ⊆ {p1, . . . , pn−1} − {pl} be
the set of processes that have pending operations on O at the end of Λγ ′.

Let Q be the set of processes that initiate a new operation on O in the last |Σ| steps of Λγ ′Σ.
Since pl ∈ {p1, . . . , pn−1}−pset(Σ), we have Q ⊆ {p1, . . . , pn−1}− {pl}. Furthermore, since each
process appears at most once in Σ, if a process has a pending operation in Λγ ′ then that process
cannot initiate a new operation on O in the last |Σ| steps of Λγ ′Σ. In other words, P ∩ Q = ∅.
From this and the fact P,Q ⊆ {p1, . . . , pn−1}− {pl}, we have |P |+ |Q| ≤ n− 2. That is, the sum
of the number of pending operations on O in Λγ ′ and the number of operations on O initiated
in the last |Σ| steps of Λγ ′Σ is at most n − 2. Let V be the set of all v such that a c&s(v, ∗)
operation2 on O is either pending in Λγ ′ or initiated in the last |Σ| steps of Λγ ′Σ. From the
above, |V | ≤ n − 2.

Recall from (the fourth condition in) Definition 21 that res is the value returned by pn’s
first operation on O in ΛΣΠ. Let w ∈ {1, 2, . . . , n} be such that w 6∈ V and w 6= res. Let
γ′′ ∈ ({pl} × coinspace)∗ be the shortest schedule such that, in Λγ ′γ′′, we have: (i) pl has no
pending operations, (ii) there are at least n(k + 1) completed operations on O (by pl) in the last
|γ′′| steps, and (iii) the sequence of n(k + 1) most recent completed operations of pl on O is αn

w.
The definition of op-listl and the fact that the implementation is solo-terminating imply that γ ′′

exists. We now make the following observations:

1. In Λγ′γ′′, the most recent n(k+1) operations of pl on O includes a successful compare&swap
operation of the form c&s(∗, w). (Let op denote any such operation.)

Proof In Λγ ′γ′′, the most recent n(k+1) operations of pl on O are the operations in αn
w.

All of the compare&swap operations in αn
w are of the form c&s(∗, w) and, by Proposition 4,

at least one of these succeeds. 2

2. Consider any linearization of Λγ ′γ′′Σ. If op′ is a successful compare&swap operation that
is linearized after op, then op′ must be of the form c&s(∗, w).

Proof We prove this assertion by contradiction. Let op′ be the first successful com-
pare&swap operation that is of the form c&s(∗, x), for some x 6= w, to be linearized after

2An asterisk in a field indicates that we do not care what the value of that field is.
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op. Since op is successful and each successful compare&swap operation that is linearized
after op and before op′ is of the form c&s(∗, w), the value of the object is w immediately
before op′.

There are three cases to consider: (i) op′ is an operation from pl that follows op, (ii) op′

is an operation which is pending in Λγ ′, or (iii) op′ is an operation which is initiated in
the last |Σ| steps of Λγ ′γ′′Σ. In Case (i), by definition of γ ′′ and op, op′ is of the form
c&s(∗, w), a contradiction. In Cases (ii) and (iii), by definitions of V and w, op ′ = c&s(v, ∗)
for some v 6= w. Since the value of the object is w immediately before op′, the fact v 6= w
implies that op′ = c&s(v, ∗) cannot be successful, a contradiction. 2

3. In Λγ′γ′′ΣΠ, if pn’s first operation on O (which is a read operation) completes, it returns a
value different from res.

Proof Since op is successful and is of the form c&s(∗, w), the value of O immediately
after op is w. By the previous observation, in Λγ ′γ′′Σ, every successful compare&swap
linearized after op is also of the form c&s(∗, w).

Therefore, in Λγ ′γ′′ΣΠ, if pn’s first operation on O (which is a read operation) completes,
it returns w. But w, by definition, is different from res. Hence, we have the observation. 2

Lemma 84 is immediate from the last observation. 2

6.2.3 LL/SC Bit

An n-process load-link store-conditional bit (n-process LL/SC bit) supports the operations LL
and SC (b), for b = 0, 1. The states are pairs (v, S), for all v ∈ {0, 1} and S ⊆ {1, 2, . . . , n}. The
operation LL from process pi, when applied in state (v, S), returns v and changes the state to
(v, S′), where S ′ = S ∪ {i}. The operation SC (b) from process pi, when applied in state (v, S),
has the following effect: if i ∈ S, the state changes to (b, ∅) and true is returned; otherwise the
state is not affected and false is returned. We say an SC operation is successful if it returns true.

Proposition 5 Let C be any reachable configuration of (p1, . . . , pn;O), where O is an n-process
LL/SC bit. Suppose that process pl has no pending operations on O in C. If pl runs alone from
C, completing an LL operation and then an SC(b) operation (for any b ∈ {0, 1}), then one of the
following is true:

1. The SC(b) operation of pl returns true.

2. Some SC operation on O that was pending in C is linearized after the LL and before the
SC(b) of pl.

Proof Follows from the specification of n-process LL/SC bit. 2

Proposition 6 Let C be any reachable configuration of (p1, . . . , pn;O), where O is an n-process
LL/SC bit. Suppose that process pl has no pending operations on O in C. For b ∈ {0, 1}, suppose
further that pl runs alone from C, completing the following sequence of operations n times: LL,
SC(b). Then, at least one of the SC(b) operations returns true.
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Proof Follows by repeated application of Proposition 5 and the observation that there can be at
most n − 1 pending operations on O in C. 2

Lemma 85 LL/SC bit is perturbable for n processes, for any initial state.

Proof Consider any linearizable and solo-terminating randomized implementation of an LL/SC
bit O, initialized to any value and shared by processes p1, . . . , pn. For j ∈ {0, 1}, let αj denote the
sequence LL, SC (j), LL, SC (j), . . ., LL, SC (j) that has a total of 2n operations (n LL operations
and n SC (j) operations). For all 1 ≤ i ≤ n− 1, initialize the input variable op-listi to the infinite
sequence α0, α1, α0, α1, α0, α1, . . . and initialize op-listn to the infinite sequence of LL operations.
Let Λ, Σ, and Π be any schedules that satisfy the four conditions listed in Definition 21.

Let pl be any process in {p1, . . . , pn−1} − pset(Σ). If pl has any pending operation on O at
the end of Λ, let γ ′ ∈ ({pl} × coinspace)∗ be such that pl just completes that operation in Λγ ′.
Otherwise let γ ′ = ε. Thus, at the end of Λγ ′, pl has no pending operation on O, but other
processes may. Any such pending operations have to be from processes in {p1, . . . , pn−1} − {pl}.

Recall from (the fourth condition in) Definition 21 that res is the value returned by pn’s first
operation on O in ΛΣΠ. Let w = 1− res. Let γ ′′ ∈ ({pl}×coinspace)∗ be the shortest schedule
such that, in Λγ ′γ′′, we have: (i) pl has no pending operations, (ii) there are at least 2n completed
operations on O (by pl) in the last |γ ′′| steps, and (iii) the sequence of 2n most recent operations of
pl on O is αw. The definition of op-listl and the fact that the implementation is solo-terminating
imply that γ ′′ exists. We now make the following observations:

1. In Λγ′γ′′, the most recent 2n operations of pl on O includes a successful SC (w) operation.
(Let op denote any such operation.)

Proof Consider the sequence αw of the 2n most recent (alternating LL and SC (w))
operations of pl on O. By Proposition 6, at least one of these SC (w) operations succeeds.
2

2. Consider any linearization of Λγ ′γ′′Σ. Let op′ = SC (v) be any successful operation that is
linearized after op. Then v = w.

Proof If op′ is linearized after op, there are three cases to consider: (i) op′ is an
operation from pl that follows op, (ii) op′ is an operation which is pending in Λγ ′, or (iii)
op′ is an operation which is initiated in the last |Σ| steps of Λγ ′γ′′Σ. In the following we
show that the observation holds in all cases.

Case (i): op′ is an operation from pl that follows op

Since pl ∈ {p1, . . . , pn−1} − pset(Σ), pl has no step in the last |Σ| steps of Λγ ′γ′′Σ. From
this and the definition of γ ′′, the 2n most recent operations from pl in Λγ′γ′′Σ are LL,
SC (w), LL, SC (w), . . ., LL, SC (w). By definition, op is one of these 2n operations. Thus,
if op′ = SC (v) is an SC operation from pl that follows op, then v must equal w.

Cases (ii) and (iii): op′ is pending in Λγ ′ or op′ is initiated in the last |Σ| steps of Λγ ′γ′′Σ

Let pi be the process that invoked op′ = SC (v). Consider the most recent LL operation
from pi that preceded op′. Let op′′ denote this operation. We assert that in both Case (ii)
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and Case (iii), op′′ completed in Λ. In the next two paragraphs we prove this assertion for
the two cases.

In Case (ii), since op′ is pending in Λγ ′, op′′ must have completed in Λγ ′. Since pset(γ ′γ′′) =
{pl} and pl 6= pi (because unlike pi, pl has no pending operation in Λγ ′), it follows that pi

completed op′′ in Λ.

In Case (iii), since each process appears at most once in Σ, if pi initiated op′ in the last |Σ|
steps of Λγ ′γ′′Σ, then it follows that pi completed op′′ in Λγ′γ′′. Further, since pset(γ ′γ′′) =
{pl} and pl 6= pi (because pl ∈ {p1, . . . , pn−1} − pset(Σ)), it follows that pi completed op′′

in Λ.

Since op did not even begin in Λ, it follows that op′′ is linearized before op. Thus, we have
the following situation: pi applied the LL operation op′′ and then the SC operation op′;
pl’s successful SC operation op is linearized after op′′ and before op′. By the specification
of LL/SC bit, op′ must return false. This contradicts the premise that op′ is successful.
Thus Cases (ii) and (iii) cannot arise. 2

3. In Λγ′γ′′ΣΠ, if pn’s first operation on O (which is an LL operation) completes, it returns a
response different from res.

Proof Since op = SC (w) is successful, the value of O immediately after op is w. By
the previous observation, in Λγ ′γ′′Σ, every successful SC linearized after op is also of the
form SC(w). Therefore, in Λγ ′γ′′ΣΠ, pn’s first operation on O (which is an LL operation)
returns w. Since w = 1 − res, we have w 6= res. Hence, we have the observation. 2

Lemma 85 is immediate from the last observation. 2

6.2.4 Single Writer Snapshot

An n-process single writer binary snapshot object [AWW93, And93] supports the operations
read and write v, for v ∈ {0, 1}. The states are [v1, v2, . . . , vn], where v1, v2, . . . , vn are from
{0, 1}. A write x operation from process pi, when applied in state [v1, v2, . . . , vn], changes the
state to [v1, . . . , vi−1, x, vi+1, . . . , vn] and returns ack . The read operation, when applied in state
[v1, v2, . . . , vn], returns [v1, v2, . . . , vn] without affecting the state.

Lemma 86 Single writer binary snapshot object is perturbable for n processes, for any initial
state.

Proof Consider any linearizable and solo-terminating randomized implementation of an n-
process single writer binary snapshot object O, initialized to any value and shared by processes
p1, . . . , pn. For 1 ≤ i ≤ n − 1, let op-listi be an infinite sequence of alternating write 0 and write
1 operations. Let op-listn be an infinite sequence of read operations. Let Λ, Σ, and Π be any
schedules that satisfy the four conditions listed in Definition 21.

Recall from (the fourth condition in) Definition 21 that res is the value returned by pn’s first
operation on O in ΛΣΠ. Let res = [v1, v2, . . . , vn]. Let pl be any process in {p1, . . . , pn−1} −
pset(Σ). Let γ ∈ ({pl} × coinspace)∗ be the shortest schedule such that, in Λγ, pl just com-
pleted writing 1 − vl. Since the implementation is solo-terminating, γ exists. Further, since
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pl ∈ {p1, . . . , pn−1} − pset(Σ), pl has no step in the last |Σ| steps of ΛγΣ. Therefore, if pn’s first
operation in ΛγΣΠ (which is a read operation) completes and returns [w1, w2, . . . , wn], wl must
equal 1 − vl. It follows that res 6= [w1, w2, . . . , wn]. Hence, we have Lemma 86. 2

6.3 Applications

In Section 6.2, we showed that every type in set A is perturbable for n processes, for any initial
state, where A = {modulo k counter (for any k ≥ 2n), increment, fetch&add, k-valued com-
pare&swap (for any k ≥ n), LL/SC bit, single-writer snapshot} (see Lemmas 81, 82, 83, 84, 85,
and 86). From this and Theorem 8, we have:

Theorem 9 Let A be the set of types defined above. Consider any randomized implementation
of an object belonging to a type in A, initialized to any state and shared by processes p1, . . . , pn,
from resettable consensus objects and historyless objects. If the implementation is linearizable and
solo-terminating:

1. Its space complexity is at least n − 1.

2. If the implementation is deterministic, its solo-termination shared-access time complexity is
at least n − 1.

The above result does not address the complexity of implementing modulo k counter when
k < 2n, or of implementing k-valued compare&swap when k < n. We discuss these cases below.
The following corollary is a simple consequence of Lemma 81.

Corollary 1 For all k ≥ 1, modulo k counter is perturbable for bk/2c processes, for any initial
state.

From Corollary 1 and Theorem 8, we have:

Corollary 2 For any positive integer k, consider any randomized implementation of modulo k
counter, initialized to any state and shared by processes p1, . . . , pbk/2c, from resettable consensus
objects and historyless objects. If the implementation is linearizable and solo-terminating:

1. Its space complexity is at least bk/2c − 1.

2. If the implementation is deterministic, its solo-termination shared-access time complexity is
at least bk/2c − 1.

We observe that the time or space complexity grows monotonically with the number of pro-
cesses sharing the implementation. This observation, together with Corollary 2, gives:

Theorem 10 For any k ≤ 2n, consider any randomized implementation of modulo k counter,
initialized to any state and shared by processes p1, . . . , pn, from resettable consensus objects and
historyless objects. If the implementation is linearizable and solo-terminating:

1. Its space complexity is at least bk/2c − 1.
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2. If the implementation is deterministic, its solo-termination shared-access time complexity is
at least bk/2c − 1.

Using Lemma 84 and reasoning as above, we have:

Theorem 11 For any k ≤ n, consider any randomized implementation of k-valued compare&swap,
initialized to any state and shared by processes p1, . . . , pn, from resettable consensus objects and
historyless objects. If the implementation is linearizable and solo-terminating:

1. Its space complexity is at least k − 1.

2. If the implementation is deterministic, its solo-termination shared-access time complexity is
at least k − 1.
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