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The NOESY Jigsaw: Automated Protein Secondary Structure and

Main-Chain Assignment from Sparse, Unassigned NMR Data�

Chris Bailey-Kelloggy Alik Widgey John J. Kelley, IIIyz

Marcelo J. Berardiz John H. Bushwellerx Bruce Randall Donaldy{

October 4, 1999

Dartmouth Computer Science Technical Report No. PCS TR-99-358

Abstract

High-throughput, data-directed computational protocols for Structural Genomics (or Pro-

teomics) are required in order to evaluate the protein products of genes for structure and function

at rates comparable to current gene-sequencing technology. This paper presents the Jigsaw al-

gorithm, a novel high-throughput, automated approach to protein structure characterization

with nuclear magnetic resonance (NMR). Jigsaw consists of two main components: (1) graph-

based secondary structure pattern identi�cation in unassigned heteronuclear NMR data, and

(2) assignment of spectral peaks by probabilistic alignment of identi�ed secondary structure

elements against the primary sequence. Jigsaw's deferment of assignment until after secondary

structure identi�cation di�ers greatly from traditional approaches, which begin by correlating

peaks among dozens of experiments. By deferring assignment, Jigsaw not only eliminates this

bottleneck, it also allows the number of experiments to be reduced from dozens to four, none

of which requires 13C-labeled protein. This in turn dramatically reduces the amount and ex-

pense of wet lab molecular biology for protein expression and puri�cation, as well as the total

spectrometer time to collect data.

Our results for three test proteins demonstrate that we are able to identify and align ap-

proximately 80 percent of �-helical and 60 percent of �-sheet structure. Jigsaw is extremely

fast, running in minutes on a Pentium-class Linux workstation. This approach yields quick and

reasonably accurate (as opposed to the traditional slow and extremely accurate) structure cal-

culations, utilizing a suite of graph analysis algorithms to compensate for the data sparseness.

Jigsaw could be used for quick structural assays to speed data to the biologist early in the

process of investigation, and could in principle be applied in an automation-like fashion to a

large fraction of the proteome.

�This research is supported by the following grants to B.R.D. from the National Science Foundation: NSF IIS-

9906790, NSF EIA-9901407, NSF 9802068, NSF CDA-9726389, NSF EIA-9818299, NSF CISE/CDA-9805548, NSF

IRI-9896020, NSF IRI-9530785, and by an equipment grant from Microsoft Research.
yDartmouth Computer Science Department, Hanover, NH 03755, USA
zDartmouth Chemistry Department, Hanover, NH 03755, USA
xMolecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22906, USA
{Corresponding author: 6211 Sudiko� Laboratory, Dartmouth Computer Science Department, Hanover, NH 03755,

USA. email: brd@cs.dartmouth.edu
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1 Introduction

Modern automated techniques are revolutionizing many aspects of biology, for example, supporting

extremely fast gene sequencing and massively parallel gene expression testing (e.g. [4, 14, 17]). Pro-

tein structure determination, however, remains a long, hard, and expensive task. High-throughput

structural genomics is required in order to apply modern techniques such as computer-aided drug

design on a much larger scale. In particular, a key bottleneck in structure determination by nuclear

magnetic resonance (NMR) is the resonance assignment problem | the mapping of spectral peaks

to tuples of interacting atoms in a protein. For example, spectral peaks in a 3D nuclear Overhauser

enhancement spectroscopy (NOESY) experiment establish distance restraints on a protein's struc-

ture by indicating pairs of protons interacting through space. Assignment is also directly useful

in techniques such as structure-activity relation (SAR) by NMR [27, 12], which compares NMR

spectra for an isolated protein and protein-ligand complex.

Jigsaw is a novel algorithm for automated secondary structure and main-chain assignment.

It has been successfully applied to experimental spectra for three di�erent proteins: Human G-

lutaredoxin [29], Core Binding Factor-Beta [15], and Vaccinia Glutaredoxin-1 [16]. In order to

enable high-throughput data collection, Jigsaw utilizes only four NMR experiments: heteronu-

clear single quantum coherence spectroscopy (HSQC), HN-H�-correlation spectroscopy (HNHA),

80ms total correlation spectroscopy (TOCSY), and NOESY. This set of experiments requires only

days of spectrometer time, rather than the months required for the traditional set of dozens of

experiments. Furthermore, Jigsaw only requires a protein to be 15N-labeled, a much cheaper and

easier process than 13C labeling. From a computational standpoint, Jigsaw adopts a minimalist

approach, demonstrating the large amount of information available in a few key spectra.

Jigsaw relies on two key insights: graph-based secondary structure pattern discovery, and as-

signment by alignment. Atoms in regular secondary structure interact in prototypical patterns

experimentally observable in a NOESY spectrum. Traditional NMR techniques determine residue

sequentiality from a set of through-bond experiments, and then use NOE connectivities to test the

secondary structure type of the residues. Jigsaw, on the other hand, starts by looking for these

patterns, and uses their existence as evidence of residue sequentiality. Jigsaw applies a set of

�rst-principles constraints on valid groups of NOE interactions to manage the large search space

of possible secondary structure patterns. Subsequently, Jigsaw assigns spectral peaks by aligning

identi�ed residue sequences to the protein's primary sequence. To do this, Jigsaw uses side-chain

peaks identi�ed in a TOCSY spectrum to estimate probable amino acid types for the residue se-

quence. It �nds such a sequence in the protein's primary sequence, and assigns the spectral data

accordingly.

In its philosophy of starting with NOESY connectivities, Jigsaw is in the same spirit as the

partially automated Main-Chain Directed (MCD) approach of Wand and co-workers (e.g. [28, 8, 23].

MCD was developed for homonuclear spectra, and was applied to experimental data for only one

small protein, human Ubiquitin [28]. Jigsaw, in comparison, is fully automated and has been

successfully applied to experimental heteronuclear spectra for three di�erent larger proteins (for

example, CBF-� is nearly twice the size of Ubiquitin). Jigsaw takes the steps necessary to deal

with the signi�cant amount of degeneracy in spectra for large proteins; it also provides a formal

graph-theoretic framework for understanding and analyzing the algorithm. Finally, Jigsaw utilizes

a novel TOCSY-based method for aligning residue sequences to the primary sequence.

The Jigsaw and MCD approaches di�er greatly from other (automated and partially automat-

ed) assignment protocols used today in the NMR community. Most modern approaches rely on a

large suite of 13C-labeled triple resonance NMR spectra (e.g. HNCA, HNCACB, HN(CO)CACB,
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Figure 1: Atom nomenclature and interactions in a protein. (a) Through-bond interactions shown with dot-

ted lines (HSQC:15N-HN; HNHA:15N-HN-H�; TOCSY:15N-HN-H�-H�-. . . ). (b) Through-space interactions

in NOESY shown with wavy lines (d�N solid and dNN dashed).

. . . ), either to establish sequential connectivities by through-bond experiments (e.g. Autoas-

sign [34] and Pasta [19]), or to match chemical shift patterns (e.g. [20] and [5]). 13C-labeling

of a protein is an expensive and time-consuming task, making these approaches unsuitable for

high-throughput structural studies. As discussed above, Jigsaw uses only four experiments and

requires only 15N-labeling of a protein, a much cheaper process.

Many modern automated assignment packages boot-strap the assignment process. For example,

Noah [21, 22] uses assignments from through-bond spectra to assign the NOESY. Garant [1]

correlates observed peaks across multiple spectra with peaks predicted by a sophisticated model.

Partially-computed structures can be used to re�ne peak predictions (e.g. [13], [22], [24]).

Solving the NMR jigsaw puzzle raises a number of interesting algorithmic pattern-matching and

combinatorial issues. This paper presents an analysis of the problem, algorithms to solve it, and

experimental results. Section 2 reviews the information content available in the NMR spectra used

by Jigsaw. Section 3 presents the graph-based formalism and algorithm for �nding secondary

structure elements in NOESY spectra. Section 4 discusses the alignment process. Sections 3.3

and 4.1 provide results on experimental data from three di�erent proteins.

2 NMR Data

NMR spectra capture interactions between atoms as peaks in R2 or R3 , where the axes indicate res-

onance frequencies (chemical shifts) of atoms. In the 15N spectra used by Jigsaw, peaks correspond

to an 15N atom, an HN atom, and possibly another 1H atom, of particular resonance frequencies.

Jigsaw takes as input, in addition to a protein primary sequence, lists of peak maxima and in-

tensities, correlated across spectra.1 Figure 1 illustrates the experiments utilized by the Jigsaw

algorithm:

�HSQC: An HSQC spectrum [3, pp. 411-447] identi�es unique pairs of through-bond correlated
15N and HN atoms. Every residue has such a unique 15N-HN pair on the protein backbone; the

coordinates for the pair are shared by all interactions within that residue and serve to reference

interactions across all spectra.2

� HNHA: An HNHA spectrum [3, pp. 524-528] captures interacting intraresidue 15N-HN-H�;

peak intensities estimate the J coupling constant
3JHNH� which is correlated with the � bond angle

of a residue. Since this angle is characteristically di�erent for �-helices and �-sheets, Jigsaw uses

1Automated peak picking is an interesting and well-studied signal processing problem (e.g. AUTOPSY [18]).
2Some side chains, such as Gln, have their own 15N-HN pairs as well. These can be removed in preprocessing, or

detected and handled specially.
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it as an estimator of the secondary structure type.

� TOCSY: A TOCSY spectrum [10] includes through-bond interactions with 1H atoms on a

residue's side chain; the 80ms TOCSY in particular reaches many atoms on a residue's side chain.

Since the chemical shifts of 1H atoms for di�erent amino acid types are characteristically di�erent,

Jigsaw uses the shifts of a TOCSY as a \�ngerprint" of the amino acid type.

� NOESY: The 3D 15N NOESY experiment [10] correlates an amide proton HN and its 15N

with a second proton that interacts through space at a distance less than 6 �A, via the Nuclear

Overhauser E�ect (NOE). In the terminology of [31], a dNN represents an HN-HNpair, while a d�N
represents an H�-HNpair (see Figure 1(b)); these can be distinguished by the characteristically

di�erent chemical shifts of H� and HN atoms.

The main Jigsaw data structure, the NOESY interaction graph, is an abstraction of a NOESY

spectrum that indicates potential residue interactions that could explain the peaks in a spectrum.

Each 3D interresidue NOE peak has the 15N and HN coordinates of one residue and the 1H coor-

dinate of the H� or HN proton of another residue. The HSQC indicates which is the �rst residue

by its unique 15N and HN coordinates. The TOCSY and HNHA indicate residues whose H� or

HN has the given 1H coordinate. Unfortunately, projection onto the 1H dimension yields a large

amount of spectral overlap | many protons have the same chemical shift, within a tolerance. For

example, there are 10-20 possible explanations for each peak in the NOESY spectrum of CBF-�

(see Section 3.3). This spectral overlap is the major source of complexity in the Jigsaw approach.

The NOESY interaction graph captures the complete set of possible explanations for the peaks;

the Jigsaw search algorithm then determines the correct ones.

De�nition 1 (NOESY Interaction Graph) The NOESY interaction graph G = (V;E) is a

labeled, directed multigraph de�ned as follows:

� Vertices V are residues.

� Edges E � V �V �fdNN; d�Ng�R
+
�R

+
with e = (v1; v2; t;m; d) 2 E i� there is a NOESY

interaction between a proton of v1 and a proton of v2:

{ Interaction type t indicates a d�N or dNN interaction.

{ Match score m is the
1H frequency di�erence between the observed peak and the shift of the

correlated H�
or HN

.

{ Atom distance d, computed from the NOE peak intensity, estimates the proximity of the

correlated atoms.

A high match score suggests that a given edge, rather than one of its competitors, is the correct

one. In practice, the NOESY interaction graph only includes edges for which the match score is

below some threshold (e.g. 0.05 ppm). Di�erent atom distances are expected for atom pairs in

di�erent conformations; (e.g. a pair of HN atoms in an �-helix is expected to be quite close).

This data structure provides a more abstract view of the NOESY information than typical

atom-based representations [31, 28], and is more amenable to search and analysis.

3 Graph-Based Secondary Structure Pattern Discovery

In order to �nd the correct secondary structure of a protein from the highly ambiguous NOESY

interaction graph, Jigsaw employs a multi-stage search algorithm that enforces a set of consistency

rules in potential groups of edges. The following subsections detail these consistency rules and the

Jigsaw graph search algorithm.
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Figure 2: NOESY d�N (solid) and dNN (dotted) interactions in (a) �-helices and (b) �-sheets.
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� dNN: hi$hi+1

� d�N: hi!hi+3

� d�N: ai!ai+1, bi!bi�1, ci!ci+1

� d�N: a2i!b2i, b2i+1!a2i+1, b2i!c2i, c2i+1!b2i+1

� dNN: a2i+1$b2i, a2i+1$b2i+2; b2i+1$c2i, b2i+1$c2i+2
(a) (b)

Figure 3: Interaction graphs (d�N edges solid and dNN dotted) and constraints for (a) �-helices and (b)

�-sheets.

3.1 NOESY Interaction Graph Constraints

Figure 2 shows some prototypical NOE interactions in (a) an �-helix and (b) an anti-parallel �-

sheet (after [31]).3 Due to the way a helix is twisted, the HN of one residue is close to the HN

residue of the next, and the H� of one residue is close to the HN of the residue one complete turn

up the helix. Since a �-sheet is more stretched out, only the H�-HN sequential interactions are

experimentally visible in the NOESY, but a rich pattern of cross-strand interactions are possible.

Figure 3 represents these patterns in NOESY interaction graphs, and enumerates the interaction

graph constraints imposed on these graphs by the geometry of helices and sheets.4

While a NOESY interaction graph contains many false edges (and in experimental data, some

missing edges as well), the interaction graph constraints strongly limit how the correct edges �t

together. For example, it is likely that a vertex will have several dNN edges to vertices that could

follow it sequentially in an �-helix. However (see Figure 3), it is less likely that an incorrect next

vertex also has a symmetric dNN edge, or that an incorrect sequence of vertices is also connected by

an additional hi ! hi+3 d�N edge, or that multiple such sequences adjoin each other. This insight

of mutually inconsistent incorrect hypotheses is repeatedly utilized in the Jigsaw algorithm.

3.2 NOESY Interaction Graph Search

The Jigsaw NOESY graph search uncovers secondary structure in an interaction graph G as a

subgraph G� of G consistent with the interaction graph constraints. Since a globally consistent

graph consists of repeating, locally consistent subgraphs, each of constant size, Jigsaw does not

have to solve a large subgraph isomorphism problem for the entire secondary structure.

3Parallel �-sheets have similar interactions; this paper concentrates on anti-parallel �-sheets.
4Note that since the 12C� is not NMR-active, d�N interactions are asymmetric.
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(a) (b) (c)

Figure 4: Jigsaw algorithm overview: (a) identify graph fragments, (b) merge them sequentially, and (c)

collect them into complete secondary structure graphs.

(2)
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(2) (4)
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(6) (7) (8)

(9)

(10) (11)

(12)

(a) (b)

Figure 5: Interaction graph fragment patterns in (a) �-helices and (b) �-sheets.

Figure 4 illustrates the key steps of the Jigsaw graph search algorithm. Given an interaction

graph, Jigsaw identi�es small fragment subgraphs (\jigsaw pieces") satisfying the interaction graph

constraints, merges them into �-helices and pairs of adjacent �-strands, and collects the sequences

into entire secondary structure representations. In practice, there are many incorrect fragments

among the correct ones, but mutual inconsistencies generally keep them from merging into larger

graphs. A �nal step is to rank the best solved jigsaws. The following subsections detail these steps.

3.2.1 Identify Fragments

The �rst step of Jigsaw is to �nd small, consistent subgraphs of an interaction graph. Jigsaw

searches for fragment instances of a set of fragment patterns evident in canonical interaction graphs

(Figure 3). Figure 5 illustrates some such fragment patterns. These patterns constrain the inter-

action type, match score, and atom distance for a set of edges, along with the � bond angle (and

thus secondary structure type) indicated by the HNHA for the vertices.

Fragment patterns allow the possibility of missing edges in experimental data. The directions of

the missing edges are, however, determined by those of the other edges. For example, in Figure 5(b),

patterns 3 and 4 are similar to patterns 1 and 2, respectively; the direction of the missing vertical

edge can be inferred from the correspondence.

Fragments are identi�ed by a straightforward graph search: for a pattern involving p edges,

search from each node to depth p along paths that remain consistent with the pattern.

Claim 1 (Computational Complexity of Fragment Pattern Identi�cation) Given an in-

teraction graph with n edges and maximum degree d, instances of a fragment pattern involving p

edges can be identi�ed in time O(ndp).
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In practice (as demonstrated in Table 2 below), the interaction graph constraints greatly restrict

the search, pruning most paths before they reach a depth of p.

We assume that the fragment patterns generate a complete set of fragments. That is, any

secondary structure graph G� for a given interaction graph G can be formed from a union of the

fragments identi�ed in G. Due to the large number of incorrect edges, there can also be many

incorrect fragments. It remains for the subsequent processing stages (below) to eliminate them.

3.2.2 Merge Sequentially-Consistent Fragments

Given a set of fragment \jigsaw pieces" F , Jigsaw starts solving the puzzle of secondary structure

by �nding sequences of consistent fragments that together de�ne either an �-helix or two neighbor-

ing strands of a �-sheet. To reduce the computational cost, it is possible to identify a set of root

fragments F 0
� F that satisfy stronger constraints, and to root the sequences at these fragments.

De�nition 2 (Rooted Fragment Sequence) Given a set of fragments F for an interaction

graph G and a set of root fragments F
0
� F , a rooted fragment sequence F is a subgraph of

G consistent with the interaction graph constraints for either a single �-helix or a pair of adjacent

�-strands, and formed from the union of a set of n fragments F = ff1; f2; : : : ; fng � F , where

f1 2 F
0
.

Fragment sequences are computed by a straightforward exhaustive search from the root frag-

ments. In the worst case there are an exponential number of sequences | if any fragment can

connect to any other, then there are jFjjFj possible such sequences. However, as with fragment

pattern identi�cation, the interaction graph constraints strongly limit the possible sequences, and in

practice (supported by Table 2) each initial fragment generates a fairly small number of sequences.

The completeness of fragment sequences follows immediately from the assumed completeness

of fragments, if there is at least one root fragment per helix or strand pair.

Claim 2 (Completeness of Fragment Sequences) Any secondary structure graph G�
for a

given interaction graph G is a union of the fragment sequences for the fragments F in G.

3.2.3 Collect Consistent Sequences

To obtain an entire, consistent secondary structure graph for the protein, Jigsaw forms unions

of consistent fragment sequences. Imposing directionality | �rst identifying sequences and then

joining them| greatly reduces the size and redundancy of the search space. While the merging step

is worst-case exponential in the number of fragment sequences, the interaction graph constraints

again bring the search space down to a manageable size (see Table 2).

Since a secondary structure graph is computed as the union of fragment sequences, the com-

pleteness result follows immediately from Claim 2.

Claim 3 (Completeness of Secondary Structure Graphs) Jigsaw �nds all consistent sec-

ondary structure graphs G�
for a given interaction graph G.

3.2.4 Identify Best Secondary Structure Graphs

The �nal step in the Jigsaw graph search is to identify the best secondary structure graphs from

the set of collected possibilities. Intuitively, the algorithm should produce a large graph, reaching

all the vertices expected to belong to the given secondary structure type. Smaller graphs probably

7



were not expanded due to inconsistencies. Furthermore, as many of the expected edges as possible

should belong to the graph (vertices should have high degree), and should have good match scores.

This intuition is formalized with a probabilistic measure of a graph's correctness. For simplicity,

we assume a Gaussian a priori probability that an edge e indicates the correct interaction repre-

sented by a spectral peak, based on comparison of 1H chemical shifts (recall that the match score

m(e) encodes the di�erence | see De�nition 1); it remains interesting future work to incorporate

actual spectral \line shapes" [18] into this analysis. Normalization over all edges for a peak yields

the probability that a particular edge is a good explanation for the peak. This yields a higher

probability when a peak closely matches, and when it doesn't have many good competitors.

P (interaction(e)) = G�(m(e)) (1)

P (good(e)) = P (interaction(e))=
X

e02G

P (interaction(e0)) (2)

The correctness probability for a secondary structure graph G� depends the goodness of its

edges:

P (correct(G�)) = 1�
Y

e2G�

(1� P (good(e))) (3)

The correctness probability can be applied during fragment sequence enumeration (Section 3.2.2)

and secondary structure graph construction (Section 3.2.3), in order to prune graphs with too little

support (correctness probability too low for the graph size).

3.3 Experimental Results

Jigsaw was tested on experimental data for Human Glutaredoxin (huGrx) [29], Core Binding

Factor-Beta (CBF-�) [15], and Vaccinia Glutaredoxin-1 (vacGrx) [16].5 15N-edited HSQC, HNHA,

80ms TOCSY, and NOESY spectra were collected on a 500MHz spectrometer and processed with

the program Prosa [11]. Peaks were picked manually and in a semi-automated fashion with the

program Xeasy [2]. Jigsaw was invoked with the appropriate primary sequences and ASCII

peak lists, referenced across spectra.6 In order to distinguish the dependence on HNHA from

the dependence on NOESY, Jigsaw was run with two spectral suites: the �rst with simulated

J-coupling constants indicative of the known secondary structure, and the second with J-coupling

constants computed from the experimental HNHA data; all other spectra were the same in the two

suites. Jigsaw used the patterns of Figure 3 with a set of generic constraints on match score and

atom distance. Computation took about one to ten minutes, depending on the protein.

As an illustration, Figure 6 depicts the �-sheets Jigsaw uncovered for CBF-�, a 141-residue

protein. (An optional appendix for the interested reader depicts the �-helix results for CBF-� and

both �-helix and �-sheet results for the other two proteins.) Jigsaw correctly uncovers a signi�cant

portion of the � structure, particularly in well-connected portions of the graph. Note that �-sheets

are tertiary structure, indicating more than just the sequentiality of their strands.

Table 1 summarizes the results for all three proteins in terms of the number of correct, extra

(but still sequential), and incorrect edges discovered by Jigsaw, compared to the actual edges

known from the literature. Recall that edges correspond to NOESY peaks, and thus represent

interpretations of portions of the spectrum. With spectral suite 2, Jigsaw is less accurate about

the extent of a helix or strand; however, the actual extent is ambiguous, and extending to additional

5While huGrx and vacGrx have similar structures, their experimental spectra have signi�cant di�erences.
6For CBF-�, Jigsaw uses manually-computed J-constants, following the NMR protocol of [15].

8



55

65

27

130

108

104

118

122

96

68

31

60

X
X

71

Figure 6: �-sheets of CBF-� computed by Jigsaw. Edges: solid=correct; dotted=false negative; X=false

positive.

huGrx CBF-� vacGrx

Actual 82 72 80

Correct 70; 65 72; 62 63; 63

% Correct 85%; 79% 100%; 86% 79%; 79%

Extra seq. 0; 0 0; 12 0; 8

Incorrect 0; 0 0; 4 0; 0

huGrx CBF-�

Desired 28 89

Correct 13; 13 58; 54

% Correct 46%; 46% 65%; 60%

Extra seq. 0; 0 0; 0

Incorrect 0; 0 0; 2

(a) (b)

Table 1: Summary of results for Jigsaw secondary structure discovery ((a) �-helices and (b) �-sheets), for

spectral suites 1 (�rst) and 2 (second).

huGrx CBF-� vacGrx

Edges 1312 2216 807

Fragments 72 95 64

Root fragments 36 30 13

Fragment sequences 147 186 203

2ary structure graphs 647 17279 671

huGrx CBF-�

Edges 1312 2216

Fragments 277 1611

Root fragments 2 101

Fragment sequences 9 527

2ary structure graphs 9 6287

(a) (b)

Table 2: Combinatorics of Jigsaw secondary structure discovery for (a) �-helices and (b) �-sheets.

sequentially-connected residues can be bene�cial by providing additional assignments. The �-sheet

peaks for both huGrx and vacGrx are so sparse (see the appendix for illustrations) that Jigsaw

identi�es little to no � structure. In general, it is much harder to uncover �-sheets that �-helices,

since �-strand sequentiality is speci�ed by the much noisier H� region of the spectrum. We expect

proteins with signi�cant �-sheet content, such as CBF-�, to have enough connectivity to support

the mutually con�rming Jigsaw graph patterns.

Table 2 demonstrates that, due to the interaction graph constraints, the actual combinatorics

of Jigsaw are much better than the worst-case exponential possibility.

4 Fingerprint-Based Sequence Alignment

Fingerprint-based sequence alignment �nds sets of sequential residues in the protein sequence cor-

responding to the vertex sequences identi�ed by the Jigsaw graph search algorithm. This process
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Figure 7: BMRB 1H mean chemical shifts over di�erent amino acid types. These shifts de�ne \�ngerprints"

for the expected TOCSY peaks of di�erent amino acid types; the �ngerprint for His is isolated as an example.

utilizes the 80ms TOCSY (refer again to Section 2), which identi�es a \�ngerprint" of 1H atoms.7

The BioMagResBank (BMRB) has collected statistics from a large database of observed chem-

ical shifts [26]. Figure 7 shows the mean chemical shifts for the protons of the 20 di�erent amino

acid types. The chemical shifts are a�ected by local chemical environment, which includes amino

acid type and secondary structure. The chemical shift index (CSI) has successfully used this infor-

mation to predict secondary structure type given chemical shift and amino acid type [30]. Jigsaw

takes a di�erent approach: it \inverts" the BMRB to predict amino acid type given chemical shift

and secondary structure type.

The �rst step in alignment is to match each vertex's �ngerprint with the canonical BMRB

�ngerprints. Due to extra and missing peaks, only a partial match might be possible.

De�nition 3 (Partial Fingerprint Match) A partial �ngerprint match between vertex �nger-

print Sv and BMRB amino acid �ngerprint Sa (a 2 A = fAla; Arg; : : :g), is a bijection m : Sv
0
!

Sa
0
between subsets Sv

0
� Sv and Sa

0
� Sa.

Partial �ngerprint matches are scored based on how well corresponding points match, together

with penalties for extra and missing points. Assuming Gaussian noise around the expected chemical

shift, with standard deviation �a for amino acid type a, the match score is de�ned as follows:

partial(Sv
0; Sa

0) = c0jSv � Sv
0
j+ c1jSa � Sa

0
j+ c2

Y

p2Sv
0

G�a(p�m(p)) (4)

where c0; c1; c2 are weighting factors.

The match score for a vertex and amino acid type is de�ned as the best partial �ngerprint

match score; normalization yields the probability that a vertex is of a given amino acid type.

match(Sv; Sa) = max
Sv

0�Sv ;Sa
0�Sa

partial(Sv
0; Sa

0) (5)

P (type(v; a)) = match(Sv; Sa)=
X

b2A

match(Sv; Sb) (6)

Then the probability that a sequence of vertices V = (v1; v2; : : : vn) aligns at position r in the

primary sequence L (where r � jLj � jV j) is the joint type probability over corresponding vertices

7The main-chain 15N chemical shift can be included in the �ngerprint.
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Sequence Simulated Experimental

Rank � Rank �

�1:10{16 1 9 � 104 1 3 � 102

�2:18{23 1 2 � 104 17 4 � 10�6

�3:34{36 1 4 � 101 3 7 � 10�2

�4:43{52 1 1 � 1013 1 2 � 104

�5:131{140 1 7 � 1014 1 1 � 1019

Sequence Simulated Experimental

Rank � Rank �

�1;1:27{31 1 4 � 103 5 3 � 10�2

�1;2:55{60 1 2 � 106 1 2 � 104

�1;3:65{68 1 2 � 101 1 1 � 103

�2;1:96{104 1 2 � 101 1 7 � 102

�2;2:108{117 1 4 � 1010 11 3 � 10�5

�2;3:122{130 1 3 � 104 5 1 � 10�1

Table 3: Fingerprint-based alignment results for �-helices and �-strands of CBF-�, with both simulated

and experimental TOCSY data. � indicates the relative score of the alignment | relative to either the best

alignment, if the correct one is not best, or else to the second-best alignment.

huGrx CBF-� vacGrx

Correct (simulated TOCSY) 8/9 11/11 8/9

Correct (experimental TOCSY) 6/9 6/11 3/9

Table 4: Fingerprint-based alignment results summary for both simulated and experimental TOCSY data.

and amino acid types. The best alignment for a sequence of vertices V relative to a primary

sequence s is the position r maximizing the probability.

P (align(V; s; r)) =

nY

i=1

P (type(vi; sr+i�1)) (7)

alignment(V; s) = max
r�jLj�jV j

P (align(V; s; r)) (8)

4.1 Experimental Results

Table 3 details the results of �ngerprint-based alignment for the TOCSY shifts of known �-helices

and �-strands in CBF-� (the optional appendix provides details for huGrx and vacGrx). Table 4

summarizes the number of correct alignments for all three proteins. The simulated TOCSY is

produced from the known chemical shifts of the side-chain protons (correlated among many other

spectra). While experimental TOCSY yields good alignment results, the simulated results demon-

strate that as pulse sequences improve (see e.g. [32, 33]), the experimental results should get even

better. In general, long sequences align better than short ones, although unusually noisy data can

disrupt the alignment.

5 Conclusions and Future Work

This paper has described the Jigsaw algorithm for automated high-throughput protein structure

structure determination. Jigsaw uses a novel graph formalization and new probabilistic methods

to �nd and align secondary structure fragments in protein data from a few key fast and cheap

NMR spectra. A set of �rst-principles graph consistency rules allow Jigsaw to manage the search

space and prevent combinatorial explosion. Jigsaw has proven successful in structure discovery

and alignment with experimental data for three di�erent proteins.

One avenue of future work is a random graph analysis of Jigsaw using a statistical model

of the noise in an interaction graph to compute the probable correctness and completeness of

secondary structure graphs. Another avenue is to apply iterative deepening [25, pp. 70-71] to

generate additional fragments, for example, due to suggestions by a statistical secondary structure

11



predictor (e.g. [7, 6]), circular dichroism data [9], or feedback from �ngerprint-based alignment.

Finally, the Jigsaw technique could be extended to assign side chains and to compute the global

fold of a protein. Spectral referencing between TOCSY and NOESY gives an indication of which

NOESY peaks belong to a given residue; additional interresidue interactions could then be identi�ed

in the NOESY and used to constrain the global geometry of �-helices and �-sheets.
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Appendix

A Additional Details for Experimental Results

A.1 Secondary Structure Graphs

This section details the �-helices and �-sheets uncovered by Jigsaw as summarized in Table 1.

Figures 8, 9, and 10 depict the �-helices uncovered by Jigsaw in CBF-�, huGrx, and vacGrx,

respectively, with both suites of spectra. The results are quite similar for both suites, except that

�-helices in suite 2 sometimes extend past or fail to reach the end of an �-helix or �-strand, due to

misleading J constants. In vacGrx under suite 2, an additional potential rigid piece of secondary

structure is uncovered, extending from residue 48 to residue 51.

Figure 11 shows the �-sheets uncovered by Jigsaw in huGrx with suite 2. The results with

suite 1 are identical; in both cases, connectivity in the lower two strands is too sparse for Jigsaw.

The �-sheet results for CBF-� with suite 1 are the same as in Figure 6, but with the correct edges

to residue 100 rather than the incorrect edges to 101 and 71. Figure 12 shows that the NOESY

connectivities for �-sheets in vacGrx are too sparse for the general-purpose set of Jigsaw patterns

to detect.

A.2 Fingerprint-Based Alignment

This section details the �ngerprint-based alignment results of huGrx and vacGrx that contributed

to Table 4. Tables 5 and 6 list the �ngerprint-based alignment results for huGrx and vacGrx, respec-

tively. As with CBF-�, simulated TOCSY data yields almost perfect results, while experimental

TOCSY data results are somewhat degraded.
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Figure 8: �-helices of CBF-� computed by Jigsaw, using spectral suites 1 and 2. Edges: solid=correct;

dotted=false negative; X=false positive. Vertices: solid=correct; empty=sequentially correct but not in

�-helix.
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Figure 9: �-helices of huGrx computed by Jigsaw, using spectral suites 1 and 2. Edges: solid=correct;

dotted=false negative. Vertices: solid=correct; empty=sequentially correct but not in �-helix.
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Figure 10: �-helices of vacGrx computed by Jigsaw, using spectral suites 1 and 2. Edges: solid=correct;

dotted=false negative. Vertices: solid=correct; empty=sequentially correct but not in �-helix.
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Figure 12: Known �-sheet connectivities in vacGrx. The connectivities are too sparse for the generic Jigsaw
algorithm to uncover much structure.
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Sequence Simulated Experimental

Rank � Rank �

�1:4{9 1 7 � 107 1 1 � 105

�2:25{34 1 5 � 1017 1 8 � 106

�3:54{65 1 1 � 1016 1 9 � 1013

�4:83{91 1 4 � 105 1 2 � 104

�5:94{100 1 2 � 107 2 2 � 10�1

Sequence Simulated Experimental

Rank � Rank �

�1;1:43{47 1 1 � 103 3 7 � 10�3

�1;2:15{19 1 2 � 103 1 3 � 103

�1;3:72{75 1 1 � 103 4 2 � 10�2

�1;4:78{80 2 2 � 10�1 4 4 � 10�2

Table 5: Fingerprint-based alignment results for �-helices and �-strands of huGrx, with both simulated

and experimental TOCSY data. � indicates the relative score of the alignment | relative to either the best

alignment, if the correct one is not best, or else to the second-best alignment.

Sequence Simulated Experimental

Rank � Rank �

�1:3{8 1 2 � 1010 5 3 � 10�2

�2:25{34 1 1 � 1011 2 3 � 10�1

�3:54{63 1 1 � 1032 1 2 � 103

�4:83{91 1 7 � 1013 4 5 � 10�3

�5:94{101 1 1 � 105 3 2 � 10�2

Sequence Simulated Experimental

Rank � Rank �

�1;1:42{47 1 4 � 101 1 2 � 101

�1;2:14{20 1 3 � 103 15 3 � 10�8

�1;3:72{74 1 4 � 102 10 5 � 10�4

�1;4:78{80 12 2 � 10�3 1 1 � 103

Table 6: Fingerprint-based alignment results for �-helices and �-strands of vacGrx, with both simulated

and experimental TOCSY data. � indicates the relative score of the alignment | relative to either the best

alignment, if the correct one is not best, or else to the second-best alignment.
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