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Abstract

We propose a method for increasing incen-

tives for sites to host arbitrary mobile agents

in which mobile agents purchase their com-

puting needs from host sites. We present a

scalable market-based CPU allocation policy

and an on-line algorithm that plans a mobile

agent's expenditure over a multihop ordered

itinerary. The algorithm chooses a set of sites

at which to execute and computational prior-

ities at each site to minimize execution time

while preserving a prespeci�ed budget con-

straint. We present simulation results of our

algorithm to show that our allocation pol-

icy and planning algorithm scale well as more

agents are added to the system.

1 Introduction

A mobile-agent system provides an envi-

ronment that allows user programs (mobile

agents) to voluntarily relocate and resume ex-

ecution at another host site. Mobility is es-

pecially useful in reducing network latency

and in operating in disconnected environ-

ments [LO98]. These qualities make mobility

an attractive option for isolated applications

and closed administrative domains, but the
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application of the technique has much greater

potential. An important issue is providing

hosts incentive to o�er service for arbitrary

mobile agents.

There are several techniques to protect

host sites from visiting agents [Moo98], but

hosts will always su�er from higher loads

induced by visiting agents. To mitigate

this problem we investigate the possibility of

agents compensating host sites by purchasing

computational resources from hosts [Tsc97,

BKR98]. Resources include, but are not lim-

ited to, processor time, storage, and network

access, as well as abstract value-added ser-

vices.

In this paper, the resource on which we fo-

cus is CPU priority which we use to approxi-

mate general computational priority among

agents. We present a lottery-based CPU

scheduling policy and planning algorithms to

allow mobile agents to plan expenditure of

multi-hop itineraries. We describe a simula-

tion system for these algorithms. Our experi-

ments show that our algorithms allow agents

to complete lengthy trips with high con�-

dence in environments with bursty resource

contention. Additionally, we show that our

lottery-based allocation policy scales well as

the number of agents in the system increases.

The value of a mobile-agent system is de-

pendent on both the number of host sites

that an agent may migrate to as well as the

number of other agents with which an agent

may interact. Conventional wisdom is that

the value of a network increases quadratically

with the number of users and sites that have

access to it. We believe this also holds true

for a mobile-agent system.

Given the importance of the number of

sites, we would like to encourage site owners

to open up access to their resources to the

entire community of mobile-agent users. The

resources used by mobile agents are general

and often diÆcult to analyze. Not only do

hosts sacri�ce access to their own resources,

but there are security risks inherent to pro-

viding any additional network service.

We propose that hosts be compensated for

these factors through agents using a scarce

veri�able electronic currency to purchases all

their computational and information needs.

We see several bene�ts of mobile agents par-

ticipating in markets to access their compu-

tational needs. Markets limit the extent of

agents' impact, provide simple a means of

agent coordination through prices, and facil-

itate exible administrative domains.

Because currency is scarce, agents' activ-

ities are limited. The extent of denial-of-

service attacks are limited and, assuming that

prices are eÆcient, a host would actually ben-

e�t from such an \attack," though an of-

fender would not be able to carry out such

an action for long.

In market systems, there is generally

a strong correlation between demand and

higher prices. By providing agents with the

price of services, they become aware of their

environmental impact. We would like to use

this e�ect to give mobile agents incentive to

avoid congesting a site. A possible solution

for agents crowding a site is to either wait

until a more appropriate time to execute or

choose a less congested site.
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2 An Allocation Policy

To encourage agents to act rationally, a rea-

sonable price mechanism must be in use.

In this section we explore an instance of a

pricing mechanism where owners of priority-

based resources (CPU's) lease shares, or tick-

ets, for access. The quality of service a ticket

holder receives is proportional to the number

of tickets held relative to the number of tick-

ets in circulation, creating a modi�ed lottery

or round-robin scheduling system.

The resource owner can �x the price of leas-

ing tickets and let the number of tickets in cir-

culation oat; the real price of computation

is determined by the number of tickets held

by agents. Two major bene�ts of this pricing

scheme are that the computational responsi-

bilities of the price mechanism are distributed

among the users and it is easy to implement.

Many traditional priority-based computa-

tional resources are allocated using prior-

ity queues or priority strati�ed round-robin

schedulers. These systems rely on users hav-

ing heterogeneous preferences to stratify pri-

orities. Such schemes do not scale well as

user preferences become more diverse, how-

ever. After the third or fourth priority

level, no real service is left to allocate among

users [GSW97, BKR98].

Our allocation policy asks each agent to

submit a linear function describing the num-

ber of tickets each agent would buy given the

number of shares held by competing agents.

We restrict the function to be linear and de-

creasing.1 Each time an agent arrives or de-

1Section 3.2.1 justi�es restricting bid functions in

parts the server, the server searches for a

ticket circulation where each agent is content

with the value and size of its share, a Nash

equilibrium, and reallocates the new circula-

tion according to agents' bidding functions.

Because agents cannot purchase negative

number of shares, the bid functions are not

convex. Thus a Nash equilibrium is not nec-

essarily guaranteed to exist. We �nd that

in practice, using a bisection search, we can

�nd an �-Nash equilibrium, where partici-

pants wish to change their bids by only a

small amount.

3 The Model

The model that we examine is one where each

agent is given a �xed endowment of currency

and an ordered set of tasks to complete. Each

task may be executed at one of several sites

of varying capacity. Agents must choose a

set of sites to visit and the quality of ser-

vice desired at each site. The goal is to mini-

mize time of execution while preserving bud-

get constraints.

3.1 Lottery Allocation

At each site they visit, agents decide to rent

some number of tickets at a �xed price per

second. Tickets represent relative computing

priority. The agent can then consume a com-

puting share proportional to its ownership of

lottery tickets relative to the total number in

circulation.

this way.
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Figure 1: An example of an agent's itinerary.

At each hop of the schedule, there may

be multiple host sites willing to accept the

agent's task.

Using this style of resource allocation, it

is possible to describe the load of a host

system with just a few parameters: ticket

circulation and a performance metric of the

host. Visiting agents do not need to disclose

any information to participate in the mar-

ket, other than the quantity of tickets desired

to be purchased. The accuracy of a host's

published parameters can be tested through

benchmarking an agent's performance.

The strategy of how an agent would par-

ticipate in a computational lottery market

resembles the Prisoner's Dilemma [Axe84].

Agents can buy large quantities of tickets,

the analog of defection or confessing to the

police. Alternatively they may attempt to re-

ceive better performance by all buying small

amounts of tickets, which is the analog of co-

operating.

While agents may collaborate to form a

cartel by agreeing to buy no more than a

given amount of tickets (one each) from a

server, it is frequently to an agent's advan-

tage to buy an extra amount of tickets to in-

crease performance at the collaborators' ex-

pense. Axelrod [Axe84] �nds agents are less

likely to cooperate if they are anonymous or

expect little future interaction, so our lottery

scheduling works better as the number of par-

ticipating agents increases. In addition, the

host system has incentive to protect the iden-

tity of visiting clients.

3.2 Utility Maximization

We need a metric for quality of service on

which to derive users' utility. Frequently,

quality of service is indicated by end-to-end

latency of the task or by rate of computa-

tion. The accuracy or precision of the process

is important in some cases, for example in a

database query. The work in this paper only

considers utility to be a function of the rate

at which an agent computes. We assume that

an agent has K tasks to complete and each

task may be completed at one of any number

of comparable host sites.

We wish to maximize the expected per-

formance of all tasks in an agent's itinerary.

ck;Mk; and nk represent the capacity in in-

structions per second, ticket circulation, and

the agent's ticket holdings at the site where

the kth task is executed. Q =
PK

k=1 qk, is

the total quantity of computation in instruc-

tions to be done. We now compute an agent's

expected rate of computation in Equation 1.

The numerator is the sum of all job sizes and

the denominator is the expected completion

time, the quotient of the kth job size and

expected rate of computation. The rate of

computation is just the agent's ticket share,
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nk, relative to the total circulation, nk +Mk,

weighted by the processing capacity of the

host, ck:

U =
Q

KP
k=1

E
h
qk(nk+Mk)

nkck

i (1)

We must also formalize the budget con-

straint. I represents the agent's initial bud-

get endowment constraining the the sum of

the amounts spent at each site, pknktk, where

tk = qk(nk+Mk)=cknk denotes the time spent

at the kth site, the quantity of the job size di-

vided by the rate of computation. pk is the

price of renting a ticket at the kth host for

a �xed time unit. Substituting the value of

tk into the product pknktk and taking the ex-

pected value, we derive the budget constraint

to be:

I �

KX
k=1

pkqk(nk + E[Mk])

ck
� 0 (2)

To solve the problem of how many shares

an agent should buy, we initially make some

assumptions:

1. Once an agent chooses a site, it may not

choose another until its current task is

completed.

2. Each portion of the itinerary has only

one site alternative.

3. The size of each agent's task is small

compared to the sum of the sizes of the

other tasks currently executing at any

host site.

4. The network of hosts is at or near equi-

librium.

5. The capacity, ticket price, and current

ticket circulations of all hosts are avail-

able to agents.

We will later relax Assumptions 2, 3, and 4.

When Assumption 2 is dropped, the prob-

lem of choosing the optimal expected path

is NP-complete if the agent has the esti-

mated costs and execution times at each

host. We note that the problem is the con-

strained shortest path problem [AMO93] and

show a transformation presented by Ahuja

et al [AMO93] from the knapsack prob-

lem [GJ79] to our problem. The constrained

shortest path problem (CSP) is given a di-

rected graph whose edges have associated

costs and lengths, a path length, l, and a cost

constraint, c, to �nd a path of at connecting

two points where the sum of the path's edge

cost is at most a c and the sum of the path's

edge lengths is at most l.

The problem is in NP; a solution can be

veri�ed in linear time by summing the costs

and lengths of all edges in the solution. We

can express any knapsack problem in terms of

CSP by creating a lattice graph in Figure 2.

The graph is divided into three levels. The

nodes in the top level, labeled i
0, represent

the choice of placing the ith object in the

knapsack. The nodes in the bottom level,

labeled i
00, represent the choice of excluding

the ith object. The edge from i to i
0 has

cost equal to the weight or volume, wi, of the

ith object, and distance equal to the negative

value, vi, of the ith object. All other edges

have zero cost and distance.
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Figure 2: A reduction of the knapsack prob-

lem to the constrained shortest path problem.

Since any knapsack problem can be ex-

pressed as a CSP problem and CSP is in NP,

CSP is NP-complete. We use Assumption 2

to create an estimator for the general case in

Section 3.2.2.

Assumption 3 allows us to reason about the

actions of a single agent without attempt-

ing to second guess the rest of the market.

Agents construct a purchasing policy, or bid-

ding function, based upon the assumption.

The bidding functions are then submitted to

the service providers who attempt to �nd a

resource allocation that satis�es every agent's

bid function.

Our next task is to derive agents' purchas-

ing policy that will minimize agents' execu-

tion time. A purchasing policy must account

for estimating the random variables, Mk's, in

Equations 2 and 1, the topic of the next sub-

section.

3.2.1 A Simple Estimator

EÆcient expenditure planning must forecast

future network conditions. In our prob-

lem, agents are concerned with the conges-

tion of resources represented by the size of

hosts' ticket circulations. We now describe a

method for agents to estimate future resource

contention based upon current conditions.

Assumption 4 implies that the load of every

host in the network is approximately equal

to the current host's load relative to price

and capacity. The agent observes that the

�rst site's ticket circulation is m1. We set

M1 = m1 and weight hosts' loads according

to capacity and price yielding:

E[Mk] =
(p1=c1)

(pk=ck)
m1 (3)

The use of the estimator in Equation 3 makes

sense if there is a reasonable ow of agents re-

questing service. Incoming agents will choose

to hold ticket leases with the highest value.

Once a site becomes crowded, the value of

each additional ticket sold drops, new agents

will choose to execute at sites with higher

ticket values, and the local population growth

will slow.

Using the Lagrange function [Lan87],

Equation 4, we minimize the denominator of

Equation 1, t(n1; : : : nK ; m1), under the bud-

get constraint, Equation 2.

L(n1; : : : nK; m1) = t(n1; : : : nK; m1)

��(I � e(n1; : : : nK ; m1))

(4)

Where t(n1; : : : nK; m1); the denominator of

Equation 1, and e(n1; : : : nK; m1); the bud-

get constraint from Equation 2, denote the

expected amount of time an agent takes to

perform its itinerary and the expected expen-

diture completing it, respectively, given the

ticket share purchases at each site and the

ticket circulation at the �rst host site. The

resulting solution gives a ratio for the share
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of computation at any two hosts:

nk

ni
=

vuut pi=ci

pk=ck
(5)

Using Equation 5 with the budget con-

straint, we obtain the optimal share to pur-

chase at the �rst site:

n1 =

I �
m1p1
c1

KP
k=1

qk

KP
k=1

qk

q
p1pk
c1ck

(6)

If the agent assumes that the current load

of future sites is equal to the future load, how-

ever, the optimal number of tickets to buy at

the �rst site is:

n1 =

I �
KP
k=1

pkqkmk

ck

KP
k=1

qk

q
p1pk
c1ck

(7)

Assumptions 3 and 4 imply that a newly

arriving agent's request for computing lottery

tickets will not e�ect the competition very

much. That is, agents already present will

not signi�cantly change their ticket holdings

in response to one more agent arriving.

In order for a host to obtain a solution in

which all agents are content with their ticket

holdings, a host must repeatedly query agents

for their purchases given the result of the last

iteration. Each iteration drives ticket hold-

ings towards a Nash equilibrium. Note that

Equation 6 is linear with respect to m1. On

this note, we would like to analytically com-

pute a �xed point solution where all agents

present at the host site will hold a stable

ticket share given their competitors' holdings.

Let there be L agents at the site and each lth

agent submits parameters

al = �

p1
c1

KP
k=1

qk

KP
k=1

qk

q
p1pk
c1ck

(8)

and

bl =
I

KP
k=1

qk

q
p1pk
c1ck

(9)

to describe each client's linear bidding func-

tion. al and bl are the coeÆcients of n1

in Equation 6. We omit subscripting of all

the parameters on the right-hand side of the

Equations 8 and 9 with l to avoid clutter.

We can calculate the number of shares that

clients buy as an iterated process. At the

ith iteration, the lth client buys a number of

shares speci�ed by the bidding function pa-

rameters and the number of competing shares

at the previous iteration,mi�1�nli�1 to yield:

nli = max(0; al(mi�1 � nli�1) + bl) (10)

The total number of tickets sold at the ith

iteration is then:

mi =
LX
l=1

max(0; al(mi�1 � nli�1) + bl) (11)

The max() function restricts agents to buying

a non-negative number of shares.

We cannot analytically solve Equations 11

and 10, but if we ignore the fact that the

al(mi�1 � nli�1) terms may be negative, set
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each nli = nli�1 andmi = mi�1, and solve, we

get a good start on the search process for a

ticket share equilibrium. Every time an agent

arrives or leaves a site, the server runs a bi-

nary search shown in Figure 3.2.1 to set the

circulation. The search process runs until the

ticket circulation oscillates within a set toler-

ance, �, or exceeds a set number of iterations,

limit.

ServerAllocate

1 m Solving �xed point of

Equations 11 and 10

2 lastm m

3 i 0

4 do

5 lastm (m + lastm)=2

6 m 0

7 foreach client l do

8 m += al � lastm + bl

9 i++

10 while ((jm� lastmj > � or i < 2)

11 and (i < limit or m < 0))

Figure 3: The processor allocation algorithm

used by servers.

We assume that host sites are able to aug-

ment q1 for each agent. It may be the case

that the series, m1; m2; m3; : : :, does not con-

verge to a positive value. Experimentally,

though, we �nd that the series converges

more than 99% of the time, most of the time

in fewer than ten iterations. When the series

does not converge within limit iterations, we

choose the last positive ticket circulation en-

countered in the search.

3.2.2 Considering Site Alternatives

We would like to expand our planning mecha-

nism to include information about more than

one host site per task. To handle site choice,

we augment Equation 6 slightly. We assume

that agents can observe ticket circulations at

prospective hosts for the next task to be com-

pleted. For later tasks, we use the means of

the prices and capacities of sites in each ser-

vice group.

Agents then choose host sites by construct-

ing an estimate of expected completion time

for itineraries beginining at each prospective

host using the averaged prices and capacities

for prospective hosts of the second and later

tasks. Again, agents assume that the reac-

tion of other agents already at the prospec-

tive hosts will be neglibible. The host site

with the lowest estimated completion time is

then chosen.

For example, an agent may have two tasks.

There are two sites able to accept the �rst

task and two more sites able to accept the

second. The second pair of sites have ca-

pacities 2.0 and 2.5, ticket circulations 5.2

and 7.0, and ticket prices 1.0 and 1.5, respec-

tively. The agent uses Equation 6 twice, set-

ting c2 = 2:25 and p2 = 1:25, to determine

the rate of compuation if the agent were to

begin its itinerary at either of the �rst pair

of sites. In the calculations, m1 is set to the

value of the current ticket circulations of each

of the �rst pair of hosts. The agent then

chooses the faster of the �rst pair of hosts.

We simulate strategies using both the fu-

ture site averaging and the reaction estimate

assumptions in the next section.
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4 Simulation

We wish to see how our strategies perform

in planning resource expenditure. To do so,

we simulate a network with a �xed number

of servers using the DaSSF simulation pack-

age [NL99]. The servers are partitioned by

the service that they provide. Our simula-

tions represent a network of eight services

each provided by eight hosts resulting in a

network with 64 host sites. Host site capac-

ity is normally distributed to make site choice

more meaningful.

Agents in the system are created at a Pois-

son arrival rate with exponentially sized jobs

(qk) comprising itineraries whose length (K)

are exponentially distributed. Endowments

(I) are the product of a normally distributed

random variable and the agents' job sizes

(Q =
P
qk).

Agents choose a site based upon the con-

gestion of the network, represented by site

ticket circulation. Once the agent chooses

the site, it commits to attempting to com-

plete the current task at the chosen site.

We now present several strategies that

agents can use to choose sites and bid. Sev-

eral are simple baseline comparisons.

4.1 Cheapest Available

Our �rst comparison algorithm, CHEAP

shown in Figure 4.1, chooses the site which

will complete the next task with the low-

est estimated expenditure. The predicate

cheaperTask returns true if the site repre-

sented by the �rst argument requires lower

expenditures than the site represented by the

second argument for executing the task repre-

sented by the third argument. � is the small-

est number of shares that hosts will lease to

an agent. Once the agent chooses the site, the

agent bids for the smallest amount of shares

possible until the job completes.

CHEAP

1 foreach task i

2 qmax  ;

3 foreach possible site j

4 if cheaperTask (qmax; j; i)

5 qmax  j

6 jumpTo qmax leasing � shares

Figure 4: The CHEAP planning algorithm.

With little competition, budget expendi-

ture is a weak constraint and one would ex-

pect this algorithm to complete jobs with a

high degree of certainty.

4.2 Random

As another comparison, we have imple-

mented a strategy we call RAND which is

shown in Figure 4.2. Each site o�ering a

given service has an equal chance of being

chosen by the algorithm. Once a site has been

chosen, the algorithm uniformly chooses be-

tween zero and 90 percent, non-inclusive, of

the budget to spend at the current site.

4.3 Equilibrium Assumption

We implement a strategy from Equation 6 to

choose sites and bid for shares. We �nd that

9



RAND

1 foreach task i

2 host uniform fhosts o�ering ig

3 jumpTo host

spending (uniform (0; 0:9I))

Figure 5: The RAND planning algorithm.

frequently agents using this strategy bid too

aggressively. That is, agents buy too many

shares early in their itineraries to allow rea-

sonably fast completion of later tasks. To ac-

count for the strategy's myopia, we multiply

agents' job size estimates by a constant factor

for purposes of bidding. Figure 6 shows the

results of our empirical search for a good bias

factor. In the experiment, all agents use the

same job size bias factor and agents arrive at

a rate so that system utilization is half the

system capacity. Empirically, we �nd that

2.2 is a good bias factor.

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3

Iti
ne

ra
ry

 C
om
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n

Job Size Bias Factor

observed
linear fit

Figure 6: Success rate of agents using the EQ

algorithm versus the job size bias factor.

EQ

1 foreach task q 2 Q

2 q  q � bias

3 foreach task i

4 qmax  ;

5 tmin  1

6 foreach possible site j

7 t tripTime

buying Eqn 6 shares

8 if t < tmin

9 qmax  j

10 jumpTo qmax withBidFunc Eqn 6

Figure 7: The EQ planning algorithm.

4.4 Complete Knowledge

The next strategy, COMP, is exactly like the

previous, except that the current load of all

servers to be used later in the itinerary is

known at the time agents choose a site and

bid for tickets. As with prices and capacities,

measures of load for future sites is averaged

over all sites o�ering the same service. This

strategy is less sensitive than the EQ strat-

egy to uctuating loads, so we do not bias job

size. The bidding function for each agent is

Equation 7.

We augment the EQ algorithm with the

bidding function in Equation 7 to yield the

algorithm shown in Figure 4.4, the COMP

planning algorithm.

4.5 Simulation Results

We investigate two general classes of envi-

ronments: one where all participating agents

10



COMP

1 foreach task i

2 qmax  ;

3 tmin  1

4 foreach possible site j

5 t tripTime

buying Eqn 7 shares

6 if t < tmin

7 qmax  j

8 jumpTo qmax withBidFunc Eqn 7

Figure 8: The COMP planning algorithm.

use the same bidding strategy, and one where

each agent uses a randomly chosen strategy.

We would �rst like to verify that agents

that pay more receive better service than

agents who pay less. Figure 9 shows obser-

vations of the amount that agents using the

EQ strategy spend relative to the size of their

jobs versus the performance that they receive.

We also plot a �
2 linear �t of the data. The

graph con�rms that agents' expected perfor-

mance is dependent to expenditure.

Figure 10 shows the rate at which agents

complete their itineraries compared to the job

arrival intensity rate. The rate of 6.4 jobs per

time unit is the system's maximum capacity.

Agents using the EQ strategy complete their

itineraries over 97 percent of the time until

system utilization exceeds 85 percent of ca-

pacity. COMP performs marginally better.

Agents using the CHEAP strategy always

complete their task. We omit plotting the

outcome. The strategy's success is due to the

fact that budgets dwarf expenditure. Agents

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16 18

P
er

fo
rm

an
ce

 R
at

e

Endowment Relative to Job Size

observation
linear fit

Figure 9: Agent endowment relative to job

size versus performance with �
2 �t.
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Figure 10: Itinerary success rate when all

agents use a single strategy.

using the CHEAP strategy cooperate to keep

the e�ective price of computation to negli-

gible levels and e�ectively eliminate budget

constraints. All agents receive equal compu-

tational priority, however, and there is little

reason to enforce a market system if all par-

ticipating agents use the CHEAP strategy.

Figure 11 shows the mean performance
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Figure 11: Average computational rate for

completed itineraries when all agents use a

single strategy.

rates of agents using various strategies, again

where all agents in the scenario have the iden-

tical strategies. The mean host site capacity

is 2.0, but in light loads, agents are able to

�nd access to faster hosts and raise the mean

rate of computation above the mean host ca-

pacity.

Again, the EQ and COMP strategies have

similar results. The RAND strategy does not

perform nearly as well as EQ and COMP

since choosing host sites randomly tends to

result in pockets of moderate congestion. Ad-

ditionally, the wide spread in bids leads to

performance disparities that lower the mean

computation rate.

Agents using the CHEAP strategy have

dismal performance; they always pick the

cheapest service provider regardless of the

performance. The result is that a few

providers handle much of the load and the

more expensive ones are left empty.
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Figure 12: Success rates of a agents in a sce-

nario where each strategy is used by one quar-

ter of the population.

Finally, we are interested in how the dif-

ferent strategies compete against each other.

In our next simulation, when an agent is cre-

ated, it is assigned one of the four strategies

uniformly.

Figure 12 shows the itinerary completion

success of the four strategies competing in a

common environment. The strategies, with

the exception of CHEAP, perform similarly

as they do in homogeneous environments.

The CHEAP strategy's success is a�ected by

the other strategies crowding the agents us-

ing CHEAP. Once the ticket circulation rises

above a certain level, it becomes impossible

for a CHEAP agent to complete its task.

Figure 13 shows the mean rate that agents

compute their tasks in job units per time

unit. Again, the results are similar to those

in the homogeneous environments.
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Figure 13: Average rate of computation for

completing agents in an environment where

each strategy is used by one quarter of the

population.

5 Discussion

Both EQ and COMP strategies perform well.

Good performance is evident in Figures 11

and 13. While the network load is under half

capacity, the majority of agents are able to

achieve service better than the average host

can provide.

Since the level of service degrades gradu-

ally with increasing arrival intensities, we be-

lieve that our lottery allocation policy scales

nicely and that the EQ and COMP strategies

will work well in many environments.

In our experiments, complete knowledge of

the network state does not give agents signif-

icant gains in performance. In part, this is

because loads of servers across services are

correlated. If the loads were uncorrelated

(or perhaps even negatively correlated), the

equilibrium assumption used in the EQ strat-

egy would hinder agents' performance, while

agents using complete knowledge would be

less e�ected.

The equilibrium assumption, however,

does have one bene�t when shares are up-

dated: it is not necessary to obtain the loads

of all servers in the network. This feature is

especially important if the network is discon-

nected as in the case of many mobile-agent

applications.

Another bene�t of using the EQ and

COMP strategies is their simplicity. Much

of the EQ and COMP algorithms' simplicity

is is due to the fact that the agents do not

attempt to preserve savings; they attempt to

spend all of their funds on computation. This

behavior justi�es the use of a linear bid func-

tion.

If savings were an issue, however, linear

functions would not suÆce. Agents would

then desire to bid small amounts in situations

with little congestion as well when resource

contention is high. Agents would bid most

under moderate resource contention. Dis-

pensing agents' need to save facilitates equi-

librium �nding and avoids the problem of

measuring the value of savings versus faster

execution.

5.1 Structure

In running many simulations and devising

bidding algorithms we have noticed a few

properties of our lottery-based resource allo-

cation system. Information regarding the dis-

tribution of ticket circulation at host sites cer-

tainly e�ects planning decisions on the part

of agents. We observe that the distribution of

13



ticket sales at sites is roughly Gaussian. Fig-

ure 14 shows histograms of ticket frequencies

at two di�erent sites with 50 percent load.

Each histogram is generated by collecting the

ticket circulation whenever an agent arrives

or departs a site.
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Figure 14: Histogram of ticket circulation at

two sites over a run with a relative load of

50% and Gaussian distributions with the cor-

responding mean and variances.

We believe that this distribution is heavily

dependent on the distribution of the sum of

agents' endowments relative to their job sizes

(also Gaussian). We believe that the distri-

bution of wealth at sites is valuable knowl-

edge for expenditure planning and our future

expenditure planning algorithms will use the

distribution to estimate resource congestion.

The distribution of ticket sales at sites will

become important if we wish to consider the

possibility of allowing agents to restart or

continue their un�nished current execution at

another site. Agents could estimate their ex-

pected time savings given the time taken to

jump across the network (a feature we do not

yet model) and the mean and variances of

other sites' tickets sales.

We now turn our attention to general prop-

erties of our system at equilibrium. Specif-

ically, we are interested in the relationship

between price of tickets and congestion, the

ticket circulation relative to system capacity.

At equilibrium, the relationship of price to

congestion is strictly decreasing. The argu-

ment is simple: agents will choose cheaper

service from faster hosts over more expensive

service from slower hosts.

Currently, we do not model agents' abil-

ity to split the execution of one task across

multiple servers. Breaking up computation is

not unreasonable if the mobile-agent system

supports a transparent jump command, like

D'Agents' agent jump command. An agent

can execute a portion of its task at one server

and then relocate to another host to continue

the rest of the task. The resulting perfor-

mance is a weighted average of the two sites

with an amount of overhead to account for

relocating the agent.

If we allow splitting of tasks, then we may

make further assumptions on the relation-

ship between price and congestion; at equi-

librium the relationship may not be concave

downward. Breaking up the execution al-

lows agents to use portfolio strategy to blend

performance of multiple sites to achieve a

weighted average of site performance. Hence

if the relationship becomes concave down-

ward, agents will prefer splitting their execu-

tion between sites cheap congested sites and

expensive fast sites rather than jump to sites

less extremely characterized sites. The argu-
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ment is illustrated in Figure 15.
M

/C
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A CB

Figure 15: Relative congestion as a function

of ticket price at equilibrium may not be con-

cave downward if agents' jobs can be broken

up to be executed at multiple sites. If the

function is concave downward as represented

here, agents will choose to execute parts of

their jobs at A and C until the weighted per-

formance of such a portfolio becomes at least

as congested as the performance at site B.

One �nal note on price concavity: if

agents use mean metrics for planning ex-

penditure as done in Section 3.2.2 and the

price-congestion relationship is concave up,

the price-congestion pair representing the av-

erage of several hosts will provide a conserva-

tive estimator.

6 Related Work

Waldspurger [WW94] uses lotteries as a re-

source allocation model to manage computa-

tional resources such as network bandwidth,

processor time, and memory. Two major dif-

ferences between standard lotteries and ours

is that tickets are leased, not bought, and

are consumed only when the lease expires.

Scheduling can be done in a simple round-

robin time slicing manner.

An implementation a lottery market-based

system is in the Geneva Messengers [Tsc97]

mobile-agent system where a currency system

is used to allocate CPU time as well as mem-

ory for mobile agents. Processing resources

are allocated through agents buying tickets.

At each quantum, a ticket is chosen and the

owning agent is given access to the CPU for

the quantum. One feature of lotteries im-

plemented in this way, is that the while the

price of computational priority may uctu-

ate, the price of a quantum of CPU time is

�xed, facilitating budget planning. Pricing in

this manner does not enforce a positive corre-

lation between the demand and the price of a

scarce resource, however, giving agents little

incentive to balance network load.

Memory in the Messengers system is also

allocated using a currency system. Agents

\sponsor" persistent blocks of memory. A

block of data is endowed with currency by

interested parties (readers). Periodically, the

sponsored blocks' accounts are charged and

blocks having depleted accounts are ushed

from the system. The rate at which blocks

are charged varies over time depending on the

contention for additional block space.

While Messengers has market resource al-

location mechanisms, the system presents no

means for expenditure planning on the part

of agents.

Moizumi [Moi98] attacks similar mobile-

agent problems. He derives a general pro-

cedure for mobile agents to plan an itinerary
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visiting a known set of hosts using dynamic

programming is presented. Much of the work

is based on NP-completeness work through

reduction to the Traveling Salesman Problem

and approximation solutions. Our work takes

a di�erent slant; we assume that the basic se-

quence of computation is predetermined and

that re�nements of location and priority de-

cisions are made along agents' travels.

In our investigations concerning the appli-

cability of our system to load balancing, it is

certainly worth mentioning that it has been

shown that heterogeneity of preferences can

improve load balancing substantially by en-

couraging adaptive systems to further explore

the parameter space than agents in a homo-

geneous populations [SST95].

7 Summary

We believe that mobility would be of far

greater use to software developers if a larger

number of host sites would be willing to host

arbitrary agents. There is little reason for

sites to accept foreign mobile agents, how-

ever. To remedy this shortfall, we propose

that agents purchase the resources that they

consume from hosts.

We present a market-based CPU priority-

allocation policy and simple algorithms that

allow mobile agents to plan multi-hop trips

through a network of host systems provid-

ing various services. The algorithms that we

present produce both a route through the

network and the desired computational pri-

ority to be received at each site on the route.

The constructed plans minimize agent exe-

cution time while preserving a �xed budget

constraint.

Our simulations show that the algorithms

scale smoothly. Evidence of our algorithms'

e�ectiveness is that we are frequently able to

plan routes through a network with perfor-

mance greater than the average host is capa-

ble of providing and that we are able to com-

plete agent itineraries with empirically high

con�dence.
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