View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dartmouth Digital Commons (Dartmouth College)

Dartmouth College

Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

12-9-1998

Hey, You Got Your Language In My Operating System!

Jon Howell
Dartmouth College

Mark Montague
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

b Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation
Howell, Jon and Montague, Mark, "Hey, You Got Your Language In My Operating System!" (1998).
Computer Science Technical Report PCS-TR98-340. https://digitalcommons.dartmouth.edu/cs_tr/164

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://core.ac.uk/display/337601214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/164?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Hey, You Got Your Language In My Operating System!

Jon Howell*
Mark Montague

Technical Report PCS-TR98-3401

Department of Computer Science
Dartmouth College
Hanover, NH 03755-3510
{jonh,montague }@Qcs.dartmouth.edu

December 9, 1998

Abstract

Several projects in the operating systems research
community suggest a trend of convergence among fea-
tures once divided between operating systems and
languages. We describe how partial evaluation and
transformational programming systems apply to this
trend by providing a general framework for applica-
tion support, from compilation to run-time services.
We contend that the community will no longer think
of implementing a static collection of services and
calling it an operating system; instead, this general
framework will allow applications to be flexibly con-
figured, and the “operating system” will simply be
the application support that is supplied at run-time.

1 Introduction

In ten or fifteen years, we bet, this workshop will
become the “Workshop on Hot Topics in Run-Time
Application Support.” As a community, we used to
define an operating system as “hardware abstraction
and resource management” [SS94, Tan87]. It is the
authors’ opinion that there are a continuum of tools
that provide application support, from compiler to
thread scheduler, and that the choice of parts to be
in the run-time “operating system” should be made
by the application or the user, not by the operating
system designer. What we now call the operating

*Jon Howell is supported by a research grant from the
USENIX Association. Both authors are graduate students,
and would like to be considered for the TCOS award.

TSubmitted to the Seventh Workshop on Hot Topics in Op-
erating Systems (HotOS-VII)

system is merely the run-time aspect of the entire
application support system.

In the conventional programming model, a pro-
gram is specified as source code. A compiler evalu-
ates that specification as much as possible statically,
and produces an executable image that depends on
run time services from the operating system to pro-
vide the dynamic features used in the program. Con-
ventional operating systems provide protection, con-
currency, hardware abstraction, and simple commu-
nication primitives. Conventional languages provide
much richer abstraction and communication, but no
concurrency, and protection not against adversaries
but only against the programmer shooting his own
foot.

However, modern operating systems are offering
features once most associated with languages, and
modern languages are providing features once left to
the operating system. We conjecture that the bound-
ary between operating systems and languages is frac-
turing, and that the term “operating system” is grad-
ually losing any useful, precise definition. The oper-
ating system and language domains are converging
because the existing boundary between them is only
artificial.

In this paper, we first provide evidence of the con-
vergence of operating systems and languages. Then,
in Section 3, we discuss a model of compilation based
on partial evaluation and transformation that allows
applications to compile in assumptions early for bet-
ter performance, or to defer implementation decisions
to allow run-time flexibility. In Section 4, we pro-
pose extending the model into the operating system
domain, and describe how the extended model sub-

sumes the ad-hoc systems described in Section 2. Fi-
nally, we mention some problems with our approach,
and draw conclusions about how it will apply to the
operating systems research community.

2 The convergence of operating
systems and languages

In this section, we will examine six ways in which lan-
guages are looking more like operating systems, and
operating systems are looking more like languages.

2.1 Threads of execution

Applications have increasing needs for internal con-
currency, to provide multiple client support in a
server, or to implement a user-interface with fast re-
sponse time. This is evidenced by the wide number of
threads packages available for traditional languages,
and the introduction of threads directly into language
cores, such as in Java [Fla97].

Operating systems, on the other hand, are find-
ing ways to provide application-specific control over
scheduling, such as the inheritance scheduling scheme
used in Fluke [FS96, FHL196]. On a parallel ma-
chine, an application may be able to completely mo-
nopolize several nodes. To exploit this, some parallel
operating systems are implemented as application-
level library frameworks [MCK91].

2.2 Protection and context switching

Applications are also demanding greater internal pro-
tection. Many applications allow macros, plug-ins,
or downloaded content. Some, such as Adobe Photo-
shop or Macromedia FreeHand, have ad-hoc binary
extension (plug-in) interfaces. Microsoft’s Compo-
nent Object Model is a generic mechanism for unpro-
tected application extension [OHE96]. Other appli-
cations restrict extensions to a limited language envi-
ronment; examples include Microsoft Word’s macros
and Netscape Navigator’s JavaScript and Java.

An interpreter provides operating-system-like ser-
vices for the application running inside it. For exam-
ple, the Agent Tcl system implements protection and
resource allocation in an interpreter to allow execu-
tion of foreign mobile agents [KGN197].

Druschel et al. point out that programmers
are currently forced to decide at development time
which module interfaces to protect (by using context
switches, an operating system service), and which to
make efficient (by using function calls, a language
service). They propose decoupling modularity from

protection in their Lipto system by offering a cross-
module call that, based on a run-time decision, is im-
plemented either as a fast function call or a protected
context switch [DPH92].

Protected Shared Libraries provide an intermediate
level of protection between a full context switch and
a function call, which allows a shared library to offer
services whose implementations are protected from
the main application [BTC97].

2.3 Services

Various services have typically been provided either
in the operating system or a language library, as im-
plementors have seen fit. In this section, we mention
a few cases where services have crossed the “red line”
as performance tradeoffs and implementation chal-
lenges have changed. For example, while persistence
and replication are often implemented as features of a
cluster-wide operating system [CLFL94, MWSK94],
one can dynamically insert services such as persis-
tence or replication into CORBA objects, using a
mechanism not unlike binary rewriting [MCD95].

Conventional operating systems typically provide
persistence service in the form of a file system ac-
cessible by function calls from the language level.
However, languages that offer persistence as a first-
class feature (orthogonal persistence [MH96]) can
make some applications much easier to implement
[MCKM96, Jor96, PAD'97]. Unfortunately, or-
thogonal persistence maps clumsily to a conven-
tional file system, so sometimes orthogonal persis-
tence is provided directly via the operating system
[How98, Lie93, DABFT94].

Sometimes library-like features, such as graphical
user-interface components and sound processing ser-
vices, are packaged into the operating system. Com-
mercial desktop operating systems such as MacOS
and Windows NT are notable examples. While Unix
provides examples of how to provide such features at
user-level, performance concerns motivate operating-
system-level implementations.

2.4 Extensibility

Application-specific extensibility is a significant trend
in operating systems research. Applications supply
kernel extensions to replace inappropriate or ineffi-
cient default services. The VINO extensible oper-
ating system protects its kernel from errant exten-
sions using software fault isolation [SESS96]. The
SPIN kernel relies on language type safety to pro-
tect itself from misbehaved extensions [BCE195,
BSP*95, PB96]. The Exokernel achieves exten-

sibility by pushing most services out of the ker-
nel into user level, where applications simply re-
place default library implementations with their own
[EK95, MK97, KEG"97].

The drive toward extensible operating systems can
be viewed as trying to make the operating system as
flexible as a language/library environment. Features
that were once “run-time constants,” decided at ker-
nel compilation time, become run-time variable, with
alternate values or implementations supplied at run
time.

2.5 Profiling and specialization

Many profiling and tracing systems rewrite binaries
to insert code, a task that requires clever tricks to fix
up addresses that have already been wired down as
constant [LS95, SE94].

Seltzer and Small have proposed a profiling and
adaptation system for VINO that can simulate policy
changes inside the kernel, and install those deemed
effective [SS97]. In the Morph system, an operat-
ing system extension profiles a running application,
then a language-domain code layout tool rewrites the
application binary to optimize instruction cache and
branch prediction performance [ZWG197].

Self is a pure, dynamically-typed object-oriented
language that requires an aggressive implementation
to run efficiently. The run-time environment includes
dynamic profiling, specialization, and compilation to
discover and exploit any quasi-static features of the
code in the system, while maintaining the illusion
that the system is dynamically typed. The result
is a system with the convenience and functionality of
an interpreter, but the speed of a compiled language
[HU94, CU91, Ho193).

‘C is an extension to C that includes syntax for
dynamic code generation. Its compiler tcc generates
code optimized with respect to run-time constants
[EHK96, PEK97]. Consel and Noél demonstrate a
general system for efficient run-time specialization in
C [CN96].

A hot topic in operating systems is the dynamic
specialization of code to optimize performance for
current conditions. For example, the Synthesis ker-
nel and its successor Synthetix perform run-time spe-
cialization of operating system services for efficiency.
Specialization occurs when the system knows that
certain variables in a function will, for a certain time,
remain constant; this condition is called a quasi-
invariant. The system recompiles the function, ex-
ploiting the new static information at compile time to
save run-time instructions. The specialized function
is discarded when the quasi-invariant becomes false.

An example of the use of specialization in Synthetix
is a specialized read () function with no concurrency
checks for use with files opened exclusively for reading
[Mas92, CAK 196, CBK 196, VCMC97, CBK'96].
Franz has also proposed making run-time code gen-
eration a central operating system service. In his sys-
tem, mostly-compiled code is compiled just-in-time
when an application is launched, then recompiled for
optimization as the program runs [Fra97al.

3 Partial evaluation and trans-
formational programming

In the previous section, we examined evidence that
features once provided by languages are being offered
by operating systems, and vice-versa. In this section,
we look at some systems that attempt to unify the
compiler tool chain.

Franz points out that compiling, linking, and load-
ing are aspects of a single problem, and that by com-
piling to the right machine-independent representa-
tion, one can avoid the “fix-up” steps usually asso-
ciated with dynamic linking [Fra97b]. In fact, ob-
serve that in a traditional C tool chain, preprocessing,
compiling, linking, and loading tools each manipulate
special-purpose file formats, so that the same tools
cannot be used to perform similar operations on code
at different stages of compilation.

A deeper observation is that at each stage of com-
pilation, each tool does the same basic job, that of
partial evaluation: it replaces symbols with values
where values are known (constant), and leaves the
other symbols (still variable) alone. Some steps in-
clude an optimization pass, where the discovery of
symbols with constant value leads to the simplifica-
tion of sections of code. Continuing with our example
of the C tool chain, the preprocessor replaces known
text strings with macro values, and the compiler re-
places known constructs (such as loops and arith-
metic) with static code fragments. The static linker
replaces references to known functions with the ad-
dress of the function in the linked executable. The
dynamic linker does the same job at run time.

Jones describes beautifully how the simple, central
concept of partial evaluation allows one to write ab-
stract, pure code, while still generating efficient exe-
cutables. Partially evaluating an interpreter with re-
spect to a program results in a compiled version of the
program, eliminating the usual interpreter run-time
overhead, and allowing the programmer to create ef-
ficient code without creating a compiler [Jon96].

Partial evaluation is the guiding concept; transfor-
mational systems are a general way to implement spe-

cific evaluations. In transformational systems, pro-
grams are transformed from abstract, formal rep-
resentations into efficient executables by repeatedly
applying transformations from a collection of rules.
Each transformation preserves the correctness of the
program while making it more concrete by introduc-
ing some implementation decision while rejecting al-
ternative implementations. Some driver directs the
application of transformations until the program is
completely concrete; that is, executable. Boyle gives
a nice introduction to transformational systems, in
the context of his TAMPR driver [Boy89]. In CIP-S,
a human being is the driver, interactively selecting
and applying transformations [Vul94].

Metaprogramming is a form of transformational
system, wherein transformations are specified as im-
perative programs rather than declarative rewrite
rules. TXL, or tree transformation language, lets
one express transformations as “by-example” mod-
ifications to source text in the native language of
the program being transformed [CS92]. In inten-
tional programming, transformations are automat-
ically matched against the target program’s struc-
ture, and exhaustively applied until no transforma-
tion’s precondition occurs in the program [Sim96,
ADK™197].

4 Extending partial evaluation
into the kernel

In conventional systems, and to our knowledge in
most transformational programming systems, the
process of partial evaluation stops once it produces a
binary executable. Systems like Synthetix may pro-
vide specialized implementations of operating system
functions behind the kernel “red line;” extensible sys-
tems like VINO and SPIN allow applications to sup-
ply such replacements at run-time. But observe two
facts: (1) The partial evaluation does not affect the
application-kernel interface, and (2) at each stage (in-
cluding inside the kernel of specializing and extensi-
ble kernels), the mechanism and interface to partial
evaluation is different and ad-hoc.

We propose to extend the concept behind trans-
formational programming systems to subsume oper-
ating system functionality. The artificial boundary
we mentioned in Section 1 is the application binary
interface (ABI): compilers create binary executables,
operating systems load and run those executables.
As we mentioned above, transformational systems al-
low fragments of code to be partially evaluated, ei-
ther sooner (for performance) or later (for flexibility).
This flexibility would be useful even beyond the cre-

ation of application binaries, into the realm of tasks
we refer to as the operating system software. The ul-
timate goal of partial evaluation is not a binary file,
but a complete computation.

In the following sections, we examine how partial
evaluation applies to each of the examples we listed
in Section 2.

4.1 Threads of execution

An application programmer could specify the threads
of an application in an abstract manner, expressing
as much concurrency as she finds appropriate. The
actual decision as to whether the threads share an
address space, protection domain, or even a node,
could be deferred until late in the compilation pro-
cess. A high-performance web server might resolve
the thread abstraction with a transformational mod-
ule that places all the threads into supervisor mode
inside the kernel; on a multi-user machine the same
code might be compiled to run each thread in a sep-
arate hardware context.

4.2 Protection and context switching

Each choice in the smorgasbord of current protection
schemes makes a tradeoff between performance and
safety. Instead of designing the protection scheme
into each plug-in interface, imagine if plug-in software
could be compiled by transformational units to meet
an appropriate interface. Trusted plug-ins (shipped
with an application, or signed by a trusted signature)
would be compiled to fast binary code. Untrusted
plug-ins would be compiled to a verifiable language,
or have fault isolation checks inserted. We apply the
general technique of program transformation to de-
couple modularity from protection.

4.3 Services

Our examples of inserting services such as persistence
and replication into object implementations included
one solution that works by rewriting the binary code
of methods and others that work by making persis-
tent or replicated the entire environment that ob-
jects run inside. In a transformational system, we
would expect to see similar approaches, but defined
in a more general way, perhaps with better source-
language or operating-system portability.

The user interface example concerned whether to
put user interface components into the operating sys-
tem kernel for performance. In a transformational
system, that decision (like other protection decisions)

can be deferred to system configuration time. Em-
bedded systems or single-user systems might load the
user interface alongside other supervisor mode ser-
vices for speed (saving some context switching); a
multiuser system would package it in its own protec-
tion domain as is done with the X Windows server.

4.4 Extensibility

Extensibility is a natural consequence of partial eval-
uation. The programs that serve as the “operating
system” in our hypothetical system are programs like
any other, and can thus defer certain operations (in-
cluding linking in code) to run time. Extensibility
is expressed by linking new code into parts of the
operating system at run time. Safety, or protection,
would work as we described above: depending on the
system, or perhaps even mixed in a single system, ex-
tensions would be subject to a pass through a code
verifier, a software fault isolator, or perhaps no check
at all.

4.5 Profiling and specialization

The opposite of extensibility is specialization. When
a code path is specialized, it is no longer as gen-
eral and flexible as before, but now has fewer tests
and branches, and so executes faster. Specialization
is partial evaluation working in the other direction
from extensibility. If the transformation system is
still available to operating system code at run time,
it can be used to recompile a code fragment, treat-
ing some variables as quasi-invariants. As in SPIN or
Synthetix, guards would still need to be installed to
detect when the assumptions used in the specializa-
tion fail; perhaps related transformational modules
would be able to automatically generate guard code.

In summary, by introducing the general concept of
partial evaluation, several ad-hoc systems can be sub-
sumed by a single transformational approach that al-
lows implementation decisions to be made sooner for
performance or deferred for flexibility. The conven-
tional tool chain partitions various services (syntactic
parsing, variable allocation, collection of code into
reusable libraries, persistence, scheduling) into spe-
cific tools (compiler, linker, operating system), which
sacrifices flexibility: when a given step is performed,
it is performed exactly once for the entire application.
In our proposal, partial evaluation extends into the
operating system, so that tradeoffs between perfor-
mance and flexibility can be made at all levels with-
out requiring the introduction of ad-hoc interfaces
and implementations.

5 Objections

We usually assume that operating systems should be
language independent, so they can run a variety of
applications, but the system we describe seems to
be an integrated system, from language all the way
through to run time kernel. In fact, the only cen-
tral element is the transformation driver or partial
evaluator. Programs and transformations can be ex-
pressed in a single “wide-spectrum language,” in a
general abstract syntax tree form, or in a series of
intermediate syntaxes. One can still use multiple
parser transformations to implement various source
languages.

Another concern is the visibility of concrete seman-
tics at the source code level. In our discussion of
thread and protection issues, we suggested that code
might express as much concurrency as the program-
mer finds appropriate, with thread and protection
domain decisions deferred. The (potential) presence
of a protection domain or address space boundary,
however, means that the programmer cannot assume
that two threads can access the same object in shared
memory. Formal languages can hide reference versus
copy semantics and other concrete semantics from the
programmer. As Boyle describes, the ultimate goal
is to express the desired computation in a purely ab-
stract, formal way; then to introduce all implemen-
tation decisions (such as the use of references versus
copies) as applications of transformations [Boy89].

6 Conclusion

The community used to define the operating system
by what was in it: “hardware abstraction and re-
source management.” However, we argue that what
comprises an operating system is only “that applica-
tion support that is provided at run time.” In Sec-
tion 3, we described the partial evaluation model, in
which the concept of “compile time” vs. “run time” is
extended to a continuum between static and dynamic
evaluation; and in Section 4, we extended that model
beyond the application binary interface into the realm
of traditional operating system functions. Such an ex-
tended model would allow services to migrate freely
between the “operating system” (run-time environ-
ment) and “language” (compile-time environment).
We argue that the boundary between operating
systems and languages is fracturing because it is arti-
ficial, and that the term “operating system” is grad-
ually losing any useful, precise definition. Current
systems break through the artificial boundary by cre-
ating ad-hoc mechanisms to introduce flexibility or
performance where it was previously unavailable. We

posit that a partial evaluation system captures and
manifests the continuum from language to operating
system in a general way. Systems based on transfor-
mational programming will subsume both extensible
and specializing operating-system designs.

Acknowledgements

Thanks to our advisors David Kotz and Javed Aslam
for tolerating our flights of fancy. We would also like
to thank John Chapin for bringing to our attention
the literature on transformational programming.

References
[ADK"97] William Aitken, Brian Dickens, Paul
Kwiatkowski, Oege de Moor, David Richter,
and Charles Simonyi. Transformation in
Intentional Programming. Microsoft
Research white paper, September 1997.
Available at: http://www.research.
microsoft.com/research/ip/overview/
TrafoInIP.pdf.

[BCE"95] Brian N. Bershad, Craig Chambers, Susan
Eggers, Chris Maeda, Dylan McNamee,
Przemystaw Pardyak, Stefan Savage, and
Emin Giin Sirer. SPIN: An extensible
microkernel for application-specific
operating system services. ACM Operating

Systems Review, 29(1):74-77, January 1995.

[Boy89] James M. Boyle. Abstract programming
and program transformation. In Ted J.
Biggerstaff, editor, Software Reusability,
chapter 15, pages 361-413. ACM Press,

1989.

[BSPT95] Brian Bershad, Stefan Savage, Przemystaw
Pardyak, Emin Giin Sirer, Marc E.
Fiuczynski, David Becker, Craig Chambers,
and Susan Eggers. Extensibility, safety and
performance in the SPIN operating system.
In Proceedings of the Fifteenth ACM
Symposium on Operating Systems
Principles, pages 267-284, Copper
Mountain, CO, December 1995. ACM Press.

[BTCOIT7] Arindam Banerji, J. M. Tracey, and
David L. Cohn. Protected shared libraries
— a new approach to modularity and
sharing. In Proceedings of the 1997
USENIX Technical Conference, pages

59-75, January 1997.

[CAK'96] Crispin Cowan, Tito Autrey, Charles
Krasic, Calton Pu, and Jonathan Walpole.
Fast Concurrent Dynamic Linking for an
Adaptive Operating System. In

International Conference on Configurable

[CBK™96]

[CLFL94]

[CN96]

[CS92]

[CU91]

[DABF*94]

[DPH92]

[EHK96]

Distributed Systems (ICCDS’96),
Annapolis, MD, May 1996.

Crispin Cowan, Andrew Black, Charles
Krasic, Calton Pu, Jonathan Walpole,
Charles Consel, and Eugen-Nicolae
Volanschi. Specialization classes: An object
framework for specialization. In Proceedings
of the Fifth International Workshop on
Object Orientation in Operating Systems,
pages 72-77, Seattle, WA, October 1996.
IEEE Computer Society Press.

Jeffrey S. Chase, Henry M. Levy, Michael J.
Feeley, and Edward D. Lazowska. Sharing
and protection in a single address space
operating system. ACM Transactions on
Computer Systems, pages 271-307,
November 1994.

Charles Consel and Frangois Noél. A
general approach to run-time specialization
and its application to C. In 23rd Annual
ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages,
pages 145-156, St. Petersburgh Beach, FL,
January 1996.

J.R. Cordy and M. Shukla. Practical
metaprogramming. In Proceedings of the
1992 IBM Centre for Advanced Studies
Conference, pages 215-224, November 1992.

Craig Chambers and David Ungar. Making
pure object-oriented languages practical. In
Proceedings of the Annual Conference on
Object-Oriented Programming Systems,
Languages, and Applications, pages 1-15,
October 1991.

Alan Dearle, Rex di Bona, James Farrow,
Frans Henskens, Anders Lindstrom, John
Rosenberg, and Francis Vaughan.
Grasshopper: An orthogonally persistent
operating system. Computing Systems,
7(3):289-312, Summer 1994.

Peter Druschel, Larry L. Peterson, and
Norman C. Hutchinson. Beyond
micro-kernel design: Decouping modularity
and protection in Lipto. In Proceedings of
the Twelfth International Conference on
Distributed Computer Systems, pages
512-520, June 1992.

Dawson R. Engler, Wilson C. Hsieh, and
M. Frans Kaashoek. ‘C: A language for
high-level, efficient, and
machine-independent dynamic code
generation. In Proceedings of the ACM
SIGPLAN Conference on Programming
Language Design and Implementation,
pages 131-144, 1996.

[EK95]

[FHL™96]

[F1a97]

[Fra97al

[Fra97b]

[FS96]

[H&193]

[How98]

[HU94]

[Jon96]

[Jor96]

[KEG97]

Dawson R. Engler and M. Frans Kaashoek.
Exterminate all operating system
abstractions. In Proceedings of the Fifth
Workshop on Hot Topics in Operating
Systems (HotOS), pages 78-83, 1995.

Bryan Ford, Mike Hibler, Jay Lepreau,
Patrick Tullmann, Godmar Back, and
Stephen Clawson. Microkernels meet
recursive virtual machines. In Proceedings
of the 1996 Symposium on Operating
Systems Design and Implementation, pages
137-151, October 1996.

David Flanagan. Java in a Nutshell.
O’Reilly & Associates, second edition, 1997.

M. Franz. Run-time code generation as a
central system service. In Proceedings of the
Sizth Workshop on Hot Topics in Operating
Systems (HotOS), pages 112-117, 1997.

Michael Franz. Dynamic linking of software
components. IEEE Computer, pages 74-81,
March 1997.

Bryan Ford and Sai Susarla. CPU
inheritance scheduling. In Proceedings of the
1996 Symposium on Operating Systems
Design and Implementation, pages 91-105,
October 1996.

Urs Hoélzle. Integrating
independently-developed components in
object-oriented languages. In Proceedings of
the Seventh Furopean Conference on
Object-Oriented Programming, pages 36—56,
July 1993.

Jon Howell. Straightforward Java
persistence through checkpointing. In
Proceedings of the Third International
Workshop on Persistence and Java,
Tiburon, CA, September 1998. Available at:
http://www.sunlabs.com/research/
forest/com.sun.labs.pjw3.main.html.

Urs Holzle and David Ungar. Optimizing
dynamically-dispatched calls with run-time
type feedback. In SIGPLAN Notices,
volume 29, pages 326-336, June 1994.

Neil D. Jones. An introduction to partial
evaluation. ACM Computing Surveys,
28(3):480-503, September 1996.

Mick Jordan. Early experiences with
persistent Java. In Proceedings of the First
International Workshop on Persistence and
Java, September 1996. Available at:
http://www.sunlabs.com/research/
forest/UK.Ac.Gla.Dcs.PJW1l.pjl.html.

M.F. Kaashoek, D.R. Engler, G.R. Ganger,
H.M. Briceno, R. Hunt, D. Mazieres,
T. Pinckney, R. Grimm, J. Jannotti, and

[KGNT97]

[Lie93]

[LS95]

[Mas92]

[MCDY5)

[MCK91]

[MCKM96]

[MHY6]

[MK97]

K. Mackenzie. Application performance and
flexibility on exokernel systems. In
Proceedings of the Sixteenth ACM
Symposium on Operating Systems
Principles, pages 52—65, October 1997.

David Kotz, Robert Gray, Saurab Nog,
Daniela Rus, Sumit Chawla, and George
Cybenko. Agent Tcl: Targeting the needs of
mobile computers. IEEE Internet
Computing, 1(4):58-67, July/August 1997.

Jochen Liedtke. A persistent system in real
use: Experiences of the first 13 years. In
Proceedings of the Third International
Workshop on Object Orientation in
Operating Systems, pages 2—11, 1993.

James R. Larus and Eric Schnarr. EEL:
machine-independent executable editing. In
Proceedings of the 1995 ACM SIGPLAN
Conference on Programming Language
Design and Implementation, pages 291-300,
June 1995.

Henry Massalin. Synthesis: An efficient
implementation of fundamental operating
system services. PhD thesis, Columbia
University, 1992.

A. Mohindra, G. Copeland, and

M. Devarakonda. Dynamic insertion of
object services. In Proceedings of the Third
USENIX Conference on Object-Oriented
Technologies, pages 13—20, 1995.

Peter W. Madany, Roy H. Campbell, and
Panos Kougiouris. Experiences building an
object-oriented system in C+4++. Technical
Report UTUC-DCS-R-91-1671, The
University of Illinois at Urbana-Champaign,
March 1991.

Ron Morrison, Richard Connor, Graham
Kirby, and David Munro. Can Java persist?
In Proceedings of the First International
Workshop on Persistence and Java,
September 1996. Available at:
http://www.sunlabs.com/research/
forest/UK.Ac.Gla.Dcs.PJWl.pjl.html.

J. Eliot B. Moss and Tony L. Hosking.
Approaches to adding persistence to Java.
In Proceedings of the First International
Workshop on Persistence and Java,
September 1996. Available at:
http://www.sunlabs.com/research/
forest/UK.Ac.Gla.Dcs.PJWl.pjl.html.

D. Mazieres and M.F. Kaashoek. Secure
applications need flexible operating systems.
In Proceedings of the Sizth Workshop on
Hot Topics in Operating Systems (HotOS),
pages 56-61, 1997.

[MWSK94] K. Murray, T. Wilkinson, T. Stiemerling,
and P. Kelly. Angel: resource unification in
a 64-bit microkernel. In Proceedings of the
Twenty-Seventh Annual Hawaii
International Conference on System
Sciences, pages 106—115, January 1994.

Robert Orfali, Dan Harkey, and Jeri
Edwards. The essential distributed objects
survival guide. John Wiley & Sons, 1996.

[OHE96]

[PAD"97] Tony Printezis, Malcolm Atkinson, Laurent
Daynes, Susan Spence, and Pete Bailey.
The design of a new persistent object store
for PJama. In Proceedings of the Second
International Workshop on Persistence and
Java, August 1997. Available at:

http://www.sunlabs.com/research/

forest/COM.Sun.Labs.Forest.PJava.PJW2.

pjw2.html.

[PBY6] Przemystaw Pardyak and Brian N. Bershad.
Dynamic binding for an extensible system.
In Proceedings of the 1996 Symposium on
Operating Systems Design and
Implementation, pages 201-212, October

1996.

M. Poletto, D.R. Engler, and M.F.
Kaashoek. tcc: a system for fast, flexible,
and high-level dynamic code generation. In
Proceedings of the 1997 ACM SIGPLAN
Conference on Programming Language
Design and Implementation, pages 109121,
1997.

[PEK97]

Amitabh Srivastava and Alan Eustace.
ATOM: a system for building customized
program analysis tools. Technical Report
WRL-94/2, Digital Western Research
Laboratory, March 1994.

[SE94]

[SESS96] Margo 1. Seltzer, Yasuhiro Endo,
Christopher Small, and Keith A. Smith.
Dealing with disaster: Surviving
misbehaved kernel extensions. In
Proceedings of the 1996 Symposium on
Operating Systems Design and
Implementation, pages 213—227. USENIX

Association, October 1996.

[Sim96] Charles Simonyi. Intentional Programming
— innovation in the legacy age. In
Proceedings of the IFIP WG 2.1 Meeting,
June 1996. Available at: http://www.
research.microsoft.com/research/ip/

ifipwg/ifipwg.htm.

Mukesh Singhal and Niranjan G. Shivaratri.
Advanced concepts in operating systems.
McGraw-Hill, 1994.

[SS94]

[SS97] M. Seltzer and C. Small. Self-monitoring
and self-adapting operating systems. In

Proceedings of the Sixth Workshop on Hot

[Tan87]

[VCMC97]

[Vul94]

[ZWGT97)

Topics in Operating Systems (HotOS),
pages 124-129, 1997.

Andrew S. Tanenbaum. Operating Systems
— Design and Implementation.
Prentice-Hall, 1987.

Eugen N. Volanschi, Charles Consel, Gilles
Muller, and Crispin Cowan. Declarative
specialization of object-oriented programs.
In Proceedings of the Conference on
Object-Oriented Programming Systems,
Languages, and Applications, pages
286-300, Atlanta, GA, October 1997.

Ton Vullinghs. Transformational program
development using CIP-S. In Proceedings of
the Systems for Computer-Aided
Specification, Development and Verification
Workshop, October 1994. Available at:
http://www.informatik.uni-ulm.de/abt/
pm/publikationen/Vul94.html.

Xiaolan Zhang, Zheng Wang, N. Gloy, J.B.
Chen, and M.D. Smith. System support for
automatic profiling and optimization. In
Proceedings of the Sixteenth ACM
Symposium on Operating Systems
Principles, pages 15—26, October 1997.

	Hey, You Got Your Language In My Operating System!
	Dartmouth Digital Commons Citation

	hotos.dvi

