
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

8-19-1998

Applications of Parallel I/O Applications of Parallel I/O

Ron Oldfield
Dartmouth College

David Kotz
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Oldfield, Ron and Kotz, David, "Applications of Parallel I/O" (1998). Computer Science Technical Report
PCS-TR98-337. https://digitalcommons.dartmouth.edu/cs_tr/163

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/163?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Available at URL ftp://ftp.cs.dartmouth.edu/TR/TR98-337.ps.Z

Applications of Parallel I/O

Ron Old�eld and David Kotz

Technical Report PCS-TR98-337

Supplement to PCS-TR96-297

Department of Computer Science

Dartmouth College

Hanover, NH 03755-3510

August 19, 1998

Abstract

Scienti�c applications are increasingly being implemented on massively

parallel supercomputers. Many of these applications have intense I/O

demands, as well as massive computational requirements. This paper is

essentially an annotated bibliography of papers and other sources of infor-

mation about scienti�c applications using parallel I/O. It will be updated

periodically.

1 Introduction

Scienti�c applications are increasingly being implemented on massively parallel

supercomputers. Many of these applications have intense I/O demands, as well

as massive computational requirements.

1

In this paper, we list and describe many papers and web pages that describe

scienti�c applications that use parallel I/O. While we do not go into depth

about the characteristics of each application, it is our hope that this paper

helps researchers and application programmers to locate information that will

help them to better understand the issues behind parallel I/O. This paper is

meant to be used as a supplement to the previously written paper of the same

name [Kot96]. The earlier version contains many applications not listed in this

paper as well as a section on workload characterizations. For a complete parallel

I/O bibliography, see [Kot97].

We intend to update this technical report periodically; check its web page

for updated versions.1 At that page you can also �nd a link to an on-line copy

of this bibliography, with links to many of the cited papers.

Please feel free to send us additional references that you may �nd.

2 Papers about speci�c applications

These papers discuss speci�c applications, from the scienti�c point of view, but

discuss their use of parallel I/O at some point. We do not include papers about

scienti�c kernels (LU factorization, matrix multiplication, sorting, FFT, and so

forth).

� [CDZ+97] They discuss the parallelization on message-passing computers

of the DNAml algorithm, a tool used to construct phylogenetic trees from

DNA sequences. By performing a run-time analysis of the behavior of the

algorithm they came up with an e�cient parallel implementation based

on dynamic scheduling strategies, speculative run-time execution decisions

and I/O bu�ering. They use I/O bu�ering (prefetching) to fetch tasks that

need to be processed. The parallel code was written in C using PVM for

message passing and is available via anonymous FTP.2

� [CMA+97] This paper is about a parallel database Titan, designed for

handling remote-sensing data. Remotely-sensed data is acquired from

satellite-based sensors and is commonly used for geographical, meteoro-

logical and environmental studies. The Titan system consists of a single

front-end host and a multiprocessor back-end. All of the data is stored

on the local disks of the back-end processing nodes. The data set is par-

titioned into coarse-grained data blocks and indexed from the front-end.

1http://www.cs.dartmouth.edu/reports/abstracts/TR98-337/.

2

When the front-end receives a query, it makes a list of all data blocks

that intersect with the query. The front-end then distributes the data

block requests to the back-end nodes. Each back-end node then computes

a schedule for retrieving and processing the data blocks from its disks.

When the data blocks have been processed, the image is sent back to the

front-end. They attempt to minimize the I/O in several ways. They use

a data-placement algorithm that accounts for common query patterns to

achieve good disk bandwidth. They try to maximize the disk parallelism

by using graph-based algorithms to e�ciently decluster the data-set. They

also try to minimize disk seeks by cleverly arranging disk blocks assigned

to a single disk. Finally, the back-end nodes overlap computation, I/O

and communication by issuing multiple asynchronous requests for data

blocks from both the network and the disk. As requests are pending, the

back-end node processes requests that have already arrived.

� [DLY+98] This paper describes a climate-modeling application that in a

single day can generate approximately 60 Tbytes of raw data. The authors

argue that only reasonable way to keep data-sets of this size manageable

is to use data compression. They developed a run-length-encoding com-

pression algorithm that uses the gather/scatter hardware available on the

Cray parallel vector machines. The compression algorithm e�ciently ex-

ploits multiple processors and ensures that the basic operations within the

inner loops of the algorithm are vectorizable.

� [FMH+97] This paper describes a client/server application that emulates

a high-power light microscope. They use wavelet compression to reduce

the size of each of the electronic slides and they use a parallel data server

much like the parallel database server used for satellite images [CMA+97]

to service I/O requests.

� [KBCH95] This paper describes the architecture and high-level design of

the data management system for the Earth Observing System Data and

Information System (EOSDIS). They do not discuss implementation de-

tails, but they do discuss the tremendous I/O requirements of the project.

The goal of EOSDIS is to maintain a large archive (petabytes) of scienti�c

data that will quickly and easily be available to a wide variety of users

ranging from �K-12 schools, to graduate schools, scientists, policy makers

and public o�cials.�

3

� [LSH98] This paper describes the implementation of a 3D simulation code

for �turbulent �ow and combustion processes in full-scale utility boilers

on an Intel XP/S computer.� They brie�y discuss the I/O performance

during the computations.

� [LEG+97] This paper is about a NASA project GEOS-DAS (Goddard

Earth Observing System-Data Assimilation System). The goal of the

project is to produce �accurate gridded datasets of atmospheric �elds�.

The data will be used by meteorologists for weather analysis and forecasts

as well as being a tool for climate research. This paper discusses their

plans to parallelize the core code of the system. They include a section on

parallel I/O.

� [SW97] They describe a parallel, out-of-core treecode library used for N-

body simulations. Their approach targets machines in which secondary

storage is attached to each processor. The library manually pages tem-

porary data to the local disk to improve spatial and temporal locality.

They showed results from a 16 node cluster of 200MHz Pentium Pro sys-

tems with 128MB of memory running Linux. They used a single 100baseT

ethernet switch with bi-directional bandwidth of 80MB/s and latency of

150us. The entire system cost less than $60,000! They showed overall

performance and paging behavior of an 80 million body model, a 5 million

body model and a 500000 body model.

� [TSF+97] This paper is about the Fast Ocean-AtmosphereModel (FOAM),

a climate model that uses �a combination of new model formulation and

parallel computing to expand the time horizon that may be addressed

by explicit �uid dynamical representations of the climate system.� Their

model uses message passing on massively parallel distributed-memory com-

puter systems. They are in the process of investigating parallel I/O to

further increase their e�ciency.

3 Characterizations of parallel applications

These papers are detailed characterizations of the I/O access pattern of one or

more parallel applications.

2ftp://ftp.ac.uma.es/pub/ots/pDNAml/

4

� [AVV98] This paper discusses algorithms to reduce the number of I/O re-

quests in out-of-core geographical information systems (GIS) applications.

� [CHKM96] The authors presents a study of eight scienti�c applications

on three types of parallel architectures. They have one paragraph on

I/O performance and a nice table showing total I/O as well as I/O per

Mega�op for each of the applications.

� [DIS96] This paper uses timing models to analyze the performance of

the proposed tertiary storage system of the Earth Observing System Dis-

tributed Information System (EOSDIS). They examine tertiary storage

and network performance of typical user scenarios from climate-modeling

applications to identify potential bottlenecks in the system. The timing

models include the I/O time from tertiary storage to disk cache and the

time to send the data across the network. The modeling also accounts for

device contention (network or tertiary storage).

� [KKCB97, KKCB98] They describe the I/O performance of a parallel com-

putational chemistry package using the Hartree-Fock (HF) method and

the Passion I/O library [TCB+96]. Before using any I/O optimizations,

the I/O phase of the HF method accounted for up to 62% of their to-

tal execution time. They studied the e�ect of replacing the FORTRAN

I/O calls with calls to the Passion I/O library. They then classi�ed the

factors that a�ect the I/O performance into application-related factors

and system-related factors and examined the impact of each category on

the I/O behavior of the application. They also ranked the optimizations

based on the performance impact of the I/O phase of the HF method. All

experiments were performed on an Intel Paragon.

� [LPJ98] This paper describes the I/O requirements of a parallel application

that models shelf sea regions. The authors developed high-level routines

to hide the details of the parallel I/O from the application code. They

present analytical models of the I/O costs and show results on a Cray

T3D.

� [MMD98] They use a parallel �nite-element groundwater-transport code

to analyze and compare three di�erent strategies for parallel I/O. Each

node in the application performs many writes of only a few kilobytes in

length. The three strategies they use for I/O are to let a single processor

5

collect data and perform sequential I/O, use Intel's parallel �le system

(pfs) to collect data striped across an array of disks, and use their own

Extended Distributed Object Network I/O library (EDONIO) [DR95].

EDONIO provides a �fast direct access random I/O operation to a global

shared �le by providing a large multi-gigabyte disk cache using the ag-

gregate distributed memory.� As expected, EDONIO showed signi�cant

improvement over the �rst two techniques.

� [OWO98] They describe the I/O performance for a seismic-imaging appli-

cation called Salvo [OOVW96]. Salvo uses an I/O partition consisting of a

portion of the compute nodes to perform all of the I/O. The I/O partition

is used to perform asynchronous I/O requests, collective I/O, and data

distribution. They derived an analytical model for estimating the I/O,

computation and communication times for each of the operations and use

the model to estimate the optimal ratio of compute nodes to I/O nodes for

their application. Performance results are presented for the Intel Paragon.

� [SR98a] This paper compares logical I/O performed by the application

with the corresponding physical I/O that takes place at the disk. By in-

strumenting the SCSI device drivers of the Intel Paragon OSF/1 operating

system to record key physical I/O activities, they can correlate I/O pat-

terns of the scienti�c application with physical activity of the �le system.

The authors performed experiments on a computational chemistry ap-

plication called MESSKIT. They concluded, �physical input/output pat-

terns induced by application requests are strongly a�ected by data striping

mechanisms, �le system policies, and disk hardware attributes.�

� [SR97, SR98b] They compared the I/O performance of �ve scienti�c ap-

plications from the Scalable I/O Initiative (SIO) suite of applications run-

ning on a 512-node Intel Paragon XP/S. Their goals were to collect de-

tailed performance data on application characteristics and access patterns

and to use that information to design and evaluate parallel �le system

policies and parallel �le system APIs. The related work section gives

a nice overview of recent I/O characterization studies. They used the

Pablo [RAN+93] performance analysis environment to analyze the perfor-

mance of their �ve applications. The applications they chose to evaluate

include: MESSKIT and NWChem, two implementations of the Hartree-

Fock method for computational chemistry applications; QCRD, a quantum

6

chemical reaction dynamics application; PRISM, a parallel 3D numerical

simulation of the Navier-Stokes equations that models high speed turbu-

lent �ow that is periodic in one direction; and ECAT, a parallel implemen-

tation of the Schwinger multichannel method used to calculate low-energy

electron molecule collisions. The results showed that the applications used

a combination of both sequential and interleaved access patterns, which

shows that there is a clear need for a more complex API than what is given

by the standard UNIX API. In addition, when the applications required

concurrent accesses, they commonly channeled all I/O requests through

a single node. Some form of collective I/O would have helped in these

cases. They also made an observation that despite the existence of sev-

eral parallel I/O APIs, programmers of scienti�c applications preferred

to use standard Unix. They argued that this is mostly due to the lack

of an established portable standard. They mention that their study was

�instrumental in the design and implementation of MPI-IO�. Their section

on emerging I/O APIs is particularly interesting. They comment that

�the diversity of I/O request sizes and patterns suggests that achieving

high performance is unlikely with a single �le system policy.� They argue

that we need a �le system in which the user can give �hints� to the �le

system expressing expected access patterns or to have a �le system that

automatically classi�es access patterns. The �le system can then chose

policies to deal with the access patterns.

� [SCM+98] They describe the design of a database application to �facili-

tate e�cient access to and preprocessing of large volumes of satellite data�.

First, experiments were performed on a prototype parallel implementation

that used a 16 node IBM SP2 with 12 GB of disk storage on each node.

The experimental database used 16 indices that cover a portion of the

west coast of North America. They measured general performance, scala-

bility, I/O performance and preprocessing performance of their prototype

database server. The results showed that I/O accounted for, on average,

approximately 8% of the total processing time for a query; however, I/O

accounted for over one quarter of the processing time for larger number of

processors. They then discuss the design of a new system that focuses on

three aspects of the image database system: �data placement on the disk

farm, query partitioning and coordination of data retrieval, computation

and communication over the entire machine.� Their design is much like

7

that of the Titan system [CMA+97] .

4 Other papers on applications using parallel I/O

There are a few other papers that do not discuss speci�c applications, but still

discuss issues relating to parallel I/O for scienti�c applications.

� [BCD97] The authors present techniques for implementing large scale ir-

regular out-of-core applications. The techniques they describe can either

be used by a parallel compiler (e.g., HPF and its extensions) or the pro-

grammer using message passing. The objectives of the proposed tech-

niques are �to minimize I/O accesses in all steps while maintaining load

balance and minimal communication.� They demonstrate the e�ective-

ness of their techniques by showing results from a Computational Fluid

Dynamics (CFD) code.

� [NFK98] They describe an I/O project ChemIO, which de�nes an interface

designed speci�cally for parallel out-of-core applications in computational

chemistry. The ChemIO API supports three models: disk resident arrays,

exclusive access �les and shared �les. Disk resident arrays support the

transfer of data between global memory and secondary storage. This al-

lows the programmer to read and write array data structures to and from

local memory, remote memory and disk storage. They optimize the trans-

fer of these data structures by supporting collective I/O. Exclusive access

�les allow each node in the computation to write to individually owned

�scratch �les�. These �les are primarily for out-of-core computations. A

shared �le allows multiple nodes to share access to a �le. The application

must handle mutual exclusion.

� [PSS96] They advocate the use of traditional demand-paged virtual mem-

ory systems in supporting out-of-core applications. They are implementing

an operating system for the NEC Cenju-3/DE, a shared-nothing MIMD

multiprocessor with a multistage interconnection network and disks on

every node. The operating system is based on Mach, and they have ex-

tended Mach to allow user-provided [local] replacement policies. Basically,

they argue that you can get good performance as long as you write your

own replacement policy (even OPT is possible in certain applications),

8

and that this is easier than (re)writing the application with explicit out-

of-core �le I/O calls. They measure the performance of two applications

on their system, with OPT, FIFO, and a new replacement algorithm cus-

tomized to one of the applications. They show that they can get much

better performance with some replacement policies than with others, but

despite the paper's title they do not compare with the performance of an

equivalent program using �le I/O.

� [TLG98] This paper is an introduction to the IJSA Special issue on I/O

in parallel applications. They argue the importance of the application

program interface (API) in obtaining e�cient parallel I/O and why the

standard UNIX API is ine�ective. They explain that an appropriate API

should be explicitely parallel with support for collective I/O. Then they

discuss MPI-IO, an API designed to address the I/O needs of high per-

formance parallel applications.

5 Discussion

One of the goals of this paper was to show that scienti�c applications with large

I/O requirements span many disciplines. The types of applications presented

in this paper include medical applications, seismic imaging, climate modeling,

computational chemistry and computational biology. This bibliography is by no

means complete, but it does show that the demand for e�cient I/O in scienti�c

computing is abundant.

The techniques used by developers to relieve the intense I/O demands of

scienti�c applications varied from improving the I/O interface to implement-

ing improved out-of-core techniques. As shown in [MMD98, OWO98, SR98b,

NFK98, TLG98], scienti�c applications clearly bene�t from using an API that

enables advanced parallel I/O techniques such as collective I/O, prefetching and

data sieving; however, most application developers still prefer to use the stan-

dard ine�cient UNIX API. This is partly because until recently (MPI-IO), no

commonly used standard API for parallel I/O existed. We also suspect that

some scientists are just starting to become aware of the importance of e�cient

I/O. Unless technology trends change, I/O will become a bottleneck for many

more scienti�c applications.

We were also surprised by the number of papers about out-of-core applica-

tions [AVV98, PSS96, SW97, BCD97, NFK98]. An interesting point made by

9

[SW97] is that �the ratio of DRAM to disk pricing suggests the use of out-of-core

techniques to overcome memory capacity limitations.� Some believe that ad-

vances in memory technology will result in memory capacities so large that there

will no longer be a need for out-of-core applications and that any reasonable ap-

plication should be able to �t in-core. This type of attitude is naive. Even if

memories do become large enough to �t most applications in-core, the memory

architecture is often heirerarchical. Out-of-core techniques used between disk

and processor memory can also be applied to the multiple layers within the

memory heierarchy. In addition, we suspect that memory requirements for sci-

enti�c applications will increase at least at the same pace as the technology for

increasing memory capacity. The combination of market trends, memory archi-

tecture and the growing size of scienti�c applications suggests that the demand

for e�cient out-of-core techniques will increase rather than decrease.

References

[AVV98] Lars Arge, Darren Erik Vengro�, and Je�rey Scott Vitter. External-

memory algorithms for processing line segments in geographic in-

formation systems. Algorithmica, 1998.

[BCD97] P. Brezany, A. Choudhary, and M. Dang. Parallelization of irregu-

lar out-of-core applications for distributed-memory systems. High-

Performance Computing and Networking, 1225:811�820, 1997.

[CDZ+97] C. Ceron, J. Dopazo, E. L. Zapata, J.M. Carazo, and O. Trelles.

Parallel implementation of DNAml program on message-passing ar-

chitectures. Parallel Computing, 24(5�6):701�716, June 1997.

[CHKM96] Robert Cypher, Alex Ho, Smaragda Konstantinidou, and Paul

Messina. A quantitative study of parallel scienti�c applications

with explicit communication. Journal of Supercomputing, 10(1):5�

24, March 1996.

[CMA+97] Chialin Chang, Bongki Moon, Anurag Acharya, Carter Shock, Alan

Sussman, and Joel Saltz. Titan: a high-performance remote-sensing

database. In Proceedings of the Thirteenth International Confer-

ence on Data Engineering, pages 375�384, Birmingham, U.K., April

1997.

10

[DIS96] James Demmel, Melody Y. Ivory, and Sharon L. Smith. Model-

ing and identifying bottlenecks in EOSDIS. In Proceedings of the

Sixth Symposium on the Frontiers of Massively Parallel Computa-

tion, pages 300�308. IEEE Computer Society Press, October 1996.

[DLY+98] G. Davis, L. Lau, R. Young, F. Duncalfe, and L. Brebber. Parallel

run-length encoding (RLE) compression�reducing I/O in dynamic

environmental simulations. The International Journal of High Per-

formance Computing Applications, 12(4), Winter 1998. To appear

in a Special Issue on I/O in Parallel Applications.

[DR95] E. F. D'Azevedo and C. H. Romine. EDONIO: Extended dis-

tributed object network I/O library. Technical Report ORNL/TM-

12934, Oak Ridge National Laboratory, 1995.

[FMH+97] Renato Ferreira, Bongki Moon, Jim Humphries, Alan Sussman, Joel

Saltz, Robert Miller, and Angelo Demarzo. The virtual microscope.

In American Medical Informatics Association, 1997 Annual Fall

Symposium, pages 449�453, Nashville, TN, October 1997.

[KBCH95] Ben Kobler, John Berbert, Parris Caulk, and P. C. Hariharan.

Architecture and design of storage and data management for the

NASA Earth Observing System Data and Information System

(EOSDIS). In Proceedings of the Fourteenth IEEE Symposium on

Mass Storage Systems, pages 65�76. IEEE Computer Society Press,

September 1995.

[KKCB97] Meenakshi A. Kandaswamy, Mahmut T. Kandemir, Alok N. Choud-

hary, and David E. Bernholdt. Optimization and evaluation of

Hartree-Fock application's I/O with PASSION. In Proceedings of

SC97: High Performance Networking and Computing, San Jose,

CA, November 1997. IEEE Computer Society Press.

[KKCB98] Meenakshi Kandaswamy, Mahmut Kandemir, Alok Choudhary, and

David Bernholdt. An experimental study to analyze and optimize

Hartree-Fock application's I/O with PASSION. The International

Journal of High Performance Computing Applications, 12(4), Win-

ter 1998. To appear in a Special Issue on I/O in Parallel Applica-

tions.

11

[Kot96] David Kotz. Applications of parallel I/O. Technical Report PCS-

TR96-297, Dept. of Computer Science, Dartmouth College, October

1996. see suplement in PCS-TR98-XXX.

[Kot97] David Kotz. BibTeX bibliography �le: Parallel I/O. Available

on the WWW at http://www.cs.dartmouth.edu/pario/bib/,

February 1997. Ninth Edition.

[LEG+97] P.M. Lyster, K. Ekers, J. Guo, M. Harber, D. Lamich, J.W. Lar-

son, R. Lucchesi, R. Rood, S. Schubert, W. Sawyer, M. Sienkiewicz,

A. da Silva, J. Stobie, L.L. Takacs, R. Todling, and J. Zero. Parallel

computing at the NASA data assimilation o�ce (DAO). In Pro-

ceedings of SC97: High Performance Networking and Computing,

San Jose, CA, November 1997. IEEE Computer Society Press.

[LPJ98] P. Lockey, R. Proctor, and I. D. James. Characterization of I/O

requirements in a massively parallel shelf sea model. The In-

ternational Journal of High Performance Computing Applications,

12(3):320�332, Fall 1998.

[LSH98] J. Lepper, U. Schnell, and K.R.G. Hein. Parallelization of a simu-

lation code for reactive �ows on the Intel Paragon. Computers and

Mathematics with Applications, 35(7):101�109, April 1998.

[MMD98] David Mackay, G. Mahinthakumar, and Ed D'Azevedo. A study of

I/O in a parallel �nite element groundwater transport code. The In-

ternational Journal of High Performance Computing Applications,

12(3):307�319, Fall 1998.

[NFK98] Jarek Nieplocha, Ian Foster, and Rick Kendall. ChemIO: High-

performance parallel I/O for computational chemistry applications.

The International Journal of High Performance Computing Appli-

cations, 12(3):345�363, Fall 1998.

[OOVW96] Curtis Ober, Ron Old�eld, John VanDyke, and David Womble.

Seismic imaging on massively parallel computers. Technical Report

SAND96-1112, Sandia National Laboratories, April 1996.

[OWO98] Ron A. Old�eld, David E. Womble, and Curtis C. Ober. E�cient

parallel I/O in seismic imaging. The International Journal of High

Performance Computing Applications, 12(3):333�344, Fall 1998.

12

[PSS96] Yoonho Park, Ridgway Scott, and Stuart Sechrest. Virtual memory

versus �le interfaces for large, memory-intensive scienti�c applica-

tions. In Proceedings of Supercomputing '96. ACM Press and IEEE

Computer Society Press, November 1996. Also available as UH

Department of Computer Science Research Report UH-CH-96-7.

[RAN+93] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields,

B. W. Schwartz, and L. F. Tavera. Scalable performance analysis:

The Pablo performance analysis environment. In A. Skjellum, edi-

tor, Proceedings of the Scalable Parallel Libraries Conference, pages

104�113, Silver Spring, 1993.

[SCM+98] Carter T. Shock, Chialin Chang, Bongki Moon, Anurag Acharya,

Larry Davis, Joel Saltz, and Alan Sussman. The design and evalu-

ation of a high-performance earth science database. Parallel Com-

puting, 24(1):65�89, January 1998.

[SR97] E. Smirni and D.A. Reed. Workload characterization of in-

put/output intensive parallel applications. In Proceedings of the

Conference on Modelling Techniques and Tools for Computer Per-

formance Evaluation, volume 1245 of Lecture Notes in Computer

Science, pages 169�180. Springer-Verlag, June 1997.

[SR98a] Huseyin Simitci and Daniel Reed. A comparison of logical and

physical parallel I/O patterns. The International Journal of High

Performance Computing Applications, 12(3):364�380, Fall 1998.

[SR98b] E. Smirni and D.A. Reed. Lessons from characterizing the in-

put/output behavior of parallel scienti�c applications. Performance

Evaluation: An International Journal, 33(1):27�44, June 1998.

[SW97] John Salmon and Michael Warren. Parallel out-of-core methods for

N-body simulation. In Proceedings of the Eighth SIAM Conference

on Parallel Processing for Scienti�c Computing, March 1997.

[TCB+96] Rajeev Thakur, Alok Choudhary, Rajesh Bordawekar, Sachin More,

and Sivaramakrishna Kuditipudi. Passion: Optimized I/O for par-

allel applications. IEEE Computer, 29(6):70�78, June 1996.

[TLG98] Rajeev Thakur, Ewing Lusk, and William Gropp. I/O in paral-

lel applications: The weakest link. The International Journal of

13

High Performance Computing Applications, 12(4), Winter 1998. To

appear in a Special Issue on I/O in Parallel Applications.

[TSF+97] Michael Tobis, Chad Schafer, Ian Foster, Robert Jacob, and John

Anderson. FOAM: Expanding the horizons of climate modeling. In

Proceedings of SC97: High Performance Networking and Comput-

ing. IEEE Computer Society Press, November 1997.

14

	Applications of Parallel I/O
	Dartmouth Digital Commons Citation

	paper.dvi

