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Abstract

We present and analyze the o�-line star algorithm

for clustering static information systems and the on-

line star algorithm for clustering dynamic information

systems. These algorithms partition a document col-

lection into a number of clusters that is naturally in-

duced by the collection. We show a lower bound on the

accuracy of the clusters produced by these algorithms.

We use the random graph model to show that both star

algorithms produce correct clusters in time �(V +E).
Finally, we provide data from extensive experiments.

1 Introduction

Modern information systems have vast amounts of
unorganized data that changes dynamically. Consider,
for example, the 
ow of information that arrives con-
tinuously on news wires, or is aggregated by a news
organization such as CNN. Some stories are brand
new. Other stories are follow-ups of previous sto-
ries. Yet another type of stories make previous re-
portings obsolete. The news focus changes regularly
with this 
ow of information. In such dynamic sys-
tems users need to locate information fast. Users of-
ten don't know what they need until they need it.
In dynamic, time-pressured situations such as emer-
gency relief for weather disasters, access to the latest
information needs to happen fast. Current informa-
tion systems such as Inquery[Tur90], Smart[Sal91], or
Alta Vista provide some simple automation by com-
puting ranked (sorted) lists of documents, but it is
ine�ective for users to scan a list of hundreds of doc-
ument titles. To cull the critical information out of a
large set of potentially useful dynamic sources we need
methods for organizing and reorganizing dynamic in-
formation as accurate clusters, and ways of presenting

users with the topic summaries at various levels of de-
tail.

There has been extensive research on clustering and
applications to many domains [HS86, AB84]. For a
good overview see [JD88]. For a good overview of
using clustering in information retrieval see [Wil88].

The use of clustering in information retrieval was
mostly driven by the cluster hypothesis [Rij79] which
states that relevant documents tend to be more closely
related to each other than to non-relevant documents.
E�orts have been made to �nd whether the cluster

hypothesis is valid. Voorhees [Voo85] discusses a way
of evaluating whether the cluster hypothesis holds
and shows negative results. Croft [Cro80] describes
a method for bottom-up cluster search that could be
shown to outperform a full ranking system for the
Cran�eld collection. The single link method [Cro77]
does not provide any guarantees for the topic similar-
ity within a cluster. In [JR71] Jardine and van Rijsber-

gen show some evidence that search results could be
improved by clustering. Hearst and Pedersen [HP96]
re-examine the cluster hypothesis by focusing on the
Scatter/Gather system [CKP93] and conclude that it
holds for browsing tasks.

Systems like Scatter/Gather [CKP93] provide a
mechanism for user-driven organization of data in a
�xed number of clusters, but the users need to be in
the loop and the computed clusters do not have accu-
racy guarantees. Scatter/Gather uses fractionation to
compute nearest-neighbor clusters. In a recent STOC
paper, Charika et al. [CCFM97] consider a dynamic
clustering algorithm to partition a collection of text
documents into a �xed number of clusters. Since in
dynamic information systems the the number of top-
ics is not known a priori, a �xed number of clusters
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can't generate a natural partition for the information.

Our work on clustering presented in this paper and
in [APR97] provides positive evidence for the cluster
hypothesis. We propose an o�-line algorithm for clus-
tering static information and an on-line version of this
algorithm for clustering dynamic information. These
two algorithms compute clusters induced by the nat-
ural topic structure of the space. Thus, this work is
di�erent than [CKP93, CCFM97] in that we do not
impose the constraint to use a �xed number of clus-
ters. As a result, we can guarantee a lower bound
on the topic similarity between the documents in each
cluster. The model for topic similarity is the standard
vector space model used in the information retrieval
community [Sal89] which is explained in more detail
in this paper in Section 2.

To compute accurate clusters, we formalize cluster-
ing as covering graphs by cliques. Covering by cliques
is NP-complete, and thus intractable for large docu-
ment collections. Recent graph-theoretic results have
shown that the problem cannot even be approximated
in polynomial time [LY94, Zuc93]. Recent results for
covering graphs by dense subgraphs [KP93] are en-
couraging. We used a cover by dense subgraphs that
are star-shaped and that can be computed o�-line for
static data, or on-line for dynamic data. We show
that the o�-line and on-line algorithms produce cor-
rect clusters e�ciently. Asymptotically, the running
time of both algorithms is linear in the number of
edges in the similarity graph that de�nes the infor-
mation space (explained in detail in Section 2). We
also show lower bounds on the topic similarity in the
clusters. Finally, we provide experimental data.

Our algorithms for organizing information systems
can be used in several ways. The o�-line algorithm can
be used as a pre-processing step in a static informa-
tion system or as a post-processing step on the speci�c
documents retrieved by a query. As a pre-processor,
this system assists users with deciding how to browse
a database of free text documents by highlighting rel-
evant topics and irrelevant subtopics. Such clustered
data is useful for narrowing down the database over
which detailed queries can be formulated. As a post-
processor, this system classi�es the retrieved data into
clusters that capture topic categories and subcate-
gories. The on-line algorithm can be used as a basis for
constructing self-organizing information systems. As
the content of dynamic information systems changes,
the on-line algorithm can e�ciently automate the pro-
cess of organization and re-organization to compute
accurate topic summaries at various level of similar-
ity.

2 Clustering static data with star-

shaped subgraphs

In this section we motivate and present an o�-line
algorithm for organizing information systems. The
algorithm is very simple and e�cient, and computes
high-density clusters.

We formulate our problem by representing an in-
formation system by its similarity graph. A similarity
graph is an undirected, weighted graph G = (V;E;w)
where vertices in the graph correspond to documents
and each weighted edge in the graph corresponds to
a measure of similarity between two documents. We
measure the similarity between two documents by us-
ing the cosine metric in the vector space model of the
Smart information retrieval system [Sal91, Sal89].

The vector space model for textual information ag-
gregates statistics on the occurrence of words in docu-
ments. The premise of the vector space model is that
two documents are similar if they use the same words.
A vector space can be created for a collection (or cor-
pus) of documents by associating each important word
in the corpus with one dimension in the space. The
result is a high dimensional vector space. Documents
are mapped as points in this space according to their
word frequencies. Similar documents map to nearby
points. In the vector space model, document similarity
is measured by the angle between the corresponding
document vectors. The standard in the information
retrieval community is to map the angles to the inter-
val [0; 1] by taking the cosine of the vector angles.

G is a complete graph with edges of varying weight.
An organization of the graph that produces reliable
clusters of similarity � (i.e., clusters where documents
have pairwise similarities of at least �) can be obtained
by (1) thresholding the graph for � and then (2) per-
forming a minimum clique cover with maximal cliques
on the resulting graph G�. The thresholded graph G�

is an undirected graph obtained from G by eliminat-
ing all the edges whose weight is lower that �. The
minimum clique cover has two features. First, by us-
ing cliques to cover the similarity graph, we are guar-
anteed that all the documents in a cluster have the
desired degree of similarity. Second, minimal clique
covers with maximal cliques allow vertices to belong
to several clusters. In our information retrieval ap-
plication this is a desirable feature as documents can
have multiple subthemes.

Unfortunately, this approach is computationally in-
tractable. For real corpora, similarity graphs can be
very large. The clique cover problem is NP-complete,
and it does not admit polynomial-time approximation
algorithms [LY94, Zuc93]. While we cannot perform a



clique cover nor even approximate such a cover, we can
instead cover our graph by dense subgraphs. What we
lose in intra-cluster similarity guarantees, we gain in
computational e�ciency. In the sections that follow,
we describe o�-line and on-line covering algorithms

and analyze their performance and e�ciency.

2.1 Dense Star-Shaped Covers

We approximate a clique cover by covering the as-
sociated thresholded similarity graph with star-shaped

subgraphs. A star-shaped subgraph on m + 1 vertices
consists of a single star center and m satellite ver-

tices, where there exist edges between the star cen-
ter and each of the satellite vertices. While �nding
cliques in the thresholded similarity graph G� guar-

antees a pairwise similarity between documents of at
least �, it would appear at �rst glance that �nding
star-shaped subgraphs in G� would provide similar-
ity guarantees between the star center and each of the
satellite vertices, but no such similarity guarantees be-
tween satellite vertices. However, by investigating the
geometry of our problem in the vector space model,
we can derive a lower bound on the similarity between
satellite vertices as well as provide a formula for the
expected similarity between satellite vertices. The lat-
ter formula predicts that the pairwise similarity be-
tween satellite vertices in a star-shaped subgraph is
high, and together with empirical evidence support-
ing this formula, we shall conclude that covering G�

with star-shaped subgraphs is a reliable method for
clustering a set of documents.

Consider three documents C, S1 and S2 which are
vertices in a star-shaped subgraph of G�, where S1
and S2 are satellite vertices and C is the star center.
By the de�nition of a star-shaped subgraph of G�, we
must have that the similarity between C and S1 is at
least � and that the similaritybetween C and S2 is also

at least �. In the vector space model, these similarities
are obtained by taking the cosine of the angle between
the vectors associated with each document. Let �1 be
the angle between C and S1, and let �2 be the angle
between C and S2. We then have that cos�1 � � and
cos�2 � �. Note that the angle between S1 and S2
can be at most �1+�2, and therefore we have proven
the following lower bound on the similarity between
satellite vertices in a star-shaped subgraph of G�.

Proposition 1 Let G� be a similarity graph and let

S1 and S2 be two satellites in the same star in G�.

Then the similarity between S1 and S2 must be at least

cos(�1 + �2) = cos�1 cos�2 � sin�1 sin�2:

If � = 0:7, cos�1 = 0:75 and cos�2 = 0:85, for
instance, we can conclude that the similarity between

the two satellite vertices must be at least1

(0:75) � (0:85)�
p
1� (0:75)2

p
1� (0:85)2 � 0:29:

Note that while this may not seem very encouraging,
the above analysis is based on absolute worst-case as-
sumptions, and in practice, the similarities between
satellite vertices are much higher. We further under-
took a study to determine the expected similarity be-
tween two satellite vertices.

2.2 The random graph model

The model we use for computing the expected simi-
larity error in a star is the random graph model [Bol95].
A random graph Gn;p is an undirected graph with n

vertices, where each of its possible edges is inserted
randomly and independently with probability p. Our
problem �ts the random graph model if we make the
mathematical assumption that \similar" documents
are essentially \random perturbations" of one another
in the vector space model. This assumption is equiv-
alent to viewing the similarity between two related
documents as a random variable. By thresholding the
edges of the similarity graph at a �xed value, for each
edge of the graph there is a random chance (depend-
ing on whether the value of the corresponding random
variable is above or below the threshold value) that the
edge remains in the graph. This thresholded similar-
ity graph is thus a random graph. We will use the
random graph model for the analysis and the experi-
mental veri�cation of all the algorithms presented in
this paper.

The following upper bound on the expected similar-
ity between two satellite vertices holds in the random
graph model:

Proposition 2 The expected similarity between two

satellite vertices S1 and S2 in the same star in a sim-

ilarity graph G� is:

cos�1 cos�2 +
�

1 + �
sin�1 sin�2:

Proof: The proof of this proposition relies on the
random graph model and is omitted for space consid-

erations. 2

Note that for the previous example, the above for-
mula would predict a similarity between satellite ver-
tices of approximately 0.78. We have tested this for-
mula against real data, and the results of the test with
the MEDLINE data set2 are shown in Figure 1. In this

1Note that sin � =
p
1� cos2 �.

2MEDLINE is a large collection of medical abstracts that is
often used as benchmark in information retrieval experiments.



plot, the x- and y-axes are similarities between clus-
ter centers and satellite vertices, and the z-axis is the
actual mean squared prediction error of the above for-
mula for the similarity between satellite vertices. Note
that the absolute error (roughly the square root of

the mean squared error) is quite small (approximately
0.13 in the worst case), and for reasonably high sim-
ilarities, the error is negligible. From our tests with
real data, we have concluded that the random graph
model holds and that this formula is quite accurate.
We can conclude that star-shaped subgraphs are rea-
sonably \dense" in the sense that they imply relatively
high pairwise similarities between documents.

medline

0
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0.8 00.20.40.60.8
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Figure 1: This �gure shows the error for a 6000 ab-
stract subset of MEDLINE.

3 The o�-line star algorithm
Motivated by the discussion of the previous section,

we now present the star algorithm which can be used

to organize documents in an information system. The
star algorithm is based on a greedy cover of the thresh-
olded similarity graph by star-shaped subgraphs; the

algorithm itself is summarized in Figure 2 below.

Theorem 1 The running time of the o�-line star al-

gorithm on a similarity graph G� is �(V +E).

Proof: The following implementation of this algo-
rithm has a running time linear in the number of edges
of the graph. Each vertex v has a data structure asso-
ciate with it that contains v:degree, the degree of the
vertex, v:adj, the list of adjacent vertices, v:marked,
which is a bit denoting whether the vertex belongs to
a star or not, and v:center, which is a bit denoting
whether the vertex is a star center. The implementa-
tion starts by sorting the vertices in V by degree. The

For any threshold �:

1. Let G� = (V;E�) where E� = fe : w(e) � �g.

2. Let each vertex in G� initially be unmarked.

3. Calculate the degree of each vertex v 2 V .

4. Let the highest degree unmarked vertex be a
star center, and construct a cluster from the
star center and its associated satellite vertices.
Mark each node in the newly constructed clus-
ter.

5. Repeat step 4 until all nodes are marked.

6. Represent each cluster by the document corre-
sponding to its associated star center.

Figure 2: The star algorithm

program then scans the sorted vertices from the high-
est degree to the lowest as a greedy search for star cen-
ters. Only vertices that do not belong to a star already
(that is, they are unmarked) can become star centers.
Upon selecting a new star center v, its v:center and
v:marked bits are set and for all w 2 v:adj, w:marked

is set. Only one scan of V is needed to determine all
the star centers. Upon termination, the star centers
and only the star centers have the center �eld set. We
call the set of star centers the star cover of the graph.
Each star is fully determined by the star center, as
the satellites are contained in the adjacency list of the
center vertex. 2

This algorithm has two interesting features. The
�rst feature is that the star cover is not unique. A
similarity graph may have several di�erent star covers
because when there are several vertices of the same
highest degree, the algorithm arbitrarily chooses one
of them as a star center (whichever shows up �rst in
the sorted list of vertices). The second feature of this
algorithm is that it provides a simple encoding of a
star cover by assigning the types \center" and \satel-
lite" (which is the same as \not center" in our imple-
mentation) to vertices. We de�ne a correct star cover

as a star cover that assigns the types \center" and
\satellite" in such a way that (1) a star center is not
adjacent to any other star center and (2) every satel-
lite vertex is adjacent to at least one center vertex of
higher degree. It immediately follows that:

Theorem 2 The o�-line star algorithm produces a

correct star cover.



Wewill use the two features of the o�-line algorithm
mentioned above in the analysis of the on-line version
of the star algorithm, in the next section.

4 Clustering dynamic data with the

star algorithm

In this section we consider algorithms for comput-
ing the organization of a dynamic information system.
We derive an on-line version of the star algorithm for
information organization that can incrementally com-
pute clusters of similar documents. We continue as-
suming the vector space model and the cosine metric
to capture the pairwise similarity between the docu-
ments of the corpus, and the random graph model for
analyzing the expected behavior of the new algorithm.

We assume that documents are inserted or deleted
from the collection one at a time. For simplicity, we
will focus our discussion on adding documents to the
collection. The delete algorithm is similar. The intu-
ition behind the incremental computation of the star
cover of a graph after a new vertex is inserted is de-
picted in Figure 3. The top �gure denotes a similarity
graph and a correct star cover for this graph. Sup-
pose a new vertex is inserted in the graph, as in the
middle �gure. The original star cover is no longer cor-
rect for the new graph. The bottom �gure shows the
correct star cover for the new graph. How does the
addition of this new vertex a�ect the correctness of
the star cover? In general, the answer depends on the
degree of the new vertex and on its adjacency list. If
the adjacency list of the new vertex does not contain
any star centers, the new vertex can be added in the
star cover as a star center. If the adjacency list of the
new vertex contains any center vertex c whose degree
is higher, the new vertex becomes a satellite vertex
of c. The di�cult case that destroys the correctness
of the star cover is when the new vertex is adjacent
to a collection of star centers, each of whose degree is
lower than that of the new vertex. In this situation,
the star structure already in place has to be modi�ed
to assign the new vertex as a star center. The satellite
vertices in the stars that are broken as a result have
to be re-evaluated.

4.1 The on-line star algorithm

Motivated by the intuition in the previous section,
we now describe an on-line algorithm for incremen-
tally computing star covers of dynamic graphs. The
algorithm is shown in Figure 4. This algorithm uses a
special data structure to e�ciently maintain the star
covers of an undirected graph G = (V;E). For each
vertex v 2 V , we maintain the following data.

Figure 3: This �gure shows the star cover change after
the insertion of a new vertex. The larger-radius disks
denote star centers, the other disks denote satellite
vertices. The star edges are denoted by solid lines.
The inter-satellite edges are denoted by dotted lines.
The top �gure shows an initial graph and its star cover.
The middle �gure shows the graph after the insertion
of a new document. The bottom �gure shows the star
cover of the new graph.

v:type satellite or center

v:degree degree of v
v:adj list of adjacent vertices
v:centers list of adjacent centers
v:inQ 
ag specifying if v being processed

Note that while v:type can be inferred from v:centers

and v:degree can be inferred from v:adj, it will be con-

venient to have all �ve pieces of data in the algorithm.
Let � be a vertex to be added to G, and let L be
the list of vertices in G which are adjacent to �. The
algorithm in Figure 4 will appropriately update the
star cover of G. The algorithm maintains a priority
queue Q of vertices not yet correctly placed in the star
cover. When a star is broken, its center and satellites

are placed in Q.

The on-line star cover algorithm is signi�cantly
more complex than its o�-line counterpart. We devote
the rest of this section to proving that the algorithm
is correct and to analyzing its expected running time.



4.2 Correctness

In this section we show that the on-line algorithm is
correct by proving that it produces the same star cover
as the o�-line algorithm, when the o�-line algorithm

is run on the �nal graph considered by the on-line
algorithm. Before we state the result, we note that
the o�-line star algorithm does not produce a unique
cover. When there are several vertices of the same
highest degree, the algorithm arbitrarily chooses one
of them as the next star center. We will show that the
cover produced by the on-line star algorithm is the
same as one of the covers that can be produced by the
o�-line algorithm

Theorem 3 The cover generated by the on-line star

algorithm when G = (V;E) is constructed incremen-

tally (by inserting its vertices one at a time) is iden-

tical with one of the covers generated by the o�-line

star algorithm on G.

Proof: We can view a star cover of G as a correct
assignment of types (that is, \center" or \satellite") to
the vertices of G. The o�-line star algorithm assigns
correct types to the vertices of G. We will prove the
correctness of the on-line star cover by induction. The
induction invariant is that at all times, the types of
vertices not in Q are correct, assuming that the types
of vertices in Q are correct. This would imply that
when Q is empty, all vertices are assigned a correct
type and thus the star cover is correct.

The invariant is true initially: as the type of the
new node � is unknown and � is in Q; the type of
all the neighbors of � are unknown and all the neigh-
bors are in Q; all the other vertices have correct types
from the original cover. We now show that the induc-

tion invariant is maintained throughout the algorithm.
Consider Figure 4. The �rst thing to note is that the
type of all the vertices in Q is \satellite". Statements
14 and 18 enqueue satellite vertices. Statement 38 en-
queues both satellite and center vertices, but the types
of all the center vertices enqueued here is set to \satel-
lite" in statement 33. We now argue that every time
a vertex � of highest degree is pulled out of Q, it is
assigned a correct type. When � has no centers on its
adjacency list, its type should be \center" (which is
assigned correctly by statement 22). When � is adja-
cent to star centers �i, each of which has a lower degree
that �, the correct type for � is \center" (statement
28). This action has a side e�ect: all �i cease to be
star centers and thus get enqueued for further evalu-
ation (statements 32-39). Otherwise, the correct type
for � is the default \satellite". Since � was extracted

from Q and all vertices in Q are satellites, the type of
� is correct in this case as well.

To complete the argument, what remains to be
shown is that eventually the queue Q becomes empty.
The termination of the while loop at statement 19 in

Figure 4 is guaranteed by the following result.

Lemma 1 The degree of the stars broken by the on-

line star algorithm is strictly monotonically decreas-

ing.

The lemma is equivalent to the following statement:
node � in Q has the potential of becoming a star center
and has the capability of adding new nodes 
 to Q that
can become stars of degree strictly less than the degree
of node �.

Suppose � becomes a new star center. We show
than its satellite neighbors 
 cannot become star cen-
ters. Two cases arise. (Case 1) 
i is not a star center
because its degree is smaller than the degree of the
new star center that covers � in the new cover. (Case
2) 
i is not a star center because it is a satellite of a
much larger star, so its degree is larger than the degree
of the new star that covers �. But this condition still
holds after making the new star. This completes the
proof sketch for the termination lemma and. It fol-
lows that the types assigned by the on-line algorithm
are correct, in other words that there exists an o�-line
algorithm that produces the same cover.

2

4.3 Running Time Analysis and Experi-

mental Results

In this section, we argue that the running time

of the on-line star algorithm is excellent in practice,
asymptotically matching the running time of the o�-
line star algorithm (�(V + E)) to within lower or-

der factors. We �rst note, however, that there exist
worst-case thresholded similarity graphs G� and cor-
responding vertex insertion sequences which cause the
on-line star algorithm to run in �(V 2) time.3 These
graphs and insertion sequences rarely arise in practice
though. An analysis more closely modeling practice
is the random graph model in which G� is a random
graph and the insertion sequence is random. In this
model, the expected running time of the on-line star
algorithm can be determined.

In the sections that follow, we �rst give intuition
for the expected running time of the on-line star algo-
rithm. In subsequent sections, we give experimental

3An example is a graph consisting of two connected vertices
A and B of very high but identical degree (not both of which

can be star centers) and an insertion sequence which causes the
\local" center to repeatedly switch between A and B.



results showing that the on-line star algorithm is quite
e�cient with respect to two di�erent types of random
data and a large collection of real documents.

4.3.1 Intuition

We have implemented the on-line star algorithm using
a heap for the priority queue and simple linked lists for
the various lists required. The time required to insert
a new vertex and associated edges into a thresholded
similarity graph and to appropriately update the star
cover is largely governed by the number of stars that
are broken during the update, since breaking stars re-
quires inserting new elements into the priority queue.
In practice, very few stars are broken during any given
update. This is due partly to the fact that relatively
few stars exist at any given time (as compared to the
number of vertices or edges in the thresholded similar-
ity graph) and partly to the fact that the likelihood of
breaking any individual star is also small. We begin
with the former, noting that the number of stars ex-
pected to cover a random graph Gn;p is only �(logn).

Theorem 4 The expected size of the star cover for

Gn;p is logn

log( 1

1�p
)
.

Proof: The star cover algorithm is greedy: it iterates
by selecting the highest degree vertex not yet covered
as a star center and marking this node and all its adja-
cent vertices as covered. Each iteration creates a new
star. We will argue that the number of iterations is

logn

log( 1

1�p
)
. The argument relies on the random graph

model described in Section 2.1.

Let Gn;p correspond to a random graph on n ver-
tices where each edge exists with probability p. The
degree of each vertex of G is distributed binomially:
Pr[deg = k] = bin(k;n�1; p) =

�
n�1
k

�
pk(1�p)n�1�k.

The mean of this distribution is � = (n� 1)p and its

variance is � =
p
(n� 1)p(1� p). Note that while

the the degrees of the vertices do exhibit some de-
pendence, for practical purposes they can be consid-
ered independent [Bol95]. This means that on average,
each star covers (n� 1)p+1 � np vertices4. Since the
np vertices covered by each star are randomly chosen,
there will be some overlap between the star covers.
Each new star leaves uncovered a (1�p) fraction of the
previously uncovered vertices. In other words, after

the �rst iteration, (1� p)n vertices remain uncovered.
After i iterations, (1 � p)in vertices remain uncov-
ered. The algorithm terminates when all the vertices
are covered, or (1 � p)in < 1. By taking logs of both

4The star covers its center and (n� 1)p satellites.

sides of this inequality, it follows that i > logn

log( 1

1�p
)
is

su�cient. 2

Thus, the number of stars is expected to be rela-
tively small. Furthermore, the probability any indi-
vidual star will be broken is quite small as well. A
star can only be broken if the star center has the same
degree as one of its associated satellite vertices and
if the vertex being added to the graph is connected
to that satellite but not to the star center.5 In prac-
tice, the expected number of stars broken during an
update is a small constant even for graphs containing
thousands of vertices (though asymptotically it is cer-
tainly a slowly growing function of n). In Figures 5, 6,
and 7, we give experimental results showing that the
total number of stars broken during runs on three dif-
ferent types of data is roughly a linear function of the
number of vertices; thus, the expected number of stars
broken during any given update is roughly a constant
(or more likely a very slowly growing function of n).

The time to break a star is roughly proportional
to its size (the degree of its associated star center),
and since the degrees of all vertices are expected to
be similar in distribution (bin(k;n � 1; p)), this is on
the order of the number of edges being inserted into
the graph. Since only a constant number of stars are
expected to be broken, the expected time to perform
an update will be roughly proportional to the num-
ber of edges inserted in the graph during the update.
Thus, the total time to perform n updates should be
roughly proportional to the total number of edges in
the �nal graph. In the sections that follow, we give
experimental results which con�rm this fact.

4.3.2 Experimental results

We have experimented with the on-line clustering al-
gorithm on three scenarios. The �rst type of data

matches our random graph model and consists of ran-
dom similarity graphs. While this type of data is use-
ful as a benchmark for the running time of the algo-
rithm, it does not satisfy the geometric constraints of
the vector space model. To match reality better, we
generated another set of random graphs where all the
vertices in the graph are on an n�dimensional sphere.
Finally, we used real data from the TREC collection6

as a third type of benchmark for the algorithm.

5Once a star is broken during an update, however, other

stars can be broken in di�erent ways via a cascading e�ect.
6TREC is the annual text retrieval conference. TREC is

organized as a competition. Each participant is given on the
orderof 5 giga bytes of data and a standard set of queries on

which to test their systems. The results and the system de-
scriptions are presented as papers at the TREC conference.



We now detail our data generation procedure and
the experimental running time of the on-line star al-
gorithm on each data type.

Generating Random Data We run the on-line
star cover algorithm on a random graph with 1000
nodes. The edges in this graph were inserted randomly
with probability p = 0:2. The on-line algorithm was
run 30 times. Each time, the vertices of the random
graph were inserted in random order. The results were
averaged over the 30 experiments. Figure 8 shows the
data from these experiments. Note that the the run-
ning time is linear in the number of edges in the graph,
and we can see the e�ects of lower order terms.

Generating Random Data on the Sphere

While the random data generation procedure de-
scribed above is very useful in evaluating clustering
algorithms, the data created will not necessarily meet

the geometric constraints imposed by the vector space
model on real data. In this section, we brie
y de-
scribe a procedure for generating random clustering
data which does meet the geometric constraints im-
posed by the vector space model.

In the vector space model, documents are repre-
sented by vectors in a high-dimensional space, and the

similarity between pairs of documents is given by the
cosine of the angle between the associated vectors. In
the previous sections, we described a mechanism for
generating the similarity graph associated with a col-
lection. In this new data generation procedure, we in-
stead randomly create the vectors in high-dimensional
space which correspond to documents, and then con-
struct the associated similarity graph from these vec-
tors. In brief, well-spaced cluster centers are gener-

ated on a unit sphere of high-dimension, and the clus-
ters of documents themselves are generated by ran-
domly perturbing these cluster centers. By carefully
varying the \spacing" of the cluster centers as well as
the amount of perturbation allowed in generated the
cluster documents, we can again allow for a speci�ed
overlap of clusters as well as a varying degree of faulty
data.

We run the on-line star cover algorithm on a ran-
dom sphere graph consisting of 1050 vertices generated
as explained above. Figure 9 shows running-time data
from this experiment. Note that the the running time
is linear in the number of edges in the graph, and we
can see the e�ects of lower order terms.

Experiments with real data We run the on-line
star cover algorithm on a document collection that

consists of a slice of TREC documents augmented with
our department's technical reports. The resulting col-
lection consists of 2224 documents. We ran 4 exper-
iments. Each time we set a di�erent threshold and
added the similarity graph nodes in random order.

The results of these experiments were averaged and
the running time measurements appear to be linear in
the number of edges of the similarity graph. Figure 10
shows the data from these experiments. Note that the
the running time is linear in the number of edges in
the graph, and we can see the e�ects of lower order
terms.

5 Discussion

We presented and analyzed an o�-line clustering
algorithm for static information organization and an
on-line clustering algorithm for dynamic information
organization. We discussed the random graph model
for analyzing these algorithms and showed that in this
model, the algorithms have expected running time
that is linear in the number of edges. The data we
gathered from experimenting with these algorithms
provides support for the validity of our model and
analysis. The empirical tests show that both algo-
rithms have an asymptotic linear time performance in
the number of edges in the graph.

This work departs from previous clustering algo-
rithms used in information retrieval that use a �xed
number of clusters for partitioning the space. Since
the number of clusters produced by our algorithms
is given by the underlying topic structure in the in-
formation system, our clusters are dense and accu-
rate. Our work extends previous results [HP96] that
support using clustering for browsing applications and
presents positive evidence for the cluster hypothesis.
In [APR97], we argue that by using a clustering al-
gorithm that guarantees the cluster quality through
separation of dissimilar documents and aggregation of
similar documents, clustering is bene�cial for infor-
mation retrieval tasks that require high precision and
high recall. Precision-recall are the standard measure-
ments for the performance of an information retrieval
algorithm [Sal89].
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Update(�;L)
1 �:type satellite

2 �:degree 0
3 �:adj ;

4 �:centers ;

5 forall � in L

6 �:degree �:degree+ 1
7 �:degree �:degree+ 1
8 Insert(�; �:adj)
9 Insert(�; �:adj)
10 if (�:type = center)
11 Insert(�; �:centers)
12 else

13 �:inQ true

14 Enqueue(�;Q)
15 endif

16 endfor

17 �:inQ true

18 Enqueue(�;Q)
19 while (Q 6= ;)
20 � ExtractMax(Q)
21 if (�:centers = ;)
22 �:type center

23 forall � in �:adj

24 Insert(�; �:centers)
25 endfor

26 else

27 if (8� 2 �:centers; �:degree < �:degree)
28 �:type center

29 forall � in �:adj

30 Insert(�; �:centers)
31 endfor

32 forall � in �:centers

33 �:type satellite

34 forall � in �:adj

35 Delete(�; �:centers)
36 if (�:inQ = false)
37 �:inQ true

38 Enqueue(�;Q)
39 endif

40 endfor

41 endfor

42 endif

43 endif

44 �:inQ false

45 endwhile

Figure 4: The on-line star algorithm for clustering.
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Figure 5: The dependence of the number of broken
stars on the number of vertices in a random graph.
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Figure 6: The number of broken stars on the number
of vertices in a random sphere graph.



0

50

100

150

200

250

300

0 500 1000 1500 2000 2500

ag
gr

eg
at

e 
nu

m
be

r 
of

 s
ta

rs
 b

ro
ke

n

number of vertices

real data

Figure 7: The number of broken stars on the number
of vertices in for real data.
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Figure 8: This �gure shows the dependence of the run-
ning time of the on-line star algorithm on the number
of edges in a random graph.
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Figure 9: This �gure shows the dependence of the run-
ning time of the on-line star algorithm on the number
of edges on the sphere.
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Figure 10: This �gure shows the dependence of the
running time of the on-line star algorithm on the num-
ber of edges in a real collection.
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