
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Computer Science Technical Reports Computer Science 

2-1-1997 

Automatic Video Pause Detection Filter Automatic Video Pause Detection Filter 

Xiaowen Liu 
Dartmouth College 

Charles B. Owen 
Dartmouth College 

Fillia S. Makedon 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr 

 Part of the Computer Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Liu, Xiaowen; Owen, Charles B.; and Makedon, Fillia S., "Automatic Video Pause Detection Filter" (1997). 
Computer Science Technical Report PCS-TR97-307. https://digitalcommons.dartmouth.edu/cs_tr/146 

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital 
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/146?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Dartmouth College Computer Science Technical Report

PCS-TR97-307

Automatic Video Pause Detection Filter

Xiaowen Liu, Charles B. Owen, Fillia S. Makedon

Department of Computer Science

Dartmouth College

Abstract

Increasing interest in multimedia research has been drawn upon the development of video

indexing and content-based image retrieval techniques. In this report, we proposed several pause

detection algorithms, which instead of searching for signi�cant visual transitions, the algorithms

detect signi�cant pauses in video streams. A realization of the algorithmswas implemented using

ImageTcl toolkit developed at Dartmouth Experimental Visualization Laboratory. In addition

to proposing and studying the e�ectiveness of the pause detection algorithms, another major

goal will be to incorporate our algorithms into ImageTcl and test the stability and applicability

of the ImageTcl environment. Priliminary experiments showed relatively good results of our

pause detection algorithms.

1 Introduction

Recently, increasing interest in multimedia research has been drawn upon the development of

video indexing and content-based image retrieval. Various schemes for automatic indexing of video

databases have been proposed, together with content-based image retrieval techniques. With the

increasing signi�cance of multimedia information, the development of video and image management

and retrival system has become more important. While content-based video and image indexing

and retrival play an increasingly important role in multimedia information management systems,

we propose an alternative development in processing video sequences. Based on the schemes of

detecting video cuts, pause detection, on the other hand, is to search for signi�cant pauses in a

given video stream. Video pause detection can be applied to video compression as well as processing

of video archives. We propose to design and implement schemes for automatic video pause detection.

We will compare di�erence schemes proposed and study the e�ectiveness of those schemes.

Our pause detection algorithms will be implemented on the basis of ImageTcl, a highly modular

rapid prototyping environment for image processing. ImageTcl was developed by Charles B. Owen

at the Dartmouth Experimental Visualization Laboratory. In addition to proposing and studying

the e�ectiveness of the pause detection algorithms, another major goal will be to incorporate our

algorithms into ImageTcl and test the stability and applicability of the ImageTcl environment.

1



In Section 2, we describe our four pause detection algorithms in detail. An implementation of

these algorithms under ImageTcl environment is shown in Section 3 and Section 4. Section 5 gives

some preliminary experiment results to compare the e�ectiveness of the algorithms, while Sective

6 gives the conclusions.

2 Pause detection algorithms

Our pause detection algorithms are built upon the cut detection algorithms. Many methods of

calculating di�erence between video frames have been proposed. Nagasaka and Tanaka [4] studied

several methods to automatically detect cuts so as to index video streams. Zhang et al. [5] proposed

a partitioning system to detect video segment boundaries. A cut in a video stream can be de�ned as

a sudden transition (or discontinuity) of visual properties across the transition [2]. The transition

of visual properties of a cut can be signi�cant or minimal depending on how the director controls

and organizes shots. Visual properties of a shot may include factors like camera motion, object

shapes, color, brightness distribution, etc. On the other hand, to determine pauses can be somewhat

arbitrary depending on how the users de�ne a pause. A pause can be de�ned as a video segment

with similar visual properties. However, a general threshold of a pause can be hard to obtain. The

same thing is true for the duration (or minimum length) of a pause. Such factors may variate

depending on the user's demand.

2.1 Template matching with absolute di�erence

The �rst pause detection algorithm measures the di�erence between two frames by pointwise com-

parison. The method is called template matching. The result is obtained as a sum of porintwise

di�erence over all pixels as de�ned by the following formula:

E(f1; f2) =
1

hw

hX

y=0

wX

x=0

jgraylevel(f1; x; y)� graylevel(f2; x; y)j

where h and w is the height and width of the images, graylevel(fk; x; y) is the gray level of the

pixel (x; y) in frame fk. The algorithm is essentially the same as the template matching algorithm,

describe in [4]. However, the pointwise di�erence between pixels of consecutive frames is normalized.

Therefore the result of the comparison must be in range of 0 to 1 inclusive.

2.2 Template matching with relative di�erence

Our second pause detection algorithm extends the de�nition of the �rst algorithm, where the

pointwise di�erence is divided by the maximum of the two comparing pixels, i.e.

E(f1; f2) =
hX

y=0

wX

x=0

jgraylevel(f1; x; y)� graylevel(f2; x; y)j

maxfgraylevel(f1; x; y); graylevel(f2; x; y)g

2.3 �
2 histogram comparison between consecutive frames

Our third pause detection algorithm uses the histogram comparison algorithm developed by Na-

gasaka and Tanaka [4]. The essence of their algorithm rely on the color space of the frames to

identify a discontinuity. Our algorithm, which is called consecutive histogram �2, compares the

2



gray-scale histograms of any two consecutive frames using the following formula:

E(f1; f2) =
255X

i=0

(H(f1; i)�H(f2; i))
2

maxfH(f1; i); H(f2; i)g

where H(fk; i) denotes the ith color of frame fk 's histogram.

As pointed out in [4], the �2 value more strongly reects the degree of the di�erence between

the two frames. The use of division normalizes the signi�cance of the di�erence. There is a slight

di�erence between our algorithm and the algorithm developed in [4]. In our algorithm, instead

of using �xed denominator H(f2; i), we pick the maximum of the two frames to eliminate the

preference of the second frame. Also, the common divided-by-zero error must be specially taken

care of. In our experiments, we use 256 gray-scale levels. This pause detection algorithm is quite

robust. It will be shown by later experiments, the algorithm is quite sensitive to scene changes,

which de�nes signi�cant transitions or cuts. It also shows relative good results on pause detection.

2.4 �
2 histogram comparison with key frames

One drawback of the previous pause detection algorithm is that the algorithm cannot detect incre-

mental motions, such like slow camera panning and slow object movement. The reason for this is

such increment motions do not have signi�cant di�erences between consecutive frames and usually

the �2 test results come below reasonable threshold.

Such phenomenon can be avoided by using key frames in the detection algorithm. That is, in

stead of comparing histograms between consecutive frames, we pick the �rst (or any) frame in the

pause sequence as the template. Subsequent frames will compare with the template to determine

their similarity.

3 Implementation under ImageTcl environment

A realization of the pause detection algorithms was implemented using ImageTcl toolkit, a highly

modular rapid prototyping environment for image processing. ImageTcl was developed by Charles

B. Owen at the Dartmouth Experimental Visualization Laboratory. As speci�ed in the ImageTcl

documentation, some of the features of ImageTcl include

� Support for a wide variety of image data formats including �xed and oating point, JPEG,

Motion JPEG, monochrome and color, YUV, motion ow, Sun raster-image, AVI, FFT spec-

tral representations, image sequences as a volume.

� A powerful data-ow model with no critical paths through interpreted code. ImageTcl objects

are represented as nodes in the graph. They are connected by links as data packets passing

through.

� A simple to use programming interface based on Tcl, the Tk Toolkit, and the Tix library.

The development of user interface becomes quite simple.

� Modular design which facilities the easy construction of new components for rapid prototyp-

ing.

� Automatic tools for assistance in creation of new data types and commands.

Our pause detection algorithms are encapsulated in an ImageTcl object, functioning as a �lter

with a single sink and a single source. Currently, only type Y connection is allowed. The Y data

3



type contains a matrix of BYTE pixel values where each pixel value represents the luminance of a

pixel. That is, each pixel is represented by a BYTE value.

Data packets going through the pause detection �lter will be bu�ered in an internal queue if

the incoming image is similar to the template image. The similarity is determined by the chosen

pause detection algorithm. If the computed di�erence is above the given threshold, the queue will

be ushed and the pause detection result is negative if the number of packets in the queue has

not reached the desired duration. If the number of enqueued packets is larger than the duration, a

pause is therefore detected and the queue is also ushed. In this way, the pause detection will be

in real time, except that there will be some jitterings observed when packets are queued up in the

internal bu�er1. Detecting pauses on the y along with playing the video is an important feature

of our implementation. The new ImageTcl object is de�ned with following list commands:

-threshold threshold de�nes the pause threshold value. The user-de�ned threshold should be a

oating point value or just the keyword DEFAULT.

-duration duration de�nes the pause duration needed to detect pauses. The duration must be

an integer or the keyword DEFAULT.

-actonpause action de�nes the action of the �lter when a pause is being detected. There are

three possible ways: BLANKPAUSES will output the pauses as a blank image; CUTPAUSES will

cut the pauses so that the output image stream will not contain detectable pauses any more;

THUMBNAILPAUSES will only output pause thumbnails. BLANKPAUSES is the default action.

-algorithm algor de�nes the pause detection algorithm to be used. Our four pause detection algo-

rithms are represented by four corresponding keywords: TEMPLATE ABSDIF, TEMPLATE RELDIF,

HISTO CONSECUTIVE, and HISTO KEYFRAME, where HISTO KEYFRAME is the default algorithm.

4 User interface of the pause detector

We extended the ItViewer in the ImageTcl library to accommodate the use of pause detector.

Figure 1 shows an snapshot the the pause detector user interface.

There are three windows in the user interface of the pause detector: an ItViewer window, a

pause-�ltered image window and a graph window. The ItViewer window comes along with the old

ItViewer library and shows a video display and a control panel. The pause-�ltered image window

shows video images that have been �ltered by the pause detector object. The graph window draws

the results of the calculation of the pause detection algorithm in use, while playing the video. This

will help the user to pick reasonable threshold and duration for the pauses.

A separate menu in ItViewer window helps the user to select the threshold, duration as well as

the pause detection algorithm and the action taken whenever a pause is being detected.

5 Experiments

We performed several experiments to measure the e�ectiveness of our pause detection algorithms.

The outcome of the �rst three algorithms should be independent of the chosen threshold and

duration. However, for the last algorithm, the threshold and duration play an important role in

determining the key frame, which will be used as the template for comparison with subsequent

frames.

1The maximum length of the queue will be less than the give pause duration. No more bu�ering is necessary when

the pause is being detected.

4



Figure 1: A snapshot of the user interface of the pause detector

5



0

0.005

0.01

0.015

0.02

0.025

0.03

0 50 100 150 200 250 300 350 400 450 500

Template Matching with Absolute Di�erence

pointwise di�erence

Figure 2: Output of the absolute template matching pause detection algorithm on ASL video

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 50 100 150 200 250 300 350 400 450 500

Template Matching with Relative Di�erence

pointwise di�erence

Figure 3: Output of the relative template matching pause detection algorithm on ASL video

In the �rst experiment, we used American Sign Language (ASL) video to study the character-

istics of each of the algorithms. Figure 2 through 5 gave the results of di�erent pause detection

algorithms on the ASL video stream. Both template matching algorithms perform well in detecting

the neutral positions between two sign language words, where relatively constant noise dominates

the outcome of the computation. As we can see from �gure 2 and 3, the pauses between sign lan-

guage words are obvious. Even though template matching performs bad in detecting cuts, which are

denoted by the relative low spikes in the �gure, it performs quite satisfactorily in detecting pauses.

Noises are normalized to a relative constant value such that the pause threshold and duration can

be easily determined. Comparing these two algorithms, template matching with relative di�erence

outperforms the other one in the sense that the values become more sensitive to object movements.

As we can see from the �gures, the di�erence between the peaks and valleys are enlarged while the

neutral positions are still kept relatively constant.

Observed by Nagasaka and Tanaka [4], the �2 histogram comparison reduces the sensitivity

to camera panning and zooming. While �2 algorithms obtain much clear peaks at cutting points,

they also obscure the di�erence between pauses and movements, which are represented by object

movements, camera movements like panning and zooming, etc. As shown in �gure 4 and �gure

6



0

0.005

0.01

0.015

0.02

0.025

0.03

0 50 100 150 200 250 300 350 400 450 500

�2 Histogram between Consecutive Frames

�2 histogram di�erence

Figure 4: Output of the consecutive �
2 histogram pause detection algorithm on ASL video

0

0.005

0.01

0.015

0.02

0.025

0.03

0 50 100 150 200 250 300 350 400 450 500

�2 Histogram with Key Frames

�2 histogram di�erence

Figure 5: Output of the keyframe �2 histogram pause detection algorithmon ASL video, where the threshold

is 0:08 and the duration is 20 frames.

5, signi�cant visual transitions can be captured, however, they are over-emphasized at the cost of

blurring insigni�cant visual properties which should be important in detecting pauses. Despite the

above disadvantage, both �2 histogram algorithms perform satisfactorily on the ASL video. By

choosing appropriate pause threshold and duration, the algorithms can detect all pauses in the

video stream precisely.

In our second experiment, we study the advantage of using key frames as opposed to comparing

consecutive frames. Two short video clips are used in this experiment: table tennis and ower

garden. Both videos have no signi�cant pauses. The �rst one is characterized by small-scale object

movements and a camera zooming. As we mention previously, histogram di�erence reduces the

e�ect of camera zooming and panning, while it will capture signi�cant visual transitions. As shown

by the �gure 6, the two cuts have signi�cantly larger values than others. The selection of the pause

threshold and duration for the algorithm comparing consecutive frames can be somewhat di�cult.

Using our default values where we set the threshold to be 0:08 and the duration to be 20 frames,

the algorithm detected three pauses. On the contrary, the algorithm comparing with selected key

frames worked out to be quite robust in such circumstance. No pause is detected as expected. The

reason for this is that using key frames as templates makes the algorithm more sensitive to slow

7



0

0.005

0.01

0.015

0.02

0 20 40 60 80 100 120 140

�2 Histogram between Consecutive Frames

�2 histogram di�erence

0

0.005

0.01

0.015

0.02

0 20 40 60 80 100 120 140

�2 Histogram with Key Frames

�2 histogram di�erence

Figure 6: Comparison between the two �
2 histogram algorithms on the table tennis video

0

0.005

0.01

0.015

0.02

0 20 40 60 80 100 120 140

�2 Histogram between Consecutive Frames

�2 histogram di�erence

0

0.005

0.01

0.015

0.02

0 20 40 60 80 100 120 140

�2 Histogram with Key Frames

�2 histogram di�erence

Figure 7: Comparison between the two �
2 histogram algorithms on the ower garden video

or small-scale motions in the video since such motions will be accumulated over time and before

the frames are queued up to reach the set duration, the accumulation will most likely overow the

threshold value. This explanation can be better supported by using the second video clip { ower

garden. As shown in the left graph of �gure 7, slow camera motions reduced the di�erence between

consecutive frames and made almost all values below our default threshold. On the contrary, the

algorithm comparing frames with the selected key frame becomes more robust against such slow

motion. This is shown by the right graph of �gure 7.

6 Conclusions

While template matching algorithms perform more satisfactorily, we hypothesize that the �2 his-

togram comparison algorithms should outperform their counterparts in the following way:

� �2 histogram comparison not only reduces the e�ect of camera movements but also reduces

the e�ect of noises, which could be used against pause detection of low-quality videos.

� Slow object or camera motions can be detected by key frame comparison, which signi�cates

the accumulation e�ects. On the other hand, applying the algorithms with corresponding

sub-image sections should be able to capture small-scale object movements.

In a recent paper [1], Aoki et al. used both color analysis and layout analysis to calculate and

compare similar shots. Although the concepts of a pause and similar shots are di�erent, they shared

the same light in attempting to detect visual insigni�cance between two video frames.

8



The future work along the track would be to study more robust pause detection algorithms

with clear di�erentiation between noises and motions. Moreover, it will be important to devise a

generic and adaptive pause detection algorithm.

References

[1] H. Aoki, S. Shimotsuji, and O. Hori. \A shot classi�cation method of selecting e�ective key-

frames of video browsing.". In Proceedings of ACM Multimedia '96. Boston, MA, November

1996.

[2] A. Hampapur, R. Jain, and T. E. Weymouth. \Production model based digital video segmen-

tation."

[3] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, and C.

Faloutsos. \The QBIC project: querying images by content using color, texture, and shape."

In Storage and Retrieval for Image and Video Databases. SPIE vol. 1908, February 1993.

[4] Akio Nagasaka and Yuzuru Tanaka. \Automatic video indexing and full-video search for object

appearances." In 2nd Working Conference on Visual Database Systems. pp. 119-133, Budapest,

Hungary, IFIP WG 2.6, October 1991.

[5] H. Zhang, A. Kankanhalli, and W. Smoliar. \Automatic partitioning of full-motion video."

Multimedia System (1993), Springer-Verlag, vol. 1, pp. 10-28, 1993.

9


	Automatic Video Pause Detection Filter
	Dartmouth Digital Commons Citation

	report.dvi

