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Abstract

This paper extends an earlier out-of-core Fast Fourier Transform (FFT) method for a unipro-

cessor with the Parallel Disk Model (PDM) to use multiple processors. Four out-of-core mul-

tiprocessor methods are examined. Operationally, these methods di�er in the size of \mini-

buttery" computed in memory and how the data are organized on the disks and in the dis-

tributed memory of the multiprocessor. The methods also perform di�ering amounts of I/O

and communication. Two of them have the remarkable property that even though they are

computing the FFT on a multiprocessor, all interprocessor communication occurs outside the

mini-buttery computations. Performance results on a small workstation cluster indicate that

except for unusual combinations of problem size and memory size, the methods that do not

perform interprocessor communication during the mini-buttery computations require approx-

imately 86% of the time of those that do. Moreover, the faster methods are much easier to

implement.

1 Introduction

This paper extends earlier work [CN96] in performing out-of-core Fast Fourier Transforms (FFTs)

on parallel disk systems. Whereas the implementation described in [CN96] performs out-of-core

FFTs on a uniprocessor with parallel disks, the present paper examines four related ways to perform

out-of-core FFTs on a multiprocessor with a distributed memory and parallel disks.

The study in [CN96] showed that an FFT algorithm explicitly designed for out-of-core problems

on the Parallel Disk Model (PDM) [VS94] can signi�cantly outperform traditional in-core FFT

�Contact author. Send correspondence to Dartmouth College Department of Computer Science, 6211 Sudiko�

Laboratory, Hanover, NH 03755-3510 or to thc@cs.dartmouth.edu. Supported in part by the National Science Foun-

dation under grant CCR-9625894.
yThis research was supported in part by NSF grants CCR-9201195 and NCR-9527163, and it was also supported

in part by NASA Contract NAS1-19480 to the Institute for Computer Applications in Science and Engineering.
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algorithms that run with demand paging on large problem sizes. Moreover, with careful design and

implementation, the out-of-core uniprocessor algorithm with parallel disks can be competitive with

in-core FFT methods even when they run entirely in memory. That study demonstrated rather

convincingly that out-of-core FFT computations should use explicit disk I/O.

In the present paper, we adapt the FFT method used in [CN96] for multiple processors with a

distributed-memory architecture. Conceptually, the method adapts easily. There are some design

choices to be made, however, and this paper considers two of them. Section 4 examines these

choices in more detail, but briey they are described by the following parameters:

1. The e�ective memory size determines the size of the \mini-butteries" computed in memory.

2. The band size parameterizes how the data are organized on the disks and in the distributed

memory of the multiprocessor.

We consider two e�ective memory sizes and three band sizes. Of the six possible combinations, two

make no sense to implement. We have implemented three of the remaining four, and this paper

reports on the results. The algorithm used is I/O-optimal in the PDM for a given e�ective memory

size and band size. This paper examines the di�erences among the four combinations in terms of

total time, communication time, number of messages sent, and volume of messages sent.

Our results indicate that the best way overall uses an e�ective memory size small enough to

avoid interprocessor communication during the mini-buttery computations.

Of course, most one-dimensional FFT problems �t well within memory-size constraints. On the

other hand, some problems do not �t in even very large memories. One example is the High-Speed

Data Acquisition and Very Large FFTs Project at Caltech1, which uses FFTs to support searching

for fast (millisecond period) pulsars. The project currently requires FFTs with 10 gigapoints, and

it desires FFTs with up to 64 gigapoints.

Although the literature contains some related work, the approach in this paper is unique. There

have been a few papers on out-of-core FFTs on uniprocessors [Bai90, Bre69, CN96]. There are also

some papers on in-core FFTs on multiprocessors [Cal96, JJK92, Swa87, Zhu90]; each of these papers

assumes some interconnection network topology. The only previous out-of-core implementation

for a multiprocessor of which we are aware is by Sweet and Wilson [SW95]. They use a CM-5

with a Scalable Disk Array [TMC92], which appears to the programmer as one large disk. The

implementation in the present paper uses a PDM interface to access multiple disks independently

and MPI [GLS94, SOHL+96] for interprocessor communication; there are no assumptions about

the interconnection network topology.

The platform we use is a cluster of IBM RS6000 workstations with a FDDI network. Disk

I/O operations are performed by calls to the ViC* API [CH96], which is implemented as a set of

wrappers on top of the Galley File System [NK96a, NK96b]. The full paper will also include data

for an IBM SP-2, also running Galley.

The remainder of this paper is organized as follows. Section 2 de�nes the Parallel Disk Model,

and Section 3 summarizes the out-of-core uniprocessor algorithm for the PDM from [CN96]. Sec-

tion 4 describes the modi�cations to the uniprocessor algorithm for a multiprocessor, detailing the

e�ective memory size and band size parameters. Section 5 discusses the e�ects of these modi�-

cations on I/O and communication complexity. Section 6 compares the performance of the four

methods on the network of RS6000 workstations. Finally, Section 7 presents some concluding

remarks.

1See http://www.cacr.caltech.edu/SIO/APPL/phy02.html.
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P0 P1 P2 P3

D0 D1 D2 D3 D4 D5 D6 D7

stripe 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stripe 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stripe 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

stripe 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Figure 1: The layout of N = 64 records in a parallel disk system with P = 4, B = 2, and D = 8. Each box

represents one block. The number of stripes is N=BD = 4. Numbers indicate record indices.

2 The Parallel Disk Model

This section describes the Parallel Disk Model [VS94]. It is the underlying model for both the

uniprocessor algorithm in Section 3 and the multiprocessor algorithm in Section 4.

In the Parallel Disk Model, or PDM, N records are stored on D disks D0;D1; : : : ;DD�1, with

N=D records stored on each disk. For our purposes, a record is a complex number comprised of two

8-byte double-precision oats. The records on each disk are partitioned into blocks of B records

each.2 Any disk access transfers an entire block of records. Disk I/O transfers records between

the disks and an M -record random-access memory. Any set of M records is a memoryload. Each

parallel I/O operation transfers up to D blocks between the disks and memory, with at most one

block transferred per disk, for a total of up to BD records transferred. The most general type of

parallel I/O operation is independent I/O, in which the blocks accessed in a single parallel I/O may

be at any locations on their respective disks. A more restricted operation is striped I/O, in which

the blocks accessed in a given operation must be at the same location on each disk.

In this paper, we assume that there are P processors P0;P1; : : : ;PP�1 connected by a network.

The M -record memory is distributed among the P processors so that each processor holds M=P

records. The implementation of the PDM we use is the ViC* API [CH96], in which D � P and each

processor Pi communicates only with the D=P disks DiD=P ;DiD=P+1; : : : ;D(i+1)D=P�1. (If D < P

in a given physical con�guration, the ViC* implementation provides the illusion that D = P by

sharing each physical disk among P=D processors.)

We assess an algorithm by the number of parallel I/O operations it requires. While this does

not account for unavoidable variation in disk-access times, the number of disk accesses can be

minimized by carefully designed algorithms.

We place some restrictions on the PDM parameters. We assume that P , B, D, M , and N

are exact powers of 2. For convenience, we de�ne p = lgP , b = lgB, m = lgM , and n = lgN .

We assume that BD � M in order to fully utilize disk bandwidth, and of course we assume that

M < N .

The PDM lays out data on a parallel disk system as shown in Figure 1. A stripe consists of the

D blocks at the same location on all D disks. A record's index is an n-bit vector. In Section 4, we

will take advantage of interpreting a record index as a sequence of bit �elds that give the record's

location in the parallel disk system; from most signi�cant bits to least signi�cant bits, the bit �elds

are

� lg(N=BD) = n � (b+ d) bits containing the number of the stripe (since each stripe has BD

records, there are N=BD stripes),

2A block might consist of several sectors of a physical device or, in the case of RAID [CGK+88, Gib92, PGK88],
sectors from several physical devices.
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� lgD = d bits containing the disk number; of these, the most signi�cant lgP = p contain the

processor number,

� lgB = b bits containing the record's o�set within its block.

Since each parallel I/O operation accesses at most BD records, any algorithm that must access

all N records requires 
(N=BD) parallel I/Os, and so O(N=BD) parallel I/Os is the analogue of

linear time in sequential computing. The FFT algorithms in this paper have an I/O complexity of

�
�

N
BD

lgmin(B;N=B)

lg(M=B)

�
, which appears to be the analogue of the �(N lgN) bound seen for so many

sequential algorithms on the standard RAM model.

3 The uniprocessor out-of-core FFT algorithm

This section summarizes the uniprocessor out-of-core FFT algorithm from [CN96]. We will modify

the uniprocessor algorithm in Section 4 to devise multiprocessor versions.

Traditional FFTs

The out-of-core algorithm is based on a redrawing of the buttery graph, so we start by reviewing

the traditional approach of computing FFTs in-core by computing the buttery graph.

The FFT is a particular method of computing the Discrete Fourier Transform (DFT) of an

N-element vector. Given a vector a = (a0; a1; : : : ; aN�1), where N is a power of 2, the Discrete

Fourier Transform (DFT) is a vector y = (y0; y1; : : : ; yN�1) for which

yk =
N�1X
j=0

aj!
jk
N for k = 0; 1; : : : ;N � 1 ;

where !N = e2�i=N and i =
p�1. For any real number u, we can directly compute eiu = cos(u) +

i sin(u).

Figure 2 shows the buttery graph as it is used in computing an FFT, drawn for N = 8. First,

the input vector undergoes a bit-reversal permutation. A bit-reversal permutation is a bijection

in which the element whose index k in binary is (kN�1; kN�2; : : : ; k0) maps to the element whose

index in binary is (k0; k1; : : : ; kN�1). After the bit-reversal permutation, a buttery graph of lgN

stages is computed. In the sth stage of the buttery graph, elements whose indices are 2s apart

(after the bit-reversal permutation) participate in a buttery operation. The buttery operations

in the sth stage can be organized into N=2s groups of 2s operations each. Each buttery operation

has a third input, known as a twiddle factor. The twiddle factor for a buttery operation in stage s

and the jth buttery within a group (0 � j < 2s�1) is !
j
2s .

Redrawing the buttery graph for out-of-core FFTs

Figure 3 shows the structure of the out-of-core algorithm. This redrawing of the buttery was

devised by Snir [Sni81] and is implicitly used in the FFT algorithm for the PDM devised by Vitter

and Shriver [VS94].

We describe the out-of-core algorithm in terms of an e�ective memory size F , which is a power

of 2 in the range 1 � F � M . Assume for the moment that lgF divides lgN . As before, we

start with a bit-reversal permutation. Then there are lgN= lgF superlevels, where each superlevel

consists of N=F separate \mini-butteries" followed by a permutation on the entire array.
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Figure 2: The FFT computation after fully unrolling the recursion, shown here with N = 8. Inputs (a0; a1;

: : : ; aN�1) enter from the left and �rst undergo a bit-reversal permutation. Then lgN = 3 stages of buttery

operations are performed, and the results (y0; y1; : : : ; yN�1) emerge from the right. This �gure is taken from

[CLR90, p. 796].
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Figure 3: The structure of the out-of-core FFT algorithm for the PDM. After a bit-reversal permutation,

we perform lgN= lgF superlevels. Each superlevel consists of N=F mini-butteries on F values, followed by

a (lgF )-bit right-rotation permutation on the entire array.
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At the end of each superlevel is a (lgF )-bit right-rotation permutation. If we interpret each

index x as an n-bit vector (xn�1; xn�2; : : : ; x0), in a k-bit right-rotation permutation, the record

in position x is moved to position (xk�1; : : : ; x0; xn�1; : : : ; xk). That is, the bits of the index are

rotated k positions to the right.

Eachmini-buttery is a buttery graph on F values, and hence it has depth lgF and a sequential

running time of �(F lgF ). Because the mini-buttery size F is at most the memory size M , each

mini-buttery is computed by reading in at most a memoryload, computing the mini-buttery

graph in memory, and writing out at most a memoryload.

The total number of buttery operations under this redrawing is the same as for a traditional

buttery graph withN points: (N=2) lgN . Computationally, we have added the work of performing

the bit-reversal and (lgF )-bit right-rotation permutations. Both of these permutations belong

to the class of BMMC (bit-matrix-multiply/complement) permutations. We employ the BMMC

algorithm for the PDM given in [CSW94] to perform these permutations optimally under the PDM.

In particular, we use the BMMC implementation described in [CH96], which is carefully optimized

for communication and computational e�ciency. The BMMC subroutine is the only part of the

out-of-core FFT algorithm that requires independent I/O; it uses independent writes. All other

I/O in the FFT algorithm is striped.

For a uniprocessor, we always choose the e�ective memory size to be M . The I/O complexity

of this algorithm is then �
�

N
BD

lgmin(B;N=B)

lg(M=B)

�
parallel I/Os, which is asymptotically optimal. See

[CN96] for details.

Other implementation details

General values of N and F . If lgF does not divide lgN , then there are dlgN= lgF e superlevels
and we compensate in the last one. Rather than computing mini-butteries of depth lgF in the

last superlevel, we compute mini-butteries of depth r = (lgN) mod (lgF ), which is the number

of levels of the full buttery graph not yet computed. We can still read and write sets of F values,

but now each such set in the last superlevel consists of F=2r mini-butteries. The bit-rotation

permutation in the last superlevel is by r bits rather than lgF .

Twiddle factors. For simplicity, we omitted the twiddle factors in the description of the re-

drawing. They do have to be correct to compute the FFT, however. If we number the stages of

buttery operations from 1 to lgN , then all twiddle factors of the sth stage are powers of !2s. We

obtain these powers of !2s e�ciently by directly computing the exponent of the twiddle factor in

superlevel l, mini-buttery q within the superlevel (starting from 0, and the range of q depends

on the superlevel), and the jth buttery within a group of butteries as
j

qF l+1

F dlgN= lg Fe

k
+ jF l. This

computation is easy to move into loops and avoids expensive sine and cosine calls.

Synchronous and asynchronous I/O. We implemented the FFT algorithm with both syn-

chronous (i.e., blocking) and asynchronous (non-blocking) I/O calls; the ViC* API supports both.

With asynchronous I/O, as we compute the butteries of the qth memoryload, we simultaneously

prefetch the data of the (q+1)st memoryload and write behind the computed data of the (q� 1)st

memoryload. The reduced latency does not come for free, however, as we must allocate prefetch

and write-behind bu�ers of the same size as the compute bu�er. Thus, the e�ective memory size F

is smaller with asynchronous I/O than with synchronous I/O. Because we carve memory into three

parts and F must be a power of 2, asynchronous I/O reduces the e�ective memory size by a factor

of 4. Nevertheless, we shall see in Section 6 that asynchronous I/O is bene�cial.

6



4 Modi�cations for multiple processors

In this section, we describe the modi�cations to the uniprocessor out-of-core FFT algorithm that

enable it to work on multiple processors. We start by looking at a straightforward way to extend

the uniprocessor algorithm to use multiple processors. Because each mini-buttery spans all P

processors and the data layout is stripe by stripe, this method has nonuniform communication

characteristics and is di�cult to implement. By laying out the data di�erently (changing the

band size) and keeping each mini-buttery within a processor (changing the e�ective memory

size), we derive an algorithm that has no interprocessor communication during the mini-buttery

computations.

The straightforward multiprocessor algorithm

Conceptually, the uniprocessor algorithm in Section 3 is already a multiprocessor algorithm if

viewed in the right way. Suppose we choose the e�ective memory size F to be the memory size M

over all P processors. (Assume for the moment that we use synchronous I/O so that reducing the

e�ective memory size for additional bu�ers is not an issue.) Then computing each mini-buttery is

simply computing the buttery graph on P processors, subject to the twiddle factors being altered

as discussed in Section 3.

In reality, however, the multiprocessor algorithm is not quite so simple. Consider the data

layout in Figure 1, and suppose that the e�ective memory size F is 2 stripes, or 32 records. Observe

that the F=P records that map to a given processor in a mini-buttery are not all consecutive.

Processor P0, for example, holds records 0 to 3 and 16 to 19 in the �rst mini-buttery. Figure 4

shows what happens when we compute the �rst mini-buttery in this situation. Each buttery

operation involves two records whose indices di�er in exactly one bit. There are three di�erent

communication characteristics, depending on which bit di�ers.

1. Each processor has BD=P consecutive records from a given stripe. In the �rst lg(BD=P )

stages, therefore, computation is internal to each processor.

2. Each buttery operation in the next lgP stages involves two records from the same stripe but

in di�erent processors. Thus, each such operation requires interprocessor communication.

3. In the last lg(F=BD) stages, each buttery operation involves two records that are from

di�erent stripes but are in the memory of the same processor. These lg(F=BD) stages,

therefore, use only internal computation.

Because there are three di�erent communication characteristics that depend on stage numbers, we

found this algorithm quite tricky to implement. Add in the twiddle factors, memory addressing

(consider that in P0, records 0 to 3 and 16 to 19 are in consecutive memory locations), and changes

for when lgF does not divide lgN , and the code becomes rather long and di�cult to get right.

Even without the ViC* API calls for disk I/O, it is several pages long.

Band size

Part of the problem with the above approach is that the band size is small compared to the e�ective

memory size. We de�ne the band size � of a data layout on a parallel disk system as the maximum

number of consecutive records per processor times the number of processors. The band size of the

layout in Figure 1 is � = BD=P � P = BD. In Figure 5(a), the band size is � = F = 2BD, and

the band size in Figure 5(b) is � = N .

7
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4
5
6
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10
11
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17
18
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20
21
22
23
24
25
26
27
28
29
30
31

same processor,
same stripe

different processor,
same stripe

same processor,
different stripe

Figure 4: Computing a mini-buttery when the band size is � = BD and the e�ective memory size is

F > �=P . Here, B = 2, P = 4, D = 8, and F = 32 = 2BD. Indices on the left are record numbers in the

�rst mini-buttery. Twiddle factors are omitted. The �rst lg(BD=P ) = 2 stages use computation internal to

each processor, where each buttery operation uses two values from the same stripe. The next lgP = 2 stages

require interprocessor communication to exchange values from the same stripe between processors. The last

lg(F=BD) = 1 stages use more computation internal to each processor, where each buttery operation uses

two values from di�erent stripes.

(a) � = F

P0 P1 P2 P3

D0 D1 D2 D3 D4 D5 D6 D7

0 1 2 3 8 9 10 11 16 17 18 19 24 25 26 27

4 5 6 7 12 13 14 15 20 21 22 23 28 29 30 31

32 33 34 35 40 41 42 43 48 49 50 51 56 57 58 59

36 37 38 39 44 45 46 47 52 53 54 55 60 61 62 63

(b) � = N

P0 P1 P2 P3

D0 D1 D2 D3 D4 D5 D6 D7

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51

4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55

8 9 10 11 24 25 26 27 40 41 42 43 56 57 58 59

12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

Figure 5: Layouts with di�erent band sizes in the same con�guration as Figure 1. The e�ective memory

size F = 32 is shown by double horizontal lines. (a) � = F . (b) � = N .
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When the portion of a band that resides in one processor (�=P records) is smaller than the

e�ective memory size F , computing a mini-buttery must induce interprocessor communication.

Allowing for the band size to be even smaller|� < F|then we have the situation above in which

there are three di�erent communication characteristics.

Varying the e�ective memory size and band size

In fact, we can vary the e�ective memory size and band size to simplify the mini-buttery com-

putations. So far, we have considered an e�ective memory size of F = M . Suppose instead that

we use F = M=P , so that each mini-buttery is the size of an individual processor's memory, and

suppose further that we can change the data layout to have a band size � � M . Then we could

compute each mini-buttery without any communication at all, since each mini-buttery would

consist of M=P consecutive records within the same processor.

Changing the data layout turns out to be fairly simple. We change the bit-reversal and bit-

rotation permutations performed in Figure 3 to other BMMC permutations.

A BMMC permutation on N = 2n elements is speci�ed by an n � n characteristic matrix

H = (hij) whose entries are drawn from f0; 1g and is nonsingular (i.e., invertible) over GF (2).3

Treating each source index x as an n-bit vector, we perform matrix-vector multiplication over

GF (2) to produce an n-bit target index z: z = H x.4 As long as the characteristic matrix H is

nonsingular, the mapping of source indices to target indices is one-to-one. Because multiplying

nonsingular matrices yields a nonsingular matrix, the class of BMMC permutations is closed under

composition.

Before we can see how to change the BMMC permutations used in the FFT algorithm, we must

�rst show that conversions between power-of-2 band sizes are BMMC permutations. In the same

spirit as in Section 2, we can interpret any record's index as a sequence of three bit �elds that give

the record's location in the banded layout:

� The most signi�cant lg(N=�) bits give the number of the band containing the record.

� The next lgP bits contain the number of the processor containing the record.

� The least signi�cant lg(N=�P ) bits give the relative location of the record in its processor

and within the band.

Converting from one band size to another is actually a matter of \sliding" the lgP processor bits

either left or right. In either direction, it is a bit permutation, and hence a BMMC permutation

whose characteristic matrix is a permutation matrix (each row and each column holds exactly

one 1).

Now we can see how to alter the BMMC permutations used in the FFT algorithm. The BMMC

permutation subroutine assumes that the records are laid out on the disks with a band size of BD,

but the reading and writing of mini-butteries assumes a band size of some value �. Suppose that

the n � n matrix T characterizes a (lgF )-bit right rotation permutation with band size BD. Let

the n� n matrix � characterize the BMMC permutation that converts a band size of � to a band

size of BD. Let ��1 be the inverse of �, so that ��1 characterizes the BMMC permutation that

converts a band size of BD to a band size of �. Then instead of just performing the permutation

characterized by T , we �rst convert from band size � to band size BD, we then perform the

3Matrix multiplication over GF (2) is like standard matrix multiplication over the reals but with all arithmetic

performed modulo 2. Equivalently, multiplication is replaced by logical-and, and addition is replaced by exclusive-or.
4Technically, the de�nition of a BMMC permutation requires an n-bit \complement vector" c, and z = H x� c.

All BMMC permutations used in this paper have a complement vector of 0, and so we ignore complement vectors.
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permutation characterized by T , and �nally we convert from band size BD back to band size �.

In other words, we perform just one BMMC permutation, and it is characterized by the matrix

product (��1T�).

The above alteration works for all but the �rst and last BMMC permutations in the FFT

algorithm. The �rst BMMC permutation di�ers in two ways: the records start out with band

size BD rather than �, and it is a bit-reversal permutation. If the matrix R characterizes the

bit-reversal permutation, then we perform the BMMC permutation characterized by the matrix

product (��1R). The last BMMC permutation also di�ers in two ways: it may be a bit rotation

by fewer than lgF bits, and the records end up with band size BD rather than �. If the matrix T 0

characterizes the bit-rotation permutation in the last superlevel, then we perform the BMMC

permutation characterized by the matrix product (T 0�).

Meaningful combinations of e�ective memory size and band size

In Section 6, we present performance results for two e�ective memory sizes (M andM=P ) and three

band sizes (BD, M , and N). Of these six combinations, only four make sense to implement. The

two that do not are F = M=P , � = BD and F = M , � = N . In both cases, each mini-buttery

would not contain F consecutive records.

Of the four meaningful combinations, the two with F = M=P (� = M and � = N) require

no interprocessor communication during the mini-buttery computations. It is remarkably simple

to modify the uniprocessor FFT code to implement these con�gurations. When F = � = M , the

interprocessor communication is much simpler than the F = M , � = BD case detailed above.

5 E�ects on I/O and communication complexity

This section examines how varying the e�ective memory size and band size a�ects the I/O and

communication complexities of the full out-of-core multiprocessor FFT algorithm. It ends with a

look at the pertinent complexity issues among the out-of-core multiprocessor methods.

E�ect on I/O complexity

The full paper will show that the I/O complexity is O
�

N
BD

lgN
lgF

lgmin(B;N=B)

lg(M=B)

�
. Asymptotically,

varying the band size has no e�ect on the I/O complexity.

Reducing the e�ective memory size F fromM toM=P increases the asymptotic I/O complexity.

The I/O complexity is o� from the asymptotically optimal �
�

N
BD

lgmin(B;N=B)

lg(M=B)

�
by a factor of

lgN= lgF . When F = M , one can show that O
�

N
BD

lgN
lgM

lgmin(B;N=B)

lg(M=B)

�
= O

�
N
BD

lgmin(B;N=B)

lg(M=B)

�
.

When F = M=P , however, there may be additional superlevels, and they introduce additional I/O.

In practice, these additional superlevels occur rarely. Consider a con�guration with 16 megabytes

of memory per processor, which works out to M=P = 220 records per processor. Additional super-

levels occur when there are many processors, so suppose that P = 256 and hence M = 228. The

number of superlevels is dlgN= lgF e. When F = M , there are two superlevels for all N in the range

229 to 256. When F = M=P , the range of N for which there are two superlevels is smaller|221

to 240|but it still includes the largest problem size we are likely to see for some time to come.

E�ect on communication complexity

Analyzing the change in communication complexity with varying memory size and band size is

di�cult. Of course, when F = M=P , there is no communication when computing the mini-
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butteries. When F = M , we can determine the number of MPI messages and total volume of

data communicated for a particular set of parameters; this calculation is complicated by di�erences

in the last superlevel. Communication analysis becomes di�cult when the band size changes.

Because the characteristic matrices given to the BMMC subroutine change with the band size, the

communication patterns within the BMMC subroutine change as well. We do not know of a purely

analytical way to determine the exact nature of this change.

There are two non-analytical ways to determine the e�ect of band size on communication

complexity. One is to instrument the FFT implementations to measure the number of MPI messages

and communication volume; the results in Section 6 use this method. The other way does not

require the FFT code to actually run. Because the entire FFT algorithm is both deterministic

and oblivious (i.e., its control ow does not depend on the values of the N points), if we are given

an exact set of parameters N , M , B, D, P , F , and �, then we can calculate the number of MPI

messages and total communication volume.

The primary question

The primary question we ask is which e�ective memory size is better: M or M=P? Under certain

conditions, using F = M=P may cause there to be more superlevels. And there may be a tradeo� in

communication during mini-butteries versus communication during BMMC permutations. When

F = M=P , we can avoid all interprocessor communication during mini-buttery computations, but

the modi�ed characteristic matrices may cause additional interprocessor communication during the

BMMC permutations. The performance results in the next section will help answer this question.

6 Performance of the multiprocessor methods

Here we present performance results for the out-of-core multiprocessor FFT methods described in

Section 4. We shall see that when the number of superlevels is the same, the methods that avoid

interprocessor communication during the mini-buttery computations are faster. These methods

are slightly slower when they have one more superlevel.

The platform is \Fleet," a set of eight IBM RS6000 workstations connected by a FDDI net-

work. Each node runs AIX 4.1. Interprocessor communication is performed via the MPI calls

MPI_Sendrecv() and MPI_Sendrecv_replace(). Parallel I/O calls are through the ViC* API

[CH96], which in turn makes calls to the Galley File System [NK96a, NK96b]. Galley uses sep-

arate I/O processes (IOPs) to manage parallel I/O calls. The ViC* API treats each IOP like a

disk. On Fleet, it is fastest to run the IOPs on separate nodes from the computational processes.

Consequently, we report results for P = 4 and D = 4. All runs were for N = 225 points (or 229

bytes), which is the largest data set possible with this con�guration of Galley on Fleet. Because the

software interface to Fleet is very similar to an IBM SP-2, the full paper will include performance

numbers for the SP-2.

We report on timing runs with the following variations:

1. E�ective memory sizes were M and M=P , and band sizes were BD, M , and N . For this

extended abstract, we ran three combinations: F = M and � = BD; F =M=P and � = M ;

F = M=P and � = N . The full paper will also include F = M and � = M .

2. I/O to read and write mini-butteries was both synchronous and asynchronous. The BMMC

subroutine comes from an established library and uses only asynchronous I/O.
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3. In one con�guration, each processor used 224 bytes of memory, so that there were two su-

perlevels for both e�ective memory sizes. In another con�guration, each processor used less

memory: 216 bytes for synchronous I/O and 218 bytes for asynchronous I/O. These are the

largest memory sizes for which an e�ective memory size of M=P has three superlevels but for

F = M there are only two. The best possible block size for Galley was used in each run.

Figure 6 shows the results with synchronous I/O and the larger memory size of 224 bytes per

processor. The two methods with e�ective memory size F = M=P were virtually identical. The

total time is dominated by the BMMC subroutine for all methods. When F = M , the BMMC

subroutine takes slightly less time than for the other two methods. The communication cost in

computing the mini-butteries soaks up these savings and more. Mini-buttery computation time

is slightly longer, too, probably due to context-switching and cache e�ects. Overall, the methods

with F = M=P take approximately 86% of the time of the method with F = M .

The tables included in Figures 6{9 show the number of messages and message volume, rounded

to the nearest million bytes, per processor for the mini-buttery and BMMC portions of the com-

putation. In Figure 6, when F = M , each processor sends 64 messages for a total of about 268

million bytes during the mini-buttery computations. The message count and volume during the

BMMC portion is the same for all three methods. There is no tradeo� in communication: there is

less communication when F = M=P .

Figure 7 shows results with asynchronous I/O. The I/O times represent time spent waiting for

previously issued I/O to complete. Total time is reduced from the synchronous I/O runs by only

1.5{2%. The methods with F = M=P have the same relative advantage over the F = M method

as before.

Figures 8 and 9 show results for the smaller memory sizes. These memory sizes are so small

that the BMMC subroutine, which is sensitive to the memory size, runs quite slowly. In these

runs, the methods with F = M=P take three superlevels rather than the two taken when F = M .

Consequently, they take longer. The methods with � = N;F = M=P and � = M;F = M=P

take approximately 4.5% and 19.0% longer, respectively, than the � = BD;F = M method with

synchronous I/O. With asynchronous I/O, these F = M=P methods take about 0.2% and 15.6%

longer. When we use asynchronous I/O, therefore, the � = N;F = M=P method is usually

the fastest, and when it loses, it is not by much. Asynchronous I/O improves all three methods

considerably. It is interesting to note that the mini-buttery communication time when � =

BD;F = M almost soaks up the bene�t of having one fewer superlevel when compared to � =

N;F = M=P . We also see that a band size of M causes more messages during the BMMC

subroutine than a band size of N . The BMMC subroutine, and hence the entire program, runs

more slowly in this case.

7 Conclusion

We have examined four ways to perform out-of-core multiprocessor FFTs with distributed memory

using the Parallel Disk Model. Overall, the best ways avoid interprocessor communication dur-

ing the in-core mini-buttery computations. Asynchronous I/O improves performance, sometimes

marginally and sometimes signi�cantly.

As we noted in Section 6, the advantage of the best ways is far from overwhelming: they save

approximately 14% of the total time. In all the methods considered, most of the time is spent in

the BMMC subroutine. Mini-buttery interprocessor communication accounts for a relatively small

share of the time. When we run these methods on the IBM SP-2 with its faster communication
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Figure 6: Results for the three methods with synchronous I/O and 224 bytes of memory per processor.

The vertical axis is time, in seconds. From bottom to top, each stacked bar shows time spent in the

BMMC subroutine, communication time during the mini-buttery computation, computation time in mini-

butteries, time to read mini-butteries, and time to write mini-butteries. Message measurements are per

processor, and all message volumes are to the nearest million bytes.
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network, we may very well �nd that the running times of the methods are even closer. Our future

work will focus on improving the BMMC subroutine, which is the bottleneck in the FFT algorithm.

We alluded in Section 4 to one advantage of the methods with e�ective memory size M=P : ease

of developing code. Starting from a working out-of-core uniprocessor FFT program, it took under

an hour of programming time to convert it to a multiprocessor program with band size � = N and

e�ective memory size F = M=P . And it worked the �rst time. In contrast, starting from the same

point, it took several weeks to develop and debug the method with � = BD and F =M . Changing

the band size is easy. Adding interprocessor communication when the band size is smaller than the

e�ective memory size is hard.
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