
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Computer Science Technical Reports Computer Science 

12-1-1996 

Cross-input Amortization Captures the Diffuse Adversary Cross-input Amortization Captures the Diffuse Adversary 

Neal E. Young 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr 

 Part of the Computer Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Young, Neal E., "Cross-input Amortization Captures the Diffuse Adversary" (1996). Computer Science 
Technical Report PCS-TR96-302. https://digitalcommons.dartmouth.edu/cs_tr/142 

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital 
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Available at URL ftp://ftp.cs.dartmouth.edu/TR/TR96-302.ps.Z

Cross-input Amortization Captures the Di�use Adversary

Neal E. Young

Technical Report PCS-TR96-302

Department of Computer Science

Dartmouth College

Hanover, NH 03755-3510

ney@cs.dartmouth.edu

Abstract

Koutsoupias and Papadimitriou recently raised the question of how well determin-

istic on-line paging algorithms can do against a certain class of adversarially biased

random inputs [3]. Such an input is given in an on-line fashion; the adversary deter-

mines the next request probabilistically, subject to the constraint that no page may be

requested with probability more than a �xed � > 0.

In this paper, we answer their question by estimating, within a factor of two, the

optimal competitive ratio of any deterministic on-line strategy against this adversary.

We further analyze randomized on-line strategies, obtaining upper and lower bounds

within a factor of two. These estimates reveal the qualitative changes as � ranges con-

tinuously from 1 (the standard model) towards 0 (a severely handicapped adversary).

The key to our upper bounds is a novel charging scheme that is appropriate for

adversarially biased random inputs. The scheme adjusts the costs of each input so

that the expected cost of a random input is unchanged, but working with adjusted

costs, we can obtain worst-case bounds on a per-input basis. This lets us use worst-

case analysis techniques while still thinking of some of the costs as expected costs.

1



1 Introduction

In the theoretical analysis of algorithms, measuring an algorithm by its worst-case perfor-

mance is often impractically pessimistic. On the other hand, measuring an algorithm by

its average-case on a speci�c input distribution is impractically presumptuous. A plausible

approach falling in between these two standard models is to assume that something, but not

everything, is known about the distribution from which inputs are generated. One model for

this is to assume that the inputs are generated by a random source that has been biased in

a constrained fashion by an adversary that chooses the worst possible bias for the algorithm

in question.

Koutsoupias and Papadimitriou [3] recently studied how well any deterministic on-line

paging algorithm can do against such an adversary. Their adversary, ��, is allowed to select

the next request only probabilistically, with each page being requested with probability at

most some � > 0. Koutsoupias and Papadimitriou prove that the least-recently-used strategy

(Lru) is an optimal deterministic on-line algorithm against this adversary, but they leave

open the problem of giving a closed-form estimate of the optimal competitive ratio R(��),

commenting \It seems di�cult to determine ... the exact competitive ratio. ... In fact ... the

ratio may not be expressible as a simple closed form expression." In this paper, we estimate

this ratio within a factor of roughly two for all k and �. Speci�cally, we show

Theorem 1.1 Fix any integer k > 0 and any � 2 (0; 1]. Then for � �
1

k+1
,

1 + ln
� 1

1 � �(k � 1)
� 1
�
� R(��) � R(��;Lru) � 2

�
1 + ln

1

1� �k

�
;

while for � � 1
k+1

,

1 + k �
1

�
+ ln

1

2�
� R(��) � R(��;Lru) � 2

�
1 + k �

1

�
+ ln

1

�

�
:

The upper bound holds for �rst-in-�rst-out (Fifo) and the marking algorithm (Mark,

[2, 4, 5]) as well as for Lru.

(The upper bound does not hold for ush-when-full (Fwf).) We also estimate the optimal

ratio for randomized on-line strategies, Rr(��), which Koutsoupias and Papadimitriou do

not consider.

Theorem 1.2 Fix any integer k > 0 and any � 2 (0; 1]. For � � 1
k+1

,

1 + ln
� 1

1� �(k � 1)
� 1

�
� R

r
(�

�
) � R(�

�
;Mark) � 2

�
1 + ln

1

1� �k

�
;

while for � �
1

k+1
,

1 + ln
k

2
� R

r
(�

�
) � R(�

�
;Mark) � 2(1 + ln k):

2



0

0

1 0

0

1 0

cost(a)=1

cost(b)=2

cost(a)=0.5

cost(b)=0.5

a

b

a

b

0

1

1

1/2 = 1/4+1/8+1/8

0 1

11 0 0

Figure 1: To bound the expected cost against an adversarially biased random input, the

costs are adjusted so that (1) the expected cost of a random input stays the same, but (2)

the adjusted cost of each input can now be bounded individually. A random input sequence

corresponds to a random walk down the tree. The increased cost at the top edge represents

\insurance" against edges below whose costs (in bold on the left) no longer have to be paid.

As � varies from 1 to 0, the di�use adversary becomes more and more restricted. With � = 1,

the di�use adversary is the standard adversary. When � is above the threshold 1=k, the ratio

for deterministic strategies ranges from k down to about ln k. In this range randomized

strategies can do no better than against the standard adversary. For � below the threshold

1=k, the ratio for deterministic strategies ranges from ln k down to constant (as �k grows

away from 1). In this range, randomized strategies do essentially no better than deterministic

strategies.

The key to our upper bounds is a novel charging scheme for analyzing adversarially biased

random inputs (see Figure 1). The charging scheme adjusts the costs of each input in such

a way that the expected cost of a random input is unchanged, but so that, working with the

adjusted costs, we can show worst-case bounds on each input. This allows us to reduce the

analysis to a worst-case analysis, while still thinking of some of the costs incurred on a given

input as average-case.

2 De�nitions

The paging problem, given an integer k > 0, is to dynamically maintain a cache (set) of at

most k pages in response to a sequence of requests for pages so as to minimize the number

of page faults. A page fault occurs when the requested page is not in the cache, at which

point the page must be brought into the cache. If there are k pages in the cache already,

one must be evicted (removed) before bringing in the requested item. An algorithm for the

problem must specify which page to evict when a fault occurs. Given an algorithm A and a

sequence x, we let A(x) denote the cost (number of faults) incurred by A in servicing x. The

optimal algorithm, Opt [1], evicts the page that will be next requested latest. An algorithm

3



is on-line if the choice of which page to evict is independent of subsequent requests.

Following Koutsoupias and Papadimitriou [3], given a known class of distributions � of

the input sequences and an algorithm A, de�ne

R(�; A) = max
D2�

ED[A(x)]

ED[Opt(x)]

and

R(�) = min
A

R(�; A);

where A ranges over the class of deterministic on-line algorithms, and

Rr(�) = min
A

R(�; A);

where A ranges over the class of randomized on-line algorithms. (Note that A(x) denotes

the number of faults made by A on input x; k is an implicit parameter to these de�nitions.)

Koutsoupias and Papadimitriou call this the di�use adversary model.

Any distribution D speci�es, for each page p and sequence of page requests x, the prob-

ability PrD(pjx) that the next request is p given that the sequence so far is x. De�ne �� to

be the distributions D such that, for any request sequence x and page p, PrD(pjx) � �. We

are interested in determining R(��) and Rr(��).

3 Upper Bound on Deterministic Strategies

Our strategy is to \adjust" the costs incurred by Lru on any distribution D 2 �� so that

the expected cost of a random input from D is not decreased, but so that, working with the

adjusted costs, we can show that on any sequence x, the adjusted cost Lru(x) is bounded

by the appropriate factor c times Opt(x). This will give the upper bound via

E[Lru(x)]

E[Opt(x)]
�

E[Lru(x)]

E[Opt(x)]
� max

x

Lru(x)

Opt(x)
� c:

3.1 The Amortized Cost Lru(x).

We now motivate and de�ne the adjusted cost Lru(x) of any sequence x. Partition x

into consecutive subsequences, called k-phases, or just phases, such that each phase (except

possibly the last) contains exactly k distinct pages and each phase (other than the �rst)

begins with a page not occuring in the previous phase. Classify each request according to

the structure of the phase in which it occurs as follows:

redundant | the page requested was previously requested during the phase (these requests

play an important role in the analysis);

new | the page requested was not requested during this or the previous phase;

worrisome | the request is not new, but nonetheless causes Lru to fault.

4



It was previously observed [2, 4, 5] that in a phase with m new requests, Opt incurs at least

m=2 faults in the traditional amortized sense. (This is because in two consecutive phases, if

the second has m new requests, then k +m distinct pages are requested; since Opt has a

cache of size k, it must incur at least m faults during the two phases.) On the other hand,

Opt incurs at most m faults in the phase. (This is because Opt has the option of starting

the phase with the k pages from last phase and then evicting m of these pages that won't

be requested this phase.)

Note that Lru doesn't evict a page during a phase once it has been requested and that

Lru starts a phase with all of the pages from the previous phase in its cache. (In fact, these

are the only two properties of Lru that we use. Since these properties are shared by �rst-

in-�rst out and Mark, these upper bounds apply to them as well.) Thus, each new request

de�nitely causes a fault, and each worrisome request requests a page that was previously

requested during the current phase but subsequently evicted by Lru. The new requests are

not a problem since Opt is also paying for those. The worrisome requests are the problem

| we need to argue they don't cost too much.

To do this we need to use the limitations on the adversary. These limitations do not hold

on a per-sequence basis. In fact, if the random sequence is conditioned on any future event

the limitation on the adversary does not hold. Thus, for instance, we cannot even partition

the sequences into groups such that each sequence in a group shares a similar phase structure;

if the random input is conditioned on membership in such a group, we lose the guarantee

that at any given point, the adversary can request any given page with probability at most

�.

Instead, we adjust the costs of the worrisome requests. As the sequence is given and pro-

cessed by Lru in an on-line fashion, Lru is not charged (directly) for worrisome requests.

Instead, after each non-redundant request, Lru pays an \insurance premium" equal to the

probability that the next non-redundant request would be a worrisome request if the remain-

ing requests were generated randomly by the adversary. Having paid this insurance premium,

Lru only pays for the next non-redundant request if it turns out to be a new request, not if

it is a worrisome request. On any given sequence, the cost may be reduced (if there are many

worrisome requests) or increased (if there are few worrisome requests). On the other hand,

over all random inputs, the average cost paid by Lru is unchanged, because on average the

insurance premiums exactly pay for the worrisome requests (see Figure 1). Thus we have

Lemma 3.1 For any D 2 �
�
, ED

[Lru(x)] � ED
[Lru(x)].

3.2 The Worst-Case Bound on Lru(x)=Opt(x).

Next we give a worst-case bound on Lru(x)=Opt(x) for any x. We do this on a per-phase

basis. The main task is bounding the cost of the insurance premiums paid during the phase

(the only other cost charged to Lru is for new requests). We bound the cost of the premiums

in terms of the number of new requests in the phase. As described previously, we know the

number of new requests is at most twice the cost incurred by Opt in the phase.

Insurance premiums are paid only following non-redundant requests, so let p be any non-

redundant request in the phase. Let m be the number of new requests so far (i.e., in the

phase, up to and including p). Let i be the number of non-redundant requests so far.

5



There are at most m pages that, if requested next, would result in a worrisome request

(of the k pages requested in the previous phase, all but m are in the cache). There are at

most i pages that, if requested next, would result in a redundant request (the i distinct pages

requested so far). If any other page were requested next, it would either be a new request or

a non-worrisome, non-redundant request (to a page in Lru's cache). Thus, the only way that

the next non-redundant request could be a worrisome request is if the upcoming sequence of

requests were to consist of some sequence of the i possible redundant requests followed by a

request to one of the m possible worrisome requests.

Since the adversary can assign a probability of at most � to any page, the probability

that the next non-redundant request would be worrisome is bounded by

X
`

(�i)`�m =
�m

1� �i

(or 1 if the quantity on the right-hand side is negative or more than 1). This is our upper

bound on the insurance payment paid by Lru after request p. Over the course of an entire

phase with m new requests, the number of new requests plus the sum of these upper bounds

is at most

m+
k�1X
i=1

minf
�m

1� �i
; 1g (1)

where by minfa; 1g we mean 1 if a is negative or more than 1 and a otherwise. (Note

that after the kth non-redundant request, the insurance payment is 0 because the next

non-redundant request is necessarily a new request.)

Using calculus to estimate the sum in (1), using the fact that Lru(x) is the sum of the

number of new requests and the insurance payments, and using the fact that the number of

new requests in x is at most 2Opt(x), we obtain

Lemma 3.2 For any request sequence x,

Lru(x)

Opt(x)
�

8<
:
2
�
1 + ln 1

1��k

�
when � � 1

k+1
,

2
�
1 + k � 1

�
+ ln 1

�

�
when � � 1

k+1
.

Combining this with Lemma 3.1 gives the upper bounds stated in Theorem 1.1.

4 Lower Bound on Deterministic Strategies

In this section we show that for any deterministic on-line strategy A, there is a distribution

D in �� such that the expected cost of the strategy divided by the expected cost of Opt is

at least roughly half the upper bound proved for Lru.

We describe D by describing an adversary that requests pages probabilistically subject

to the limitations of ��. Fix � > 0 and k > 0. For simplicity we assume � > 1=2k (otherwise

the upper bound already established shows the ratio is at most a small constant).

Fix m = maxf1; d1
�
e � kg. The adversary requests the pages in an on-line fashion. At

the beginning of a phase, the adversary requests m new pages by assigning probability only

6



to pages not in Lru's cache. (Here we follow [3] in assuming that there are at least 1
�
+ k

pages available.)

For the remainder of the phase, at each request the adversary assigns probability to pages

with the following priority. First priority is given to pages requested last phase or this phase

but not in A's cache. Second priority is given to pages requested last phase or this phase

that are in A's cache. Third priority is given to any other pages in A's cache. Probability

is assigned according to priority, subject to the constraint that no page gets more than �

priority. By the choice of m, these three classes of pages su�ce for all the probability to be

assigned.

A straightforward argument shows that after i � m distinct pages have been requested,

the probability that the next request to a page not yet requested this phase causes a fault is

at least
�m

1 � �i

or 1 if this quantity is negative or more than 1. Thus the expected number of faults incurred

by A during the phase is at least

m+
k�1X
i=m

minf
�m

1� �i
; 1g

where as before minfa; 1g denotes 1 if a is negative or more than 1 and a otherwise. As in

the upper bound we use calculus to bound the sum, and we use the fact that Opt incurs at

most m faults in the phase to show

Lemma 4.1 For any � > 0 and any deterministic on-line algorithm A,

R(��; A) �

8<
:
1 + ln

�
1

1��(k�1)
� 1
�

when � � 1
k+1

1 + k � 1
�
+ ln 1

2�
when � � 1

k+1
.

This gives the lower bounds in Theorem 1.1.

5 Randomized Strategies

In this section, for any randomized on-line strategy A, we describe a distribution D in ��

that gives a good lower bound on R(��; A). The method is similar to the deterministic lower

bound, and in fact the bounds coincide for small �.

Fix � > 0 and k > 0. Set m = maxf1; 1=� � kg. To begin a phase, �rst make m new

requests. For subsequent requests, simply assign probability 1=(k+m) to each of the k pages

requested in the previous phase and each of the m pages requested at the beginning of this

phase. Standard techniques show that the expected number of faults before the phase ends

is at least m(1 + ln k+1
m+1

). For this phase Opt incurs a cost of at most m, so the ratio is

Lemma 5.1 For any � > 0 and any randomized on-line algorithm A,

R(��; A) �

8<
:
1 + ln k

2
when � � 1

k+1

1 + ln
�

1
1��(k�1)

� 1
�

when � � 1
k+1

.

7



This gives the lower bounds in Theorem 1.2. For the upper bounds in the theorem, note

that the marking algorithm is known to be 2(1 + ln(k))-competitive against the standard

adversary, while we've shown in a previous section that the ratio of the marking algorithm

or Lru when � � 1=(k + 1) is at worst 2(1 + ln 1
1��k

). Thus these lower bounds are tight

within a factor of roughly two.

References

[1] L. A. Belady. A study of replacement algorithms for virtual storage computers. IBM

Systems Journal, 5:78{101, 1966.

[2] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young. Com-

petitive paging algorithms. Journal of Algorithms, 12:685{699, 1991.

[3] Elias Koutsoupias and Christos H. Papadimitriou. Beyond competitive analysis. In Proc.

of the 35th IEEE Annual Symp. on Foundation of Computer Science, pages 394{400,

1994.

[4] Neal Young. Competitive paging and dual-guided algorithms for weighted caching and

matching. (Thesis) Tech. Rep. CS-TR-348-91, Computer Science Department, Princeton

University, October 1991.

[5] Neal Young. The k-server dual and loose competitiveness for paging. Algorithmica,

11(6):525{541, 1994.

8


	Cross-input Amortization Captures the Diffuse Adversary
	Dartmouth Digital Commons Citation

	tr.dvi

