
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

11-1-1996

A Critique of the Telecommunications Description Language A Critique of the Telecommunications Description Language

(TeD) (TeD)

Brian J. Premore
Dartmouth College

David M. Nicol
Dartmouth College

Xiaowen Liu
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Premore, Brian J.; Nicol, David M.; and Liu, Xiaowen, "A Critique of the Telecommunications Description
Language (TeD)" (1996). Computer Science Technical Report PCS-TR96-299.
https://digitalcommons.dartmouth.edu/cs_tr/141

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/141?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College Computer Science Technical Report

PCS-TR96-299

A Critique of the Telecommunication Description

Language (TeD)�

Brian J. Premore, David M. Nicol, Xiaowen Liu

Department of Computer Science

Dartmouth College

Abstract

TeD is an object-oriented description language designed to facilitate the modeling of large

scale telecommunication networks, with simulation on parallel and distributed platforms. TeD

models are mapped to the Georgia Tech Time Warp engine (GTW) for execution. In this paper

we outline the features of TeD, pointing out its strengths and identifying characteristics that

gave us trouble as we used TeD to model detailed networks. Our issues are motivated speci�cally

by a model of TCP and a model of multicast resource allocation. Our intention is to illustrate

by example what TeD can do, and characteristics that a potential TeD user should be aware of.

1 Introduction

The Telecommunications Description language (TeD) is a system under development at Georgia

Tech to provide a simulation framework for large-scale network simulation. TeD is modular, and

object-oriented. Its design reects an overriding goal that TeD submodels be reusable, that they

support a library approach to building up large complex systems. Its design reects a goal for model

extensibility as well. It achieves these goals by drawing heavily from VHDL (VSIC Hardware De-

scription Language). It achieves a rich expressiveness by allowing the incorporation of general C or

C++ code that manipulates TeD model constructs. TeD models are run in parallel, automatically,

by being transformed into GTW (Georgia Tech Time Warp) models.

Programming interfaces for parallel discrete event simulation (GTW [1, 7], U.P.S. [4]) frequently

leave low-level details in control of the programmer. While a low-level API can be advantageous

in giving the programmer some control over the optimization of a simulation, it can at the same

time be burdensome. TeD removes the option of such low-level control by making the description

independent of the simulation. The programmer describes the model, and the rest is left to the TeD

compiler. This approach has pluses and minuses. The automation is of course, a plus. The negatives

�This work was supported in part by by NSF grants CCR-9308667 and CCR-9625894, and DARPA Contract

N66001-96-C-8530.

1

are that the goal of automation has seemingly forced the TeD designers into imposing restrictions

on TeD models that impede model development and force us into unnatural and ine�cient modes

of expression. TeD also removes from programmer access to some critical performance-sensitive

decisions.

We are part of a team that is funded to develop and use TeD on large-scale real-life simulation

network modeling problems. In some sense we are representative of the intended user group for

TeD: we are experienced modelers, but unexperienced in Time Warp simulation. While this paper is

critical of aspects of the TeD design, it should be noted that TeD is a hugely ambitious project that

has been under development for only a year. We see our role in the project as being prototypical

users, providing feedback on TeD's suitability for its intended task. This paper should be viewed

in that vein.

Section 2 briey overviews modeling in TeD. Section 3 investigates and reports on aspects of

TeD which characterize its behavior. Section 4 reviews the performance of a particular simulation

modeled in TeD. Section 5 summarizes and concludes this examination of TeD.

2 A brief overview of modeling in TeD

A model in TeD consists of entities which communicate using events and channels. Each entity

object represents some actual entity in the modeled network, and events are simply messages

encapsulating information. A channel represents some means by which actual entities can send

and receive events. Every channel is associated with a particular entity, and two entities can

communicate if they have associated channels which have been mapped to each other. To illustrate,

we shall introduce an example which simulates the TCP network protocol. Top level entities in

this model are such things as routers and source nodes (non-router nodes which generate and

send information). Both types of entities may have any number of channels, and these channels

could be mapped to de�ne the user's network topology of choice. The object-oriented structure

of TeD also allows for entities to contain components which are themselves entities. For example,

source node entities might have an array of port subentities. In fact, in every TeD model, there

exists a root entity of which all others are subentities. routers and source nodes are subentities

of a root entity named system.

For each entity, at least one architecture must be de�ned which speci�es that entity's behavioral

model. The architecture de�nes the state of the entity (variables to be used during the simulation),

the behavior (which includes how it will respond to events that it receives), and the result (variables

which describe the result of the simulation for that entity). In the TCP example, an architecture

for a router might contain a routing table (state), a process which forwards datagrams when they

are received (behavior), and variables to keep track of the number of datagrams forwarded (result).

3 Characteristic aspects of TeD

3.1 Features

TeD provides many ways for programmers to precisely de�ne the high-level aspects of their models.

We have found the following to be general and useful.

3.1.1 External code blocks and macros

There are many contexts in TeD in which it is necessary to de�ne detailed model behavior. An

external code block is a stand-alone segment of the external language (C++, in this case) that

allows such details to be programmed. TeD de�nes several macros for use inside external code

blocks which allow access to model data and perform model-related functions, such as sending an

2

event. As an example, in de�ning the behavior of a tcp agent|a subentity of a port|there

are many di�erent scenarios which must be dealt with (handling and making connect requests,

sending and acknowledging data, monitoring and adjusting the transfer rate of data, handling and

making close requests, and many more). Much data manipulation and the use of nested conditional

statements are necessary to properly de�ne its behavior so that it can keep track of and handle

these situations. External code blocks provide a convenient means for this to be accomplished.

Overall, there are few restrictions on what is allowed in an external code block. However, some

of them are signi�cant, and are detailed in the sections to come.

3.1.2 The con�guration language

While entities and their behavior can be described in detail in TeD, it can still be di�cult to

customize di�erent instances of entities without resorting to extremely awkward techniques (e.g.,

passing in many parameters). In order to make such customization easier, the TeD system provides

a con�guration language in addition to the standard TeD language. The con�guration language

provides for such customization, in addition to allowing the programmer to specify the bindings of

entities to architectures, all of which can be done in a very straightforward manner. Everything

which is speci�ed in the special con�guration �les can be changed to update the model without

having to recompile.

Suppose that in the TCP model, we are implementing source nodes as an array of subentities

inside the system root entity, and we wish to give out speci�c IP addresses to each one. Passing in

the addresses as integer values, one for each source node, would be non-trivial for two reasons.

First, the values would have to be passed in as parameters to the system entity, and all parameters

are required to be integers (we would prefer to pass an array of integers). Second, the number of

source nodes itself might be variable. While con�guring under these constraints could still be

done, TeD's con�guration language saves us the trouble. We can put the values in an array, as de-

sired, and use a simple loop to assign the appropriate address to each source node. Furthermore,

if we wish to change just one address, we can edit the con�guration �le and avoid recompilation.

3.2 Restrictions

While TeD provides the programmer with much functionality and freedom, it also imposes some

restrictions. The ones described below are those that caused us the greatest di�culty.

3.2.1 The wait statement

Like VHDL, TeD allows model behavior to be expressed in terms of processes that operate on

model state. Typical of process-oriented simulation, the code expressing process behavior includes

wait statements expressing that the process should suspend for a certain length of time, until some

condition is met, or until it is prodded back into life by some external event. A TeD process is

composed only of external code blocks (see Section 3.1.1) and special wait statements ; it looks

much like the canonical function or procedure. In fact, except for the wait statements they behave

almost identically the same as C++ functions. Processes may be event-driven, or arrival-driven. If

event-driven, a process is only executed when an event arrives on a speci�ed channel or channels.

If self-driven it executes continually throughout the simulation, restarting each time it �nishes.

Thewait statements used in processes control synchronization and timing of the model. Await

statement has three basic forms. It can wait for a given length of simulated time to pass, wait

on a given channel for an event to arrive, or wait until a given condition becomes true. Certain

combined forms are also allowed, in which case waiting ceases when any one of the statement's

constituent parts is satis�ed. (For example, wait on ch for t would cease waiting when either an

event arrived on channel ch, or t time units passed, whichever occured �rst.) Despite the added

3

begin application behavioral process
begin external code block
int x = a random integer;
int n = network address of a randomly chosen source node;
int p = a randomly chosen port number;
switch (state of execution)
f

case connected:
if (x%2 == 0) // a 1/2 chance of attempting a disconnect
f

send tcp agent msg requesting the connection be closed;
wait for response msg from tcp agent;
if (response msg indicates a successful connection close)

state of execution = unconnected;

g

else

wait for my wait time time units;
break;

case unconnected:
if (x%3 == 0) // a 1/3 chance of attempting a connect
f

send tcp agent a msg requesting a connection with
the application on port p of source node n;

wait for response msg from tcp agent;
if (response msg indicates connection was established)

state of execution = connected;
g

else

wait for my wait time time units;
break;

default:
error;

g

end external code block
end process

(a)

This is badcode.tex, the one befor this was code.tex.

begin application behavioral process
begin external code block
int x = a random integer;
int n = network address of a randomly chosen source node;
int p = a randomly chosen port number;
boolean sent dummy msg = FALSE;
switch (state of execution)
f

case connected:
if (x%2 == 0) // a 1/2 chance of attempting a disco nnect
send tcp agent msg requesting the connection be closed;

else

f

send tcp agent a dummy msg; // DUMMY MESSAGE

sent dummy msg = TRUE;
g

break;
case unconnected:
if (x%3 == 0) // a 1/3 chance of attempting a conne ct
send tcp agent a msg requesting a connection with

the application on port p of source node n;
else

f

send tcp agent a dummy msg; // DUMMY MESSAGE

sent dummy msg = TRUE;
g

break;
default:
error;

g

end external code block
wait for response msg from tcp agent; // UNEMBEDDED WAIT

begin external code block
if (!sent dummy msg)
f

switch (state of execution)
f

case connected:
if (response msg indicates a successful connection close)

state of execution = unconnected;
break;

case unconnected:
if (response msg indicates connection was established)

state of execution = connected;
break;

default:
error;

g

g

end external code block
end process

(b)

Figure 1: The e�ect of restricting the use of the wait statement. In (a), the code is written in a very natural

way, but uses wait statements illegally by embedding them in an external code block. The code in (b) is

legal, but notice that without using embedded wait statements, we must use two external code blocks. Not

only that, but wasteful dummy messages must be sent to make the code work as desired.

functionality from these more complex forms of wait statements (which were not yet implemented

at the time of this writing), there are still some behaviors which cannot adequately be described

in TeD. It is for this reason that we can focus on an example which uses only the �rst two types

of waits (wait on and wait for) and still make valid conclusions about TeD. In fact, the problem

in TeD is not that the wait statements themselves are not powerful enough, but that there is no

mechanism to embed those wait statements inside an external code block. The repercussion of this

restriction is that certain simple behaviors of a process cannot possibly be described in TeD. To

illustrate these consequences, let us look at a concrete instance that arose in our TCP model.

Recall that for each source node entity, there is an array of port entities. Each port entity

in turn contains an application entity and a tcp agent entity. An application communicates

with its associated tcp agent, which does the communicating with the \outside world," talking

across the network to tcp agents on other source nodes. We now focus on the communication

between an application and a tcp agent, which are connected by channels.

4

Since an application should be the controlling party (the tcp agent exists to handle its re-

quests), it initiates all communication between the two. (This method also avoids the complication

of simultaneous messages between them.) The behavior of an application is such that at any mo-

ment, it is in one of several prede�ned states, which we will refer to as states of execution;1 for this

example we shall simplify the situation so that there are only two such states|connected (a com-

munication link is open with another application somewhere on the network) and unconnected.

We de�ne an application to behave according to its state of execution, some arbitrarily chosen

probabilities, and a wait time which helps control how \quickly" it executes. Throughout any sim-

ulation run, an application's behavior is de�ned by a looping self-driven process. (The behavior

of the application is said to be process-driven.) Each time through the loop, the application

follows well-de�ned steps:

1 Check the current state of execution and skip to the code associated with that state.

2 Probabilistically determine what action will be taken (if any), and whether or not that action requires

that a request message be sent to the tcp agent.

3 Execute the appropriate choice of the following two, depending upon whether or not a request needs to

be sent to the tcp agent:

Request Necessary: Send the request to the tcp agent and wait for a response. When the

response is received,make any necessary changes in the state of executionand other state variables.

Request Unnecessary: Wait for my wait time units of (simulated) time.

The most straightforward way to code the previous sequence in C++ is with a switch statement

(switching on the di�erent possible states of execution). Then within each case, parts 2 and 3 of

the list are executed using conditional, assignment, and wait statements. The end of the switch

statement would also be the end of the loop. The code might look something like that of Figure 1

(a).

Though TeD macros for sending and interpreting messages can appear in an external code

block, wait statements cannot (see Figure 1). This is unfortunate, as that functionality is required

to code the behavior of an application in a natural way. Furthermore, legal alternatives with no

embedded waits can become large and unwieldy, and in some cases, no alternative exists at all!

Speci�cally, there is no way to code a choice between the two standard kinds of wait statements.2

Coping with this obstacle leads to very unnatural and complicated code, as was the case with the

application code. We chose to wait on a channel, since we could not use both types of waits in

the desired manner. For the times when we did not want to wait for an event, we had to send a

dummy message to the tcp agent requesting a dummy response simply to get past that line of

code. Ugly as it is, this was cleanest workaround which we found (see Figure 1 (b)).

Three unwanted characteristics that result from thewait statement restriction are as follows:

1 The desired model behavior may not be possible. If the desired

behavior of a process requires using di�erent types of waiting from one ex-

ecution to the next (e.g., it sometimes waits on a channel, sometimes waits

for t time units), there is no way that the model can be coded within TeD.

2 Modeling becomes more cumbersome. When using any language, one

would like to produce code which expresses the properties and behaviors of

the resulting executable as clearly, concisely, and naturally as possible. Not

being able to do so complicates, and in turn slows, the coding process.

3 Model performance is slowed. As Figure 1 illustrates, lengthier code

and even wasteful communication between entities may result. Entities can

1This terminology is used simply to avoid confusion with other similar terms. One of the other de�ning charac-

teristics of an entity is its state, which is simply a collection of state variables (see Section 2). In fact, the state of

execution itself is one of an application's many state variables.
2The \two standard kinds" of wait statements we refer to here are the wait for and wait on forms. Other forms

seem as if they might help achieve the desired behavior, but on careful inspection, that is not in fact the case.

5

end up sending messages constantly|e�ectively pinging other entities|as a

side-e�ect to achieving (or just approximating) the desired overall behavior.

While it is clear that forbidding wait statements from being embedded in external code blocks

is restrictive to the modeler, it is important to understand why TeD makes this restriction. In

GTW, all logical processes are event-driven. It is a feature of TeD that the modeler is allowed to

de�ne the behavior of an entity as being process-driven, and it is the translation from the event-

driven to the process-driven type of behavior that is at the root of the wait statement restriction.

Each process in a TeD model is represented internally as a C++ class of which one instance is used

during a simulation. That class contains a vector of \process items," which are de�ned as sections

of the process code, with wait statements serving as the boundaries between them. For example, a

process with just one wait statement is divided into two process items|the code before the wait,

and the code after the wait. Generalizing, a process with n wait statements has n + 1 process

items. This design supports a very simple solution to the problem of re-animating suspended code.

When a TeD process is suspended at a wait statement, no context information (e.g., stack) is

stored, only the index of the re-entry point, which is stored as part of the C++ class describing

processes. To return control to a process following the last wait statement it executed, the TeD

run-time system needs only to look up the index and jump to the \next" segment of code.

This is a simple solution for the TeD designers, but the restriction that process code must

be straight-line (with respect to wait statements) greatly restricts us as modelers. Real process-

oriented simulators suspend and restore processes by saving and restoring contexts, and we believe

TeD might be able to do the same. The Standard C library contains functions setjump and

longjmp precisely for saving stack context and returning to it. With some re-design of TeD, these

calls could provide a way of greatly generalizing our ability to express TeD process behavior.

3.2.2 Complex data structures

While there are relatively few restrictions on coding in external code blocks, restrictions that do

exist can impose severe limits. For example, no memory can be allocated or deallocated (except

in a few limited initialization contexts). This in turn makes it practically impossible to use many

kinds of common complex data structures, such as linked lists and trees. Although structures such

as classes and structs are not restricted anywhere, they do lose some of their usefulness as a result of

the memory allocation/deallocation restriction. Dynamic memory allocation in optimistic parallel

simulation was a problem solved by the Time Warp Operating System project [3] (TWOS), the

solutions developed there ought to be provided in TeD and GTW.

One context in which the use of pointers seems simple, however, is in the external variable

declarations of an event/message. Allowing pointers in this context would be very useful to the

TCP model. We model a TCP datagram as an event, and the speci�cation for a datagram calls

for optional headers which can be added to provide additional information. Without pointers,

such optional parts are di�cult to include in an event description without setting hard limits and

wasting memory (e.g., a �xed-size array).

One important characteristic of an event variable which makes it di�erent from a state variable

is that its value never changes. Furthermore, events rarely exist for more than a small fraction of

the total simulation time. An event is created and sent by one process, and received and interpreted

by another. After the receiver is done reading it, it is not needed. Since event variable values never

change, there is no reason to checkpoint them. In a shared memory scheme (such as GTW), it

would be reasonable for them to reside in the same memory location throughout their existence,

thus making the use of pointers within them safe. In a distributed memory scheme, a slightly more

complicated (though equally e�ective) system would be necessary. The burden would lie on the

programmer, who would need to build appropriate methods for transferring event variables intact.

These methods would deal with packing a dynamic structure|a tree, for example|in such a way

6

that if the packed version were sent to another memory bank, a similarly de�ned unpacking method

would be able to restore its structure correctly. The methods required would be such things as a

copy constructor, a transfer constructor, and a destructor.

3.2.3 Global variables and scoping

The current TeD design prohibits the use of global variables. This is reasonable in that any values

which are not constant throughout the simulation should should be considered part of the simulation

state. For global variables which are read-only, however, such a constraint is unnecessary.

We introduce now another example|simulating a multicast on an internet|to illustrate the

usefulness of read-only global variables. To simulate multicast sessions, we've designed a model

composed of N node entities andM link entities which can be interconnected to form any desired

network topology. As a simulation executes, nodes attempt, at random times, to set up a multicast

session. In order to determine the feasibility of setting up such a session, the node needs bandwidth

information from each involved link. Before getting such data, the node must determine which

links those are. Once this information is acquired, a node can calculate whether or not the given

session can be admitted. In order to carry out these tasks, each node needs to know the topology

of the entire network (unlike the TCP example, where only local connections had to be known).

For a realistic simulation, the size of the network could be very large. Keeping copies of the entire

topology of a network of this size at each node would be highly ine�cient.

The network topology is de�ned during the setup phase of the simulation, and does not change

thereafter. Clearly, keeping only one global copy of it would be ideal. Because of the hierarchical

design of TeD, changing the scoping rules to allow subentities read access to the state variables of

their parent entities would solve the problem. Thus, we have de�ned a global variable as any state

variable in the root entity of a model. To simplify the multicast example, then, the root entity

would keep the network topology in its state, having de�ned it using the con�guration language

(see Section 3.1.2) in the setup stage of the simulation. Since every other entity is somewhere below

the root in the hierarchy, each node would have the desired access to the topology.

There are, however, important consequences to be considered when extending the scope of

variables.3 Currently, TeD is built on the GTW engine for shared memory multiprocessors. To

implement global variables of this type on a distributed memory platform, each processor could

have its own instance of the variable. However, this is reminiscent of the original problem of

multiple copies that we had hoped to solve. A more space-e�cient solution would be to implement

a software cache for global variables, at each processor. A cache miss would trigger a fetch from

the processor owning the global variable.

3.2.4 Mapping channels

In a TeD model, each channel can be mapped to at most one other|a constraint which seems

unnecessary and has proven to be burdensome. Although TeD does allow a process to wait on

any number of channels simultaneously, extracting the active set (the set of channels with pending

events) may not be e�cient. In the multicast model, for example, each link must maintain a large

number of channels, each of which comes from a di�erent node. It must listen to all of these

channels simultaneously by looping, which impacts performance negatively when the number of

channels is large. Furthermore, management of all these channels is tedious, when it is obvious

that a many-to-one channel mapping would ensure that all incoming events arrived on the same

channel. Likewise, if an event were sent out on a one-to-many channel, multiple copies of the event

could automatically be generated to go to the multiple recipients.

3Calling them `variables' here is somewhat of a misnomer. The only globals we are interested in are those which

are set once at start-up and remain constant from that point on. TeD allows entities to have \deferred constants,"
which �ts our de�nition exactly, except that they are not global.

7

CHANNEL

mapping
internal

INTERFACE
CHANNEL

INTERFACE
CHANNEL

mapping
internal

INTERNAL
CHANNEL

forwarded
process-

INTERFACE

fwd

SOURCE_NODE

PORT

SOURCE_NODE

PORT

INTERFACE
CHANNEL

rest of network

}

mapping to
rest of network

mapping to

...
{

}

process

(a) (b)

Figure 2: The di�culty with internal mapping. (a) How one would expect to be able to implement an

internal mapping. (b) How it must be done in TeD.

A second type of channel called an internal channel di�ers only slightly from the interface

channels that have been discussed so far. While interface channels are used for inter-entity com-

munication, internal channels are used for intra-architecture communication, and are not bound to

an entity, per se. For example, in describing the behavior of a source node in the TCP model,

we need to specify a method for forwarding datagrams internally to the proper port subentity. To

simplify matters, let us consider a source node with only one port, so that forwarding should be

trivial. What we would like to do is map the interface channel of the source node to the interface

channel of its port, as in Figure 2 (a). However, such a mapping cannot be done in TeD. In order

to achieve the desired e�ect, we must create an internal channel in the source node, map it to

the port's channel, and create an event-driven process in the source node which simply forwards

events between the source node's internal and interface channels (see Figure 2 (b)). This is overly

complicated for such a simple operation. The problem is that mapping directly would result in the

source node's interface channel being mapped more than once|which is not legal in TeD|since

it is also mapped to the rest of the network external to the source node.

To make matters even worse, TeD provides no way to refer to \the current entity" in code

(compare with the C++ this pointer). Every time we needed to implement an internal mapping,

we had to write our own macro speci�c to the particular environment.

3.2.5 Mapping processes to processors

The performance of any parallel or distributed simulation is closely related to how the logical

processes in the simulation are mapped to the physical processors. TeD does all mapping trans-

parently, doing little more than doling out the logical processes cyclically to the processors. While

this removes the burden of mapping from the modeler, it also prevents the modeler from being able

to implement di�erent, possibly better mappings (see Section 4 for some unsettling performance

statistics). Since �nding the optimal mapping for any given model is non-trivial, the modeler

8

should have some discretion over it. To make such low-level details con�gurable as part of the

language would be to taint the high-level interface that TeD strives to provide. However, it would

be reasonable to allow the user to edit some kind of optional mapping setup �le to be layered over

the TeD language, much the same way as the con�guration language is (see Section 3.1.2).

4 Performance

We ran our implementation of the TCP model in TeD using a network composed of 10 routers and

70 source nodes. The routers were connected in a ring, and each one had seven source nodes

connected to it. Each source node contained four ports, and each port contained one appli-

cation and one tcp agent. Along with the root entity (system), that made for a grand total

of 911 entities. From the unconnected state, an application requests connections at a rate of

5 per simulation time unit. They chose which source node and port to connect uniformly at

random. When connected, data packets are sent at a rate of 1.5 per unit simulation time; the

mean connection duration is 20 units of simulation time. For each link in the network (a channel

mapping) that a TCP packet event crossed, there was a random delay between 1.0 and 1.3 time

units, inclusive. A delay of 0.0 (no delay) was used for events passed between an application and

its associated tcp agent.

In TeD, each entity is represented as one logical process, so there were also 911 of those. The

model was run on an SGI Onyx with four processors. The average event rate for one processor was

6670 events/second, whereas for four processors it was 35279 events/second. This provides us with

an acceleration of nearly 5.3. Indeed, increasingly inappropriate accelerations were also observed

for two and three processors. Such behavior has been explained in the past as being due to use

of non-scalable data structures, e.g. a linearly linked event-list with linear searching for insertion.

Our model code contains no such constructs; it appears probable that GTW or the TeD run-time

system do. We are investigating this further.

The model whose performance is give above is perfectly homogeneous. TeD's strategy of cycli-

cally assigning LPs to processors is bound to be e�ective. It is of some interest to observe what

happens when the simulation workload is not so homogeneous. We modi�ed the TCP model so

that for every source node, there is one application whose connection rate is so slow that it

virtually never connects. Because of the problem with the wait statement described earlier, what

actually happens is that the workload associated with this application actually increases over ap-

plications that achieve connections, due to the incessant polling of the tcp agent. After studying

how TeD assigns workload to processes, we place these modi�ed applications in such a way to

be all assigned to the same processor in a four-processor system. Serial execution of this modi�ed

system yielded an event rate of 7190 events/second. Simulation by four processors yielded highly

variant results; most runs produced on the order of 4800 events/second, but occasionally a faster

run|e.g., 10700 events/second|was achieved. While arti�cially constructed, the point is made

that TeD's load-mapping strategy is insu�cient for non-homogeneous models. The modi�ed model

is actually homogeneous when viewed from a slightly higher level of abstraction. Given suitable

control we could easily cause workload to be perfectly balanced, and could exploit known com-

munication a�nities (e.g., between source nodes and tcp agent). In fact, we dove into GTW

internals to force a balanced mapping of this particular problem and were rewarded with an average

event rate of 33600 events/second. We feel strongly that TeD ought to provide one with an ability

to control or inuence the workload mapping.

5 Conclusions

TeD is a high-level modeling language which provides a good abstraction from the performance

details of simulation. Its object-oriented nature and separation of structure from behavior make

9

it a modular system, its components reusable and interchangeable. Though TeD is a step toward

Fujimoto's \Holy Grail" [2] of a completely transparent interface, our experience is that it currently

makes some implementation decisions that negatively impact our ability to model, and that in the

special case of load management it takes away control only to handle the problem naively while

leaving the modeler helpless.

TeD does provide the modeler with considerable high-level functionality, but it also has some

weaknesses and restrictions which make describing certain characteristics of a model di�cult. Some

of these restrictions are due to fundamental di�culties in parallel/distributed simulation. Limited

use of memory allocation/deallocation and pointers are an example of such. Others are not as

deeply-rooted, such as forbidding global read-only variables and one-to-many or many-to-one chan-

nel mappings. Perhaps the most notable and costly limitation in TeD is its failure to provide

complete process-driven functionality. We understand that providing such functionality is non-

trivial, given that TeD is built on a system which is completely event-driven (GTW). Having full

process-driven functionality, however, is essential for building natural, high-level models, as well

as for further promoting reusability. As so, we are anxious to see this matter investigated more

carefully.

TeD has the potential to be a building block toward ideal high-level modeling with optional

low-level control. We hope that our experience will inuence the TeD designers to reconsider some

of their design decisions.

References

[1] S. Das, K. Panesar, D. Allison, and M. Hybinette. GTW: A Time Warp system for Shared

Memory Multiprocessors. In 1994 Winter Simulation Conference Proceedings, pp. 1332{1339,

December 1994.

[2] R. Fujimoto. Parallel Discrete-Event Simulation:Will the Field Survive?. In ORSA Journal on

Computing, 5(3):213{230, 1993.

[3] D. R. Je�erson, B. Beckman, F. Wieland, L. Blume, M. DiLorento, P. Hontalas, P. Reiher, K.

Sturdevant, J. Tupman, J.Wedel, and H. Younger. The Time Warp Operating System. 11th

Symposium on Operating Systems Principles 21(5):77-93, November 1987.

[4] D. Nicol and P. Heidelberger. On Extending Parallelism to Serial Simulations. Proceedings of

the 1995 Workshop on Parallel and Distributed Simulation, pp. 60{67, June, 1995.

[5] K. Perumalla, R. Fujimoto, A. Ogielski. MetaTeD|A Meta Language for Modeling Telecom-

munication Networks. College of Computing, Georgia Institute of Technology, and Bell Com-

munications Research, 1996.

[6] K. Perumalla, R. Fujimoto. A C++ Instance of TeD. College of Computing, Georgia Institute

of Technology, 1996.

[7] K. Perumalla, R. Fujimoto. GTW++|An Object-oriented Interface in C++ to the Georgia

Tech Time Warp System. GIT-CC-96-09, College of Computing, Georgia Institute of Technol-

ogy, 1996.

10

	A Critique of the Telecommunications Description Language (TeD)
	Dartmouth Digital Commons Citation

	ted.dvi

